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ABSTRACT

This paper explores the domain of multi-view image synthesis, aiming to create
specific image elements or entire scenes while ensuring visual consistency with
reference images. We categorize this task into two approaches: local synthesis,
guided by structural cues from reference images (Reference-based inpainting, Ref-
inpainting), and global synthesis, which generates entirely new images based solely
on reference examples (Novel View Synthesis, NVS). In recent years, Text-to-
Image (T2I) generative models have gained attention in various domains. However,
adapting them for multi-view synthesis is challenging due to the intricate correla-
tions between reference and target images. To address these challenges efficiently,
we introduce Attention Reactivated Contextual Inpainting (ARCI), a unified ap-
proach that reformulates both local and global reference-based multi-view synthesis
as contextual inpainting, which is enhanced with pre-existing attention mechanisms
in T2I models. Formally, self-attention is leveraged to learn feature correlations
across different reference views, while cross-attention is utilized to control the
generation through prompt tuning. Our contributions of ARCI, built upon the
StableDiffusion fine-tuned for text-guided inpainting, include skillfully handling
difficult multi-view synthesis tasks with off-the-shelf T2I models, introducing
task and view-specific prompt tuning for generative control, achieving end-to-end
Ref-inpainting, and implementing block causal masking for autoregressive NVS.
We also show the versatility of ARCI by extending it to multi-view generation for
superior consistency with the same architecture, which has also been validated
through extensive experiments.

1 INTRODUCTION

This paper delves into the intricate domain of multi-view image synthesis, with a central focus on
crafting specific image elements or complete scenes by leveraging reference images as the foundation.
The objective is to generate specific components or even entire images through these references, while
meticulously preserving visual coherence in aspects such as geometry, color, and texture between
the reference images and their synthesized counterparts. This task can be broadly categorized into
two facets: local and global multi-view image synthesis from reference images. The local variant
involves the creation of specific image segments by aligning with the locally inherent structural cues
found in the reference images. This technique is essentially related to a previously defined concept
known as Reference-guided inpainting (Ref-inpainting) (Zhou et al., 2021; Zhao et al., 2022b), as
illustrated in Fig. 1(a). Conversely, the global multi-view image synthesis aims to generate entirely
new images, drawing inspiration solely from reference examples, as depicted in Fig. 1(b). This
approach is closely associated with Novel View Synthesis (NVS) (Liu et al., 2023b). In this paper,
we introduce a unified methodology to tackle this task by reactivating self-attention priors derived
from extensive text-to-image models (Rombach et al., 2022), as illustrated in Fig. 2(a).

In recent years, Text-to-Image (T2I) generative models have garnered substantial attention across
various domains, finding applications in diverse areas such as personalization (Gal et al., 2022; Ruiz
et al., 2022; Mokady et al., 2022), controllable image-to-image generation (Zhang & Agrawala,
2023; Mou et al., 2023; Yang et al., 2023; Bar-Tal et al., 2023), and even 3D generation (Poole et al.,
2023; Lin et al., 2023; Liu et al., 2023b). While it may seem intuitive to harness the power of T2I
generative models to directly address multi-view synthesis by training additional adapters with zero-
initialization, as demonstrated in previous works (Hu et al., 2021; Zhang & Agrawala, 2023; Mou

1



Under review as a conference paper at ICLR 2024

(a) Reference-guided inpainting (local reference) (b) Novel view synthesis (global reference)

(c) Multi-view inpainting: inpainting one target view through multiple reference views (d) Multi-view synthesis: generating multiple consistent target views through a single view

Figure 1: Illustration of local and global reference-based multi-view synthesis addressed by ARCI.

et al., 2023), these adapter-based fine-tuning strategies have inherent limitations. They struggle to
capture fine-grained correlations, including object orientations and precise object locations, between
reference and target images. These nuanced details are pivotal for tasks such as multi-view generation,
as exemplified by Ref-inpainting. Furthermore, leveraging T2I models to address image-to-image
tasks requires image-based guidance rather than text-based ones. Thus some approaches replace
textual encoders with visual ones and optimize them for full fine-tuning of the entire T2I model. This
transition often demands substantial computational resources, with training sessions extending to
hundreds of GPU hours, as in Yang et al. (2023); Liu et al. (2023b). However, training these large
T2I models with unfamiliar visual encoders can be computationally intensive and challenging to
converge, particularly when working with limited batch sizes. Additionally, most visual encoders,
such as image CLIP (Radford et al., 2021), tend to emphasize the learning of semantic features rather
than the intricate spatial details essential for tasks involving multi-view synthesis.

Our innovative approach is designed to harness off-the-shelf T2I generative models to tackle both local
and global multi-view synthesis, overcoming the aforementioned challenges of extensive training
cost and imperfect image encoding. It stems from a profound realization: most T2I models inherently
incorporate attention mechanisms adept at discerning spatial correlations within images and text.
These self and cross-attention, originally acquired through training with large diffusion generative
models, can serve as an intrinsic guiding prior to multi-view image synthesis.

This leads us to a pivotal inquiry: “Could pre-existing attention mechanisms have already established
meaningful correlations between reference images and the intended generative targets?” To leverage
this untapped potential, we introduce Attention Reactivated Contextual Inpainting (ARCI), a unified
approach that encompasses both reference-based local and global multi-view synthesis. ARCI
ingeniously reformulates reference-based multi-view synthesis as a contextual inpainting process.
This involves seamlessly integrating the reference conditions and masked targets into a unified tensor
within the self-attention module as in Fig. 2(a). We then employ pre-trained textual encoders and
cross-attention modules to guide the generation of T2I models, infusing them with critical information
for specific generative tasks and desired view orders. The contextual inpainting (Yu et al., 2018)
was originally proposed to leverage attention to infill missing features for inpainting, sharing some
similarities to our work, which inpaints target views through information aggregated from references.

Formally, ARCI represents an innovative approach, built upon the StableDiffusion (SD) (Rombach
et al., 2022)1 fine-tuned under text-guided inpainting. ARCI is primarily designed to address a diverse
range of image synthesis tasks, including Ref-inpainting and NVS from reference images. Importantly,
these tasks can be seamlessly extended into the multi-view scenario, as depicted in Fig. 1(c)(d).
Additionally, we introduce task and view-specific prompt tuning to effectively control generative
tasks and define specific view orders. Remarkably, even for the prohibitive Ref-inpainting task,
which typically demands sophisticated 3D geometrical warping and 2D inpainting techniques (Zhou
et al., 2021; Zhao et al., 2022b;a), our ARCI framework addresses it end-to-end with minimal
additional parameters while keeping all other weights from SD frozen. On the other hand, to tackle
the more intricate NVS task, we propose the novel technique of block causal masking, facilitating
self-attention-based T2I models in achieving consistent autoregressive generation as in Fig. 1(d).

The novel contextual formulation of ARCI results in faster convergence and efficient training,
outperforming other baselines (Zhang & Agrawala, 2023; Yang et al., 2023; Liu et al., 2023b) with

1StableDiffusion 2.0: https://github.com/Stability-AI/stablediffusion.
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the same training computation and parameters. Moreover, the introduction of task and view-specific
prompt tuning marks a significant advancement in the field, allowing us to efficiently control the
generation of T2I models for multi-view synthesis.

We highlight the key contributions as follows: 1) Efficient multi-view synthesis with T2I models:
Benefiting from the novel contextual inpainting formulation and inherent attention mechanisms from
generative T2I models, the ARCI provides an efficient solution for multi-view synthesis without
thoroughly laborious re-training T2I models. 2) Task and view-specific prompt tuning: Our work
pioneers the use of task and view-specific prompt tuning, allowing for precise control over generative
tasks and view orders. 3) End-to-end Ref-inpainting: Notably, our ARCI addresses the challenging
Ref-inpainting end-to-end, without complex 3D geometrical warping and 2D inpainting techniques.
4) Autoregressive NVS with block causal masking: For the intricate NVS task, we introduce the novel
concept of block causal masking, enabling self-attention-based T2I models to achieve Autoregressive
generation for superior quality and geometric consistency.

2 RELATED WORK

Personalization and Controllability of T2I Models. Recent achievements on T2I have produced
impressive visual generations, which could be further extended into local editing (Avrahami et al.,
2022; Hertz et al., 2022; Couairon et al., 2022). However, these T2I models could only be controlled
by natural languages. As “an image is worth hundreds of words”, T2I models based on natural texts
fail to produce images with specific textures, locations, identities, and appearances (Gal et al., 2022).
Textual inversion (Gal et al., 2022; Mokady et al., 2022) and fine-tuning techniques (Ruiz et al.,
2022) are proposed for personalized T2I. Meanwhile, many works pay attention to image-guided
generations (Voynov et al., 2022; Li et al., 2023; Ma et al., 2023). ControlNet (Zhang & Agrawala,
2023) and T2I-Adapter (Mou et al., 2023) learn trainable adapters (Houlsby et al., 2019) to inject
visual clues to pre-trained T2I models without losing generalization and diversity. But these moderate
methods only work for simple style transfers. More spatially complex tasks, such as Ref-inpainting,
are difficult to handle by ControlNet as verified in Sec. 4. In contrast, T2I-based exemplar-editing
and NVS have to be fine-tuned on large-scale datasets with strong data augmentation (Yang et al.,
2023) and large batch size (Liu et al., 2023b). Compared with these aforementioned manners, the
proposed ARCI enjoys both spatial modeling capability and computational efficiency.

Prompt Tuning (Lester et al., 2021; Liu et al., 2021b;a) indicates fine-tuning token embeddings
for transformers with frozen backbone to preserve the capacity. Prompt tuning is first explored for
adaptively learning suitable prompt features for language models rather than manually selecting
them for different downstream tasks (Liu et al., 2023a). Moreover, prompt tuning has been further
investigated in vision-language models (Radford et al., 2021; Ge et al., 2022) and discriminative
vision models (Jia et al., 2022; Liao et al., 2023). Visual prompt tuning in Sohn et al. (2022)
prepends trainable tokens before the visual sequence for transferred generations. Though both ARCI
and Sohn et al. (2022) aim to tackle image synthesis, our prompt tuning is used for controlling
text encoders rather than visual ones. Thus ARCI enjoys more intuitive prompt initialization from
task-related textual descriptions. Besides, we should clarify that prompt tuning is different from
textual inversion (Gal et al., 2022). In our work, we use prompt tuning to address specific downstream
tasks with view information, while textual inversion tends to present personalized image subsets.

Reference-guided Image Inpainting. Image inpainting is a long-standing vision task, which aims to
fill missing image regions with coherent results. Both traditional methods (Bertalmio et al., 2000;
Criminisi et al., 2003; Hays & Efros, 2007) and learning-based ones (Zeng et al., 2020; Zhao et al.,
2021; Li et al., 2022; Suvorov et al., 2022; Dong et al., 2022) achieved great progress in image
inpainting. Furthermore, Ref-inpainting requires recovering a target image with one or several
reference views (Oh et al., 2019), which is useful for repairing old buildings or removing occlusions
in popular attractions. But Ref-inpainting usually suffers from a sophisticated pipeline (Zhou et al.,
2021; Zhao et al., 2022b;a), including depth estimation, pose estimation, homography warping, and
single-view inpainting. Note that for large holes, the geometric pose is not reliable; and the pipeline
will be largely degraded. Thus an end-to-end Ref-inpainting pipeline is meaningful. To the best of
our knowledge, we are the first ones to tackle such a difficult reference-guided task with T2I models.

Novel View Synthesis from a Single Image. NVS based on a single image is an intractable ill-posed
problem, requiring both sufficient geometry understanding and expressive textural presentation (Fahim
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Figure 2: (a) Overview: ARCI uses a shared T2I model to learn correlations across multi-view images with
concise designs and fast convergence. Detailed architecture for (b) local reference-based Ref-inpainting and (c)
global reference-based NVS. ARCI also supports optional multi-view Ref-Inpainting and consistent NVS.
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Figure 3: Illustration about the (a) multi-view training inputs, (b) feature rearranging, and (c) block causal
masking. All views of Ref-inpainting (a-i) share the same masked target, while the multi-view NVS (a-ii) should
be trained with the AR generation. v, h, w indicate the view number, height, and width of images or features.

et al., 2021). Many previous works could partially tackle this problem through single view 3D
reconstruction (Wu et al., 2017; Wang et al., 2018; Chen et al., 2019; Liu et al., 2019; Xu et al., 2019),
2D generative models (Niklaus et al., 2019; Shih et al., 2020; Rombach et al., 2021), feature cost
volumes (Chan et al., 2023), and GAN-based methods (Schwarz et al., 2020; Niemeyer & Geiger,
2021; Chan et al., 2022). However, these manners still suffer from limited generalization or small
angle variations. Recent works devoted to incorporating the knowledge from 2D diffusion-based
T2I models into the 3D reconstruction (Poole et al., 2023; Wang et al., 2023; Lin et al., 2023; Tang
et al., 2023; Qian et al., 2023), largely alleviating the demand for 3D annotated data. On the other
hand, Zero123 (Liu et al., 2023b) uses another image CLIP encoder to inject image features from the
reference view for NVS. Although Zero123 unlocks the view synthesis capability of T2I models, it
requires a large batch size and expensive computational resources to stabilize the training stage with
an unknown reference image encoder. Moreover, the image encoder in Zero123 can only tackle one
reference image, which fails to generate consistent multi-view images.

3 ATTENTION REACTIVATED CONTEXTUAL INPAINTING

3.1 FRAMEWORK OF ARCI

Overview. Our ARCI model is formulated in Sec.3.1. Then we explain using attention prior to learn
multi-view correspondence Sec.3.2, as well as enhancing self-attention for AR generation. Finally,
we discuss the task and view-specific prompt tuning for cross-attention modules in Sec. 3.3.

As shown in Fig. 2, our ARCI framework is built upon the inpainting pre-trained LDM (Rombach
et al., 2022). Essentially, we reformulate both Ref-inpainting and NVS as contextual image inpainting
problems. The conventional approach to integrating reference images into the generation process
involves either concatenating them along the channel dimension of input images or introducing an
additional image encoder for the network (Yang et al., 2023; Zhang & Agrawala, 2023; Mou et al.,
2023; Liu et al., 2023b). However, both strategies require additional training to rebuild the correlation
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between the reference and target for the generative model. This is contrary to our motivation to
harness the potential of large T2I models with minimal architectural alterations.

Thanks to the convolutional U-net architecture in LDM, we can expand the input image in the spatial
dimensions without extra modification. To illustrate, let’s consider a scenario with a single reference
image at first. Our input I′ is a stitching image of Iref and the masked target Îtar, forming as
I′ = [Iref ; Îtar] ∈ RH×2W . In practice, we take the reference image on the left side, while the
target one is placed on the right side. For the multi-view references, we stitch each reference with
the specific target as shown in Fig. 3(a). All views are learned separately for convolutions and
cross-attention, while they share the same self-attention processing as discussed in Sec. 3.2. As
shown in Fig. 3(a-i), the multi-view Ref-inpainting leverages information from different reference
views to repair the same target one, while multi-view NVS could be seen as an AR generation for
sequentially consistent view synthesis. Masked targets could be generated successfully along with
the ARCI filling the hole in the target side. The inpainting formulation fully exploits the contextual
learning capability of pre-trained self-attention in LDM to address the reference-guided generation.
More details about the processing of data and masks are discussed in Appendix. A.2.

Simply stitching reference images and masked targets along the spatial space and self-attention
modules could not establish the necessary correlation between them, thus failing to generate the
desired target results. Text-guided inpainting needs image-dependent text prompts to drive the
diffusion model for the desired generation. It is non-trivial to define Ref-inpainting and NVS with
natural languages. On the other hand, it is beneficial to have an image-independent prompt to guide
the diffusion model to perform specific tasks. To this end, we propose to use prompt tuning to learn
task and view-specific prompts as in Sec. 3.3. Except for the prompt tuning, all weights in LDM are
frozen in Ref-inpainting to maintain the proper generalization as shown in Fig. 2(b). For the NVS,
we need to fine-tune the whole LDM as in Fig. 2(c), but we clarify that ARCI enjoys much better
convergence compared with other fine-tuning based methods, such as Zero123 (Liu et al., 2023b).

3.2 REACTIVATING SELF-ATTENTION MODULES

As shown in Fig. 3(b), given multi-view features Fi ∈ Rb×v×h×w×c to layer i with v views, b, h, w, c
indicate the batch size, feature height, width, and channels respectively, all MLP, convolutional,
and cross-attention layers handle Fi separately. We could easily achieve this by reshaping the view
and batch dimension together as F̂i ∈ Rbv×h×w×c or F̂i ∈ Rbv×hw×c. Before the self-attention
encoding, we adjust the feature shape as F̃i ∈ Rb×vhw×c, thus features across different views could
be learned together. To further incorporate positional clues to T2I models for distinguishing different
sides of reference and target, we incrementally add positional encoding Pi to Fi as

Pi = γi · cat([Pv;PFourier]), (1)

where Pv, PFourier indicate the trainable view embedding and Fourier absolute positional encod-
ing (Vaswani et al., 2017) respectively; γi is a zero-initialized learnable coefficient for each layer.

For the Ref-inpainting, no masking strategy should be considered in self-attention modules. All
reference views share the same target one, thus it is unnecessary for ARCI to sequentially repair
target views. In contrast, generating consistent novel views from a single image needs our model to
handle the sequential generation with dynamic reference views. For example, the same ARCI should
accomplish the NVS from one view, two views, and even more. So the AR generation (Van den Oord
et al., 2016; Salimans et al., 2017; Esser et al., 2021) is suitable to formulate this task.

Block Causal Masking. Although fine-tuning ARCI mitigates heavy training costs of T2I models, it
still needs a certain fine-tuning for LDM to effectively tackle challenging NVS as shown in Fig. 2(c).
The intuitive solution is to train an AR-based generative model that can generalize across various
view numbers for multi-view synthesis. Converting a pre-trained diffusion model to an AR-based
generative model is non-trivial. However, the inpainting formulation utilized by ARCI makes this
conversion feasible. Specifically, we just need to adjust the masking strategy during the self-attention
learning. We propose the block casual masking as shown in Fig. 3(c), while the block size of each
view is h×w, matching the size of the stitched reference and target pair. Different from the traditional
casual mask which is a lower triangular matrix, the block casual mask enlarges the minimal unit from
one token to a h×w block, ensuring reasonable block-wise receptive fields. In practice, all uncolored
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Table 1: Quantitative results for Ref-inpainting on MegaDepth (Li & Snavely, 2018) test set based on
matching and manual masks with 1-view reference (upper). Lower results are based on the multi-view
reference-based test set (Appendix. A.2.1). ‘ExParams’ means the scale of extra trainable parameters.
* means that the uncorrupted ground truth is visible for the matching.

Methods PSNR↑ SSIM↑ FID↓ LPIPS↓ ExParams

SD (inpainting) (Rombach et al., 2022) 19.841 0.819 30.260 0.1349 +0
ControlNet (Zhang & Agrawala, 2023) 19.072 0.744 33.664 0.1816 +364.24M
ControlNet+New Cross-Attention 19.027 0.743 34.170 0.1805 +463.41M
ControlNet+Matching* (Tang et al., 2022) 20.592 0.763 29.556 0.1565 +364.29M
Perceiver+ImageCLIP (Jaegle et al., 2021) 19.338 0.745 32.911 0.1751 +52.01M
Paint-by-Example (Yang et al., 2023) 18.351 0.797 34.711 0.1604 +865.90M
TransFill (Zhou et al., 2021) 22.744 0.875 26.291 0.1102 –
ARCI 20.926 0.836 18.680 0.0961 +0.05M

ARCI (1-view) 21.195 0.837 18.598 0.0946 +0.05M
ARCI (2-view) 21.092 0.836 18.389 0.0969 +0.055M
ARCI (3-view) 21.356 0.840 16.838 0.0901 +0.06M
ARCI (4-view) 21.779 0.847 16.632 0.0839 +0.065M

tokens in the attention score are masked with “− inf” before the softmax operation. We should clarify
the block casual mask can be achieved parallelly and efficiently as discussed in Alg. 1 of Appendix.

3.3 TASK&VIEW PROMPT TUNING TO REACTIVATE CROSS-ATTENTION

The prompt embedding is adopted as the textual branch of Fig. 2. Specifically, we prepare a set of
trainable text embeddings for different generative tasks, which are further categorized into task and
view prompts. Specifically, task prompt embeddings are shared in the same task, e.g., all views of
Ref-inpainting using the same task embeddings. In contrast, view prompt embeddings are applied to
different views to inject different view information through cross-attention modules. Though there
are only a few trainable parameters (0.05M to 0.065M), we astonishingly find that prompt tuning is
sufficient to drive complex generative tasks such as Ref-inpainting, even though the LDM backbone
is completely frozen. The trainable task and view prompt embeddings pt, pv are initialized as the
averaged embedding of the natural task description. The optimization target can be defined as

{pt, pv}∗ = argmin
{pt,pv}

Ex,ϵ∼N (0,I),t

[
∥ε− εθ ([zt; ẑ0;M], cϕ(pt, pv), t)∥2

]
, (2)

where εθ(·) is the estimated noise by LDM; cϕ(·) means the frozen CLIP-H; zt is a noisy latent
feature of input z0 in step t; ẑ0 = z0 ⊙ (1 −M) are masked latent features that are concatenated
to zt with mask M. Task and view-specific prompt tuning enjoy not only training efficiency but
also lightweight saving (Lester et al., 2021). For example, we could address Ref-inpainting for
different reference views with the same ARCI, while only 0.01% additional weights of {pt, pv}∗ are
required to be changed for each view condition. In NVS, we further provide relative poses to ARCI.
Following Liu et al. (2023b), we calculate the 4-channel relative pose in the polar coordinate from the
first view to the target one for each view, which is encoded by a two-layer FC. Then the pose feature
replaces the last padding token in the prompt embeddings before being applied to the CLIP-H.

4 EXPERIMENTS

Datasets. For Ref-inpainting, we use the resized 512×512 image pairs from MegaDepth (Li &
Snavely, 2018), which includes many multi-view famous scenes collected from the Internet. To
trade-off between the image correlation and the inpainting difficulty, we empirically retain image
pairs with 40% to 70% co-occurrence with about 80k images and 820k pairs. The validation of
Ref-inpainting also includes some manual masks from ETH3D scenes (Schops et al., 2017) to verify
the generalization. For the NVS, we use Objaverse (Deitke et al., 2022) rendered by Liu et al. (2023b)
including 800k various scenes with object masks. We resize all images to 256×256 as Liu et al.
(2023b). Note that some extreme views with elevation angles less than -10◦ are filtered due to
excessive ambiguity. More details about the masking and datasets are in Appendix. A.2.

Implementation Details. Our ARCI is based on the inpainting fine-tuned SD (Rombach et al., 2022)
with 0.8 billion parameters. For the task and view prompt tuning, there are 50 trainable prompt tokens
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(a) Reference (b) Masked target (c) SD (d) Control+Match (e) Perceiver (f) Paint-by-Example (h) ARCI(g) TransFill

Figure 4: Qualitative Ref-inpainting results on MegaDepth. More results are in Fig. 14 of Appendix.

Reference Target Zero123* Reference Target Zero123* ARCI (LoRA) ARCIARCI (LoRA) ARCI

Figure 5: NVS results on Objaverse (Deitke et al., 2022) from a single reference image. Note that Zero123*
was re-trained with a small batch size as our ARCI. More results are in Fig. 17 of Appendix.

at all. We use 90% tokens to represent the task embeddings, while 10% tokens indicate each view
respectively. We use the AdamW optimizer with a weight decay of 0.01 to optimize ARCI. For
the Ref-inpainting, the prompt tuning’s learning rate is 3e-5. Moreover, 75% masks are randomly
generated, and 25% of them are matching-based masks (Appendix. A.2.1). For the NVS, ARCI
could be tested with the adaptive masking strengthened by the foreground segmentation model as
in Appendix. A.3.1. ARCI could be converged with just 48 batch size and learning rate 1e-5. The
multi-view ARCI is fine-tuned based on the one-view version. We also train a multi-view ARCI with
512 batch size and learning rate 3e-5 for NVS. More training details are listed in the Appendix. A.2.3.

4.1 RESULTS OF REFERENCE-GUIDED INPAINTING

Results of One-view Reference. We thoroughly compared the specific Ref-inpainting method (Zhou
et al., 2021) and existing image reference-based variants of LDM with one-view reference in Tab. 1
and Fig. 4. Note that ControlNet (Zhang & Agrawala, 2023) fails to learn the correct spatial correlation
between reference images and masked targets, even enhanced with trainable cross-attention learned
between reference and target features. Furthermore, we try to warp ground-truth latent features with
image matching (Tang et al., 2022) as the reference guidance for ControlNet, but the improvement is
not prominent. Perceiver (Jaegle et al., 2021) and Paint-by-Example (Yang et al., 2023) align and
learn image features from Image CLIP. Since image features from CLIP contain high-level semantics,
they fail to deal with the fine-grained Ref-inpainting as shown in Fig. 4(e)(f). Though TransFill (Zhou
et al., 2021) achieves proper results in PSNR and SSIM, it suffers from blur and color difference as in
Fig. 4(g) with challenging viewpoints. ARCI enjoys substantial advantages in both qualitative and
quantitative comparisons with negligible trainable weights. We further compare ARCI with TransFill
on the officially provided real-world dataset in Tab. 9 and Fig. 13 of the Appendix. Since most
instances should be defined as object removal tasks without ground truth, quantitative metrics are for
reference only. But ARCI still outperforms TransFill in FID and LPIPS with perceptually pleasant
results. Moreover, as shown in Fig. 13, ARCI enjoys good generalization in unseen or occluded
regions, because it gets rid of the constrained geometric warping.

Results of Multi-view Ref-inpainting. We verified models trained with different numbers of
reference views in Tab. 1. The 2-view ARCI suffers from a minor performance decrease, which
we attribute to the inherent ambiguities within the MegaDepth validation. However, as the number
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Reference Reference

ARCI†

Adaptive
Masking

Zero123
(last view)

Zero123
(first view)

Generated views Generated views

Figure 6: The sequential generative results from a single view. Results of Zero123 (Liu et al., 2023b) are
conditioned on the real reference (first view) and the last generated view (last view) respectively.

Table 2: Results for NVS with a single image on Objaverse (Deitke et al., 2022). Zero123 (Liu et al.,
2023b) was tested with the official model, while Zero123* was re-trained with the same training
setting as ARCI. ARCI† is trained with a larger batch size (512).

Methods Ref-View PSNR↑ SSIM↑ LPIPS↓ CLIP↑
Zero123* (re-trained) 1 14.316 0.802 0.3455 0.6549
Zero123 (Liu et al., 2023b) 1 19.402 0.858 0.1309 0.7816
ARCI (prompt tuning) 1 16.385 0.855 0.2468 0.7107
ARCI (LoRA) 1 19.514 0.869 0.1534 0.7589
ARCI 1 20.508 0.875 0.1288 0.7763

ARCI† 1 21.551 0.885 0.1115 0.7927
ARCI† 2 22.680 0.893 0.0888 0.8247
ARCI† 3 23.839 0.905 0.0740 0.8372
ARCI† 4 24.064 0.906 0.0671 0.8468

of reference views increases, there is a notable enhancement in inpainting capability. As shown in
Fig. 15, more consistent references lead to robust inpainting results with sensible structures.

4.2 RESULTS OF NOVEL VIEW SYNTHESIS

Results of single-view NVS. Different from Zero123 (Liu et al., 2023b), we explore the feasibility
of learning the challenging NVS with limited resources as in the upper of Tab. 2 and Fig. 5. The
CLIP score (Radford et al., 2021) is compared to evaluate the similarity between the generation and
the target. Prompt tuning and LoRA-based (Hu et al., 2021) fine-tuning are insufficient to achieve
high-fidelity results as in Tab. 2. Fine-tuning the whole LDM enjoys substantial improvements.
But all variants of ARCI outperform the state-of-the-art competitor Zero123 with the same training
setting (batch size 48 with 2 A6000 GPUs) in Tab. 2 because the latter needs a much larger batch size
(1536) for stable training. Thus our contextual inpainting-based ARCI enjoys a good balance between
training efficiency and performance. Moreover, we evaluate the effectiveness of Classifier-Free
Guidance (CFG) (Ho & Salimans, 2022) during the training phase, which enjoys better pose guidance
with a CFG coefficient of 2.5 for the inference. We further provide the training log of ARCI and
Zero123 in Fig. 9 of the Appendix. Obviously, the contextual inpainting-based ARCI enjoys a
substantially faster convergence and superior performance.

Results of Multi-view NVS. We further fine-tune the ARCI for multi-view NVS through the AR
generation and large batch size (ARCI†). Quantitative results are shown in the lower of Tab. 2.
Obviously, more reference views lead to better reconstruction quality of ARCI†. Moreover, additional
reference images could substantially alleviate the ambiguity, improving the final results with consistent
geometry as shown in Fig. 18. Benefited by the AR, ARCI† can be also generalized to synthesize
a group of consistent images with different viewpoints from a single view as shown in Fig. 6 and
Fig. 10. We also show that our method can be generalized to real-world data as in Fig. 11.

4.3 ANALYSIS AND ABLATION STUDIES

Self-Attention Analysis. We show the visualization of self-attention scores attended by masked
regions for Ref-inpainting (Alg. 2) across different DDIM steps in Fig. 7. Self-attention can success-
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Reference Masked target 5 10 15 20 25 30 35 40 45 50

Figure 7: Visualization of attention scores in ARCI for Ref-inpainting across different DDIM steps. We show
scores from reference views attended by masked regions. The upper row shows attention scores from the 8th/16
self-attention (1/32 scale), while the bottom row shows ones from the 14th/16 self-attention (1/8 scale).

Table 3: Ablation studies for the setting of prompt tuning in Ref-inpainting. Left: ‘Shallow’ means only
prompt tuning to text embedding, while ‘Deep’ indicates tuning additional embedding features to different
cross-attention layers (16 layers) in SD. Right: validating the influence of the length of shared (Task) and
unshared (View) prompts with 3-view Ref-inpainting.

Prompt Type Length PSNR↑ SSIM↑ LPIPS↓ Params

Shallow 25 20.35 0.827 0.104 +0.025M
Shallow 50 20.49 0.829 0.103 +0.05M
Shallow 75 20.38 0.830 0.104 +0.075M

Deep (×16) 25(400) 20.15 0.825 0.106 +0.4M

Task View PSNR↑ SSIM↑ LPIPS↓ Params

50 0 21.224 0.838 0.0941 +0.05M
45 5 21.356 0.840 0.0901 +0.06M
25 25 21.127 0.836 0.0950 +0.11M
5 45 20.744 0.832 0.1040 +0.14M
0 50 20.563 0.831 0.1110 +0.15M

fully capture correct feature correlations without any backbone fine-tuning. As diffusion sampling
progresses, self-attention modules gradually shift their focus from specific key points to broader
related regions, which is convincing and intuitive. Because the key landmarks help to swiftly locate
the spatial correlation between the reference and target, while the extended receptive fields further
refine the generation for the following sampling steps.

Table 4: Results of NVS with different
reference views with/without incremen-
tal Positional Encoding (PE).

Ref-View PE PSNR↑ SSIM↑ LPIPS↓
1 × 20.352 0.873 0.132
1 ✓ 20.508 0.875 0.128

4 × 22.097 0.888 0.099
4 ✓ 22.324 0.890 0.095

Prompt Settings. The length and depth used in the task and
view prompt tuning are explored in Tab. 3. Different from Jia
et al. (2022), we find the ARCI is relatively robust in the
length selection. Thus we select 50 for both Ref-inpainting
and NVS. Moreover, we find that the deep prompt with much
more trainable prompts for different cross-attention layers does
not perform well, which may suffer from a little overfitting.
For the multi-view scene, we empirically evaluate the 3-view-
based Ref-inpainting performance with various proportions of
task&view prompt lengths in the right of Tab. 3. Increasing the proportion of view tokens initially
improves the results, followed by a subsequent decline. We think that a few unshared view tokens con-
tribute valuable view orders, while too many unshared tokens would increase the learning difficulty,
leading to an inferior prompt tuning performance.

Incremental Positional Encoding. We incrementally add the concatenation of learnable view
embedding and absolute positional encoding to each attention block for NVS (Eq. 1), improving the
performance of both single-view and multi-view-based NVS as verified in Tab. 4. More ablation
studies are verified in the Appendix. A.4.1.

5 CONCLUSION

In this paper, we propose ARCI, formulating reference-based multi-view image synthesis as inpainting
tasks and addressing them end-to-end. Benefiting from the prompt tuning and the well-learned
attention modules in large T2I models, ARCI can address the spatially sophisticated Ref-inpainting
and NVS efficiently. Moreover, ARCI could be easily extended to tackle multi-view generation tasks.
We also propose block casual masking to accomplish NVS with consistent results autoregressively.
Comprehensive experiments on Ref-inpainting and NVS show the effectiveness of ARCI.
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A APPENDIX

A.1 BROADER IMPACTS

This paper exploited image synthesis with text-to-image models. Because of their impressive
generative abilities, these models may produce misinformation or fake images. So we sincerely
remind users to pay attention to it. Besides, privacy and consent also become important considerations,
as generative models are often trained on large-scale data. Furthermore, generative models may
perpetuate biases present in the training data, leading to unfair outcomes. Therefore, we recommend
users be responsible and inclusive while using these text-to-image generative models. Note that our
method only focuses on technical aspects. Both images and pre-trained models used in this paper are
all open-released.

A.2 DATA PROCESSING AND OTHER IMPLEMENTATION DETAILS

Matching and confidence filtering

Cropping and points sampling Randomly-Painted masking

(a) Matching-based Masking (b) Masking for Objaverse images

Reference Target Object mask

Mask enlarging and

point sampling

Random irregular

masking
Adding dilated mask

Reference Target

Figure 8: The illustration of (a) matching-based masking for Ref-inpainting, and (b) masking strategy used for
NVS on Objaverse (Deitke et al., 2022).

A.2.1 MATCHING-BASED MASKING AND DATA PROCESSING FOR REF-INPAINTING

For the Ref-inpainting, we find that the widely used irregular mask (Dong et al., 2022; Zhou et al.,
2021; Zhao et al., 2022b) fails to reliably evaluate the capability of spatial transformation and
structural preserving. Therefore, as shown in Fig. 8(a), we propose the matching-based masking
method. Specifically, we first utilize the scene info provided by MegaDepth (Li & Snavely, 2018) to
select out the image pairs which have an overlap rate between 40% and 70% Second, for each image
pair, we use a feature matching model (Tang et al., 2022) to detect matching key-points between the
images and assign each key-points pair a confidence score. Next, we filter out those pairs with low
confidence scores with the threshold of 0.8. Then we randomly crop a 20% to 50% sub-space in the
matched region and sample 15 to 30 key points as vertices to be painted across for the final masks.
The matching-based mask not only improves the reliability during the evaluation but also facilitates
the performance in the training phase as in Tab. 6.

We split 505 pairs from MegaDepth (Li & Snavely, 2018) as the validation, including some manual
masks from ETH3D scenes (Schops et al., 2017). For the multi-view testing set, we further filter all
scenes and retain the ones with at least 4 reference views. Thus there are 482 images in the final
multi-view testing set.
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Table 5: Training details of ARCI. NVS (4-view) and Ref-inpainting (4-view) are trained on ×8 and ×4 A800
GPUs respectively, while others are trained on ×2 A6000 GPUs. NVS (4-view) is fine-tuned based on NVS
(1-view).

Task Batch size Learning rate Steps Training timePrompt&LoRA Backbone

Ref-inpainting (1-view) 16 3e-5 / 6k 9h
Ref-inpainting (2-view) 16 3e-5 / 6k 10h
Ref-inpainting (3-view) 24 3e-5 / 16k 14h
Ref-inpainting (4-view) 64 5e-5 / 16k 12h

NVS (1-view) 48 1e-4 1e-5 80k 34h
NVS (4-view) 512 1e-4 3e-5 40k 62h

Validation LPIPS Validation PSNR

Zero123 ARCI

0.1607

0.5084

10.52

18.15

Figure 9: Training logs of ARCI and Zero123 (Liu et al., 2023b) of the NVS on Objaverse (Deitke et al., 2022)
with the setting of batch size 48 and learning rate 1e-5.

A.2.2 DATA PROCESSING FOR NVS

For the NVS, we first dilate the object mask and randomly sample points in the enlarged mask
bounding box to paint the irregular mask. Then, we unite the dilated object mask to completely
cover target images as in Fig. 8(b). We find that local masking is still very important for fast
convergence and stable fine-tuning as empirically verified in experiments. For the data processing
on Objaverse (Deitke et al., 2022), Zero123 (Liu et al., 2023b) provided images including 800k
various scenes with object masks. For each scene, 12 images are rendered in 256×256 with different
viewpoints. Following Liu et al. (2023b), the spherical coordinate system is used to convert the relative
pose ∆p into the polar angle θ, azimuth angle ϕ, and radius r distanced from the canonical center
as ∆p = (∆θ, sin∆ϕ, cos∆ϕ,∆r), where the azimuth angle is sinusoidally encoded to address the
non-continuity. For the masking of Objaverse images, we dilate the object mask and related bounding
box with 10 to 25 kernel size and 5% to 20% respectively. Then we randomly sample 20 to 45 points
to paint the irregular masks.

We select 500 scenes from Objaverse as the validation, while others are used as the training set. Note
that there exists an overlap between our validation and Zero123’s training set (Liu et al., 2023b), but
our method still outperforms the official Zero123 as in Tab. 2.

A.2.3 TRAINING DETAILS

We show the training details in Tab. 5. ARCI is efficient in being trained for various tasks. To
further demonstrate the effectiveness of ARCI, we provide the training log of ARCI and Zero123 in
Fig. 9. Obviously, the contextual inpainting-based ARCI enjoys a substantially faster convergence
and superior performance.

A.3 AUTOREGRESSIVELY SEQUENTIAL GENERATION

To verify the generalization of our method, we generate more groups of multi-view images through a
single input view as in Fig. 10. Moreover, we test several real-world cases with one RGB input in
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Algorithm 1 Pseudo codes for block casual masking.
# view: the view number
# length: length of the sequence, usually be h*w

mask = zeros((view, length)) # [view,length]
mask[:, 0] = 1
mask = cumsum(mask.reshape(1, view * length), dim=1) # [1,view*length]
mask = (mask.T >= mask).float() # [view*length,view*length]
mask = 1 - mask # masked regions are 1, unmasked regions are 0
mask = mask.masked_fill(mask == 1, -inf) # let all masked regions to -inf

Algorithm 2 Pseudo codes for the attention visualization.
# x: [b,2hw,c], input feature for attention module (left:reference, right:target)
# mask: [b,2hw,1], input 0-1 mask; 1 means masked regions

q, k = matmul(x, Wq), matmul(x, Wk) # [b,2hw,c], project x to query (q) and key (k)
A = matmul(q, k.T) # [b,2hw,2hw], get attenion map
A = mean(A * mask , dim=1) # [b,2hw] get mean scores attended by masked regions
A = A.reshape(b,h,w)[:, :, :w//2] # [b,h,w], show reference attention score only

Reference ReferenceGenerated views Generated views

ARCI†

Adaptive
Masking

Zero123
(last view)

Zero123
(first view)

ARCI†

Adaptive
Masking

Zero123
(last view)

Zero123
(first view)

ARCI†

Adaptive
Masking

Zero123
(last view)

Zero123
(first view)

Figure 10: The sequential generative results from a single view. Zero123’s (Liu et al., 2023b) results are
conditioned on the real reference (first view) and the last generated view (last view) respectively.
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Real image Generated views from ARCI

Figure 11: Consistent real-world NVS results generated by ARCI.
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Figure 12: Long sequence synthesis from a single image (upper) with adaptive masking (bottom). The leftmost
image and mask are the input while others are generated.

Fig. 11. All poses are initialized to [0.5π, 0, 1.5] for polar angle, azimuth angle, and radius distance,
respectively. The proposed ARCI can be well generalized to real-world cases.

A.3.1 ADAPTIVE MASKING

One may ask that the masking strategy used in Fig. 8(b) suffers from some shape leakages, which
lead to unreliable metrics in Tab. 2. We should clarify that our method can perform well only with
the reference mask, which is easy to get by the salient object detection (Qin et al., 2020). Specifically,
we dilate the reference mask as Fig. 8(c). Then, a few DDIM steps (Song et al., 2020) are used to
generate a rough synthesis in the target view. After that, we detect the foreground mask based on the
rough synthesis by Qin et al. (2020) and further dilate this mask for the second synthesis with full
DDIM steps. The adaptive masking can be well generalized to the NVS as verified in Fig. 12. All
testing results in this paper are already based on adaptive masking. Besides, we think that providing
target masks according to the distance and direction priors manually is also convincing to address the
challenging single-view-based NVS.

A.4 SUPPLEMENTAL EXPERIMENTAL RESULTS

A.4.1 SUPPLEMENTAL ABLATION STUDIES

Table 6: Ablation studies of Ref-inpainting on MegaDepth. Left: effects of matching-based masks and inference
noise η. Right: effects of different prompt initialization.

Configuration PSNR↑ SSIM↑ LPIPS↓
baseline 20.489 0.829 0.1029
+ Match mask 20.574 0.830 0.1010
+ η=1.0 20.993 0.837 0.0951

Prompt init PSNR↑ SSIM↑ LPIPS↓
Random 20.810 0.832 0.0998
Token-wise 20.852 0.833 0.1002
Token-avgs 20.926 0.836 0.0961

Matching-based Masks and Noise Coefficient. On the left of Tab. 6, we find that the matching-based
mask enjoys substantial improvement in the reference-guided inpainting. Besides, setting the noise
coefficient η = 1 achieves consistent improvements in our ARCI even sampled as the DDIM (Song
et al., 2020). So all LDMs are worked under η = 1 without special illustrations.

Prompt Initialization. We tried three initialization ways for the prompt tuning on the right of
Tab. 6. The random initialization performs worst. Both ‘token-wise’ and ‘token-avgs’ leverage text
embeddings from a task-specific descriptive sentence that is detailed in the supplementary. ‘Token-
wise’ means repeating descriptive sentences until the prompt length, while each token is initialized
for one prompt token. ‘Token-avgs’ indicates that all prompt tokens are initialized with the average
of the descriptive sentence. Meaningful initialization is useful for task-specific prompt tuning.

Table 7: Abaltions of CFG on Objaverse (Deitke et al., 2022) NVS.

CFG training CFG weight PSNR↑ SSIM↑ LPIPS↓
× 1.0 20.310 0.872 0.1318
✓ 1.0 20.352 0.873 0.1322
✓ 1.5 20.528 0.874 0.1297
✓ 2.5 20.508 0.875 0.1288
✓ 5.0 20.077 0.873 0.1310
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Table 8: Abaltions of CFG on MegaDepth (Li & Snavely, 2018) Ref-inpainting.

Ref Views CFG weight PSNR↑ SSIM↑ LPIPS↓

1

1.0 21.502 0.840 0.1030
1.5 21.482 0.840 0.0955
2.0 21.195 0.837 0.0946
2.5 20.761 0.832 0.0969

2

1.0 21.511 0.840 0.105
1.5 21.451 0.840 0.0977
2.0 21.092 0.836 0.0969
2.5 20.614 0.830 0.0997

3

1.0 21.771 0.844 0.0991
1.5 21.703 0.844 0.0912
2.0 21.356 0.840 0.0901
2.5 20.855 0.834 0.0929

4

1.0 22.334 0.851 0.0902
1.5 22.197 0.851 0.0836
2.0 21.779 0.847 0.0839
2.5 21.125 0.8407 0.0894

Table 9: Ref-inpainting results on the real-world set provided by Zhou et al. (2021).

Method PSNR↑ SSIM↑ FID↓ LPIPS↓
ProFill (Zeng et al., 2020) 25.550 0.944 71.758 0.0848

TransFill (Zhou et al., 2021) 26.052 0.945 62.493 0.0757
ARCI 25.733 0.942 61.276 0.0756

Effectiveness of CFG. We remove the pose condition with 15% to train the ARCI for NVS. Then
the CFG coefficient 2.5 is used during the inference. As verified in Tab. 7, CFG could improve the
performance with better pose control. Moreover, we find that CFG can also enhance the performance
of Ref-inpainting even without training with prompts dropout as in Tab. 8. The LPIPS first decreases,
but then increases as the CFG decreasing from 2.5 to 1.0, while the PSNR and the SSIM keep
increasing. We regard LPIPS as the most important metric, which conforms to the human perception.
Therefore, we set CFG to 2.0 when testing our model for Ref-inpainting.

A.4.2 RESULTS OF REF-INPAINTING

We provide more qualitative and quantitative results of Ref-inpainting2 in Fig. 13, Fig. 14, and Tab. 9.
We further provide qualitatively multi-view Ref-inpainting results in Fig. 15

A.4.3 RESULTS OF NVS

Besides, we show some diverse NVS on Objaverse (Deitke et al., 2022) in Fig. 16. Different random
seeds are utilized to process the DDIM sampling. ARCI can achieve reasonable results with correct
target poses. More results are in Fig. 17 and Fig. 18.

A.5 INFERENCE SPEED
Table 10: Inference speed of SD
under 50 DDIM sampling steps.

Input sec/img

256×256 2.9172
256×512 2.9395
512×512 3.0715

512×1024 4.0205

We provide the inference speed for different input resolutions
in Tab. 10. All tests are based on one 32GB V100 GPU with 50
DDIM steps. ARCI needs to stitch two images together, which
would double the input size. But the inference time is not
doubled as shown in Tab. 10. Note that when the image size is
smaller than 512, the difference in inference costs is not obvious.

2Since TransFill (Zhou et al., 2021) is not released, we send our images and masks to the authors and take
their inpainted results for the evaluation.
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(a) Reference (b) Masked target (c) ProFill (d) TransFill (e) ARCI

Figure 13: Qualitative Ref-inpainting results compared with ProFill (Zeng et al., 2020), TransFill (Zhou et al.,
2021), ARCI on the challenging real set provided by TransFill (Zhou et al., 2021).
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(a) Reference (b) Masked target (c) SD (d) Control+Match (e) Perceiver (f) Paint-by-Example (h) ARCI(g) TransFill

Figure 14: Qualitative Ref-inpainting results on MegaDepth, which are compared among (c) SD (Rombach
et al., 2022), (d) ControlNet (Zhang & Agrawala, 2023)+Matching (Tang et al., 2022), (e) Perceiver (Jaegle et al.,
2021) with ImageCLIP (Radford et al., 2021), (f) Paint-by-Example (Yang et al., 2023), (g) TransFill (Zhou
et al., 2021), and (I) our ARCI. Please zoom in for more details.

(a) Ground Truth (b) ARCI (1 view) (c) ARCI (2 view) (d) ARCI (3 view) (e) ARCI (4 view)Masked Target

Figure 15: Multi-view Ref-inpainting qualitative results. Increasing the reference view number improves the
image quality of repaired targets.
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Reference Target Diverse generation from ARCI

Figure 16: Diversity of the NVS on Objaverse (Deitke et al., 2022) from a single reference image without
multi-view guidance.

Therefore, we think that the inference cost of the proposed
ARCI is still acceptable in most real-world applications.

A.6 USER STUDY

To evaluate the effectiveness of our ARCI in Ref-inpainting. We further test the user study as the
human perceptual metric in Fig. 19. Formally, 50 masked image pairs are randomly selected from
our test set which are compared among SD (Rombach et al., 2022), ControlNet (Zhang & Agrawala,
2023)+match (Tang et al., 2022), Perciver (Jaegle et al., 2021), Paint-by-Example (Yang et al.,
2023), TransFill (Zhou et al., 2021), and ARCI. Although TransFill was not open-released, we thank
TransFill’s authors for kindly testing these samples for us. There are 10 volunteers who are not
familiar with image generation attending this study. Given masked target images and reference ones,
we ask volunteers to vote for the best recovery from the 6 competitors mentioned above. The voting
criterion should consider both the faithful recovery according to the reference and natural generations
of color and texture. As shown in Fig. 19, ARCI outperforms other competitors.

A.7 LIMITATION

Although the proposed ARCI enjoys good performance and geometric consistency in multi-view
NVS, it still suffers from the drawback of error accumulation as shown in Fig. 20. To eliminate this
problem, we recommend providing a few more views (2,3,4) for more robust geometric priors.
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Reference Target Zero123* ARCI (LoRA) ARCI

Figure 17: NVS on Objaverse (Deitke et al., 2022) from a single reference image.
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Figure 18: Multi-view NVS results on Objaverse compared among the official Zero123 (Liu et al., 2023b),
one-view based ARCI, and multi-view based ARCI† trained with 512 batch size. Please zoom in for details.
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Figure 19: The user study evaluation; (a) the overall voting percentage; (b) the votes of each volunteer.

Figure 20: The error accumulation occurred in AR generation. The degraded result is first generated in view 3.
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