

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SCORE AUGMENTATION FOR DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models have recently achieved remarkable advances in generative modeling, yet we show that they are still prone to overfitting, especially when trained with limited data. To address this issue, we introduce Score Augmentation (ScoreAug), a data augmentation framework tailored for training diffusion models. Unlike conventional methods that augment clean data, ScoreAug operates directly on noisy data, naturally aligning with the denoising process of diffusion models. Moreover, the denoiser is required to predict the transformed target of the original signal, establishing an equivariant learning objective. This equivariance enables learning of scores across diverse denoising spaces – a principle we call score augmentation. We provide theoretical analysis of score consistency under general transformations, and empirically validate ScoreAug across CIFAR-10, FFHQ, AFHQv2, and ImageNet, with U-Net and DiT backbones. Results show consistent performance improvements over baselines, effective mitigation of overfitting under varying data scales and model capacities, and stable convergence. Beyond improved generalization, ScoreAug avoids potential data leakage in certain scenarios and can be seamlessly combined with standard augmentation strategies for further gains.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song & Ermon, 2019) have rapidly emerged as a leading paradigm in generative modeling, demonstrating state-of-the-art performance across a wide range of real-world applications such as image generation (Dhariwal & Nichol, 2021; Rombach et al., 2022), video generation (Ho et al., 2022), and text generation (Nie et al., 2025). Unlike previous advanced methods, such as generative adversarial networks (Goodfellow et al., 2014; Hou et al., 2022), which rely on adversarial optimization, diffusion models are trained through iterative denoising with a simple and stable objective. This learning paradigm not only ensures robust optimization but also enables strong data-fitting capabilities. Recent work shows that diffusion models trained on the same dataset often converge to nearly indistinguishable score functions, producing highly similar outputs (Gu et al., 2023). While this highlights their remarkable ability to approximate data distributions, it also raises a critical concern: the very same capacity that ensures accurate modeling may exacerbate the risk of overfitting, especially in data-limited regimes.

Despite their widespread adoption, overfitting in diffusion models remains relatively underexplored. Our empirical study reveals that diffusion models can severely overfit when trained with limited data or excessive model capacity. Conventional regularization strategies, such as dropout (Srivastava et al., 2014) or weight decay (Krogh & Hertz, 1991; Loshchilov & Hutter, 2017), alleviate the problem only partially and often at the expense of generative quality. Data augmentation (Cubuk et al., 2018), long established as a key technique for improving generalization in discriminative models, has also been adapted to generative modeling (Jun et al., 2020; Zhao et al., 2020; Hou et al., 2023). However, existing augmentation methods typically operate on clean data, overlooking the fact that diffusion training fundamentally involves denoising noisy inputs (Karras et al., 2022; Ho et al., 2020; Song & Ermon, 2019). Furthermore, naive application of heuristic augmentations may introduce distribution mismatches, requiring additional conditioning mechanisms to avoid artifacts. These limitations highlight the need for an augmentation strategy that is both principled and aligned with the unique training dynamics of diffusion models.

In this work, we propose Score Augmentation (ScoreAug), a novel augmentation framework designed specifically for diffusion models to address the aforementioned issue. Unlike standard approaches that only transform clean data, ScoreAug applies augmentations directly to noisy inputs. At the same time,

054 the denoiser is trained to predict the transformed target, establishing an equivariant learning signal
 055 that tightly integrates with the diffusion process. This design not only enables the denoiser to learn
 056 score functions across multiple transformation spaces but also naturally mitigates data leakage risks
 057 that may arise from noise invariance. Our theoretical analysis further characterizes the relationships
 058 between score functions under general transformations, providing a principled foundation for the
 059 method. Empirical results on CIFAR-10, FFHQ, AFHQv2, and ImageNet with both UNet (Karras
 060 et al., 2022) and DiT (Peebles & Xie, 2023; Ma et al., 2024) architectures demonstrate substantial
 061 improvements in generation quality, robustness against overfitting, and compatibility with existing
 062 augmentation techniques.

063 2 RELATED WORK

064 2.1 DIFFUSION MODELS

065 Diffusion models have recently emerged as a powerful framework for generative modeling. The
 066 foundational work of DDPM (Ho et al., 2020; Sohl-Dickstein et al., 2015) established discrete-
 067 time diffusion processes with variational training, while DDIM (Song et al., 2020a) introduced
 068 deterministic and fast sampling through non-Markovian trajectories. On the other hand, NCSN (Song
 069 & Ermon, 2019) proposed noise conditional score matching to learn the Stein score (Liu et al., 2016)
 070 of perturbed data distribution at multiple noise levels. Annealed Langevin dynamics (Roberts &
 071 Tweedie, 1996) is then used to sample from the noise (Song & Ermon, 2020). A unifying perspective
 072 emerged through stochastic differential equations (SDEs) (Song et al., 2020b), which generalized
 073 DDPM and NCSN to continuous-time dynamics. The SDE framework categorizes diffusion processes
 074 into variance preserving (VP), variance exploding (VE) formulations, and sub-VP. Subsequent works
 075 such as flow matching (Lipman et al., 2022) and rectified flow (Liu et al., 2022) can be seen as the
 076 sub-VP form. EDM (Karras et al., 2022) further unified the formulations of VP, VE and sub-VP under
 077 a single training framework with disentangled sampling parameters, later refined in EDM2 (Karras
 078 et al., 2024) for enhanced training dynamics. On the variational perspective, VDM (Kingma et al.,
 079 2021) and its improved variant VDM++ (Kingma & Gao, 2023) established theoretical connections
 080 to maximum likelihood estimation. Recent breakthroughs in DiTs (Peebles & Xie, 2023; Ma et al.,
 081 2024) demonstrate how transformer architectures can replace traditional U-Net backbones (Rombach
 082 et al., 2022), achieving state-of-the-art results (Esser et al., 2024). In terms of generalizability of
 083 diffusion models, recent works (Somepalli et al., 2023; Carlini et al., 2023) reveal that diffusion
 084 models tend to memorize training data when model capacity exceeds dataset size, raising concerns
 085 about replication risks. Theoretical analyses (Li et al., 2023) establish polynomial relationships
 086 between generalization error bounds and sample size and model capacity. Complementary empirical
 087 study (Yi et al., 2023) quantify memorization through mutual information, revealing that empirically
 088 optimal models often exhibit poor generalization.

089 2.2 DATA AUGMENTATION FOR GENERATIVE MODELS

090 The concept of data augmentation in generative modeling was systematically explored by Dis-
 091 tAug (Jun et al., 2020), later widely adopted in GAN frameworks during their prominence. Dif-
 092 fAugment (Zhao et al., 2020) introduced differentiable augmentations specifically optimized for
 093 GAN training, while AugSelf-GAN (Hou et al., 2023) enhanced data efficiency through integrated
 094 self-supervised tasks. StyleGAN-ADA (Karras et al., 2020) systematically analyzed the effects of
 095 augmentation in limited data regimes, with subsequent improvements in the probability of adaptive
 096 augmentation via APA (Jiang et al., 2021). While these approaches primarily targeted GANs, recent
 097 diffusion models like EDM and EDM2 have successfully adapted conventional augmentation tech-
 098 niques through noise-conditional transformations. Data augmentation naturally allows self-supervised
 099 tasks, such as equivariance constraints. In the field of diffusion models, AF-LDM (Zhou et al., 2025)
 100 introduces shift-equivariance constraints to mitigate aliasing, while EquiVDM (Liu & Vahdat, 2025)
 101 explores temporal equivariance in video diffusion models. However, none of these studies focus on
 102 addressing the overfitting issue in diffusion models. From the theoretical aspect, Robbins (2024)
 103 analyzes the change of variables for score in different spaces under invertible transformations, while
 104 our proposed ScoreAug also adopts and analyzes the noninvertible transformations.

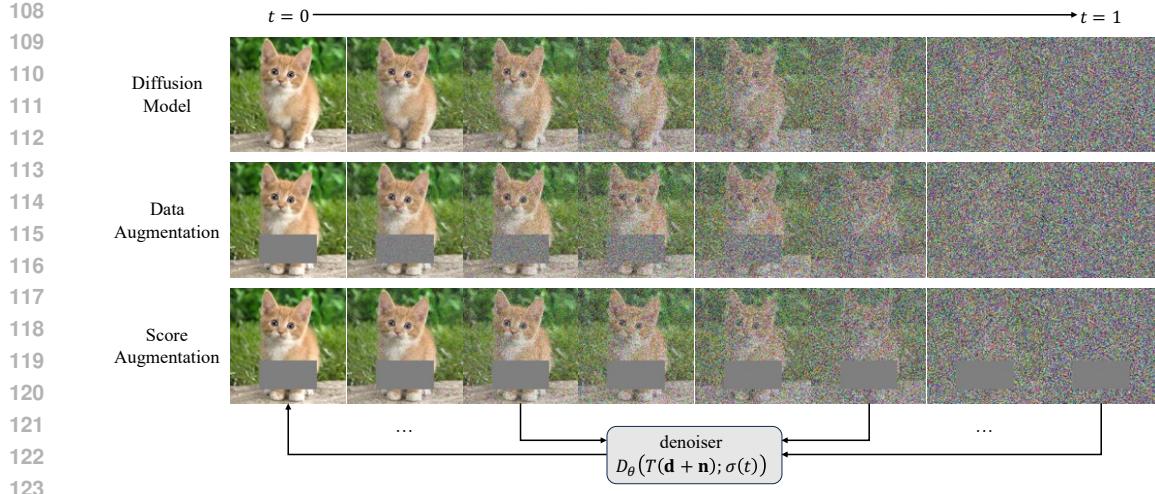


Figure 1: A schematic illustrating the forward process of standard diffusion models, diffusion models with data augmentation, and diffusion models with our proposed Score Augmentation (ScoreAug), as well as the learning objective of ScoreAug.

3 PRELIMINARIES

Diffusion models are a family of generative models that consist of a forward noising and a backward denoising process. The forward process of diffusion models typically corresponds to the following forward stochastic differential equation (SDE) (Song et al., 2020b):

$$d\mathbf{x} = f(\mathbf{x}, t)dt + g(t)d\mathbf{w},$$

where the drift coefficient has the form of $f(\mathbf{x}, t) = f(t)\mathbf{x}$ with $f(t) : \mathbb{R} \rightarrow \mathbb{R}$, and $g(t) : \mathbb{R} \rightarrow \mathbb{R}^d$ is the diffusion coefficient. Here, $t \in [0, 1]$ is the diffusion time, $\mathbf{x} \in \mathbb{R}^d$ is the data in the d -dimensional ambient space, and $\mathbf{w} \in \mathbb{R}^d$ is the standard Wiener process. The perturbation kernels of the SDE have the following form (Karras et al., 2022):

$$p(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; s(t)\mathbf{x}_0, s(t)^2\sigma(t)^2\mathbf{I}), \quad (1)$$

where $\mathcal{N}(\mathbf{x}; \mu, \Sigma)$ is the probability density function of Gaussian distribution with mean $\mu \in \mathbb{R}^d$ and covariance $\Sigma \in \mathbb{R}^{d \times d}$ evaluated at data point \mathbf{x} . The coefficients are:

$$s(t) = \exp\left(\int_0^t f(\xi)d\xi\right) \quad \text{and} \quad \sigma(t) = \sqrt{\int_0^t \frac{g(\xi)^2}{s(\xi)^2}d\xi}.$$

According to the different choices of the monotonically decreasing schedule $s(t)$ and the monotonically increasing schedule $\sigma(t)$, diffusion models can be divided into three formulations: 1) variance exploding (VE) $s(t) = 1, \sigma(t) = \sqrt{t}$ such that $s(t)^2 + s(t)^2\sigma(t)^2 > 1, \forall t \in (0, 1]$; 2) variance preserving (VP), $s(t)^2 + s(t)^2\sigma(t)^2 = 1, \forall t \in [0, 1]$; 3) sub-VP, $s(t)^2 + s(t)^2\sigma(t)^2 \leq 1, \forall t \in [0, 1]$. The forward SDE corresponds to the probability flow ordinary differential equation (PF-ODE) (Song et al., 2020b; Karras et al., 2022) that can recover the data distribution p_{data} from the tractable prior $\mathcal{N}(\mathbf{0}, s(1)^2\sigma(1)^2\mathbf{I})$:

$$d\mathbf{x} = \left[\frac{\dot{s}(t)}{s(t)}\mathbf{x} - s(t)^2\dot{\sigma}(t)\sigma(t)\nabla_{\mathbf{x}} \log p\left(\frac{\mathbf{x}}{s(t)}; \sigma(t)\right) \right] dt, \quad (2)$$

where we have $p(\mathbf{x}; \sigma) \triangleq p_{\text{data}} * \mathcal{N}(\mathbf{0}, \sigma(t)^2\mathbf{I})$ with $*$ the convolution operator, so that the marginal distribution of perturbed data at time t is $p(\mathbf{x}_t) = s(t)^{-d}p(\mathbf{x}_t/s(t); \sigma(t))$. EDM (Karras et al., 2022) leverages a denoiser $D(\cdot; \sigma) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ for noise level $\sigma(t)$ ¹ with the optimization objective:

$$\mathcal{L}_{\text{edm}}(D; \sigma) = \mathbb{E}_{\mathbf{d} \sim p_{\text{data}}, \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2\mathbf{I})} \|D(\mathbf{d} + \mathbf{n}; \sigma) - \mathbf{d}\|_2^2, \quad (3)$$

¹We follow EDM to omit t for simplicity when there is no ambiguity in the context.

162 Table 1: Model input and learning target of the denoiser in different methods.
163

164 Method	165 Input for denoiser	166 Target for denoiser
167 Diffusion Model	$\mathbf{d} + \mathbf{n}$	\mathbf{d}
168 Data Augmentation	$T(\mathbf{d}; \omega) + \mathbf{n}$	$T(\mathbf{d}; \omega)$
169 Score Augmentation (Type I)	$T(\mathbf{d} + \mathbf{n}; \omega)$	$T(\mathbf{d}; \omega)$
170 Score Augmentation (Type II)	$T(\mathbf{d}; \omega) + T(\mathbf{n}; \omega)$	$T(\mathbf{d}; \omega)$

171 where the denoiser is typically constructed as $D_\theta(\mathbf{x}; \sigma) = c_{\text{skip}}(\sigma)\mathbf{x} + c_{\text{out}}(\sigma)F_\theta(c_{\text{in}}(\sigma)\mathbf{x}; c_{\text{noise}}(\sigma))$
 172 with predefined scaling functions $c_{\text{skip}}, c_{\text{out}}, c_{\text{in}}, c_{\text{noise}} : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ and a neural network
 173 $F_\theta(\cdot; \sigma_{\text{noise}}(t)) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ with trainable parameters $\theta \in \Theta$. The Stein score (the gradient of
 174 log density of the perturbed data distribution $p(\mathbf{x}; \sigma(t))$) can be obtained from the optimal denoiser:
 175

$$176 \nabla_{\mathbf{x}} \log p(\mathbf{x}; \sigma(t)) = \frac{D_\theta(\mathbf{x}; \sigma(t)) - \mathbf{x}}{\sigma(t)^2}, \quad (4)$$

177 thereby achieving generation of new samples through Eqs. (2) and (4) with the learned denoiser D_θ .
 178

180 4 METHOD

182 4.1 DATA AUGMENTATION

184 The strong memorization capacity of diffusion models manifests as overfitting when the training
 185 data is limited, which we observed in experiments (see Fig. 2). As an effective regularization, data
 186 augmentation can mitigate overfitting to some extent. In its conventional form, a transformation
 187 $T(\cdot; \omega) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ (where $\omega \in \Omega$ specifies the augmentation parameters) is applied only to the
 188 clean data, i.e., samples at timestep $t = 0$. With augmentation T and noise level σ , the training
 189 objective is:

$$190 \mathcal{L}_{\text{da}}(D; \sigma, \omega) = \mathbb{E}_{\mathbf{d} \sim p_{\text{data}}, \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} \|D(T(\mathbf{d}; \omega) + \mathbf{n}; \sigma, \omega) - T(\mathbf{d}; \omega)\|_2^2. \quad (5)$$

192 However, it has two drawbacks: (i) augmentation leakage may occur especially with aggressive
 193 transforms if the denoiser is not explicitly conditioned on ω (see Table 5); and (ii) by augmenting
 194 only the clean endpoint ($t = 0$), it ignores how the forward noising process acts across timesteps
 195 $t > 0$, which can lead to a mismatch with the diffusion dynamics and thus suboptimal regularization.
 196

197 4.2 SCORE AUGMENTATION: TYPE I

199 We address these issues by performing score augmentation (ScoreAug), in which we treat the
 200 transformation T as changing the denoising space instead of the origin data and train the denoiser
 201 directly in that transformed space. In other words, we transform the noisy data instead of the clean
 202 data, and then input it to the denoiser to let it predict the transformed clean data. Formally, the loss
 203 function of ScoreAug is defined as follows:
 204

$$\mathcal{L}_{\text{sa}}^I(D; \sigma, \omega) = \mathbb{E}_{\mathbf{d} \sim p_{\text{data}}, \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} \|D(T(\mathbf{d} + \mathbf{n}; \omega); \sigma, \omega) - T(\mathbf{d}; \omega)\|_2^2, \quad (6)$$

206 and the total objective function is expected for all augmentations and noise levels: $\mathcal{L}(D) =$
 207 $\mathbb{E}_{\omega \sim p_\Omega} \mathbb{E}_{\sigma \sim p_\sigma} \lambda(\sigma) \mathcal{L}_{\text{sa}}^I(D; \sigma, \omega)$, where p_σ is the prior of noise level (we follow EDM to set
 208 $\ln(\sigma) \sim \mathcal{N}(-1.2, 1.2^2)$), p_Ω is the prior of augmentation parameters (we set it to uniform sam-
 209 pling), and $\lambda(\sigma) = (\sigma^2 + \sigma_{\text{data}}^2)/(\sigma \cdot \sigma_{\text{data}})^2$ is the loss weighting that also follows EDM. ScoreAug
 210 augments the entire noising trajectory and enforces an equivariant learning target, establishing a
 211 harmonious equivariant relationship with the original diffusion formulation while leaving the normal
 212 sampling trajectory unaffected, thereby preventing augmentation leakage (see Table 5).
 213

214 4.2.1 LINEAR TRANSFORMATIONS

215 Data transformation can generally be divided into linear transformation and nonlinear transformation.
 We begin with the linear scenario and then give a theoretical analysis of the general case. According

to the perturbation kernel (Eq. (1)) in diffusion models, the forward process can be expressed as $\mathbf{x}_t = s(t)\mathbf{x}_0 + s(t)\sigma(t)\epsilon$, where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ is the normal multivariate Gaussian noise. Let augmentation T be a linear transformation that has the form of $T(\mathbf{x}, \omega) = \mathbf{T}_\omega \mathbf{x}$ for the corresponding transformation matrix $\mathbf{T}_\omega \in \mathbb{R}^{d \times d}$.² Each augmentation defines an augmented space, and the forward process in the augmented space is: $\mathbf{y}_t \triangleq T(\mathbf{x}_t; \omega) = s(t)\mathbf{T}\mathbf{x}_0 + s(t)\sigma(t)\mathbf{T}\epsilon$, According to this forward process, we can obtain the perturbation kernel in the augmented space: $p(\mathbf{y}_t | \mathbf{y}_0) = \mathcal{N}(\mathbf{y}_t; s(t)\mathbf{y}_0, s(t)^2\sigma(t)^2\mathbf{T}\mathbf{T}^\top)$. For finite data samples $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, where $N \in \mathbb{Z}^+$ is the number of observed training data, the empirical data distribution can be constructed as $p_{\text{data}}(\mathbf{x}) = 1/N \sum_{i=1}^N \delta(\mathbf{x} - \mathbf{x}_i)$ with standard deviation $\sigma_{\text{data}} \in \mathbb{R}^+$, where $\delta(\cdot)$ is the Dirac delta function. Let the corresponding transformed data samples be $\{\mathbf{y}_1, \dots, \mathbf{y}_N\}$ with the transformed data density $\hat{p}_{\text{data}}(\mathbf{y}) = 1/N \sum_{i=1}^N \delta(\mathbf{y} - \mathbf{y}_i)$ under a given augmentation. And the distribution of the transformed data at time t is $p_t(\mathbf{y}) = \int_{\mathbb{R}^d \times \mathbb{R}^d} \delta(\mathbf{y} - T(\mathbf{x}_t; \omega)) p(\mathbf{x}_t | \mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_t d\mathbf{x}_0 = \int_{\mathbb{R}^d} p(\mathbf{y}_t | \mathbf{y}_0) p(\mathbf{y}_0) d\mathbf{y}_0$. We can then define the distribution of the transformed data at noise level σ as: $p(\mathbf{y}; \sigma) = \hat{p}_{\text{data}} * \mathcal{N}(\mathbf{0}, \sigma(t)^2\mathbf{T}\mathbf{T}^\top) = s(t)^d p_{t-1}(\sigma)(s(t)\mathbf{y})$. Under the assumption of infinite model capacity, we can prove (see Section A.1) that the ideal augmented denoiser has the form of:

$$D(\mathbf{y}; \sigma, \omega) = \frac{\sum_{i=1}^N \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2\mathbf{T}\mathbf{T}^\top) \mathbf{y}_i}{\sum_{i=1}^N \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2\mathbf{T}\mathbf{T}^\top)}.$$

The score w.r.t. augmented data \mathbf{y} at noise level σ can be obtained from the ideal augmented denoiser:

$$\nabla_{\mathbf{y}} \log p(\mathbf{y}; \sigma) = (\mathbf{T}\mathbf{T}^\top)^\dagger \frac{D(\mathbf{y}; \sigma, \omega) - \mathbf{y}}{\sigma^2}, \quad (7)$$

where $(\mathbf{T}\mathbf{T}^\top)^\dagger$ is the Moore-Penrose inverse of $\mathbf{T}\mathbf{T}^\top$. If $\mathbf{T}\mathbf{T}^\top$ is a singular matrix, the corresponding Gaussian distribution is a degenerate distribution. The above formula also holds when the gradient $\nabla_{\mathbf{y}} \log p(\mathbf{y}; \sigma)$ is defined in the image space $\text{Im}(\mathbf{T})$ of the matrix \mathbf{T} . From this perspective, it becomes evident that ScoreAug essentially requires the optimal denoiser to be equivariant with respect to the employed linear transformation, as written as:

$$D(\mathbf{T}\mathbf{x}; \sigma) = \mathbf{T}\mathbf{x} + \sigma^2\mathbf{T}\mathbf{T}^\top \nabla_{\mathbf{T}\mathbf{x}} \log p(\mathbf{T}\mathbf{x}; \sigma) = \mathbf{T}D(\mathbf{x}; \sigma).$$

For $\mathbf{y} = T(\mathbf{x})$, where T is linear and invertible, we have $\nabla_{\mathbf{y}} \log p(\mathbf{y}; \sigma) = \mathbf{T}^{-\top} \nabla_{\mathbf{x}} \log p(\mathbf{x}; \sigma)$ that reveals the correspondence between scores in transformed spaces (see Theorem 1 for general case). When combined with Eqs. (4) and (7), this demonstrates that the new denoiser learns scores in different spaces, essentially different from data augmentation.

Augmentation and Condition We borrow the practices of (Zhao et al., 2020; Hou et al., 2023; Karras et al., 2020) to adopt linear transformations (brightness, translation, cutout, and rotation) as data transformations. We empirically find that any independent augmentation can improve the performance of the baseline, and the combination is significantly better (see Table 4).

Let $H \in \mathbb{Z}^+$ and $W \in \mathbb{Z}^+$ be the height and width of the image, respectively. The transformation matrix corresponding to different augmentations. **Brightness** scales the images by $\omega_b \in [1/B, B]$ with $B \in \mathbb{R}^+$, such that $T_{ij}^{\omega_b} = \{\omega_b \text{ if } i = j, 0 \text{ otherwise}\}$. **Translation** shifts images by $\Delta_i \in \{1, \dots, \lfloor R_t W \rfloor\}$ vertical and $\Delta_j \in \{1, \dots, \lfloor R_t H \rfloor\}$ horizontal pixels with $R_t \in \mathbb{R}^+$, where $\omega_t = (\Delta_i, \Delta_j)$, such that $T_{ij}^{\omega_t} = \{1 \text{ if } i = j + \Delta_i + H \cdot \Delta_j, 0 \text{ otherwise}\}$. **Cutout** zeros a rectangular region centered at point of (c_x, c_y) with size of (h, w) that $h \in \{1, \dots, \lfloor R_c H \rfloor\}$, $w \in \{1, \dots, \lfloor R_c W \rfloor\}$ with $R_c \in \mathbb{R}^+$, where $\omega_c = (c_x, c_y, h, w)$, such that $T_{ij}^{\omega_c} = \{1 \text{ if } |\frac{i}{W} - c_y| > \frac{h}{2} \text{ or } |(i \bmod W) - c_x| > \frac{w}{2}, 0 \text{ otherwise}\}$. **Rotation** rotates images by $90^\circ \times \omega_r$, where $\omega_r \in \{0, 1, 2, 3\}$, such that $T_{ij}^{\omega_r} = \{1 \text{ if } i = (H - 1 - h) + wW, j = h + wH, 0 \text{ otherwise}\}$.

Note that translation and cropping are zero-padded instead of masked. The difference is that we calculate the loss of the padded area, while the mask does not. The augmentation parameters are randomly sampled from predetermined ranges that include identity mapping to ensure learning from the original data. For the condition input (if any) to the denoiser, ScoreAug add a linear layer to directly accept the condition vector ω , and then add it together with the timestep embedding. For cutout, the center point coordinate (c_x, c_y) is removed and only the cutout size $\omega_c = (h, w)$ is kept. When sampling, we can set the condition (if any) to an appropriate value (e.g., zeros) to generate an untransformed image and prevent augmentation-leaking for aggressive augmentations (see Table 5).

²For notational simplicity, we may omit ω in $T(\cdot; \omega)$ and \mathbf{T}_ω when the context is unambiguous.

270 Table 2: FID comparisons between ScoreAug and EDM on unconditional and conditional CIFAR-
 271 10, FFHQ, and AFHQv2. NLA means non-leaky augmentation on original data. VP and VE
 272 means variance-preserving and variance-exploding, respectively. NFE means the number of function
 273 evaluations. We reproduce the results of EDM using the official code for a fair comparison.

Method	CIFAR-10 32 × 32				FFHQ 64 × 64		AFHQv2 64 × 64	
	Unconditional		Conditional		Unconditional		Unconditional	
	VP	VE	VP	VE	VP	VE	VP	VE
EDM w/o NLA	4.05	4.10	4.03	4.32	5.26	4.98	5.69	5.58
+ dropout×2	3.13	2.93	2.93	2.77	4.87	4.63	4.60	4.54
+ weight decay	3.13	3.01	3.17	2.93	4.76	4.69	5.76	4.93
+ ScoreAug (Linear)	2.35	2.24	2.11	2.25	2.96	2.88	3.55	3.54
EDM w/ NLA	2.07	2.10	1.93	1.92	2.76	2.80	2.65	2.68
+ ScoreAug (Linear)	2.05	2.06	1.80	1.91	2.72	2.69	2.30	2.18
× ScoreAug (Type I)	2.05	1.96	1.90	1.81	2.63	2.89	2.70	2.68
× ScoreAug (Type II)	2.06	1.97	1.85	1.96	2.76	3.02	2.37	2.58
NFE	35	35	35	35	79	79	79	79

4.2.2 THEORETICAL ANALYSIS

Theorem 1 (Transformation of Score Functions) Let $p(\mathbf{x})$ be the probability density function (PDF) of $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} = T(\mathbf{x})$ for a differentiable map $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ ($m \leq n$) with Jacobian $\mathbf{J}_T(\mathbf{x})$ and full row rank m on the relevant support and let $p(\mathbf{y})$ be the PDF of \mathbf{y} . Then we have:

$$\nabla_{\mathbf{y}} \log p(\mathbf{y}) = \mathbb{E}_{p(\mathbf{x}|\mathbf{y})} [\mathbf{J}_T(\mathbf{x})^\dagger (\nabla_{\mathbf{x}} \log p(\mathbf{x}) - \frac{1}{2} \nabla_{\mathbf{x}} \log \det (\mathbf{J}_T(\mathbf{x}) \mathbf{J}_T(\mathbf{x})^\top))].$$

Diffeomorphism: If $m = n$ and T is a (global) diffeomorphism with $\mathbf{x} = T^{-1}(\mathbf{y})$:

$$\nabla_{\mathbf{y}} \log p(\mathbf{y}) = \mathbf{J}_T(\mathbf{x})^{-\top} (\nabla_{\mathbf{x}} \log p(\mathbf{x}) - \nabla_{\mathbf{x}} \log |\det \mathbf{J}_T(\mathbf{x})|).$$

Linear Surjection: If $T(\mathbf{x}) = \mathbf{T}\mathbf{x}$, where $\mathbf{T} \in \mathbb{R}^{m \times n}$ is a constant matrix with $\text{rank}(\mathbf{T}) = m$:

$$\nabla_{\mathbf{y}} \log p(\mathbf{y}) = (\mathbf{T}\mathbf{T}^\top)^{-1} \mathbf{T} \cdot \mathbb{E}_{p(\mathbf{x}|\mathbf{y})} [\nabla_{\mathbf{x}} \log p(\mathbf{x})].$$

Theorem 1 (proved in Section A.2) first establishes the correspondence between score functions in different spaces under general transformations and gives two special case versions under diffeomorphism and linear surjection, respectively. Since the denoiser learns the score function in a given space, ScoreAug can be regarded as learning score functions in different spaces. This imposes an implicit regularization on the denoiser, thereby improving its generalization ability to alleviate overfitting.

4.3 SCORE AUGMENTATION: TYPE II

When the transformation T is linear, by the forward formula of diffusion models, applying T to \mathbf{x}_t is equivalent to applying T to \mathbf{x}_0 and to ϵ separately and then adding the results. This motivates the second type of loss function for ScoreAug, given by

$$\mathcal{L}_{\text{sa}}^{\text{II}}(D; \sigma, \omega) = \mathbb{E}_{\mathbf{d} \sim p_{\text{data}}, \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} \|D(T(\mathbf{d}; \omega) + T(\mathbf{n}; \omega); \sigma) - T(\mathbf{d}; \omega)\|_2^2. \quad (8)$$

We refer to Eq. (6) as ScoreAug (Type I) and to Eq. (8) as ScoreAug (Type II). When T is linear, the two are equivalent; when T is nonlinear, they differ: a first-order Taylor expansion gives $T(\mathbf{d} + \mathbf{n}; \omega) \approx T(\mathbf{d}; \omega) + \mathbf{J}_T(\mathbf{d}) \mathbf{n}$, which indicates that Type II can be interpreted as an additive-noise surrogate of Type I and, moreover, avoids state-dependent heteroscedasticity. We evaluate both variants under nonlinear data transformations and report their comparative performance in Table 2. Empirically, each shows advantages in different settings, and we leave a deeper investigation of their fundamental differences to future work.

Table 3: Quantitative comparisons between SiT and ScoreAug on ImageNet-256.

Dataset	Model	Steps	FID ↓	sFID ↓	IS ↑	Precision ↑	Recall ↑
ImageNet-256	SiT-XL	400K	19.26	5.24	70.75	0.6223	0.6436
	+ ScoreAug	400K	18.75	5.21	71.79	0.6249	0.6372
	SiT-XL	1M	13.21	5.39	94.64	0.6542	0.6599
	+ ScoreAug	1M	12.70	5.36	96.37	0.6589	0.6581

Table 4: Ablation study of ScoreAug under individual and combined augmentations. FID scores are reported for both unconditional and conditional CIFAR-10 settings across the variance preserving and variance exploding paradigms.

Method	Augmentation				Uncond CIFAR		Cond CIFAR	
	brightness	translation	cutout	rotation	VP	VE	VP	VE
EDM	-	-	-	-	4.05	4.10	4.03	4.32
+ ScoreAug	✓	✗	✗	✗	2.97	2.85	2.86	2.68
+ ScoreAug	✗	✓	✗	✗	2.68	2.86	2.40	2.62
+ ScoreAug	✗	✗	✓	✗	3.68	3.56	3.62	3.24
+ ScoreAug	✗	✗	✗	✓	2.43	2.69	2.13	2.59
+ ScoreAug	✓	✓	✓	✓	2.27	2.29	2.11	2.06

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We implement the proposed ScoreAug based on the official EDM code³ due to its generality. We follow the settings of EDM, including the network and preconditioning, training, sampling, and parameters (see Table 1 in the EDM paper (Karras et al., 2022)), to conduct experiments for a fair comparison with the baselines. The datasets are unconditional CIFAR-10 and conditional CIFAR-10 (Krizhevsky et al., 2009), FFHQ (Karras et al., 2019), and AFHQv2 (Choi et al., 2020). On each dataset, we experiment with both variance preserving (VP) (Nichol & Dhariwal, 2021; Karras et al., 2022) and variance exploding (VE) (Song & Ermon, 2019; Karras et al., 2022) formulations. Fréchet Inception Distance (FID) (Heusel et al., 2017) is used as the main evaluation metric. All models are trained for 200,000 iterations with batch size of 512. All results are calculated from the model evaluation at the last scheduled checkpoint for fair comparisons with 50,000 generated images unless otherwise specified. In the experiments, we use the code officially provided by EDM and re-run its results as a baseline for an absolutely fair comparison.

5.2 MAIN RESULTS

Table 2 presents comparative results between ScoreAug and competing methods. The baseline, denoted as EDM w/o NLA (without non-leaking augmentation), exhibits clear signs of overfitting, as evidenced by performance gains when increasing dropout or incorporating weight decay. In contrast, integrating ScoreAug significantly outperforms these basic overfitting mitigation strategies, underscoring the efficacy of our approach. Notably, EDM w/ NLA, which employs sophisticated non-linear augmentations, achieves superior results. Remarkably, ScoreAug’s non-linear extension can seamlessly generalize to these augmentations. Both variants (Type I Eq. (6) and Type II Eq. (8)) attain improved FID scores across most scenarios, demonstrating their expansibility. Furthermore, the linear variant of ScoreAug can be applied synergistically to EDM w/ NLA, yielding additional performance improvements. This flexibility highlights the broad applicability of our method, even when integrated with state-of-the-art augmentation frameworks. Section E show the images generated by EDM and ScoreAug trained on AFHQ-v2 and FFHQ, respectively. In the following, we default to using ScoreAug with linear augmentation for experiments unless otherwise specified.

³<https://github.com/NVlabs/edm>

378 Table 5: FID scores of ScoreAug without or with conditioning under different augmentation combination
 379 combinations on unconditional and conditional CIFAR-10 across VP and VE settings.
 380

381 Method	382 Augmentation			383 Uncond CIFAR		384 Cond CIFAR	
	385 translation	386 cutout	387 rotation	388 VP	389 VE	390 VP	391 VE
384 EDM	-	-	-	4.05	4.10	4.03	4.32
385 + DataAug w/o condition	✓	✓	✗	11.02	10.87	10.31	10.36
386 + ScoreAug w/o condition	✓	✓	✗	2.53	2.63	2.41	2.37
387 + ScoreAug w/ condition	✓	✓	✗	2.48	2.55	2.41	2.55
388 + ScoreAug w/o condition	✓	✓	✓	22.90	25.15	24.29	23.68
389 + ScoreAug w/ condition	✓	✓	✓	2.21	2.12	2.01	2.08

392 **Diffusion Transformer Architecture** We also conducted experiments on ImageNet-256 (Rus-
 393 sakovsky et al., 2015) using the diffusion transformer architecture (Peebles & Xie, 2023), adopting the
 394 state-of-the-art SiT (Ma et al., 2024) training code⁴ with an XL-scale model configuration. Evaluation
 395 metrics include FID (Heusel et al., 2017), sFID (Nash et al., 2021), IS (Salimans et al., 2016), as
 396 well as precision and recall (Sajjadi et al., 2018). As evidenced in Table 3, ScoreAug demonstrates
 397 superior performance over SiT-XL in most metrics at 400K and 1M training steps, substantiating its
 398 effectiveness when applied to advanced model architectures and large complex datasets.

399 5.3 ANALYSIS EXPERIMENTS

400 **Different Augmentations** Note that ScoreAug is compatible with multiple linear data augmentation
 401 types by randomly selecting one augmentation per training iteration. We investigated the impact
 402 of individual augmentations (brightness, translation, cutout, rotation) and their combinations on
 403 model performance. As shown in Table 4, all single augmentations outperform the no-augmentation
 404 baseline, and combined usage achieves the best results, demonstrating synergistic effects. Based
 405 on the experimental results, we posit that incorporating more linear data augmentations can further
 406 improve performance, and we leave this exploration for future work.

407 **Importance of Conditioning** In the section introducing ScoreAug, we default to incorporating the
 408 augmentation parameter ω as the condition for the model to distinguish between data augmentation
 409 types and intensities. However, this conditioning is not strictly necessary. As reported in Table 5,
 410 ScoreAug remains functional without conditioning if the augmentations are non-invertible, such as
 411 translation and cutout. However, data augmentation without conditioning (DataAug w/o condition)
 412 causes data leakage in this case, leading to a significant drop in FID. Conversely, for invertible
 413 augmentations like uniform random rotation by $\{0^\circ, 90^\circ, 180^\circ, 270^\circ\}$ (Karras et al., 2020; Hou et al.,
 414 2021), unconditional ScoreAug fails to generate rotated images, resulting in augmentation-leaking
 415 issue. This failure arises because the random noise distribution is rotation-invariant, causing ScoreAug
 416 to treat rotated images as original training data, effectively reducing it to standard data augmentation.

417 Based on these findings, we recommend adding conditions to support broader augmentation types,
 418 though this modifies the network architecture. For users aiming to finetune pre-trained models,
 419 unconditional ScoreAug remains viable if non-invertible augmentations are adopted. Additionally,
 420 conditional injection enables augmentation-controllable generation. For example, synthesizing
 421 images with specified rotation angles, as illustrated in Figs. 3 and 4.

423 **Training Data** Overfitting typically stems from insufficient data and low data utilization efficiency
 424 of models. To validate this, we reduced the CIFAR-10 training data to $N = 10,000$ and $N = 20,000$
 425 samples, comparing ScoreAug against the baseline. Results in Figs. 2a and 2d show that baseline
 426 performance degrades sharply with smaller datasets, while ScoreAug consistently outperforms it,
 427 demonstrating stronger data utilization efficiency and robustness against overfitting.

428 **Model Size** Another factor influencing model overfitting is model complexity – larger models
 429 generally tend to overfit more easily. We compared ScoreAug and the baseline across varying model

4⁴<https://github.com/willisma/SiT>

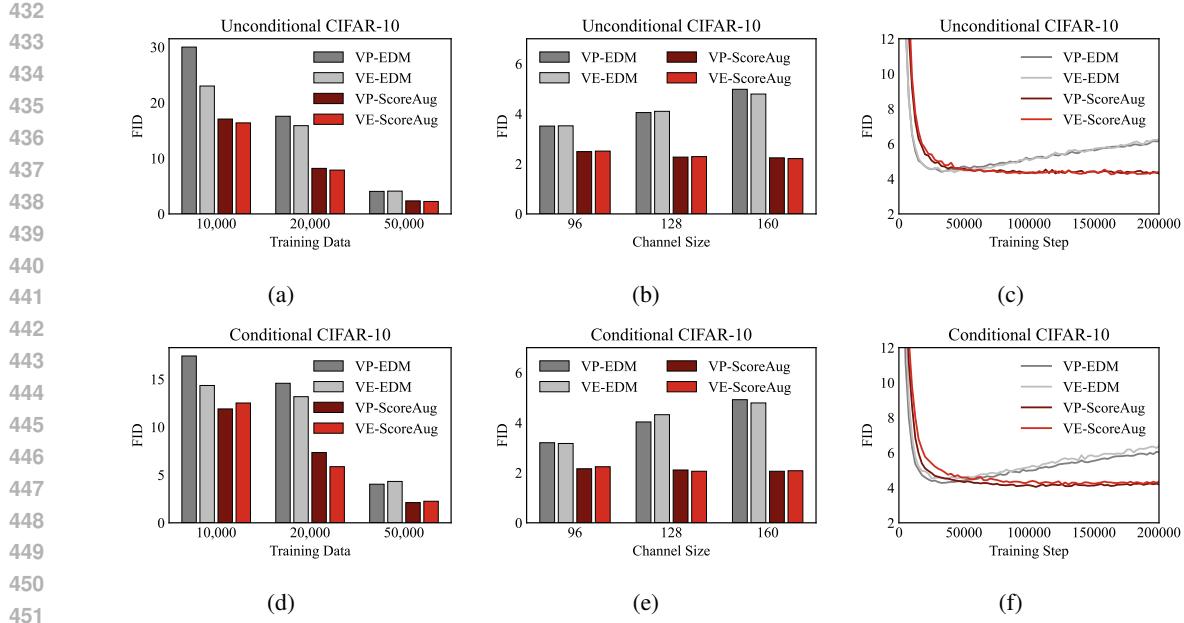


Figure 2: FID comparisons of ScoreAug with EDM in VP and VE diffusion formulations on unconditional and conditional CIFAR-10 datasets: (a,d) different training data sizes; (b,e) different model sizes (channels); (c,f) different training steps (FID is evaluated with 10,000 samples).

sizes by adjusting the number of base channels $C \in \mathbb{N}^+$, which is default set as $C = 128$ in EDM. We tested two additional configurations ($C = 96$ and $C = 160$) to decrease or increase the model size. As shown in Figs. 2b and 2e, the baseline EDM performance degrades with increasing model size, further indicating overfitting issues, while our ScoreAug improves significantly, highlighting its robustness against overfitting.

Training Convergence To visually demonstrate the overfitting issue in diffusion models, we evaluated FID scores at each training checkpoint. In order to reduce the evaluation computational overhead, the FID scores are reduced to 10,000 generated images for calculation, which just matches the number of test images of CIFAR-10. As illustrated in Figs. 2c and 2f, the FID score of EDM initially decreases rapidly to a minimum and then gradually rises during training, indicating overfitting issues. In contrast, our ScoreAug maintains a consistent downward trend in FID scores, effectively mitigating overfitting throughout the training process. Although early stopping allows the baseline to achieve decent FID scores, it still underperforms ScoreAug at their best. Furthermore, early stopping necessitates continuous model evaluation, resulting in additional computational overhead. Overall, our method achieves more stable convergence properties.

6 CONCLUSION

In summary, this work reveals and substantiates the risk of overfitting in diffusion models, particularly under data-constrained conditions. To mitigate this issue, we introduced Score Augmentation (ScoreAug), a novel diffusion-aligned augmentation framework that operates directly in the noisy data space. By enforcing an equivariant objective under data transformations, ScoreAug integrates naturally with the denoising process and extends gracefully to both linear and non-linear transformations. Extensive experiments across CIFAR-10, FFHQ, AFHQv2, and ImageNet, with U-Net and DiT backbones, confirm its effectiveness in enhancing generation quality, improving robustness against overfitting, and maintaining stable training dynamics. Moreover, ScoreAug is complementary to conventional augmentation techniques, enabling additional gains when combined. We believe these findings highlight the importance of data-space design in diffusion training and open up promising directions for leveraging equivariant learning in generative modeling.

486 REFERENCES
487

488 Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja
489 Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In *32nd*
490 *USENIX Security Symposium (USENIX Security 23)*, pp. 5253–5270, 2023.

491 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for
492 multiple domains. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
493 *recognition*, pp. 8188–8197, 2020.

494 Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
495 Learning augmentation policies from data. *arXiv preprint arXiv:1805.09501*, 2018.

496 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
497 *in neural information processing systems*, 34:8780–8794, 2021.

498 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
499 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
500 high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.

501 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
502 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information*
503 *processing systems*, 27, 2014.

504 Xiangming Gu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Ye Wang. On memorization in
505 diffusion models. *arXiv preprint arXiv:2310.02664*, 2023.

506 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
507 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural*
508 *information processing systems*, 30, 2017.

509 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
510 *neural information processing systems*, 33:6840–6851, 2020.

511 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
512 Fleet. Video diffusion models. *Advances in neural information processing systems*, 35:8633–8646,
513 2022.

514 Liang Hou, Huawei Shen, Qi Cao, and Xueqi Cheng. Self-supervised gans with label augmentation.
515 *Advances in Neural Information Processing Systems*, 34:13019–13031, 2021.

516 Liang Hou, Qi Cao, Huawei Shen, Siyuan Pan, Xiaoshuang Li, and Xueqi Cheng. Conditional gans
517 with auxiliary discriminative classifier. In *International Conference on Machine Learning*, pp.
518 8888–8902. PMLR, 2022.

519 Liang Hou, Qi Cao, Yige Yuan, Songtao Zhao, Chongyang Ma, Siyuan Pan, Pengfei Wan, Zhongyuan
520 Wang, Huawei Shen, and Xueqi Cheng. Augmentation-aware self-supervision for data-efficient
521 gan training. *Advances in Neural Information Processing Systems*, 36:31601–31620, 2023.

522 Liming Jiang, Bo Dai, Wayne Wu, and Chen Change Loy. Deceive d: Adaptive pseudo augmentation
523 for gan training with limited data. *Advances in Neural Information Processing Systems*, 34:
524 21655–21667, 2021.

525 Heewoo Jun, Rewon Child, Mark Chen, John Schulman, Aditya Ramesh, Alec Radford, and Ilya
526 Sutskever. Distribution augmentation for generative modeling. In *International Conference on*
527 *Machine Learning*, pp. 5006–5019. PMLR, 2020.

528 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
529 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
530 *recognition*, pp. 4401–4410, 2019.

531 Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
532 generative adversarial networks with limited data. *Advances in neural information processing*
533 *systems*, 33:12104–12114, 2020.

540 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 541 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 542 2022.

543 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
 544 and improving the training dynamics of diffusion models. In *Proceedings of the IEEE/CVF*
 545 *Conference on Computer Vision and Pattern Recognition*, pp. 24174–24184, 2024.

546 Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple data
 547 augmentation. *Advances in Neural Information Processing Systems*, 36:65484–65516, 2023.

548 Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. *Advances*
 549 *in neural information processing systems*, 34:21696–21707, 2021.

550 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

551 Anders Krogh and John Hertz. A simple weight decay can improve generalization. *Advances in*
 552 *neural information processing systems*, 4, 1991.

553 Puheng Li, Zhong Li, Huishuai Zhang, and Jiang Bian. On the generalization properties of diffusion
 554 models. *Advances in Neural Information Processing Systems*, 36:2097–2127, 2023.

555 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 556 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

557 Chao Liu and Arash Vahdat. Equivdm: Equivariant video diffusion models with temporally consistent
 558 noise. *arXiv preprint arXiv:2504.09789*, 2025.

559 Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for goodness-of-fit tests.
 560 In *International conference on machine learning*, pp. 276–284. PMLR, 2016.

561 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 562 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

563 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 564 *arXiv:1711.05101*, 2017.

565 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
 566 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 567 transformers. In *European Conference on Computer Vision*, pp. 23–40. Springer, 2024.

568 Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
 569 sparse representations. *arXiv preprint arXiv:2103.03841*, 2021.

570 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 571 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

572 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
 573 Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint arXiv:2502.09992*,
 574 2025.

575 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 576 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

577 Stephen Robbins. Score change of variables. *arXiv preprint arXiv:2412.07904*, 2024.

578 Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin distributions and
 579 their discrete approximations. 1996.

580 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 581 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 582 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

594 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 595 Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
 596 challenge. *International journal of computer vision*, 115:211–252, 2015.

597

598 Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
 599 generative models via precision and recall. *Advances in neural information processing systems*, 31,
 600 2018.

601 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 602 Improved techniques for training gans. *Advances in neural information processing systems*, 29,
 603 2016.

604 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 605 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
 606 pp. 2256–2265. pmlr, 2015.

607

608 Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion
 609 art or digital forgery? investigating data replication in diffusion models. In *Proceedings of the*
 610 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 6048–6058, 2023.

611 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 612 *preprint arXiv:2010.02502*, 2020a.

613

614 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 615 *Advances in neural information processing systems*, 32, 2019.

616 Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
 617 *Advances in neural information processing systems*, 33:12438–12448, 2020.

618

619 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 620 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 621 *arXiv:2011.13456*, 2020b.

622 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 623 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine*
 624 *learning research*, 15(1):1929–1958, 2014.

625

626 Mingyang Yi, Jiacheng Sun, and Zhenguo Li. On the generalization of diffusion model. *arXiv*
 627 *preprint arXiv:2305.14712*, 2023.

628 Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for
 629 data-efficient gan training. *Advances in neural information processing systems*, 33:7559–7570,
 630 2020.

631

632 Yifan Zhou, Zeqi Xiao, Shuai Yang, and Xingang Pan. Alias-free latent diffusion models: Improving
 633 fractional shift equivariance of diffusion latent space. *arXiv preprint arXiv:2503.09419*, 2025.

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A DERIVATION AND PROOF
649650 A.1 DIFFUSION MODELS IN LINEAR AUGMENTED SPACE
651652 **Optimal Denoiser** For the loss function in Eq. (6), its expansion yields:

$$\begin{aligned}
\mathcal{L}(D; \sigma, \omega) &= \mathbb{E}_{\mathbf{d} \sim p_{\text{data}}} \mathbb{E}_{\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})} \|D(T(\mathbf{d} + \mathbf{n}; \omega); \sigma, \omega) - T(\mathbf{d}; \omega)\|_2^2 \\
&= \mathbb{E}_{\mathbf{d} \sim p_{\text{data}}} \mathbb{E}_{\mathbf{x} \sim \mathcal{N}(\mathbf{d}, \sigma^2 \mathbf{I})} \|D(T(\mathbf{x}; \omega); \sigma, \omega) - T(\mathbf{d}; \omega)\|_2^2 \\
&= \mathbb{E}_{\mathbf{d} \sim p_{\text{data}}} \mathbb{E}_{\mathbf{x} \sim \mathcal{N}(\mathbf{d}, \sigma^2 \mathbf{I})} \|D(\mathbf{T}\mathbf{x}; \sigma, \omega) - \mathbf{T}\mathbf{d}\|_2^2 \\
&= \mathbb{E}_{\mathbf{y}_0 \sim p_{\text{data}}} \mathbb{E}_{\mathbf{y} \sim \mathcal{N}(\mathbf{y}_0, \sigma^2 \mathbf{T}\mathbf{T}^\top)} \|D(\mathbf{y}; \sigma, \omega) - \mathbf{y}_0\|_2^2 \\
&= \int_{\mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2 \mathbf{T}\mathbf{T}^\top) \|D(\mathbf{y}; \sigma, \omega) - \mathbf{y}_i\|_2^2 d\mathbf{y}
\end{aligned}$$

662 To obtain the optimal denoiser, we minimize it independently for each \mathbf{y} . Being a convex optimization
663 problem, we set its derivative to zero and obtain the following.

$$\begin{aligned}
0 &= \nabla_{D(\mathbf{y}; \sigma, \omega)} [\mathcal{L}(D; \mathbf{y}, \sigma, \omega)] \\
0 &= \nabla_{D(\mathbf{y}; \sigma, \omega)} \left[\frac{1}{Y} \sum_{i=1}^Y \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2 \mathbf{T}\mathbf{T}^\top) \|D(\mathbf{y}; \sigma, \omega) - \mathbf{y}_i\|_2^2 \right] \\
0 &= \sum_{i=1}^Y \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2 \mathbf{T}\mathbf{T}^\top) \nabla_{D(\mathbf{y}; \sigma, \omega)} [\|D(\mathbf{y}; \sigma, \omega) - \mathbf{y}_i\|_2^2] \\
0 &= \sum_{i=1}^Y \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2 \mathbf{T}\mathbf{T}^\top) [D(\mathbf{y}; \sigma, \omega) - \mathbf{y}_i] \\
D(\mathbf{y}; \sigma, \omega) &= \frac{\sum_{i=1}^Y \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2 \mathbf{T}\mathbf{T}^\top) \mathbf{y}_i}{\sum_{i=1}^Y \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2 \mathbf{T}\mathbf{T}^\top)}
\end{aligned}$$

677 **Score Function** For the transformation $\mathbf{y} = \mathbf{T}\mathbf{x}$, its score function can be expressed as:
678

$$\begin{aligned}
\nabla_{\mathbf{y}} \log p(\mathbf{y}; \sigma) &= \frac{\nabla_{\mathbf{y}} p(\mathbf{y}; \sigma)}{p(\mathbf{y}; \sigma)} = \frac{\sum_{i=1}^Y \nabla_{\mathbf{y}} \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2 \mathbf{T}\mathbf{T}^\top)}{\sum_{i=1}^Y \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2 \mathbf{T}\mathbf{T}^\top)} \\
&= (\mathbf{T}\mathbf{T}^\top)^\dagger \left(\frac{\sum_{i=1}^Y \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2 \mathbf{T}\mathbf{T}^\top) \mathbf{y}_i}{\sum_{i=1}^Y \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2 \mathbf{T}\mathbf{T}^\top)} - \mathbf{y} \right) / \sigma^2 \\
&= (\mathbf{T}\mathbf{T}^\top)^\dagger (D(\mathbf{y}; \sigma, \omega) - \mathbf{y}) / \sigma^2
\end{aligned} \tag{9}$$

686 where Eq. (9) comes from $\nabla_{\mathbf{y}} \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2 \mathbf{T}\mathbf{T}^\top) = \mathcal{N}(\mathbf{y}; \mathbf{y}_i, \sigma^2 \mathbf{T}\mathbf{T}^\top) (\mathbf{T}\mathbf{T}^\top)^\dagger (\mathbf{y}_i - \mathbf{y}) / \sigma^2$.
687688 A.2 TRANSFORMATION OF SCORE FUNCTIONS UNDER SURJECTIVE SMOOTH MAPPINGS
689690 We have a random vector $\mathbf{x} \in \mathbb{R}^n$ with smooth, positive density $p(\mathbf{x}; \sigma)$, and a smooth surjective map
691

$$T : \mathbb{R}^n \rightarrow \mathbb{R}^m, m \leq n,$$

692 of full row-rank m on the support of interest. Write $\mathbf{y} = T(\mathbf{x})$ and denote by
693

$$p(\mathbf{y}; \sigma) = \int p(\mathbf{x}; \sigma) \delta(\mathbf{y} - T(\mathbf{x})) d\mathbf{x}.$$

696 its marginal density. Since everything is smooth and $p(\mathbf{x}; \sigma)$ decays at infinity, we may exchange $\nabla_{\mathbf{y}}$
697 and the integral:
698

$$\nabla_{\mathbf{y}} p(\mathbf{y}; \sigma) = \int p(\mathbf{x}; \sigma) \nabla_{\mathbf{y}} \delta(\mathbf{y} - T(\mathbf{x})) d\mathbf{x}.$$

700 Next, use the chain-rule for the delta:
701

$$\nabla_{\mathbf{x}} \delta(\mathbf{y} - T(\mathbf{x})) = -\mathbf{J}_T(\mathbf{x})^\top \nabla_{\mathbf{y}} \delta(\mathbf{y} - T(\mathbf{x})),$$

702 where $\mathbf{J}_T(\mathbf{x})$ is the $m \times n$ Jacobian matrix of T at \mathbf{x} . Since $\mathbf{J}_T(\mathbf{x})$ has full row rank m , the $m \times m$
 703 matrix $\mathbf{J}_T(\mathbf{x})\mathbf{J}_T(\mathbf{x})^\top$ is invertible. We can solve for $\delta(\mathbf{y} - T(\mathbf{x}))$:

$$705 \quad -(\mathbf{J}_T(\mathbf{x})\mathbf{J}_T(\mathbf{x})^\top)^{-1}\mathbf{J}_T(\mathbf{x})\nabla_{\mathbf{x}}\delta(\mathbf{y} - T(\mathbf{x})) = \nabla_{\mathbf{y}}\delta(\mathbf{y} - T(\mathbf{x})).$$

706 Let $\mathcal{J} = (\mathbf{J}_T(\mathbf{x})\mathbf{J}_T(\mathbf{x})^\top)^{-1}\mathbf{J}_T(\mathbf{x})$. Note that \mathcal{J} is the transpose of Moore-Penrose pseudo-inverse
 707 $(\mathbf{J}_T(\mathbf{x})^\dagger)^\top$. Substitute back into the expression for $\nabla_{\mathbf{y}}p(\mathbf{y}; \sigma)$:

$$709 \quad \nabla_{\mathbf{y}}p(\mathbf{y}; \sigma) = - \int p(\mathbf{x}; \sigma)\mathcal{J}\nabla_{\mathbf{x}}\delta(\mathbf{y} - T(\mathbf{x}))d\mathbf{x}.$$

711 Let's look at the i -th component of $\nabla_{\mathbf{y}}p(\mathbf{y}; \sigma)$:

$$713 \quad (\nabla_{\mathbf{y}}p(\mathbf{y}; \sigma))_i = - \int p(\mathbf{x}; \sigma) \sum_k \mathcal{J}_{ik} \frac{\partial \delta(\mathbf{y} - T(\mathbf{x}))}{\partial x_k} d\mathbf{x}.$$

716 Using integration by parts:

$$717 \quad (\nabla_{\mathbf{y}}p(\mathbf{y}; \sigma))_i = - \sum_k \int \frac{\partial(p(\mathbf{x}; \sigma)\mathcal{J}_{ik})}{\partial x_k} \delta(\mathbf{y} - T(\mathbf{x}))d\mathbf{x}$$

$$720 \quad = - \sum_k \int \left(\frac{\partial p(\mathbf{x}; \sigma)}{\partial x_k} \mathcal{J}_{ik} \right) \delta(\mathbf{y} - T(\mathbf{x}))d\mathbf{x}.$$

723 Let $\text{Div}_{\text{rows}}(M)_i = \sum_k \frac{\partial M_{ik}}{\partial x_k}$. This term represents the divergence of each row of M .

$$725 \quad \nabla_{\mathbf{y}} \log p(\mathbf{y}; \sigma) = \frac{\nabla_{\mathbf{y}}p(\mathbf{y}; \sigma)}{p(\mathbf{y}; \sigma)} = \mathbb{E}_{p(\mathbf{x}|\mathbf{y}; \sigma)} \left[\mathcal{J} \frac{\nabla_{\mathbf{y}}p(\mathbf{x}; \sigma)}{p(\mathbf{x}; \sigma)} + \text{Div}_{\text{rows}}(\mathcal{J}) \right].$$

727 The matrix calculus identities are known (proven later):

$$729 \quad \text{Div}_{\text{rows}}(\mathcal{J}) = -\mathcal{J} \frac{1}{2} \nabla_{\mathbf{x}} \log \det(\mathbf{J}_T(\mathbf{x})\mathbf{J}_T(\mathbf{x})^\top).$$

731 Substituting this into the expression:

$$733 \quad \nabla_{\mathbf{y}} \log p(\mathbf{y}; \sigma) = \mathbb{E}_{p(\mathbf{x}|\mathbf{y}; \sigma)} \left[\mathcal{J} \left(\nabla_{\mathbf{x}} \log p(\mathbf{x}; \sigma) - \frac{1}{2} \nabla_{\mathbf{x}} \log \det(\mathbf{J}_T(\mathbf{x})\mathbf{J}_T(\mathbf{x})^\top) \right) \right].$$

735 If T is a global diffeomorphism then $\mathbf{J}_T(\mathbf{x})$ is square and invertible, $\mathcal{J} = \mathbf{J}_T(\mathbf{x})^{-\top}$, and

$$737 \quad \frac{1}{2} \nabla_{\mathbf{x}} \log \det(\mathbf{J}_T(\mathbf{x})\mathbf{J}_T(\mathbf{x})^\top) = \nabla_{\mathbf{x}} \log |\det \mathbf{J}_T(\mathbf{x})|.$$

739 Hence,

$$741 \quad \nabla_{\mathbf{y}} \log p(\mathbf{y}; \sigma) = \mathbf{J}_T(\mathbf{x})^{-\top} (\nabla_{\mathbf{x}} \log p(\mathbf{x}; \sigma) - \nabla_{\mathbf{x}} \log |\det(\mathbf{J}_T(\mathbf{x}))|).$$

742 If $T(\mathbf{x}) = \mathbf{T}\mathbf{x}$, where \mathbf{T} is a constant $m \times n$ matrix with full row rank m :

$$744 \quad \mathcal{J} = (\mathbf{T}\mathbf{T}^\top)^{-1}\mathbf{T}, \frac{1}{2} \nabla_{\mathbf{x}} \log \det(\mathbf{J}_T(\mathbf{x})\mathbf{J}_T(\mathbf{x})^\top) = 0.$$

746 Hence,

$$747 \quad \nabla_{\mathbf{y}} \log p(\mathbf{y}; \sigma) = (\mathbf{T}\mathbf{T}^\top)^{-1}\mathbf{T} \cdot \mathbb{E}_{p(\mathbf{x}|\mathbf{y}; \sigma)} [\nabla_{\mathbf{x}} \log p(\mathbf{x}; \sigma)].$$

748 **The matrix calculus identities** Since the Jacobian determinant is defined on a smooth function,
 749 satisfying $\partial_i \mathbf{J}_{kj} = \partial_j \mathbf{J}_{ki}$, we define the right inverse $\mathbf{J}^\dagger = \mathbf{J}^\top (\mathbf{J}\mathbf{J}^\top)^{-1}$. Prove that:

$$751 \quad \text{Div}_{\text{rows}}((\mathbf{J}^\dagger)^\top) = -\mathbf{J}^{\dagger\top} \frac{1}{2} \nabla_{\mathbf{x}} \log \det(\mathbf{J}\mathbf{J}^\top).$$

754 This is equivalent to proving:

$$755 \quad \mathbf{J}^\top \text{Div}_{\text{rows}}((\mathbf{J}^\dagger)^\top) = -\frac{1}{2} \nabla_{\mathbf{x}} \log \det(\mathbf{J}\mathbf{J}^\top).$$

756 Consider the k -th term on the left:

$$758 \quad \text{LHS}_k = \sum_i \mathbf{J}_{ik} \left(\sum_j \frac{\partial((\mathbf{J}^\dagger)^\top)_{ij}}{\partial x_j} \right) = \sum_{ij} \mathbf{J}_{ik} \partial_j \mathbf{J}_{ji}^\dagger.$$

761 The k -th term on the right side:

$$763 \quad \text{RHS}_k = -\frac{1}{2} \frac{\partial \ln \det(\mathbf{J} \mathbf{J}^\top)}{\partial x_k} \\ 764 = -\frac{1}{2} \sum_{ij} \left(\frac{\partial \ln \det(\mathbf{J} \mathbf{J}^\top)}{\partial \mathbf{J}} \right)_{ij} \frac{\partial \mathbf{J}_{ij}}{\partial x_k} \\ 765 = -\sum_{ij} (\mathbf{J}^\top)_{ij} \frac{\partial \mathbf{J}_{ij}}{\partial x_k} = -\sum_{ij} \mathbf{J}_{ji}^\dagger \partial_j \mathbf{J}_{ik}.$$

771 Hence,

$$772 \quad \text{LHS}_k - \text{RHS}_k = \sum_{ij} \mathbf{J}_{ik} \partial_j \mathbf{J}_{ji}^\dagger + \mathbf{J}_{ji}^\dagger \partial_j \mathbf{J}_{ik} \\ 773 = \sum_{ij} \partial_j (\mathbf{J}_{ji}^\dagger \mathbf{J}_{ik}) \\ 774 = \sum_j \partial_j \left(\sum_i \mathbf{J}_{ji}^\dagger \mathbf{J}_{ik} \right) = 0,$$

780 where $\mathbf{J}^\dagger \mathbf{J}$ is the projection operator, which exhibits zero divergence, so the above formula holds.

783 B ADDITIONAL EXPERIMENTAL SETTINGS

785 **Experimental Resources** Our all experiments were performed on a cluster of 8 NVIDIA V100 or
786 8 H800 GPUs. Training time and resources do not increase significantly compared to the base model.

788 **Code** Our code for experiments in this work is provided in supplementary materials and will be
789 open-source upon acceptance.

791 **Used Augmentations** Below are the data augmentation methods (with hyperparameters in parentheses) used by ScoreAug in Tables 2 and 3. During each training session, one augmentation method
792 is randomly selected with equal probability across all types, where “identity” denotes unchanging the
793 input samples. Notably, our approach operates effectively on both pixel and latent spaces, making it
794 fully compatible with SiT models.

- 796 • **ScoreAug on EDM w/o NLA**
- 797 • – Unconditional CIFAR-10: brightness ($B = 2$), translation ($R_t = 0.25$), cutout ($R_c = 0.5$), rotation.
- 798 • – Conditional CIFAR-10: brightness ($B = 2$), translation ($R_t = 0.25$), cutout ($R_c = 0.5$), rotation.
- 799 • – FFHQ: translation ($R_t = 0.25$), cutout ($R_c = 0.5$), rotation.
- 800 • – AFHQ: translation ($R_t = 0.25$), cutout ($R_c = 0.5$), rotation.
- 801 • **ScoreAug on EDM w/ NLA**
- 802 • – Unconditional CIFAR-10: translation ($R_t = 0.125$), cutout ($R_c = 0.25$).
- 803 • – Conditional CIFAR-10: translation ($R_t = 0.125$), cutout ($R_c = 0.25$).
- 804 • – FFHQ: identity, translation ($R_t = 0.125$), cutout ($R_c = 0.25$).
- 805 • – AFHQ: brightness ($B = 2$), translation ($R_t = 0.125$), cutout ($R_c = 0.25$).
- 806 • **ScoreAug on SiT, ImageNet**: translation ($R_t = 0.0325$)

810 **C ETHICS STATEMENT**
811812 By improving generalization of diffusion models, the method could broaden real-world applications
813 like medical imaging and creative design where training data is scarce. However, mitigating memo-
814 rization risks also helps prevent unintended data replication, supporting ethical AI development and
815 copyright compliance in generated content.
816817 **D THE USE OF LARGE LANGUAGE MODELS**
818819 We use large language models (LLMs) for language editing, including copyediting, wording refine-
820 ment, and minor stylistic polishing. LLMs does not contribute to idea generation, experimental
821 design, code implementation, or result selection. All LLM edits are manually reviewed and validated.
822823 **E MORE QUALITATIVE RESULTS**
824825 Below are the qualitative results on CIFAR-10 (rotation controllable), AFHQ, and FFHQ.
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

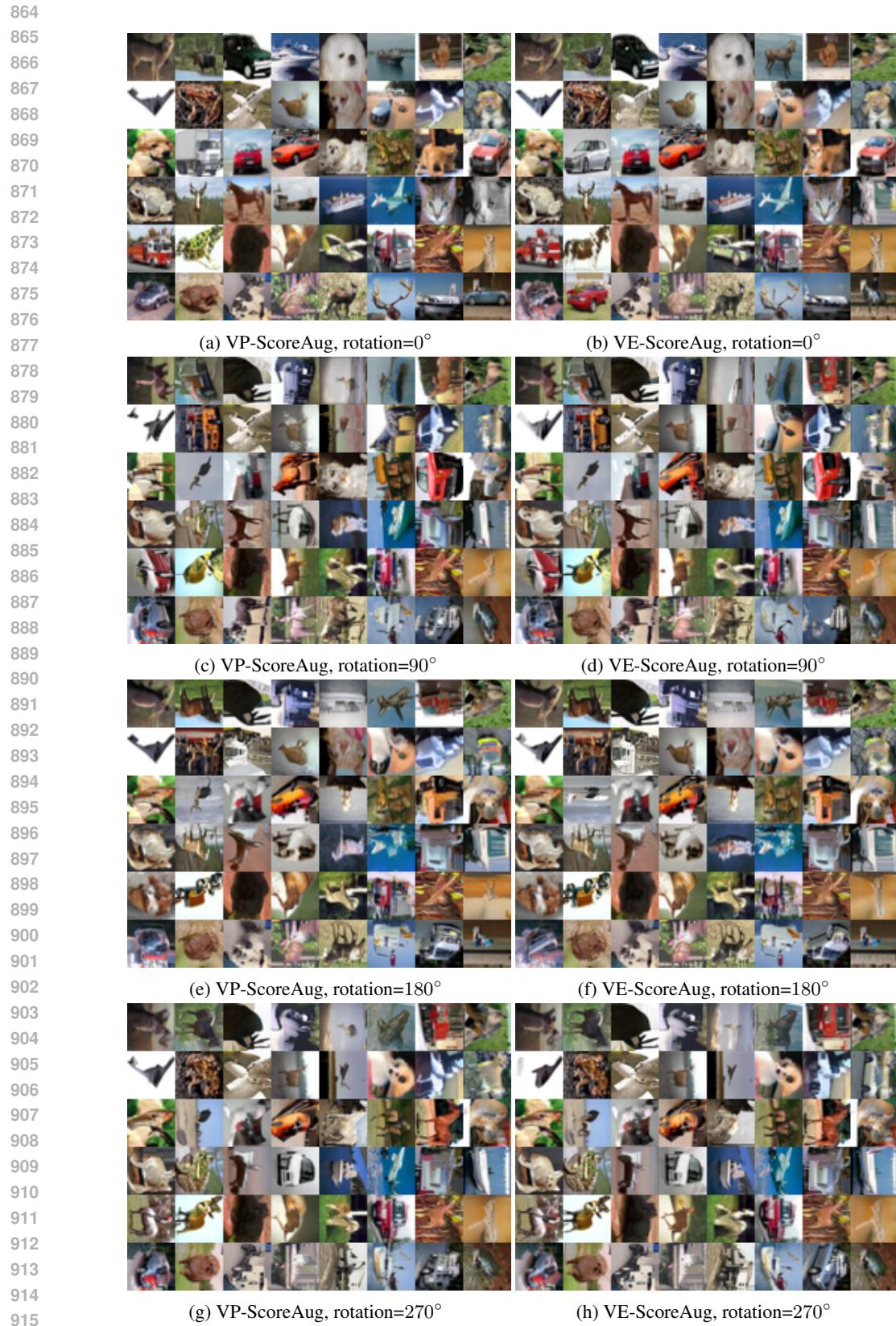


Figure 3: Augmentation-conditional generated images on unconditional CIFAR-10 of ScoreAug.

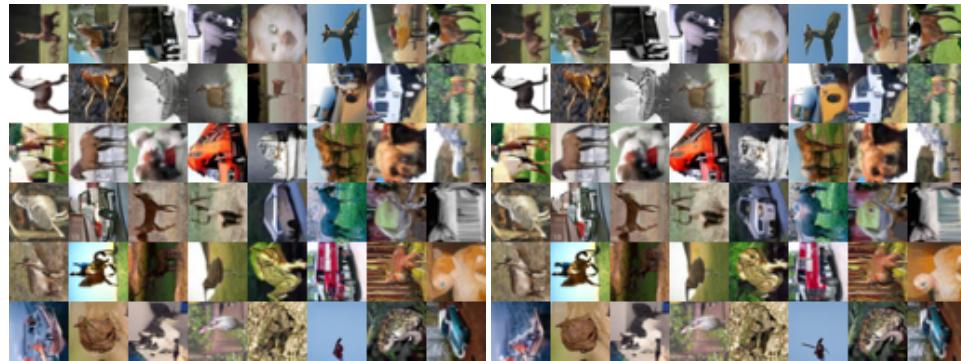
918
919
920
921
922
923
924
925
926
927
928
929
930



(a) VP-ScoreAug, rotation=0°

(b) VE-ScoreAug, rotation=0°

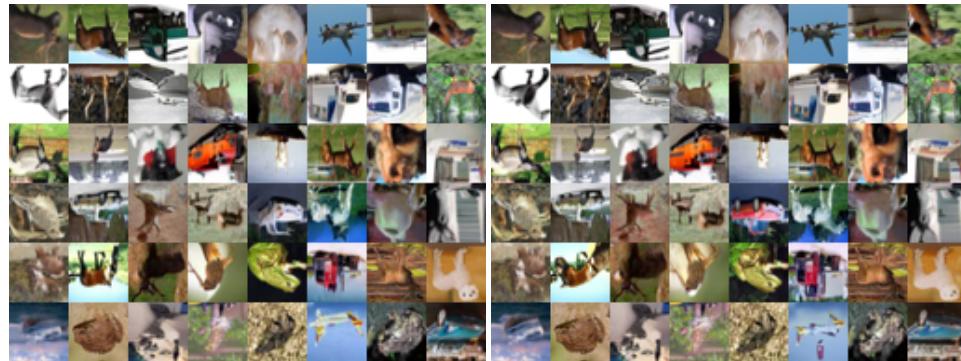
931
932
933
934
935
936
937
938
939
940
941
942
943



(c) VP-ScoreAug, rotation=90°

(d) VE-ScoreAug, rotation=90°

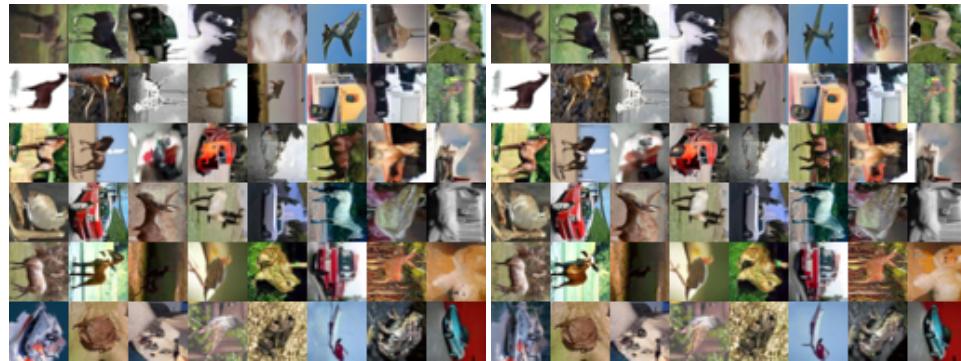
944
945
946
947
948
949
950
951
952
953
954
955



(e) VP-ScoreAug, rotation=180°

(f) VE-ScoreAug, rotation=180°

956
957
958
959
960
961
962
963
964
965
966
967
968



(g) VP-ScoreAug, rotation=270°

(h) VE-ScoreAug, rotation=270°

969
970
971

Figure 4: Augmentation-conditional generated images on conditional CIFAR-10 of ScoreAug.

Figure 5: Generated images of EDM and ScoreAug without and with NLA on AFHQ.

Figure 6: Generated images of EDM and ScoreAug without and with NLA on FFHQ.