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ABSTRACT

Human action-reaction synthesis, a fundamental challenge in modeling causal
human interactions, plays a critical role in applications ranging from virtual reality
to social robotics. While diffusion-based models have demonstrated promising
performance, they exhibit two key limitations for interaction synthesis: reliance
on complex noise-to-reaction generators with intricate conditional mechanisms,
thus limiting to unidirectional generation, and frequent physical violations in
generated motions. To address these issues, we propose Action-Reaction Flow
Matching (ARFlow), a novel paradigm that establishes direct action-to-reaction
mappings, eliminating the need for complex conditional mechanisms and support-
ing bi-directional generation. Directly applying traditional guidance algorithms
tends to undermine the quality of generated reaction motion. We analyze the sam-
pling of flow matching in depth and reveal an issue (Initial Point Deviation) which
causes the sampling trajectory to ever farther from the initial action motion. Thus,
we propose a reprojection guidance method, RE-GUID, to correct this deviation to
enable better interaction. To further enhance the reaction diversity, we incorporate
randomness into the sampling process. Extensive experiments on NTU120, Chi3D
and InterHuman datasets demonstrate that ARFlow not only outperforms existing
methods in terms of Fréchet Inception Distance and motion diversity but also
significantly reduces body collisions, as measured by our introduced Intersection
Volume and Intersection Frequency metrics.

1 INTRODUCTION

Human action-reaction synthesis (Tan et al.; Chopin et al., 2023) has emerged as a pivotal research
direction in computer vision (Starke et al., 2020; Javed et al., 2024; Tanaka & Fujiwara, 2023; Wang
et al., 2023). This task aims to generate physically plausible human reactions responding to observed
actions, with critical applications in virtual reality, human-robot interaction, and character animation.
Unlike single-human motion generation (Guo et al., 2020; Chen et al., 2023), reactors must infer
responses without observing future actor motions, creating unique modeling challenges.

While recent diffusion methods (Tevet et al., 2023) show promise in motion generation, they face
two key limitations in the modeling of action-reaction interactions. First, existing approaches (Xu
et al., 2024) indirectly model responses using noise-to-reaction generators with intricate conditional
mechanisms like treating action information as a condition to guide the generation process. This not
only complicates the training process but also limits to unidirectional generation(action-to-reaction),
which makes it completely fail in the interaction where the roles of actor and reactor continuously
switch. Second, frequent physical violations like body penetration between characters occur due
to neglected physical constraints. While such issues are absent in single-human scenarios, they
become critical in human interaction applications (Hoyet et al., 2012). This poses a significant barrier
to real-world applications such as virtual reality and human-robot interaction, where even minor
physical inaccuracies are intolerable (Reitsma & Pollard, 2003; Hoyet et al., 2012).

To address these challenges, we propose Action-Reaction Flow Matching (ARFlow), a novel frame-
work that fundamentally resolves these limitations. Unlike diffusion models constrained by noise-data
mappings, flow matching (Lipman et al., 2023; Liu et al., 2023a) naturally models paired distributions
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Figure 1: Our proposed Human Action-Reaction Flow (ARFlow). We directly establish a mapping
between the action and reaction distribution and our sampling process is further guided by our
reprojection guidance method (RE-GUID). The change of colors represents the variation of the
h-frame human reaction mesh with respect to sampling timestep tn.

through linear interpolation between endpoints (See Fig. 1), enabling simpler training and faster
inference. Due to the establishment of direct pathways between action and reaction distributions,
ARFlow eliminates design of conditions, thus supporting bi-directional generation of actions and
reactions. To eliminate unrealistic body collisions between characters, traditional guidance algo-
rithms (Karunratanakul et al., 2024; Li et al., 2024) tend to undermine the quality of generated
reaction motions. We analyze the sampling of flow matching in depth and discover the issue of
Initial Point Deviation. Thus, we propose a reprojection guidance method, RE-GUID, to correct
this deviation to enable better interaction. This innovation maintains physical plausibility through
gradient guidance without compromising motion quality. Our main contributions are as follows:

• We propose ARFlow, the first flow matching architecture that creates direct pathways between
human action and reaction distributions, eliminating the design of conditions and supporting
bi-directional generation compared to existing diffusion-based methods.

• We reveal an issue, initial point deviation, that occurred during sampling when flow matching
models the distribution of actions and reactions. Flow matching sampling actually interpolates
back towards the predicted mean point of the source distribution instead of the true initial point,
and the accumulating bias pulls the trajectory ever farther from the expected start.

• We propose a reprojection guidance method, RE-GUID, to correct the initial point deviation to
enable better interaction. Our reprojection guidance method does not require differentiating the
neural network, further improving efficiency. Moreover, we propose using a weighted direction of
random direction and sampling direction during the sampling process to support diverse reaction
motions for the same action.

2 RELATED WORK

Human Action-Reaction Synthesis. Different from human-human interaction (Liang et al., 2023;
Starke et al., 2020; Javed et al., 2024; Wang et al., 2023), human action-reaction synthesis is causal and
asymmetric (Liu et al., 2019; Xu et al., 2023). To address this task, researchers have leveraged large
language models (Siyao et al., 2024; Tan et al.; Jiang et al., 2024), VAE-based methods (Chopin et al.,
2023; Liu et al., 2023b; 2024). However, these methods cannot capture fine-grained representations
and ensure diversity, and diffusion-based methods (Li et al., 2024; Tanaka & Fujiwara, 2023) are
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Figure 2: Pipeline of ARFlow. (a) For a sampled timestep t, we linearly interpolate a coupled action-
reaction pair as Eq. 4 to produce the intermediate state x1:Ht , which is then turns into a d-dimensional
latent feature through a linear layer. We use Transformer Decoder Units to directly predict clean
reaction motions. (b) After training the networks in (a), ARFlow sampling is further guided by our
reprojection guidance method (RE-GUID) to generate physically plausible reactions.

limited to the “offline” and “constrained” setting of human reaction generation, failing to generate
instant and intention agnostic reactions. More recently, ReGenNet (Xu et al., 2024) introduce a
diffusion-based transformer decoder framework and treat action sequence as conditional signal for
online reaction generation. However, it often produce physically-implausible inter-penetrations
between the actor and reactor since they disregard physical constraints in the generative process. Our
method addresses this problem by ARFlow sampling with physical constraint guidance.

Flow Matching. Flow Matching (Lipman et al., 2023; Liu et al., 2023a; Martin et al., 2024; Feng et al.,
2025) has emerged as an efficient alternative to diffusion models, offering linear generation trajectories
through ODE solvers. This paradigm enables simplified training and accelerated inference (Lipman
et al., 2024), with successful applications spanning images (Esser et al., 2024), audio (Le et al., 2023),
video (Aram Davtyan & Favaro, 2023), and point clouds (Wu et al., 2023). In motion generation,
MotionFlow (Hu et al., 2023) demonstrates comparable performance to diffusion models with faster
sampling. Notably, Flow Matching inherently models transitions between arbitrary distributions
through transport maps, making it particularly suitable for paired data modeling. Despite these
advantages, its potential for action-reaction synthesis remains unexplored. Our work bridges this gap
by establishing direct action-to-reaction mappings without complex conditional mechanisms.

3 METHOD

In the setting of human action-reaction synthesis, our primary goal is to generate the reaction
x1 = {xi1}Hi=1 conditioned on an arbitrary action x0 = {xi0}Hi=1 of length H . The condition c can be
action x0, or it can be a signal such as an action label, text, audio to instruct the interaction, which is
optional for intention-agnostic scenarios. We utilize SMPL-X (Pavlakos et al., 2019) human model to
represent the human motion sequence as Xu et al. (2024) to improve the modeling of human-human
interactions. Thus, the reaction can be represented as xi1 = [θx1

i , qx1
i ,γx1

i ] where θx1
i ∈ R3K ,

qx1
i ∈ R3, γx1

i ∈ R3 are the pose parameters, the global orientation, and the root translation of the
person, respectively. Total number K of body joints, including the jaw, eyeballs, and fingers, is 54.
The main pipeline of our ARFlow model is provided in Fig. 2. In this section, we first introduce the
Human Action-Reaction Flow Matching in Sec. 3.1. Then, we present our reprojection guidance
method to address the issue of physically implausible human-human inter-penetrations in Sec. 3.2.

3.1 HUMAN ACTION-REACTION FLOW MATCHING

Flow Matching Overview. Given a set of samples from an unknown data distribution q(x), the
goal of flow maching is to learn a flow that transforms a prior distribution p0(x) towards a target data
distribution p1(x)≈q(x) along the probability path pt(x). The time-dependent flow ϕt(x) is defined
by a vector field v(x, t) : Rd × [0, 1]→ Rd which establishes the flow through a neural ODE:

d

dt
ϕt(x) = v(ϕt(x), t), ϕ0(x) = x . (1)

3
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Given a predefined probability path pt(x) and a corresponding vector field ut(x), one can regress the
vector field ut(x) with a neural network vθ(xt, t) parameterized by θ, and the Flow Maching (FM)
objective is as follows:

min
θ

Et,pt(x)∥vθ(xt, t)− ut(x)∥2. (2)

By defining the conditional probability path as a linear interpolation between p0 and p1, the interme-
diate process becomes: xt = tx1 + [1− (1− σmin)t]x0, where σmin > 0 is a small amount of noise.
Both training and sampling are simplified by fitting a linear trajectory in contrast to diffusion paths.
When extra condition signals c are required, they can be directly incorporated into the vector field
estimator vθ(xt, t) as v(xt, t, c). Therefore, the training objective is as follows:

min
θ

Et,p(x0),q(x1)

∥∥∥vθ(xt, t, c)−
(
x1 − (1− σmin)x0

)∥∥∥2. (3)

Since c is an optional action label in this task and is an empty value on our unconstrained experimental
settings, we can ignore it in the following text.

Action-Reaction Flow Matching. Different from previous diffusion-based methods(Xu et al.,
2024; Tevet et al., 2023; Li et al., 2024; Du et al., 2023) that rely on cumbersome conditional
mechanisms, we adopt flow matching to directly construct a mapping from action distribution
to reaction distribution (See Fig. 1). Specially, we build a condition-free generative model f
parametrized by θ to synthesize the reaction x1 = fθ(x0), given action x0, instead of x1 = fθ(z,y)
in diffusion, given a sampled Gaussian noise vector z and an action motion y as a condition. Due to
the elimination of conditional design by directly constructing the ODE trajectories of actions and
reactions through Eq. 1, ARFlow enables bi-directional generation, i.e., the inversion of action-
to-reaction models can serve as reaction-to-action models to support the interaction (e.g., boxing)
where the roles of actor and reactor continuously switch. In this scenario, we also need the model
to be able to perform reverse generation (reaction-to-action) which diffusion-based methods cannot
achieve. Given the reaction x1 sampled from the reaction distribution and the coupled action x0 from
the action distribution, the intermediate process can be written as

xt = tx1 + [1− (1− σmin)t]x0, (4)
where t is the timestep, σmin > 0 is a small amount of noise. In our setting, our samples are drawn
from the marginal distribution p(xtn+1

|xtn) rather than the conditional distribution p(xtn+1
|xtn ,y).

We use a neural network G to directly predict the clean body poses, i.e., x̂1 = Gθ(xt, t), instead of
predicting vector fields in previous works (Hu et al., 2023; Lipman et al., 2023). This strategy is
both straightforward and effective, since many geometric losses directly act on the predicted x̂1. We
compared and analyzed the results of predicting vector fields (v-prediction) and clean body poses
(x1-prediction) in Sec. 4.3. Note that x1 in flow maching usually corresponds to x0 in previous
literature on diffusion models. Depending on the specific application, G can be implemented by
Transformers (Vaswani et al., 2017) or MLP networks. The training objective of our flow model is as
follows:

Lfm = Ex1∼q(x1),x0∼p(x0),t∼[0,1][∥x1 −Gθ(xt, t)∥22]. (5)
Following Xu et al. (2024), we employ explicit interaction losses to evaluate the relative distances
of body pose θ(x1,x0), orientation q(x1,x0) and translation γ(x1,x0) between the actor and
reactor. We use a forward kinematic function to transforms the rotation pose into joint positions for
calculating θ(x1,x0) , and converts the rotation poses to rotation matrices for calculating q(x1,x0).
The interaction loss is defined as

Linter =
1

H

(
∥θ(x1,x0)− θ(x̂1,x0)∥22

+ ∥q(x1,x0)− q(x̂1,x0)∥22 + ∥γ(x1,x0)− γ(x̂1,x0)∥22
)
.

(6)

Our overall training loss is Lall = Lfm + λinter · Linter, and λinter is the loss weight.

Sampling based on x1-prediction. Since our neural network outputs x̂1, we require to construct
an equivalent relationship between the neural network’s predictions of v and x1. The equivalent form
of parameterization Eq. 21 derived from our appendix is as follows:

vθ(xt, t, c) =
x̂1 − (1− σmin)xt

1− (1− σmin)t
, (7)
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Then, our sampling based on x1-prediction can be achieved by first sampling x0 and then solving Eq.
1 employing an ODE solver (Runge, 1895; Kutta, 1901; Alexander, 1990) through our trained neural
network Gθ. We use the Euler ODE solver and discretization process involves dividing the procedure
into N steps, leading to the following formulation:

xtn+1
← xtn + (tn+1 − tn) vθ(xtn , tn, c), (8)

where the integer time step t1 = 0 < t2 < · · · < tN = 1. By using equivalent form of parame-
terization Eq. 7, we finally obtain our flow maching sampling formulation based on x1-prediction:

xtn+1
← 1− (1− σmin)tn+1

1− (1− σmin)tn
xtn +

tn+1 − tn
1− (1− σmin)tn

x̂1, (9)

which is more suitable for human motion generation. Detailed derivation is provided in Appendix A.
However, traditional flow matching sampling is deterministic and cannot generate diverse reaction
motions for the same action. We address this issue in Sec. 3.2.

3.2 RE-GUID: REPROJECTION GUIDANCE METHOD

To address physically implausible inter-penetrations between the actor and reactor in the generated
results of current diffusion-based methods (Xu et al., 2024; Tevet et al., 2023; Du et al., 2023),
traditional guidance methods (Karunratanakul et al., 2024; Li et al., 2024) employ a penetration
gradients∇Lpene to guide the sampling process. The penetration loss functon to calculate the signed
distance function (SDF) between the actor and the reactor is as follows

Lpene(x) :=
∑
i,h

−min
(
SDF(ψh

i (x)), ζ
)
, (10)

where ψh
i (x) represents the position of the i-th joint in the h-th frame of the generated reaction

motion x, the ζ defines the safe distance between the actor and the reactor, beyond which the
gradient becomes zero, and SDF is the signed distance function for an actor in the h-th frame, which
dynamically changes across frames.

However, these methods (Chung et al., 2023; Karunratanakul et al., 2023; Tian et al., 2024) first
estimate x̂1 from current state xtn with a denoiser network ϵθ(xtn , tn, c), and then calculate gradients
of the loss function with respect to current state xtn , so it inevitably requires differentiation of the
neural network, resulting in inaccurate gradients∇Lpene.

Initial Point Deviation. Except for inaccurate gradients, since we build flow matching between the
action and reaction distribution, our source distribution is the action distribution instead of noise
distribution. Thus, we cannot simply add noise back like diffusion. However, the traditional flow
matching sampling algorithm Eq. 9 is equivalent to the following formulation:

x̂0 ← x̂1 +
xtn − (1 + σmintn)x̂1

1− (1− σmin)tn
, (11)

xtn+1 ← tn+1x̂1 + [1− (1− σmin)tn+1] x̂0. (12)

This sampling process essentially finds a x̂0 along the opposite direction of the current velocity field
for linear interpolation as Eq. 11 (black dotted lines in Fig. 3). Obviously, this predicted x̂0 deviates
from the initial point x0 (purple dotted lines in Fig. 3). In fact, this predicted x̂0 is the mean of the
source distribution learned by the neural network. Because this mean point rarely coincides with
the actual initial point, there is a deviation in the interpolation direction from the beginning. During
the sampling process, this bias accumulates, causing the trajectory to increasingly deviate from the
expected starting state x0.

Reprojection guidance. To address these issues, we propose RE-GUID, that first directly updates
the gradient at x̂1 to avoid differentiation of the neural network:

x̂′
1 ← x̂1 − λpene∇x̂1

Lpene(x̂1), (13)

where x̂1 is the clean body poses predicted by our neural network Gθ and λpene is the guidance
strength. Then, we use the linear interpolation of flow matching to reproject back to the intermediate

5
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Figure 3: Illustration of Initial Point Deviation and our guidance method (RE-GUID).

state of learned FM path. In order to correct the projection direction of traditional flow matching, we
use a weight factor w to weight x̂0 and x0:

x̂∗
0 ← wx̂0 + (1− w)x0. (14)

and use x̂∗
0 as our final endpoint for interpolation. Our reprojection guidance method RE-GUID and

traditional guidance algorithm for x1-prediction are shown in Algorithm 2 and 1 respectively. In
practice, we use x1-prediction for its better performance. Under iterative sampling and physical
constraint guidance, our method can generate more realistic and physically-plausible reaction motions.

Our guidance method is actually a refined fine-tuning, which may be not suitable for training. In
addition, the loss during the training mainly measures the difference between generated results and
ground truth, while our guidance during the inference phase can provide more flexible guidance
based on the quality of the generated results.

Stochastic sampling to enhance diversity of reactions. To generate diverse reaction motions for the
same action, we incorporate randomness into the sampling process. The interpolation Eq. 12 can be
written in the following equivalent form:

xtn+1
← x̂1 + (1− tn+1)(x̂0 − x̂1) + σmintn+1x̂0. (15)

The interpolation process can be understood as a projection in the opposite direction of the current
learned velocity field x̂1 − x̂0. Thus, we can weight the projection direction x̂∗

0 − x̂′
1 and stochastic

direction drandom to incorporate randomness:

dmix ← x̂∗
0 − x̂′

1 + β[drandom − (x̂∗
0 − x̂′

1)], (16)

xtn+1
← x̂′

1 + (1− tn+1)dmix + σmintn+1x̂
∗
0, (17)

where β is the factor to control the strength of randomness.

4 EXPERIMENTS

Our experiment setting of human action-reaction synthesis is online and unconstrained as in Xu
et al. (2024) for its significant potential for practical applications. Online represents real-time reaction
generation where future motions of the actor are not visible to the reactor, and the opposite is offline
to relax the synchronicity. Unconstrained means that the intention of the actor is invisible to the
reactor. To demonstrate the universality of our method, we also conducted offline setting experiments.

4.1 EXPERIMENT SETUP

Evaluation Metrics. 1) We adopt the following metrics to quantitatively evaluate results: Frechet
Inception Distance (FID), Action Recognition Accuracy (Acc.), Diversity (Div.) and Multi-modality
(Multimod.). For all these metrics widely used in previous human motion generation (Guo et al.,
2020; Petrovich et al., 2021; Tevet et al., 2023; Xu et al., 2024), we use the action recognition
model (Yan et al., 2018) to extract motion features for calculating these metrics as in Xu et al. (2024).
We generate 1,000 reaction samples by sampling actor motions from test sets and evaluate each
method 20 times using different random seeds to calculate the average with the 95% confidence
interval as prior works (Guo et al., 2020; Petrovich et al., 2021; Tevet et al., 2023; Xu et al., 2024).
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Algorithm 1 Traditional guidance method of
physical constraints.
1: Input: Lpene the loss function ; G and θ the clean

body poses predictor with pretrained parameters
2: Parameters: N the number of sampling steps;

λpene the guidance strength
3: Sample x0 from the action distribution
4: for n = 1, 2, ..., N − 1 do

5: x̂1 ← Gθ(xtn , tn, c)

6: # Flow Matching x1-prediction
sampling (Eq. 9)

7: x′
tn+1

← 1−tn+1

1−tn
xtn +

tn+1−tn
1−tn

x̂1

8: # Physical constraint guidance
9: xtn+1 ← x′

tn+1
− λpene∇x̂tn

Lpene(x̂1)

10: end for
11: Return: The reaction motion x1 = xtN

Algorithm 2 Our reprojection guidance method
(RE-GUID).
1: Input: Lpene the loss function ; G and θ the clean

body poses predictor with pretrained parameters
2: Parameters: N the number of sampling steps;

λpene the guidance strength; w weight factor
3: Sample x0 from the action distribution
4: for n = 1, 2, ..., N − 1 do
5: x̂1 ← Gθ(xtn , tn, c)

6: x̂0 ← x̂1 +
xtn−(1+σmint)x̂1

1−(1−σmin)tn
# (Eq. 11)

7: # Physical constraint guidance at x̂1(Eq. 13)
8: x̂′

1 ← x̂1 − λpene∇x̂1Lpene(x̂1)
9: # Direction correction

10: x̂∗
0 ← wx̂0 + (1− w)x0

11: # Interpolation (Eq. 12)
12: xtn+1 ← tn+1x̂

′
1 + [1− (1− σmin)tn+1] x̂

∗
0

13: end for
14: Return: The reaction motion x1 = xtN

Figure 4: Qualitative comparisons of human action-reaction synthesis results. Blue for actors and
Green for reactors.

To qualitatively measure the degree of penetration, we introduced two metrics: 2) Intersection
Volume (IV) measures human-human inter-penetration by reporting the volume occupied by two
human meshes. 3) Intersection Frequency (IF) measures the frequency of inter-penetration. More
details about these metrics are provided in the supplementary.

Datasets. We evaluate our model on NTU120-AS, Chi3D-AS and InterHuman-AS datasets with
SMPL-X (Pavlakos et al., 2019) body models and actor-reactor annotations as in Petrovich et al.
(2021).They contains 8118, 373 and 6022 human interaction sequences, respectively. “AS”(Xu et al.,
2024) represents that they are an extended version of the original dataset (Fieraru et al., 2020; Liu et al.,
2019; Trivedi et al., 2021; Liang et al., 2023), which adds annotations to distinguish actor-reactor
order of each interaction sequence and SMPL-X body models for more detailed representations. We
adopt the 6D rotation representation (Zhou et al., 2019) in all our experiments.

4.2 COMPARISON TO BASELINES

To evaluate the performance of our method, we adopt following baselines: 1) cVAE (Kingma
& Welling, 2013), commonly utilized in earlier generative models for human interactions; 2)
MDM (Tevet et al., 2023), the state-of-the-art diffusion-based method for human motion gener-
ation, and its variant MDM-GRU (Tevet et al., 2023), which incorporates a GRU (Cho et al., 2014)
backbone; 3) AGRoL (Du et al., 2023), the current state-of-the-art method to generate full-body
motions from sparse tracking signals, which adopts diffusion models with MLPs architectures; 4)
ReGenNet (Xu et al., 2024), the state-of-the-art diffusion-based method for human action-reaction
synthesis on online, unconstraint setting as ours. Results are taken from tables of ReGenNet (Xu
et al., 2024) where all methods use 5-timestep sampling. All methods are tested on a single Nvidia
4090 GPU.
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Table 1: Comparison to state-of-the-art on the online, unconstrained setting on NTU120-AS.→
denotes that the result closer to Real is better, and± represents 95% confidence interval. We highlight
the best result in Bold and the second best in underline.

Method FID↓ Acc.↑ Div.→ Multimod.→ IF↓ IV↓
Real 0.09±0.00 0.867±0.0002 13.06±0.09 25.03±0.23 21.96% 5.35

cVAE (Kingma & Welling, 2013) 70.10±3.42 0.724±0.0002 11.14±0.04 18.40±0.26 - -
AGRoL (Du et al., 2023) 44.94±2.46 0.680±0.0001 12.51±0.09 19.73±0.17 - -
MDM-GRU (Tevet et al., 2023) 24.25±1.39 0.720±0.0002 13.43±0.09 22.24±0.29 - -
MDM (Tevet et al., 2023) 54.54±3.94 0.704±0.0003 11.98±0.07 19.45±0.20 32.63% 17.97
ReGenNet (Xu et al., 2024) 11.00±0.74 0.749±0.0002 13.80±0.16 22.90±0.14 13.84% 3.50
ARFlow 8.07±0.19 0.741±0.0002 13.71±0.10 24.07±0.13 3.23% 0.53

Table 2: Comparison to state-of-the-art on the online, unconstrained setting on Chi3D-AS.→
denotes that the result closer to Real is better, and± represents 95% confidence interval. We highlight
the best result in Bold and the second best in underline.

Method FID↓ Acc.↑ Div.→ Multimod.→ IF↓ IV↓
Real 0.75±0.18 0.691±0.0093 7.15±1.27 12.94±0.96 48.80% 33.69

cVAE (Kingma & Welling, 2013) 17.33±17.14 0.552±0.0024 8.20±0.57 11.44±0.35 - -
AGRoL (Du et al., 2023) 64.83±277.8 0.644±0.0039 7.00±0.95 11.33±0.65 - -
MDM-GRU (Tevet et al., 2023) 18.63±25.87 0.574±0.0046 6.20±0.24 10.49±0.32 - -
MDM (Tevet et al., 2023) 18.40±7.95 0.647±0.0035 5.89±0.33 10.96±0.27 58.45% 32.64
ReGenNet (Xu et al., 2024) 13.76±4.78 0.601±0.0040 6.35±0.24 12.02±0.33 33.29% 13.92
ARFlow 10.92±3.70 0.600±0.0040 6.68±0.25 12.74±0.17 3.07% 0.03

Condition-free. For the NTU120-AS dataset in Tab. 1 and Chi3D-AS dataset in Tab. 2, our proposed
ARFlow notably outperforms baselines in terms of the FID metric, demonstrating that our method
better models the mapping between the action and the reaction distribution. Our method achieves
the best FID and multi-modality, second best for the action recognition accuracy and diversity on
the NTU120-AS dataset and the best FID and multi-modality, second best for the diversity on the
Chi3D-AS dataset. For a fair comparison, we use the pre-trained action recognition model in Xu et al.
(2024), so our action recognition accuracy is very close to its results. Given the restricted size of the
Chi3D-AS test set, some fluctuations in the experimental results are to be expected. The results of the
InterHuman-AS dataset and offline settings in Tab. B.1 and Tab. B.2 show our method also yields
the best results compared to baselines. Due to our special design of generating different reaction
motions for the same action, the diversity of our method is also superior to the baseline.

Faster. In Tab. 3, due to our condition-free design, ARFlow has a smaller number of parameters and
converges faster during training, surpassing diffusion-based methods in only half training time. In the
inference stage, our method also has lower latency with the same number of sampling steps.

Bi-directional generation. To verify the reverse generation capability of our method, we further
evaluate on reaction-action tasks. As demonstrated in Tab. 4, ARFlow also completely surpasses the
diffusion-based approach.

Reprojection guidance method. In Tab. 1 and Tab. 2, our ARFlow with RE-GUID achieves the
lowest Intersection Volume, Intersection Frequency and FID than other baselines, which shows that
our method achieves the lowest level of penetration while ensuring the highest generation quality.
In Fig. 4, visualization results demonstrate that our method produces more physically plausible
reactions. For more visualizations and videos, please refer to the supplementary materials.

4.3 ABLATION STUDY

Network Prediction. As depicted in Sec. 3.1, a straightforward and effective strategy is to estimate
clean body poses directly through a neural network, i.e., x1-prediction. We compared it with v-
prediction and the results are listed on the Prediction setting in Tab. 5 and Tab. B.3. Obviously,
x1-prediction has demonstrated superior performance across both settings. The reason we analyze it
is that the geometric losses to regularize the generative network during the training phase directly
acts on the predicted clean body poses, while v-prediction requires using the predicted vector field to
estimate the clean poses, so the models trained by x1-prediction are more effective.

Guidance method. As we discussed earlier, the results in Tab. 5 indicate that our reprojection
guidance method (RE-GUID) completely surpasses the traditional guidance method (including higher
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Table 3: Human action-reaction synthesis on NTU120-AS. All methods are tested on a single Nvidia
4090 GPU. Bold indicates the best result.

Method Latency(ms) Parameters(m) Training time(h)
2-Steps 5-Steps 10-Steps 100-Steps

ReGenNet 0.33 0.76 1.58 15.17 26.80 48
ARFlow 0.05 0.11 0.23 2.27 17.87 24

Table 4: Human reaction-action synthesis (reverse generation) on NTU120-AS and Chi3D-AS.

Method NTU120-AS Chi3D-AS

FID↓ Acc.↑ Div.→ Multimod.→ FID↓ Acc.↑ Div.→ Multimod.→
Real 0.01±0.00 0.591±0.0002 16.01±0.10 25.78±0.22 0.80±0.19 0.601±0.0090 7.17±1.30 13.42±0.94

cVAE 89.21±4.02 0.412±0.0004 10.01±0.05 15.90±0.25 46.10±20.03 0.443±0.0021 8.30±0.60 9.14±0.30

AGRoL 50.56±2.61 0.390±0.0002 11.19±0.09 18.20±0.16 67.90±198.01 0.490±0.0039 6.21±1.10 8.89±0.67

MDM-GRU 42.13±2.20 0.424±0.0004 12.23±0.09 20.33±0.30 49.03±26.10 0.463±0.0066 5.37±0.25 8.09±0.32

MDM 60.08±4.15 0.403±0.0005 10.34±0.06 17.74±0.21 48.20±8.05 0.503±0.0063 5.89±0.39 8.41±0.25

ReGenNet 36.12±0.65 0.457±0.0004 12.66±0.08 19.30±0.14 40.13±5.30 0.484±0.0062 5.45±0.25 9.82±0.32

ARFlow 12.81±0.27 0.486±0.0003 14.84±0.09 23.40±0.13 13.89±3.87 0.552±0.0050 6.60±0.24 12.03±0.17

efficiency), and it significantly reduces the damage of guidance (See Sec. D.3) to the quality of
generated reaction motions. We also provide a qualitative comparison of the effects before and
after using our physical constraint guidance in Fig. I.1. The qualitative and quantitative results
demonstrated that our method achieves the lowest penetration level while maintaining the best quality
of generated reactions.

Number of Euler sampling timesteps. We present comprehensive evaluation results in both online
and offline scenarios, with varying Euler sampling intervals (2, 5, 10 and 100 timesteps), including the
latency of reaction generation per frame on online settings and overall latency on offline settings. The
experimental results, as detailed in Tab. 5 and Tab. B.3, suggest that the 5-timestep Euler sampling
consistently achieves optimal performance, demonstrating superior FID scores while maintaining
low latency across both evaluation settings. Thus, we adopt the 5-timestep inference as the standard
configuration like Xu et al. (2024) for all the experimental results reported in this study.

Table 5: Ablation studies on the online, unconstrained setting on the NTU120-AS dataset. Bold
indicates the best result in our method.

Class Settings FID↓ Acc.↑ Div.→ Multimod.→ Latency(ms) IF↓ IV↓

Real 0.085±0.0003 0.867±0.0002 13.063±0.0908 25.032±0.2332 - 21.96% 5.35

Prediction 1) x1 7.894±0.1814 0.743±0.0002 13.599±0.1005 24.105±0.1310 - - -
2) v 14.726±0.2143 0.743±0.0002 14.154±0.0923 23.329±0.1125 - - -

Guidance RE-GUID 8.073±0.1981 0.741±0.0002 13.613±0.1004 24.096±0.1433 0.149 3.23% 0.53
Traditional 8.611±0.2047 0.740±0.0002 13.713±0.1079 24.077±0.1370 0.263 3.29% 1.44

Timesteps

2 15.965±0.2728 0.733±0.0002 13.740±0.0896 26.767±0.1440 0.055 - -
5 7.894±0.1814 0.743±0.0002 13.599±0.1005 24.105±0.1310 0.111 8.39% 3.26
10 8.273±0.3862 0.721±0.0002 14.108±0.0779 22.995±0.1274 0.232 - -
100 8.259±0.3902 0.747±0.0002 14.173±0.1024 23.619±0.1214 2.273 - -

5 CONCLUSION

In this work, we have presented Action-Reaction Flow Matching (ARFlow), a novel condition-free
framework for human action-reaction synthesis that addresses the limitations of existing diffusion-
based approaches. By establishing direct action-to-reaction mappings through flow matching,
ARFlow eliminates the need for complex conditional mechanisms and supports bi-directional genera-
tion. ARFlow involves a novel reprojection guidance algorithm, RE-GUID to enable more physically
plausible and efficient motion generation while preventing body penetration artifacts. Extensive
evaluations on the NTU120, Chi3D and InterHuman datasets demonstrate that ARFlow excels over
existing methods, showing superior performance in terms of Fréchet Inception Distance and motion
diversity. Additionally, it significantly reduces body collisions, as evidenced by our introduced
Intersection Volume and Intersection Frequency metrics.
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Limitations. 1) Method: Although we attempt to use a reprojection method to address the issue of
manifold distortions—deviations from the natural motion distribution established by flow matching,
this problem still exists and the penetration loss function used may force two people to separate in
some close interactions. Moreover, the generation of long-sequence reaction motions has not been
explored yet. 2) Dataset: the dataset itself is imperfect due to inherent mocap noise. The higher
IV/IF in real data show actual penetrations in captured interactions. Addressing these challenges
opens a promising avenue for future research, focusing on developing advanced methods that ensure
physical plausibility and motion authenticity.

6 REPRODUCIBILITY STATEMENT

We have elucidated our design in the paper including the model structure (Appendix. F), method
parameters (Appendix. D), and the training and testing details (Sec. G). To facilitate reproduction, we
will make our code and weights publicly available.

7 ETHICS STATEMENT

All of our experiments were conducted using publicly available and anonymized datasets. We
have considered the potential social impact of our work. We acknowledge that, like any advanced
technology, our method could be misused, and we strongly advise against such applications. Our
work is intended for scientific advancement and positive social contributions. The authors bear full
responsibility for the ethical conduct and dissemination of this research.
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A ALGORITHM DERIVATION

We denote the deterministic functions: x̂1 = E[x1|xt, c] as the x1-prediction, vθ(xt, t, c) = ut(xt)
as the v-prediction. By defining the conditional probability path as a linear interpolation between p0
and p1, the intermediate process becomes:

xt = tx1 + [1− (1− σmin)t]x0, (18)

where σmin > 0 is a small amount of noise. Take the derivative of t on both sides:

dxt

dt
= x1 − (1− σmin)x0, (19)

In the marginal velocity formula, we obtain:

ut(xt) = E[x1 − (1− σmin)x0|xt, c]

= E[x1|xt, c]− (1− σmin)E[x0|xt, c]. (20)

Substitute x0 = xt−tx1

1−(1−σmin)t
from Eq. 18 into the above equation:

ut(xt) = E[x1|xt, c]− (1− σmin)
xt − t E[x1|xt, c]

1− (1− σmin)t

=
E[x1|xt, c]− (1− σmin)xt

1− (1− σmin)t

where we have used the fact that E[xt|xt] = xt. According to x̂1 = E[x1|xt, c] , vθ(xt, t, c) =
ut(xt), we get the equivalent form of parameterization:

vθ(xt, t, c) =
x̂1 − (1− σmin)xt

1− (1− σmin)t
, (21)

Substitute Eq. 21 into the following equation:

xt′ = xt − (t− t′)vθ(xt, t, c)

= xt − (t− t′) x̂1 − (1− σmin)xt

1− (1− σmin)t

=
1− (1− σmin)t

′

1− (1− σmin)t
xt +

t′ − t
1− (1− σmin)t

x̂1. (22)

Finally, let t = tn and t′ = tn+1, we can obtain the estimation of x̂1 from Eq. 21:

x̂1 ← (1− σmin)xtn + (1− (1− σmin)tn) vθ(xtn , tn, c), (23)

and our sampling formulation based on x1-prediction from Eq. 22:

x′
tn+1
← 1− (1− σmin)tn+1

1− (1− σmin)tn
xtn +

tn+1 − tn
1− (1− σmin)tn

x̂1. (24)

Algorithm 3 Sampling algorithm with vanilla guidance of physical constraints. (v-prediction)
1: Input: Lpene the loss function ; v and θ the vector field predictor with pretrained parameters
2: Parameters: N the number of sampling steps; λpene the scale factor to control the strength of guidance
3: Sample x0 from the action distribution
4: for n = 1, 2, ..., N − 1 do
5: # Estimate x̂1 (Eq. 23)
6: x̂1 ← (1− σmin)xtn + (1− (1− σmin)tn) vθ(xtn , tn, c)
7: # Flow maching v-prediction sampling (Eq. 8)
8: x′

tn+1
← xtn + (tn+1 − tn) vθ(xtn , tn, c)

9: # Physical constraint guidance
10: xtn+1 ← x′

tn+1
+ λpene∇xtn

Lpene(x̂1)
11: end for
12: Return: The reaction motion after guidance x1 = xtN
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B EXTRA EXPERIMENTAL RESULTS

B.1 INTERHUMAN-AS DATASET

For the text-conditioned setting, we adopt T2M (Guo et al., 2022), MDM (Tevet et al., 2023), MDM-
GRU (Tevet et al., 2023), RAIG (Tanaka & Fujiwara, 2023) and InterGen (Liang et al., 2023) as
baselines. Tab. B.1 shows our method also yields the best results compared to baselines.

Table B.1: Comparison to state-of-the-arts on the online, unconstrained setting for human action-
reaction synthesis on the InterHuman-AS dataset. → denotes that the result closer to Real is better,
and ± represents 95% confidence interval. We highlight the best result in Bold.

Methods R Precision
(Top 3)↑ FID ↓ MM Dist↓ Diversity→ MModality ↑ IF↓ IV↓

Real 0.722±0.004 0.002±0.0002 3.503±0.011 5.390±0.058 - 10.11% 3.10

T2M (Guo et al., 2022) 0.224±0.003 32.482±0.0975 7.299±0.016 4.350±0.073 0.719±0.041 - -
RAIG (Tanaka & Fujiwara, 2023) 0.363±0.008 2.915±0.0292 7.294±0.027 4.736±0.099 2.203±0.049 - -
InterGen (Liang et al., 2023) 0.374±0.005 13.237±0.0352 10.929±0.026 4.376±0.042 2.793±0.014 - -
MDM-GRU (Tevet et al., 2023) 0.328±0.012 6.397±0.2140 8.884±0.040 4.851±0.081 2.076±0.040 - -
MDM (Tevet et al., 2023) 0.370±0.006 3.397±0.0352 8.640±0.065 4.780±0.117 2.288±0.039 12.33% 5.31
ReGenNet (Xu et al., 2024) 0.407±0.003 2.265±0.0969 6.860±0.004 5.214±0.139 2.391±0.023 9.76% 2.93

ARFlow 0.434±0.003 1.637±0.0413 3.949±0.004 5.259±0.117 2.502±0.021 2.17% 0.40

B.2 OFFLINE SETTINGS

To demonstrate the universality of our ARFlow, we also conducted offline setting experiments
in Tab.B.2 and Tab.B.3. We replace the Transformer decoder units equipped with attention masks
with an 8-layer Transformer encoder architecture just like ReGenNet (Xu et al., 2024).

Table B.2: Results on the offline, unconstrained setting on NTU120-AS. We highlight the best result
in Bold and the second best in underline.

Method FID↓ Acc.↑ Div.→ Multimod.→ IF↓ IV↓
Real 0.09±0.00 0.867±0.0002 13.06±0.09 25.03±0.23 21.96% 5.35

cVAE (Kingma & Welling, 2013) 74.73±4.86 0.760±0.0002 11.14±0.04 18.40±0.26 - -
AGRoL (Du et al., 2023) 16.55±1.41 0.716±0.0002 13.84±0.10 21.73±0.20 - -
MDM-GRU (Tevet et al., 2023) 24.25±1.39 0.720±0.0002 13.43±0.09 22.24±0.29 - -
MDM (Tevet et al., 2023) 7.49±0.62 0.775±0.0003 13.67±0.18 24.14±0.29 15.45% 3.36
ReGenNet (Xu et al., 2024) 6.19±0.33 0.772±0.0003 14.03±0.09 25.21±0.34 19.14% 3.07
ARFlow 5.00±0.17 0.772±0.0002 13.84±0.09 25.10±0.17 3.73% 0.23

Table B.3: Ablation studies on the offline, unconstrained setting on the NTU120-AS dataset. Bold
indicates the best result in our method.

Class Settings FID↓ Acc.↑ Div.→ Multimod.→ Latency(ms)

Real 0.085±0.0003 0.867±0.0002 13.063±0.0908 25.032±0.2332 -

Prediction 1) x1 5.003±0.1654 0.762±0.0002 13.844±0.0905 25.104±0.1704 -
2) v 7.585±0.1562 0.757±0.0002 13.775±0.0982 24.200±0.1355 -

Guidance w. Lpene 5.048±0.1167 0.750±0.0002 13.838±0.0893 25.048±0.1595 -

Timesteps

2 7.936±0.1581 0.759±0.0002 14.538±0.1016 25.904±0.1754 0.023
5 5.003±0.1654 0.762±0.0002 13.844±0.0905 25.104±0.1704 0.053
10 5.506±0.1657 0.744±0.0002 13.870±0.0942 24.732±0.1533 0.110
100 5.836±0.3763 0.748±0.0002 13.635±0.0948 24.058±0.1371 1.132

Best ARFlow 5.003±0.1654 0.762±0.0002 13.844±0.0905 25.104±0.1704 0.053
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Table B.4: Results on the online, unconstrained setting on NTU120-AS. We highlight the best result.
Method FID↓ Acc.↑ Div.→ Multimod.→ Inference time per frame(ms)

Real 0.09±0.00 0.867±0.0002 13.06±0.09 25.03±0.23 -

cVAE (Kingma & Welling, 2013) 70.10±3.42 0.724±0.0002 11.14±0.04 18.40±0.26 -
AGRoL (Du et al., 2023) 44.94±2.46 0.680±0.0001 12.51±0.09 19.73±0.17 -
MDM (Tevet et al., 2023) 54.54±3.94 0.704±0.0003 11.98±0.07 19.45±0.20 -
MDM-GRU (Tevet et al., 2023) 24.25±1.39 0.720±0.0002 13.43±0.09 22.24±0.29 -
Ready-to-React (Cen et al., 2025) 14.02±0.75 0.729±0.0002 13.95±0.20 22.40±0.16 22
ReMoS (Ghosh et al., 2024) 24.42±2.15 0.721±0.0002 13.82±0.09 22.32±0.20 -
ReGenNet (Xu et al., 2024) 11.00±0.74 0.749±0.0002 13.80±0.16 22.90±0.14 0.76
ARFlow 8.07±0.19 0.741±0.0002 13.71±0.10 24.07±0.13 0.11

B.3 MORE RECENT BASELINES

Ready-to-React (Cen et al., 2025) incorporates a diffusion head into an auto-regressive model which
is suitable for generating long sequences, but this method uses a complex multi-stage network
architecture, leading to more difficult training and slower inference. To achieve real-time generation,
it sacrifices somen contextual information. Due to the loss of information, its performance on
our fine-grained task is slightly inferior. In contrast, our method adopts a very simple end-to-end
architecture with better real-time performance and easy addition of physical constraints.

ReMoS (Ghosh et al., 2024) relies on intricate conditional mechanisms (combined spatio-temporal
cross attention mechanisms) and uses a cascaded diffusion framework to generate more fine-grained
reactive motions. However, it cannot achieve online generation, leading to lower performance.
Tab. B.4 shows our method also yields the best results compared to baselines in both performance
and efficiency.

B.4 CONSTRAINED SETTINGS

As for constrained settings, the experimental results are as follows in Tab. B.5, where ARFlow-
constrained denotes that text serves as an extra conditional input. We follow Xu et al. (2024) to
process diverse prompts (from simple sentences to full sentences) using the pre-trained CLIP text
encoder which has aligned the features of texts and motions. The extracted text features were
fed as conditioning tokens into our model. In this setting, ARFlow-constrained achieves superior
performance since the text serves as a strong hint to generate the reactions.

Table B.5: Results on the online, constrained setting on NTU120-AS. We highlight the best result.

Method FID↓ Acc.↑ Div.→ Multimod.→
Real 0.09±0.00 0.867±0.0002 13.06±0.09 25.03±0.23

ARFlow-unconstrained 8.07±0.19 0.741±0.0002 13.71±0.10 24.07±0.13

ARFlow-constrained 4.56±0.07 0.893±0.0001 12.00±0.08 25.06±0.21

B.5 APPLYING ARFLOW TO ROLE-SWITCHING INTERACTIONS

To demonstrate the bi-directional generation capability of our method to deal with interaction
where the roles of actor and reactor continuously switch, we use the InterHuman-AS dataset (it
has annotations to distinguish actor-reactor order and our pre-trained model can be directly reused)
proposed by Xu et al. (2024) to conduct the following experiments. We select more than 150 frames
long sequences where the actor-reactor orders continuously switch as the test set. Due to the training
data is annotated with actor-reactor labels, we train a classifier to distinguish between actors and
reactors. At the moment of inference, the classifier (Yan et al., 2018) outputs the state label of the
current input motion("Actor" or "Reactor"). If it is an actor, we use ARFlow for forward inference. If
the state label changes to a reactor, we use ARFlow for reverse generation.

The experimental results in Tab. B.6 show that ARFlow has significantly better performance than
the diffusion-based methods that can only generate unidirectionally. Our method does not require
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Table B.6: Results for human role-switching interaction synthesis on the online, unconstrained
setting on the InterHuman-AS dataset. We highlight the best result in Bold.

Methods R Precision
(Top 3)↑ FID ↓ MM Dist↓ Diversity→ MModality ↑

Real 0.751±0.004 0.003±0.0002 3.423±0.010 6.309±0.059 -

MDM (Tevet et al., 2023) 0.343±0.010 15.102±0.0962 11.550±0.095 5.201±0.140 1.983±0.046

ReGenNet (Xu et al., 2024) 0.364±0.008 12.190±0.1213 10.384±0.029 5.891±0.183 2.092±0.057

ARFlow 0.416±0.003 3.886±0.0502 4.260±0.009 6.033±0.176 2.289±0.059

Table C.1: Randomness Influence studies on the online, unconstrained setting on the NTU120-AS
dataset. Bold indicates the best result in our method.

Method Settings FID↓ Acc.↑ Div.→ Multimod.→

Real 0.085±0.0003 0.867±0.0002 13.063±0.0908 25.032±0.2332

Randomness β
0.05 13.821±0.2895 0.709±0.0003 14.002±0.1055 24.269±0.1363

0.02 8.060±0.1517 0.728±0.0002 13.928±0.1076 24.161±0.1512

0.01 7.671±0.1357 0.728±0.0002 13.895±0.1080 24.114±0.1486

ARFlow 0.001 7.894±0.1814 0.743±0.0002 13.599±0.1005 24.105±0.1310

retraining, providing a promising solution to the interaction of continuous role changes in scenarios
with limited training data and resources.

C INFLUENCE OF SAMPLING RANDOMNESS

As depicted in Tab. C.1, although stochastic sampling increases the diversity of generated reaction
motions, it sometimes has some impact on the quality of the sample due to its stochastic nature.

D DETAILS OF OUR GUIDANCE METHOD

D.1 PENETRATION LOSS FUNCTON

The action-reaction task requires real-time performance. Since our network predicts joint positions,
our loss function can be directly calculated with almost no additional computational overhead to meet
real-time requirements. Other loss functions generally require longer computation time or introduce
simulators, which is intolerable in this task. Mesh-based methods approximate mesh surface with
triangular patches and then compute loss from collision triangles. Volumn-based methods require
computing the occupied volume of mesh. Both of these methods also require mapping joint points to
mesh surface first.

D.2 PARAMETER ANALYSIS OF GUIDANCE STRENGTH AND WEIGHT FACTOR

We conduct a parameter analysis of guidance strength in Tab. D.1. The result of the experiments
show that as the guiding strength increases, the degree of penetration between actors and reactors
decreases significantly, while FID increases slightly. This is because the ground truth itself has a
certain degree of penetration. Thus, this task requires our new metrics and FID to collaborate in
evaluating the quality of the generated results. When the guidance strength increases to a certain
extent, the decrease in penetration degree is no longer significant. Therefore, we ultimately choose
λpene = 2. Our method achieves the lowest penetration level while maintaining the best generation
quality. As for the weight factor, the results show that the minimum value of FID does not occur at
the endpoints, thus demonstrating the effectiveness of our weighting method.

5
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Table D.1: Parameter analysis of guidance strength and weight factor on the online, unconstrained
setting on NTU120-AS. Bold indicates the best result.

Parameter settings FID ↓ IF ↓ IV ↓
Real 0.09 21.96% 5.35

λpene

0 7.89 8.39% 3.26
1 7.98 5.80% 1.15
2 8.20 3.54% 0.68
5 8.49 1.22% 0.13
10 9.41 0.78% 0.21

w

0 8.37 2.71% 0.35
0.1 8.30 2.78% 0.36
0.3 8.19 2.96% 0.37
0.5 8.11 3.12% 0.41
0.7 8.07 3.23% 0.53
0.9 8.08 3.32% 0.64
1 8.20 3.54% 0.68

D.3 LIMITATIONS OF GUIDANCE METHODS

As shown in Tab. 5, although guidance methods effectively suppress penetration, they also lead to
a slight increase in other metrics like FID, as FID only measures the similarity between generated
results and the ground truth distribution and the dataset itself are imperfect resulting from inherent
mocap noise. The higher IV/IF in real data show actual penetrations in captured interactions.

D.4 GENERALIZATION OF OUR GUIDANCE METHOD TO OTHER PHYSICAL CONSTRAINTS

We mainly propose a more accurate and efficient general guidance method(RE-GUID), in which
the design of specific loss functions can be tailored to different tasks. Regarding foot sliding, we
design a loss function Lfoot inspired by zero velocity constraint in Zou et al. (2020) to penalize foot
sliding and incorporate it into our loss function. Therefore, our overall loss function is Lre-guid =
Lpene+λfoot ·Lfoot, where λfoot is the foot-sliding loss weight and we set λfoot = 0.5 in our experiment.
For the evaluation metric of foot sliding(Skate), we follow Yuan et al. (2023) to find foot joints that
contact the ground in two adjacent frames and compute their average horizontal displacement within
the frames. We conduct the experiment to compare the effects before and after using Lfoot in Tab. D.2.
The experimental results demonstrate that our guidance method can effectively generalize to other
physical constraints to generate more physically plausible motions.

Table D.2: Generalization studies of our guidance method (RE-GUID) to other physical constraints
on the online, unconstrained setting on NTU120-AS. We highlight the best result in Bold.

Method FID↓ Acc.↑ Div.→ Multimod.→ IF↓ IV↓ Skate↓
Real 0.09±0.00 0.867±0.0002 13.06±0.09 25.03±0.23 21.96% 5.35 0.65

ARFlow 8.07±0.19 0.741±0.0002 13.71±0.10 24.07±0.13 3.23% 0.53 1.74
ARFlow w. Lfoot 7.90±0.16 0.743±0.0002 13.73±0.11 24.17±0.12 3.23% 0.55 0.70

E MORE RELATED WORK

Human Motion Generation. Human motion synthesis aims to generate diverse and realistic human-
like motion conditioned on different guidances (Zhang et al., 2023b; Zhou & Wang, 2023; Ao et al.,
2022). Recently, many diffusion-based motion generation models have been proposed (Zhang et al.,
2022; Chen et al., 2023; Wu et al., 2024) and demonstrate better quality compared to alternative
models such as VAE (Guo et al., 2020; Cervantes et al., 2022), flow-based models (Rezende &
Mohamed, 2015; Aliakbarian et al., 2022) or GANs (Yan et al., 2019; Xu et al., 2022). Alterna-
tively, motion can be regarded as a new form of language and embedded into the language model
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framework (Zhang et al., 2023a; Jiang et al., 2023). Meanwhile, the exploration of guiding the
sampling process of diffusion models (Chung et al., 2023; Yang et al., 2024) has been a key area in
motion diffusion models, PhysDiff (Yuan et al., 2023) proposes a physics-guided motion diffusion
model, which incorporates physical constraints in a physics simulator into the diffusion process.
GMD (Karunratanakul et al., 2023) presents methods to enable spatial guidance without retraining
the model for a new task. DNO (Karunratanakul et al., 2024) proposes a motion editing and control
approach by optimizing the diffusion latent noise of an existing pre-trained model.

F DETAILS OF OUR FRAMEWORK

We present our Human Action-Reaction Flow Matching (ARFlow) framework, illustrated in Fig. 2,
which comprises a flow module and a Transformer decoder G. Given a paired action-reaction
sequence and an optional signal c (e.g. , an action label, dotted lines in Fig. 2), <x1:H0 , x1:H1 , c>,
x1:H1 represents the reaction to generate. For a sampled timestep t, we linearly interpolate x1:H1 and
x1:H0 as Eq. 4 to produce the x1:Ht . Then the x1:Ht turns into the latent features through an FC layer
to dimension d. The timestep t and the optional condition c are separately projected to dimension
d using feed-forward networks and combined to form the token z. The Transformer decoder G,
implemented with stacked 8 layers, prevents future information leakage through masked multi-head
attention, enabling online generation as in Xu et al. (2024). Decoder G takes z as input tokens and
x1:Ht combined with a standard positional embedding as output tokens, along with a directional
attention mask to ensure the model cannot access future actions at the current timestep. The decoder’s
output is projected back to produce the predicted clean body poses x̂1:H1 . Online reaction generation
is achieved in an auto-regressive manner, following the approach of Xu et al. (2024). The intention
branch can be activated when the actor’s intention is accessible to the reactor, or deactivated otherwise.
The directional attention mask can be turned off for offline settings.

At the inference stage, we employ our physical constraint guidance method. After training latent
linear layers and Transformer decoder G, our ARFlow uses them for x1-prediction based sampling.
The sampling process is further guided by the gradient of Lpene to generate physically plausible
reactions.

G IMPLEMENTATION DETAILS

Our ARFlow model is trained with T = 1, 000 timesteps using a classifier-free approach (Ho &
Salimans, 2021). The number of decoder layers is 8 and the latent dimension of the Transformer
tokens is 512. The batch size is configured as 32 for NTU120-AS, InterHuman-AS and 16 for
Chi3D-AS. The interaction loss weight is set to λinter = 1. Each model is trained for 500K steps on
single NVIDIA 4090 GPU within 48 hours. During inference, unless otherwise stated, we employ
5-timestep sampling for all the diffusion-based and our models in our experiments as Xu et al.
(2024) for a fair comparison. For the physical constraint guidance, we set the safe distance ζ = 0.5,
λpene = 2 and w = 0.7 .
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Figure G.1: Human perceptual study results on NTU120-AS.
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Figure G.2: Human perceptual study results on Chi3D-AS.

H DETAILS OF THE METRIC CALCULATIONS

We follow the prior works in human action-reaction synthesis, ReGenNet (Xu et al., 2024) and
MDM (Tevet et al., 2023) to calculate the Frechet Inception Distance(FID) (Heusel et al., 2017), action
recognition accuracy, diversity and multi-modality. For a fair comparison, we use the pre-trained
action recognition model in Xu et al. (2024), which is a slightly modified version of ST-GCN (Yan
et al., 2018). The model takes the 6D rotation representation of the SMPL-X parameters as input
and outputs classification results of action-reaction pairs. We generate 1,000 reaction samples by
sampling actor motions from test sets and evaluate each method 20 times using different random
seeds to calculate the average with the 95% confidence interval.

1) Frechet Inception Distance (FID) (Heusel et al., 2017) measures the similarity in feature space
between predicted and ground-truth motion; 2) Action Recognition Accuracy (Acc.) assesses how
likely a generated motion can be successfully recognized. We adopt the pre-trained ST-GCN model
to classify the generated results; 3) Diversity (Div.) evaluates feature diversity within generated
motions. Given the motion feature vectors of generated motions and real motions as {v1, · · · , vSd

}
and {v′1, · · · , v′Sd

}, the diversity is defined as Diversity = 1
Sd

∑Sd

i=1 ||vi − v′i||2. Sd = 200 in our
experiments. 4) Multi-modality (Multimod.) quantifies the ability to generate multiple different
motions for the same action type. Given a collection of motions containing C action types, for
c-th action, we randomly sample two subsets of size Sl, and then extract the corresponding feature
vectors as {vc,1, · · · , vc,Sl

} and {v′c,1, · · · , v′c,Sl
}, the multimodality is defined as Multimod. =

1
C×Sl

∑C
c=1

∑Sl

i=1 ||vc,i − v′c,i||2. Sl = 20 in our experiments.

Physical Metrics. To qualitatively measure the degree of penetration, we introduced two metrics:

1) Intersection Volume (IV). Penetrate in Yuan et al. (2023); Han et al. (2024) just measures
ground penetration which is not suitable for measuring the degree of penetration between humans.
Interpenetration in Liu et al. (2024) can only be computed as rigid bodies in the physics simulation.
Inspired by Solid Intersection Volume (IV) (Zhou et al., 2022; Liu & Yi, 2024), we measure human-
human inter-penetration by reporting the volume occupied by two human meshes, i.e.

IV =
1

H ·Ntotal

Ntotal∑
i=1

H∑
h=1

V h
pene, (25)

where V h
pene represents intersection volume of frame h and Ntotal denotes the total number of samples.

2) Intersection Frequency (IF). Inspired by Contact Frequency in Li et al. (2024); Siyao et al.
(2024), we introduce IF to measure the frequency of inter-penetration, i.e.

IF = fpene/Ftotal, (26)

where fpene represents the number of inter-penetration frames and Ftotal is the total number of frames.
We generate 260 samples for evaluation.
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Before

After

Figure I.1: Visualization comparison of the effects before and after using physical constraint
guidance. Blue for actors and Green for reactors.

I USER STUDY

We conducted a human perceptual study to investigate the quality of the motions generated by our
model. We invite 20 users to provide four comparisons. For each comparison, we ask the users
“Which of the two motions is more realistic?”, and each user is provided 10 sequences to evaluate.

The results are shown in Fig. G.1 and Fig. G.2. Our results were preferred over the other state-of-the-
art and are even competitive with ground truth motions.

J EXTRA QUALITATIVE RESULTS

We show the generated motions of our method against others in Fig. J.1. We highlight the implausible
motions in rectangle marks, it is clear that our method learns the correct reactions and avoids
human-human inter-penetrations as much as possible.

Failure case. We also show the failure cases of our motion generation pipeline in Fig. J.2. Our
current method’s constraint on physical plausibility only relies on a penetration loss function to
guide the sampling process, which may not be sufficient to capture intricate fine-grained interactions
that require people contact but do not allow penetration. For example, in the case of handshaking,
when two people’s hands penetrate, our guidance method will force their hands to separate to
prevent penetration. In future work, we can refer to some fine-grained loss functions in hand-object
interaction (Tian et al., 2024; Lee et al., 2024) to ensure that two people’s hands contact but do not
penetrate. For some other physical plausibility issues, such as foot-skating, we can also incorporate
these corresponding physical constraints (Zou et al., 2020; Yuan et al., 2023) into our RE-GUID
method to address these issues.

K BROADER IMPACTS

Our model demonstrates significant potential for AR/VR and gaming applications by enabling the
generation of plausible human reactions. Beyond virtual environments, the proposed approach
provides an innovative technical pathway for real-world human-robot interaction, where motion
patterns can be transferred to robotic systems through motion remapping technology. Although this
advancement may inspire future research, we acknowledge potential misuse risks similar to other
generative models, warranting ethical considerations as the technology develops.
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Figure J.1: The extra qualitative experiment. Blue for actors and Green for reactors.

Figure J.2: Failure case of our method.

L USE OF LLMS

During the preparation of this work, we only use large language models to check grammar, proofread
and improve linguistic fluency. All suggestions provided by the LLM have been thoroughly reviewed,
validated, and integrated by the authors. The authors take full responsibility for the originality and
integrity of the content presented in this paper.
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