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Abstract

Recent CLIP-like Vision-Language Models (VLMs), pre-trained on large amounts of image-
text pairs to align both modalities with a simple contrastive objective, have paved the way
to open-vocabulary semantic segmentation. Given an arbitrary set of textual queries, image
pixels are assigned the closest query in feature space. However, this works well when a
user exhaustively lists all possible visual concepts in an image that contrast against each
other for the assignment. This corresponds to the current evaluation setup in the literature,
which relies on having access to a list of in-domain relevant concepts, typically classes of
a benchmark dataset. Here, we consider the more challenging (and realistic) scenario of
segmenting a single concept, given a textual prompt and nothing else. To achieve good results,
besides contrasting with the generic “background” text, we propose two different approaches
to automatically generate, at test time, query-specific textual contrastive concepts. We do
so by leveraging the distribution of text in the VLM’s training set or crafted LLM prompts.
We also propose a metric designed to evaluate this scenario and show the relevance of our
approach on commonly used datasets.

1 Introduction

Vision-language models (VLMs) such as CLIP Radford et al. (2021) are trained to align text and global image
representations. Recently, VLMs have been proposed for denser tasks Zhou et al. (2022); Ghiasi et al. (2022);
Li et al. (2022). This includes the challenging pixel-level task of open-vocabulary semantic segmentation
(OVSS), which consists of segmenting arbitrary visual concepts in images, i.e., visual entities such as objects,
stuff (e.g., grass), or visual phenomena (e.g., sky). To that end, several methods exploit a frozen CLIP model
with additional operations Zhou et al. (2022); Bousselham et al. (2024); Wysoczańska et al. (2024b;a), or
fine-tune the model with specific losses Xu et al. (2022); Ranasinghe et al. (2023); Cha et al. (2023); Luo
et al. (2023); Mukhoti et al. (2023).

Most OVSS methods label each pixel with the most probable prompt (or query) among a finite set of prompts
provided as input, contrasting concepts with each other. This works well for benchmarks that provide a large
and nearly exhaustive list of things that can be found in the dataset images, such as ADE20K Zhou et al.
(2019) or COCO-Stuff Caesar et al. (2018). However, when given a limited list of queries, these methods
are bound to occasionally suffer from hallucinations Wysoczańska et al. (2024b); Miller et al. (2024). In
particular, common setups do not handle cases where only a single concept is queried Cha et al. (2023); Xu
et al. (2022), which results in classifying all pixels using the same concept.
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Figure 1: Illustration of our proposed open-world scenario and benefits of contrastive concepts
(CC). We investigate open-world segmentation, where only one (or a few) visual concepts are to be segmented
(2nd column), while all concepts that can occur in an image are unknown. Contrasting the query with
“background” allows us to obtain a coarse segmentation Ranasinghe et al. (2023); Wysoczańska et al. (2024b)
(3rd column), but is not enough to catch all pixels not corresponding to the query when they are related or
co-occur frequently in the VLM training set. Our automatically-generated contrastive concepts (CC) (4th

column) help to separate and disentangle pixels of the query (right column, generated CC in text boxes),
therefore achieving better segmentation.

To catch such hallucinations, a common strategy consists of using an extra class labeled ‘background’, intended
to capture pixels that do not correspond to any visual concept being queried. This extra class is already in
object-centric datasets, such as Pascal VOC Everingham et al. (2012). It provides an easy, generic concept to
be used as a negative query, i.e., to be used to contrast with actual (positive) queries but to be discarded
from the final segmentation. However, the notion of background is not well defined as it is context-dependent,
therefore providing suboptimal contrasts. This strategy also fails when a queried concept (e.g., “tree”) falls
in the learned background (which commonly encompasses trees).

In this work, we consider a practical and realistic OVSS task in which only one or a few arbitrary concepts are
to be segmented, leaving out the remaining pixels without prior knowledge of other concepts that may occur
in an image. We name this setup open-world 1. Given a query, instead of assuming access to a dataset-specific
set of classes (a closed-world setup), we propose to automatically suggest contrastive concepts useful to
better localize the queried concept, although they can later be ignored. In particular, we focus on predicting
concepts likely to co-occur with the queried concept, e.g., “water” for the query “boat” (as visible in Fig. 1),
thus leading to better segment boundaries when prompted together.

Moreover, we argue that this scenario needs to be evaluated to understand the limitations of open-vocabulary
segmentation methods better. We therefore propose a new metric to measure such an ability, namely
IoU-single, which considers one query prompt at a time and thus does not rely on the knowledge of potential
domain classes.

1We distinguish our setup from open-world/ open-set setting known from literature Wu et al. (2024), where a segmentation
model identifies novel classes and marks them as “unknown”. Here, we consider the task of open-world open-vocabulary
segmentation, thus considering only OVSS models, where the goal is to segment queried concepts unknown at test time and leave
the remaining pixels in an image with no class. For the full name of our setup, we thus consider open-world open-vocabulary
segmentation but keep open-world throughout the rest of the work for brevity.
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To summarize, our contributions are as follows:
• We introduce the notion of test-time contrastive concepts and discuss the importance of contrastive

concepts in open-vocabulary semantic segmentation.
• We analyze the usage of “background” as a test-time contrastive concept, which has been accepted

but not discussed so far.
• We propose a new single-query evaluation setup for open-world semantic segmentation that does

not rely on domain knowledge. We also propose a new metric to evaluate the grounding of visual
concepts.

• We propose two different methods to generate test-time contrastive concepts automatically and
show that our approaches consistently improve the results of 7 different popular OVSS methods or
backbones.

2 Related work
Open-vocabulary semantic segmentation. VLMs trained on web-collected data to produce aligned
image-text representations Radford et al. (2021); Jia et al. (2021); Zhai et al. (2023) had a major impact
on open-vocabulary perception tasks and opened up new avenues for research and practical applications.
While CLIP can be used off-the-shelf for image classification in different settings, it does not produce dense
pixel-level features and predictions, due to its final global attentive-pooling Zhou et al. (2022); Jatavallabhula
et al. (2023). To mitigate this and produce dense image-text features, several methods fine-tune CLIP
with dense supervision Cho et al. (2024); Xu et al. (2023b;c); Zheng Ding (2023); Wu et al. (2023). Other
approaches devise new CLIP-like models trained from scratch using a pooling compatible with segmentation.
Their supervision comes from large datasets annotated with coarse captions Ghiasi et al. (2022); Ranasinghe
et al. (2023); Liang et al. (2023); Xu et al. (2022); Liu et al. (2022); Xu et al. (2023a); Mukhoti et al. (2023);
Cha et al. (2023), object masks Rao et al. (2022); Ghiasi et al. (2022); Ding et al. (2022) or pixel labels
Li et al. (2022); Liang et al. (2023). However, when models are fine-tuned, they face feature degradation
Jatavallabhula et al. (2023), or require long training cycles on large amounts of images when trained from
scratch.

CLIP densification methods have emerged as a low-cost alternative to produce pixel-level image-text features
while keeping CLIP frozen Zhou et al. (2022); Wysoczańska et al. (2024a); Jatavallabhula et al. (2023);
Abdelreheem et al. (2023); Wysoczańska et al. (2024b); Bousselham et al. (2024). The seminal MaskCLIP
Zhou et al. (2022) mimics the global pooling layer of CLIP with a 1× 1 conv layer. The aggregation of features
from multiple views and crops Abdelreheem et al. (2023); Kerr et al. (2023); Wysoczańska et al. (2024a);
Jatavallabhula et al. (2023) also leads to dense features, yet with the additional cost of multiple forward
passes. Some methods Shin et al. (2022; 2023); Karazija et al. (2023) rely on codebooks of visual prototypes
per concept, including per-dataset negative prototypes Karazija et al. (2023), or leverage self-self-attention
to create groups of similar tokens Bousselham et al. (2024). The recent CLIP-DINOiser Wysoczańska et al.
(2024b) improves MaskCLIP features with limited computational overhead thanks to a guided pooling strategy
that leverages the correlation information from DINO features Caron et al. (2021).

Prompt augmentation. Prompt engineering is a common practice for adapting Large Language Models
(LLMs) to different language tasks Kojima et al. (2022) without updating parameters. This strategy of
carefully selecting task-specific prompts also improves the performance of VLMs. For instance, in the original
CLIP work Radford et al. (2021), dataset-specific prompt templates, e.g., “a photo of the nice {· · ·}” were
devised towards improving zero-shot prediction performance. Although effective, manual prompting can
be a laborious task, as templates must be adapted per dataset and sufficiently general to apply to all
classes. Afterwards, different automated strategies were subsequently explored, e.g., scoring and ensembling
predictions from multiple prompts Allingham et al. (2023). Prompts can also be augmented by exploiting
semantic relations between concepts defined in WordNet Fellbaum (1998) to generate new coarse/fine-grained
Ge et al. (2023) or synonym Lin et al. (2023) prompts. LLMs can be used as a knowledge base to produce
rich visual descriptions adapted for each class starting from simple class names Pratt et al. (2023); Menon &
Vondrick (2023). Prompt features can be learned by considering visual co-occurrences Gupta et al. (2019), a
connection between training and test distributions Xiao et al. (2024), mining important features for the VLM
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Esfandiarpoor et al. (2024) or by test-time tuning on a sample Shu et al. (2022). Most of these strategies
have been designed and evaluated for the image classification task, and their generalization and scalability
for semantic segmentation are not always trivial. Here, we aim to obtain better prompts for semantic
segmentation to separate queried object pixels from their background. We do this automatically without
supervision and without changing the parameters of either the text encoder or the image encoder, leveraging
statistics from VLM training data or LLM-based knowledge.

Dealing with contrastive concepts in OVSS. Our contrastive concept discovery is tightly related to
background handling in the context of open-vocabulary semantic segmentation, since the standard benchmark
datasets for this task, originally designed for supervised learning, use background to describe unlabeled pixels,
for example, to cover concepts outside of the dataset vocabulary. There are three main types of approaches
to address this problem. The first one is to threshold uncertain predictions Cha et al. (2023); Bousselham
et al. (2024); Xu et al. (2022) with a given probability value Xu et al. (2022); Bousselham et al. (2024) or clip
similarities Cha et al. (2023). The second group of methods leverages the object-centric nature of certain
datasets by defining background through visual saliency Wysoczańska et al. (2024a;b). Finally, a significant
body of work addresses the same issue by defining dataset-level concepts either by adding handcrafted names
of concepts to the background definition Lin et al. (2024); Yu et al. (2023); Ranasinghe et al. (2023); Cho
et al. (2024) or by extracting visual negative prototypes with a large diffusion model Karazija et al. (2023). In
contrast, in this work, we aim for automatic discovery of contrastive concepts without prior access to the
vocabulary used to annotate the dataset.

Visual grounding is the task of localizing within images specific objects from text descriptions. The major
instances of visual grounding tasks are referring segmentation that produce pixel-level predictions for one
Hu et al. (2016); Ding et al. (2023); Wang et al. (2022) or multiple target objects Liu et al. (2023) given a
text description, and referring expression comprehension Chen et al. (2018); Deng et al. (2021); Liao et al.
(2020); Liu et al. (2024) that detects objects. Similarly to referring segmentation, we aim to segment specific
user-defined objects. In contrast, we do not use supervision to align textual descriptions with object masks
and do not focus on text-described relations between objects and mine contrastive concepts to disentangle
target objects from the background.

3 Open-world open-vocabulary segmentation with test-time contrastive concepts

We consider the following segmentation task: given an image and a set of textual queries characterizing
different visual concepts, the goal is to label all pixels in the image corresponding to each concept, leaving
out unrelated pixels, if any. Moreover, we want to do so without any prior knowledge of the concepts that
could be prompted at the test time. We do not only want to be open-vocabulary in terms of the choice of
words for querying, but we also want to be open-world, not specialized in a given domain or set of categories.
For evaluation purposes, segmenting a specific dataset thus shall not assume anything about the dataset,
such as knowledge of represented classes.

3.1 Introducing the use of test-time contrastive concepts

Closed-world vs open-world open-vocabulary semantic segmentation. Even when it is open-
vocabulary, traditional semantic segmentation is closed-world in the following sense. Given an RGB image
I∈RH×W ×3 and a set of textual queries q ∈Q, semantic segmentation produces a map Sclosew : {1...H} ×
{1...W} 7→ Q, where each image pixel has to be assigned one of the queries as a label. In contrast, open-world
segmentation considers an additional dummy label ‘⊥’ to represent any visual concept that is different from
the queries. The segmentation map, in this case, is then Sopenw : {1...H}×{1...W} 7→ Q∪{⊥} . For instance,
to label a boat, it is enough to ask for the “boat” segment; other pixels (sky, sea, sand, rocks, trees, swimmers,
etc.) are expected to be labeled ⊥ and thus ignored.

In the following, we show how to use any open-vocabulary segmenter in an open-world fashion. We only assume
that the segmenter uses a CLIP-like architecture with a text encoder, noted ϕT(·), used to extract textual
features ϕT(q)∈Rd for any query q, where d is the feature dimension. Patch-level features ϕV(I) ∈ Rh×w×d

4



Published in Transactions on Machine Learning Research (05/2025)

are generated using the visual encoder, noted ϕV(·), where h = H/P , w = W/P , and P is the patch size. The
cosine similarities between each query feature and a patch feature are then used as logits when upsampling to
obtain pixel-level predictions. It yields a closed-world segmentation, given our definition above.

From such segmentation, open-world segmentation could be derived by assigning a pixel (or patch) to a query
if the cosine similarity between the visual and query embedding is above a given threshold. However, in
practice, it has been commonly observed that the CLIP space is not easily separable Miller et al. (2024), thus
making the definition of such a threshold difficult without overfitting the query or datasets Bousselham et al.
(2024); Cha et al. (2023). We further discuss the separability of CLIP patch features in Appendix C.3.

Train-time contrastive concepts. Cues to separate visual concepts without supervision primarily come
from data where these concepts occur separately and are described in their captions. If some concepts always
co-occur, they are harder to be told apart. This applies in particular to OVSS models trained only from
captioned images rather than from dense information. Sharing a caption pushes their embedding to align on
a common textual feature, which in turn tends to bring the visual embeddings closer together. Still, such
frequently co-occurring visual concepts can often be separated in a closed-world setting: pixels (or patches)
are then just mapped to the query with which they align the most. However, a problem arises if a visual
concept of a query q can be mistaken for another visual concept present in the image but not queried (e.g.,
querying “boat” but not “water” as in Fig. 1).

Test-time contrastive concepts. To address this problem, we propose to use one or more additional
textual queries of visual concepts that are likely to contrast well with q. For example, when querying “boat”,
we want to add the query “water”. We name such queries test-time contrastive concepts and note them CCq.
We further propose different solutions to automatically generate CCq, and such without assuming prior access
to the image domain. Given prompt queries {q} ∪ CCq, we perform closed-world segmentation and assign to
the dummy label ⊥ any patches that are labeled CCq.

Multi-query segmentation. This principle can be generalized to several simultaneous queries Q, with
|Q|> 1, considering the union of their contrastive concepts CCQ =

⋃
q∈Q CCq. Open-world multi-query

segmentation consists in segmenting Q ∪ CCQ, and ignoring pixels not assigned to the queries in Q, as
in the single-query case. However, some queries in Q may already contrast with each other, which puts
them in competition with the set of contrastive concepts CCQ and could lead to their elimination when
pixels labeled in CCQ are discarded. To prevent it, we propose to exclude contrastive concepts CCQ

that are too similar to queries Q, e.g., with a cosine similarity of text features above some threshold
β: CCQ =

⋃
q∈Q{q′ ∈ CCq | ϕT(q′) · ϕT(q) ≤ β}. In the following, for simplicity, we only consider the

single-query scenario, where |Q|= 1.

Moreover, to our knowledge, none of the evaluation benchmarks currently used for OVSS allows us to measure
the effectiveness of such CC. We therefore propose a variant of the traditional evaluation metric for semantic
segmentation and discuss it in detail in Sec. 4.1.

3.2 Contrasting with “background” (CCBG)

In recent work Ranasinghe et al. (2023); Wysoczańska et al. (2024a;b), the word “background” has been used
to try to capture a generic visual concept to help segment foreground objects, separating them from their
background. In our framework, it amounts to defining “background” as a test-time contrastive concept to
any query q. In other words, it defines CCBG

q = {“background”}.

However, if the word “background” feels natural to us, it is not obvious why it should also make sense in
the CLIP space. This formulation is not contextual, meaning that the contrastive concept is not specific to
the query, which might be suboptimal. Worse, the “background” samples from which CLIP learned could
accidentally include the visual concept of the query, making the query representation close to the background
representation and defeating the contrast mechanism.

We investigate the occurrence of “background” in VLM training data to sort it out. First, we use the metadata
provided by Udandarao et al. (2024), which describes the representation of four thousand common concepts in
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LAION-400M Schuhmann et al. (2021), which is a subset of the web-crawled LAION-2B dataset Schuhmann
et al. (2022) used to train CLIP. In Fig. 2a, we plot the frequency of occurrence of “background” among
other VOC class names. We observe that “background” is significantly more frequent than all other words,
hinting that it is widely available in CLIP training data and in general web-crawled data.

0 0.3 0.6 0.9
·10−2

background
bicycle

bird
boat

car
chair
horse

person
sofa

(a) Freq. of VOC concepts. (b) “background” in caption (c) “in the background” in caption

Figure 2: Statistics about “background” in metadata of web-crawled datasets. (a) Frequency of
some of the concepts from VOC dataset in LAION-400M caption samples. Examples of images in web-crawled
data with a caption including the words “background” (b) or “in the background” (c).

Fig. 2b shows images sampled from the LAION dataset with a caption containing “background”. We observe
that they display a high diversity in colors and textures. Images captioned with “in the background” (Fig. 2c)
appear more photo-oriented. We believe that the combination of a high frequency of the “background” word
in the dataset and the diversity of associated images make it a good generic contrastive concept and hence
make CCBG a baseline. However, superior results have been obtained by applying well-designed tricks to
handle the background Wysoczańska et al. (2024a;b); Cha et al. (2023); Bousselham et al. (2024), emphasizing
the necessity of applying something more than simply “background”.

An option is to define a generic background class list, as done by CLIPpy Ranasinghe et al. (2023) or
CAT-Seg Cho et al. (2024), which adds to the concept “background” a fixed list of concepts potentially
appearing in the background, e.g. “sky”, “forest”, “building”, to be discarded. First, since these visual
concepts are intended to be discarded, it would not be possible to query them. Second, such a list is defined
at the dataset level, making it domain-specific. As it is impossible to exhaustively describe all visual concepts
appearing in any “background” (without prior knowledge of the domain or dataset), we propose generating
such complements specifically per query, as discussed below.

3.3 Automatic contrastive concepts (CC) generation

To generate contrastive concepts that are query-specific but also domain-agnostic, the only data we can then
leverage are (i) the VLM’s training data, or (ii) unspecific external data. As we focus on text-based contrasts,
we can (i) exploit the large vocabulary of concepts used for VLM training or (ii) generate prompts via an
LLM. Finally, as we want good contrasts, we must find hard negatives. These are concepts that surround
queries in images. To gather them, we can (i) look for word co-occurrences in training data or (ii) ask an
LLM to list such concepts. Sec. 3.3.1 investigates option (i), and Sec. 3.3.2, option (ii) and Fig. 3 presents a
high-level overview of both approaches.

3.3.1 Mining co-occurrence-based contrastive concepts (CCD)

As discussed above, ambiguity in segmentation for unsupervised approaches arises from co-occurrences in
training data. Yet, OVSS does better when prompted to create segments simultaneously for co-occurring
concepts. To list contrastive concepts specific to a given query q, we propose thus to use the information of
co-occurrence in the VLM training captions. For efficiency, we construct offline a co-occurrence dictionary,
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Figure 3: Overview of our method. We propose two solutions to generate CC automatically, the first
one (top-left) based on LLM prompting (CCL) and the second one, CCD, that relies on the distribution of
co-occurring concepts in a pre-training dataset of a VLM (bottom-left). Both methods can be effectively
integrated into various open-vocabulary segmentation methods.

built for a large lexicon of textual concepts extracted from the captions. We note CCD
q the co-occurrence-based

contrastive concepts we extract for a query q based on this lexicon.

Co-occurrence extraction. We consider as lexicon a set of textual concepts T extracted from captions of
the VLM training dataset and construct the co-occurrence matrix X ∈ N|T |×|T |. Concretely, two concepts
{i, j} ⊂ T co-occur if they appear simultaneously in the caption of an image. Xi,j counts the number of
times concepts {i, j} co-occur in some images. Next, we normalize the symmetric matrix X row-wise by the
number of occurrences of concept i in the dataset, producing the frequency matrix X̂. We then consider only
concepts with frequent co-occurrences: for each i ∈ T , we select concepts Ti = {j ∈ T | X̂i,j > γ}, for some
frequency threshold γ . Selecting only a few contrastive concepts in this way is also consistent with the fact
that we target online segmentation: we need to be mindful of computational costs.

Concept filtering. To improve the quality of selected contrastive concepts Ti, we design a simple filtering
pipeline. For each target concept i ∈ T (which can be considered a future query), we remove from Ti any
concept that might interfere with i and induce false negatives. First, we discard uninformative words in
captions: {“image”, “photo”, “picture”, “view”}. Then, we remove abstract concepts, such as “liberty”. To do
so, we ask an LLM whether a given word can be visible or not in an image (more details in Appendix D.2).
We also filter out concepts that are too semantically similar to target concept i, e.g., such that their cosine
similarity with ϕT(i) is more than a threshold δ. We also consider an alternative approach to filtering, which
uses the structured ontology WordNet Fellbaum (1998) to remove the CCs that possibly interfere with q.
However, our experiments, which are discussed in Appendix C.5, show that our proposed filtering mechanisms
based on dataset statistics are more effective.

Generalization to arbitrary concepts. So far, we discussed how to select contrastive concepts CCD
i for

a target concept i ∈ T . Now, when we are given an arbitrary textual query q, to make the generation of
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contrastive concepts truly open-vocabulary, we first find in the CLIP space the nearest neighbor i of q in T
and then use for q the contrastive concepts of i: CCD

q = CCD
i .

3.3.2 Prompting an LLM to generate contrastive concepts (CCL)

Instead of extracting contrastive concepts from the VLM training set, here we investigate another strategy,
generating them using an LLM. For a given text query q, we ask an LLM to directly generate contrastive
concepts CCL

q , without the need for subsequent filtering. To that end, we design a prompt that excludes
potential synonyms, meronyms (e.g., “wing” for “plane”), or possible contents (e.g., “wine” for “bottle”). We
present a shorter version of the prompt in Fig. 4 and include the complete version in Appendix D.2.

You are a helpful AI assistant with visual abilities. Given an input object O, I want you to generate a list of words 
related to objects that can be surrounding input object O in an image to help me perform semantic segmentation.

Figure 4: An abbreviated version of the prompt we use to generate CCL.

Using an LLM has the benefit of producing specific contrastive concepts CCq for any target query q, without
returning to a fixed and practically limited lexicon.

4 Evaluation

4.1 Evaluating open-world segmentation

We discuss here our evaluation protocols and present our new metric IoU-single specifically designed to
evaluate open-world segmentation.

Evaluation datasets. We conduct our experiments on six datasets widely used for the task of zero-shot
semantic segmentation Cha et al. (2023), fully-annotated COCO-Stuff Caesar et al. (2018), Cityscapes Cordts
et al. (2016) and ADE20K Zhou et al. (2019) and object-centric VOC Everingham et al. (2012), COCO-Object
Caesar et al. (2018) and Context Mottaghi et al. (2014), when considering “background” pixels. We treat the
input images following the protocol of Cha et al. (2023), which we detail in Appendix A.

Our IoU-single metric. To better evaluate the ability of a method to localize a visual concept when
given no other information, we propose the IoU-single metric. It modifies the classic IoU by considering each
concept independently and then averaging. Concretely, we individually segment each class annotated in the
dataset for the considered image, thus with |Q|= 1. The IoU-single is then the average of each IoU with the
corresponding ground-truth class segment. We illustrate this metric in Fig. 5, and provide its pseudo-code
in Appendix A.3. If a dataset contains a background class, we do not consider it in the mIoU calculation.

Classic mIoU evaluation. We also evaluate the impact of using our CC in the classic mIoU scenario on
the datasets that consider “background” as a class, i.e., VOC and COCO-Object. We prompt at once all
dataset classes together with their CCs, using our multiple-query strategy discussed in 3.1. We then assign
pixels that fall into any of the CCs to “background”, ensuring that none of the concepts competes with the
dataset queries. It allows us to verify if our CCs can act as background without hurting the performance on
foreground classes.

4.2 Evaluated methods

Test-time contrastive concepts. For CCD generation, we use the statistics gathered by Udandarao et al.
(2024) for four thousand common concepts in the LAION-400M dataset, which is a subset of LAION-2B
Schuhmann et al. (2022) and which is used to train CLIP Radford et al. (2021). We filter contrastive concepts
using a low co-occurrence threshold γ = 0.01 and a high CLIP similarity threshold δ = 0.8. In the classic mIoU
scenario, we use a threshold β = 0.9 to account for possible similarities between one query and contrastive
concepts close to the other queries. We discuss the selection of these values in Appendix C.1. To generate CCL,
we use the recent Mixtral-8x7B-Instruct model Jiang et al. (2024). More details about the setup can be found
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Figure 5: Illustration of IoU-single metric. We show the difference with the standard mIoU metric
(dataset-driven mIoU), where all the concepts present on an image are considered at once. On the contrary,
our IoU-single considers each of the present concepts separately to measure the single-class segmentation
ability of open-vocabulary semantic segmenters.

in Appendix D.1 alongside our designed prompts in Appendix D.2. In our experiments, unless stated otherwise,
we include “background” in all CC’s: CCD ← {“background”} ∪ CCD and CCL ← {“background”} ∪ CCL.

Baselines. To evaluate the impact of using contrastive concepts, we experiment on 6 popular or state-of-
the-art methods, one of which (MaskCLIP) uses 3 different backbones, thus resulting in 8 different segmenters,
which we believe represent the current OVSS landscape. Concretely, we study two training-free methods
that directly exploit the CLIP backbone, namely MaskCLIP Zhou et al. (2022) and GEM Bousselham et al.
(2024), where MaskCLIP may exploit different OpenCLIP backbones Ilharco et al. (2021) pre-trained either
on LAION Schuhmann et al. (2022), MetaCLIP Xu et al. (2024), or by default on the original OpenAI
training data Radford et al. (2021). We also include TCL Cha et al. (2023), CLIP-DINOiser Wysoczańska
et al. (2024b) and supervised methods: CAT-Seg Cho et al. (2024) and SAN Xu et al. (2023b). Details on the
evaluation protocol, including background handling strategies, can be found in Appendix A. All compared
methods use CLIP ViT-B/16.

4.3 Contrastive concepts generation results

We first present in Tab. 1 results obtained with our IoU-single metric on 3 datasets, namely ADE20K,
Cityscapes and VOC. We compare results when using different CC’s proposed in this work. We also include
results when having access to privileged information (CCP I), i.e., the list of concepts present in images as
given by the evaluation dataset. More results can be found in Appendix Tab. 5.

“Background” is not enough. We start by analyzing the overall impact of our proposed CCs. In all cases,
we observe a significant improvement when using contrastive concepts CCD and CCL compared to the CCBG.
Even for object-centric VOC where CCBGalready provides a strong baseline, our proposed CC generation
methods bring significant gains ranging from 0.7 to 16.7 points. Interestingly, test-time CCs also work well for
supervised CAT-Seg, showing that our method is beneficial for open-vocabulary segmenters with all levels of
supervision.
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CLIP VOC Cityscapes ADE20k
Method training data CCBG CCL CCD CCBG CCL CCD CCP I CCBG CCL CCD CCP I

MaskCLIP OpenAI 44.2 52.2 53.4 15.0 22.5 22.0 30.6 20.2 23.5 25.2 29.8
DINOiser LAION-2B 59.3 63.1 64.7 23.2 30.6 27.3 36.0 28.9 29.7 31.6 35.5
TCL TCL’s 52.9* 52.6* 53.6* 9.8 26.3 22.0 29.7 14.9* 25.9 26.5 32.6
GEM MetaCLIP 48.6* 61.3* 64.6* 14.5* 21.5 14.6 20.6 21.5* 26.3 29.1 33.0
SAN OpenAI 50.2 73.4 69.5 19.9 37.6 32.0 44.2 24.5 35.2 35.1 42.8
CAT-Seg OpenAI 52.8 69.5 67.7 – – – – 25.7 38.4 39.7 46.8

Table 1: Benefits of CC measured in IoU-single. ‘*’ indicates that the method’s original background
handling is applied, if any, and provided it gives the best results. Note that CAT-Seg input resolution is
640x640, whereas it is 448x448 for all the other methods. We note CCP I the unrealistic setup where we have
access to all of the dataset classes and use them as systematic contrastive concepts (except for VOC, as its
annotations do not cover all pixels). Please note that CCBG is our baseline.

CCL generalize better to domain-specific datasets. For both VOC and ADE20K, the co-occurrence-
based CCD outperforms most of the time the LLM-based CCL, with a margin ranging from 0.6 to 2.8 points.
However, this trend does not hold for Cityscapes, where CCL gives the best results for all methods. In
particular, Cityscapes is a dataset of urban driving scenes that contains images depicting a few recurring
concepts. This may suggest that LLMs can produce better results than CCD for such domain-specific
tasks. We also note that CCL generally produces fewer CCs, but we do not observe a correlation between
segmentation performance and |CC |, as shown in Appendix C.2.

Test-time concepts are different from train-time concepts. We also observe that CCP Iresults overall
do not exceed 50% mIoU. The segmentation quality might thus be limited by the VLM capacity or by a
mismatch between the dataset classes and the training data. Well-designed prompt engineering could help
address this issue Roth et al. (2023) and improve segmentation results.

Method Bkg. Object VOC

MaskCLIP
CCBG 17.8 35.1
CCL 25.9 46.2
CCD 25.1 46.4

GEM
threshold 27.4 46.6
CCL 35.7 60.0
CCD 35.5 60.5

Table 2: mIoU results.

Classic mIoU evaluation. Additionally, in Tab. 2, we present results with
the standard mIoU for MaskCLIP (with LAION-2B backbone) and GEM. We
report results with various contrastive concepts (CC) and the original background
handling strategy when applicable. We observe that in all cases, the results
with CCD and CCL are better than baseline CCBG. We also notice that for GEM
the results are better than when applying the background handling strategy
originally proposed in Bousselham et al. (2024). This shows that integrating
our contrastive concepts does not hurt or can even improve performance in the
classic mIoU setup. We provide more results in Tab. 4 in Appendix.

4.4 Ablation studies

CCD concept filtering. In Tab. 3a, we analyze the impact of the different filtering steps discussed
in Sec. 3.3.1 on the challenging ADE20K dataset. We observe that each step boosts results by removing noisy
or detrimental concepts. The largest gain is obtained when filtering highly similar (‘sem. sim.’) concepts.
We also note that the improvement is consistent for all methods. We report the performance without the
co-occurrence thresholding (w/o ‘co-occ.’) and observe a significant degradation. More experiments in
Appendix C.5 suggest that ontology-based filtering (e.g., using WordNet) does not help and can even be
harmful.

Adding “background” to CCL. In Tab. 3b, we study the influence of adding the word “background” to
the set of contrastive concepts CCL generated with the LLM. We observe that it is always beneficial, in most
cases with little gain, except on ADE20k where the gain is up to 2.2 IoU-single pts.
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co- no sem. Mask TCL DINO
occ. abs. sim. CLIP iser
✓ 20.2 22.4 23.9
✓ ✓ 20.9 23.2 25.5

✓ ✓ 18.4 20.0 26.3
✓ ✓ ✓ 25.2 26.0 31.6

(a) Impact of filtering in CCD on
ADE20K (%IoU-single).

Cityscapes ADE20k
Method w/o w/ w/o w/
MaskCLIP 22.3 22.5 22.5 23.5
DINOiser 30.3 30.6 27.5 29.7
TCL 26.0 26.2 25.4 26.3
GEM 21.3 21.4 25.7 26.1

(b) Adding “background” or not
to our LLM-based CCL.

MaskCLIP VOC
w/ CLIP
training set CCBG CCL CCD

LAION-2B 47.9 51.8 53.8
OpenAI 44.2 52.2 53.4
MetaCLIP 46.8 50.6 50.0

(c) Impact of pre-training dataset
on VOC (%IoU-single).

Table 3: Ablation studies. (a) The impact of filtering steps: ‘co-occ.’ is the co-occurrence-based filtering;
‘no abs.’ is the removal of abstract concepts; ‘sem. sim.’ is the semantic-similarity filtering. (b) Relevance of
adding “background” to CCL. (c) Varying the pre-training dataset.

Impact of the pre-training dataset. Tab. 3c shows the results of MaskCLIP with different datasets used
to train CLIP. We observe that using CCD always gives a boost over using “background” alone (CCBG) across
all pre-training datasets, including on the highly-curated MetaCLIP. However, we notice that for MetaCLIP,
CCL gives even better results, suggesting that leveraging LLMs can also be more profitable with backbones
pre-trained on carefully curated datasets.

4.5 Qualitative results

In Fig. 6, we present qualitative examples when using different contrastive concepts proposed in this work.
We compare CCL and CCD with ground truth (GT) and baseline CCBG. For both CCL and CCD, we present
the output segmentation mask for the queried concept together with its contrastive concepts (noted all) as
well as the single queried concept (noted single), where CCs are discarded. We observe that the output masks
produced by our methods are more accurate, removing the noise from related concepts, e.g. “tree” for the
bird or “sofa” for the “bed”.

GT CCBG CCD (single) CCD (all) CCL (single) CCL (all)

be
d

ce
il

in
g

bi
rd

ae
ro

pl
an

e

Figure 6: Qualitative results. We show segmentation examples from ADE20K (1st and 2nd row) and
Context (3rd and 4th row), with segments produced by CLIP-DINOiser. For CCD and CCL, we additionally
show the joint segmentation of all contrastive classes (all).
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MaskCLIP CLIP-DINOiser
CCD (single) CCD (all) CCD (single) CCD (all)

q: muffin → i ∈ T : pastry

q: cavalier → i ∈ T : dog

Figure 7: In the wild examples. We visualize results for MaskCLIP and CLIP-DINOiser for query concepts
beyond T . The closest neighbor to a query is presented below each example (grey row).

Generalization to arbitrary concepts. Fig. 7 presents results when prompting queries that are not
included in the subset of concepts T extracted from the VLM training dataset, such as “muffin” or “cavalier”
(a dog breed). We show the closest neighbor for the query q below each example and visualize masks for
both MaskCLIP and CLIP-DINOiser. We observe that the CCD generation method leveraging statistics
from pre-training datasets is also robust to examples outside of the co-occurrence dictionary by accurately
mapping q to its closest concept in T , e.g., mapping “cavalier” to “dog”.

5 Conclusion

In this work, we identify limitations of the current evaluation setup for open-vocabulary semantic segmentation
tasks, which are inherited from close-world evaluation benchmarks. To bridge the gap between closed- and
open-world setups, we propose the single-class segmentation scenario. We study the limitations of current
state-of-the-art models when we assume no prior access to in-domain classes and propose to automatically
discover contrastive concepts CC that are useful to better localize any queried concept. To do so, we propose
two methods leveraging either the distribution of co-occurrences in the VLM’s training set or an LLM to
generate such CC. Our results show the generalizability of our proposed method across several setups.

Broader Impact Statement. In this work, we leverage statistics extracted from the training set of
CLIP. While Vision-Language Models offer powerful capabilities for visual understanding, their reliance on
large-scale internet-scraped datasets introduces significant risks and ethical concerns. These models can
perpetuate and amplify societal biases present in their training data. Researchers and practitioners must,
therefore, carefully consider these ethical implications when developing and deploying VLM-based systems,
implementing mitigation strategies, and being transparent about the limitations and potential risks of their
applications.

Acknowledgments

This work was supported by the National Centre of Science (Poland) Grant No. 2022/45/B/ST6/02817 and
by the grant from NVIDIA providing one RTX A5000 24GB used for this project. We would also like to
thank the authors of Udandarao et al. (2024) for sharing their metadata.

12



Published in Transactions on Machine Learning Research (05/2025)

References
Ahmed Abdelreheem, Ivan Skorokhodov, Maks Ovsjanikov, and Peter Wonka. SATR: Zero-shot semantic

segmentation of 3D shapes. In ICCV, 2023.

James Urquhart Allingham, Jie Ren, Michael W Dusenberry, Xiuye Gu, Yin Cui, Dustin Tran, Jeremiah Zhe
Liu, and Balaji Lakshminarayanan. A simple zero-shot prompt weighting technique to improve prompt
ensembling in text-image models. In ICML, 2023.

Walid Bousselham, Felix Petersen, Vittorio Ferrari, and Hilde Kuehne. Grounding everything: Emerging
localization properties in vision-language transformers. In CVPR, 2024.

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. COCO-Stuff: Thing and stuff classes in context. In
CVPR, 2018.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.

Junbum Cha, Jonghwan Mun, and Byungseok Roh. Learning to generate text-grounded mask for open-world
semantic segmentation from only image-text pairs. In CVPR, 2023.

Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing web-scale
image-text pre-training to recognize long-tail visual concepts. In CVPR, 2021.

Xinpeng Chen, Lin Ma, Jingyuan Chen, Zequn Jie, Wei Liu, and Jiebo Luo. Real-time referring expression
comprehension by single-stage grounding network. arXiv preprint arXiv:1812.03426, 2018.

Seokju Cho, Heeseong Shin, Sunghwan Hong, Anurag Arnab, Paul Hongsuck Seo, and Seungryong Kim.
CAT-Seg: Cost aggregation for open-vocabulary semantic segmentation. In CVPR, 2024.

MMSegmentation Contributors. MMSegmentation: OpenMMLab semantic segmentation toolbox and
benchmark, 2020.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The Cityscapes dataset for semantic urban scene understanding.
In CVPR, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR, 2009.

Jiajun Deng, Zhengyuan Yang, Tianlang Chen, Wengang Zhou, and Houqiang Li. TransVG: End-to-end
visual grounding with transformers. In ICCV, 2021.

Karan Desai, Gaurav Kaul, Zubin Aysola, and Justin Johnson. RedCaps: Web-curated image-text data
created by the people, for the people. In NeurIPS Datasets and Benchmarks, 2021.

Henghui Ding, Chang Liu, Suchen Wang, and Xudong Jiang. VLT: Vision-language transformer and query
generation for referring segmentation. TPAMI, 2023.

Jian Ding, Nan Xue, Gui-Song Xia, and Dengxin Dai. Decoupling zero-shot semantic segmentation. In
CVPR, 2022.

Reza Esfandiarpoor, Cristina Menghini, and Stephen H Bach. If CLIP could talk: Understanding vision-
language model representations through their preferred concept descriptions. In EMNLP, 2024.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object
Classes Challenge 2012 (VOC2012) Results, 2012.

Christiane Fellbaum. WordNet: An electronic lexical database. MIT press, 1998.

13



Published in Transactions on Machine Learning Research (05/2025)

Yunhao Ge, Jie Ren, Andrew Gallagher, Yuxiao Wang, Ming-Hsuan Yang, Hartwig Adam, Laurent Itti, Balaji
Lakshminarayanan, and Jiaping Zhao. Improving zero-shot generalization and robustness of multi-modal
models. In CVPR, 2023.

Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin. Scaling open-vocabulary image segmentation with
image-level labels. In ECCV, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Tanmay Gupta, Alexander Schwing, and Derek Hoiem. ViCo: Word embeddings from visual co-occurrences.
In ICCV, 2019.

Ronghang Hu, Marcus Rohrbach, and Trevor Darrell. Segmentation from natural language expressions. In
ECCV, 2016.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori, Achal
Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali Farhadi, and Ludwig
Schmidt. OpenCLIP, July 2021.

Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang Li,
Ganesh Iyer, Soroush Saryazdi, Nikhil Keetha, Ayush Tewari, et al. ConceptFusion: Open-set multimodal
3D mapping. In RSS, 2023.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. In ICML, 2021.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de Las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel,
Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre
Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts. arXiv preprint
arXiv:2401.04088, 2024.

Laurynas Karazija, Iro Laina, Andrea Vedaldi, and Christian Rupprecht. Diffusion models for zero-shot
open-vocabulary segmentation. In ECCV, 2023.

Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. LERF: Language
embedded radiance fields. In ICCV, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. In NeurIPS, 2022.

Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and Rene Ranftl. Language-driven semantic
segmentation. In ICLR, 2022.

Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang, Peter Vajda,
and Diana Marculescu. Open-vocabulary semantic segmentation with mask-adapted CLIP. In CVPR,
2023.

Yue Liao, Si Liu, Guanbin Li, Fei Wang, Yanjie Chen, Chen Qian, and Bo Li. A real-time cross-modality
correlation filtering method for referring expression comprehension. In CVPR, 2020.

Yuqi Lin, Minghao Chen, Wenxiao Wang, Boxi Wu, Ke Li, Binbin Lin, Haifeng Liu, and Xiaofei He. CLIP
is also an efficient segmenter: A text-driven approach for weakly supervised semantic segmentation. In
CVPR, 2023.

14



Published in Transactions on Machine Learning Research (05/2025)

Yuqi Lin, Minghao Chen, Kaipeng Zhang, Hengjia Li, Mingming Li, Zheng Yang, Dongqin Lv, Binbin Lin,
Haifeng Liu, and Deng Cai. TagCLIP: A local-to-global framework to enhance open-vocabulary multi-label
classification of CLIP without training. In AAAI, 2024.

Chang Liu, Henghui Ding, and Xudong Jiang. GRES: Generalized referring expression segmentation. In
CVPR, 2023.

Quande Liu, Youpeng Wen, Jianhua Han, Chunjing Xu, Hang Xu, and Xiaodan Liang. Open-world semantic
segmentation via contrasting and clustering vision-language embedding. In ECCV, 2022.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang
Su, Jun Zhu, et al. Grounding DINO: Marrying DINO with grounded pre-training for open-set object
detection. In ECCV, 2024.

Huaishao Luo, Junwei Bao, Youzheng Wu, Xiaodong He, and Tianrui Li. SegCLIP: Patch aggregation with
learnable centers for open-vocabulary semantic segmentation. In ICML, 2023.

Sachit Menon and Carl Vondrick. Visual classification via description from large language models. In ICLR,
2023.

Dimity Miller, Niko Sünderhauf, Alex Kenna, and Keita Mason. Open-set recognition in the age of vision-
language models. In ECCV, 2024.

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler, Raquel
Urtasun, and Alan Yuille. The role of context for object detection and semantic segmentation in the wild.
In CVPR, 2014.

Jishnu Mukhoti, Tsung-Yu Lin, Omid Poursaeed, Rui Wang, Ashish Shah, Philip HS Torr, and Ser-Nam Lim.
Open vocabulary semantic segmentation with patch aligned contrastive learning. In CVPR, 2023.

Sarah Pratt, Rosanne Liu, and Ali Farhadi. What does a platypus look like. In ICCV, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
language supervision. In ICML, 2021.

Kanchana Ranasinghe, Brandon McKinzie, Sachin Ravi, Yinfei Yang, Alexander Toshev, and Jonathon
Shlens. Perceptual grouping in contrastive vision-language models. In ICCV, 2023.

Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, and
Jiwen Lu. DenseCLIP: Language-guided dense prediction with context-aware prompting. In CVPR, 2022.

Karsten Roth, Jae Myung Kim, A Koepke, Oriol Vinyals, Cordelia Schmid, and Zeynep Akata. Waffling
around for performance: Visual classification with random words and broad concepts. In ICCV, 2023.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush
Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. LAION-400M: Open dataset of CLIP-filtered
400 million image-text pairs. In NeurIPSW, 2021.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa R
Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. LAION-5B:
An open large-scale dataset for training next generation image-text models. In NeurIPS Datasets and
Benchmarks, 2022.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In ACL, 2018.

Gyungin Shin, Weidi Xie, and Samuel Albanie. ReCo: Retrieve and co-segment for zero-shot transfer. In
NeurIPS, 2022.

15



Published in Transactions on Machine Learning Research (05/2025)

Gyungin Shin, Weidi Xie, and Samuel Albanie. NamedMask: Distilling segmenters from complementary
foundation models. In CVPRW, 2023.

Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei Xiao.
Test-time prompt tuning for zero-shot generalization in vision-language models. In NeurIPS, 2022.

Oriane Siméoni, Chloé Sekkat, Gilles Puy, Antonín Vobeckỳ, Éloi Zablocki, and Patrick Pérez. Unsupervised
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Appendix

In this appendix,

• we start by providing details on the evaluation in Sec. A: evaluation protocol (Sec. A.1), approaches
to the background handling of the considered baselines (Sec. A.2), and details of the IoU-Single
metric (Sec. A.3).

• In Sec. B, we present additional results including classic mIoU results (Sec. B.1), and further
quantitative (Sec. B.1) and qualitative (Sec. B.3) results. We also discuss failure cases (Sec. B.2).

• Sec. C presents an additional analysis of our method, particularly: hyperparameter selection (Sec. C.1),
(Sec. C.2) performance vs. the number of contrastive concepts when considering CCD and CCL, (Sec.
C.3) CLIP’s patch-level separability and how our method addresses this issue, (Sec. C.4) alternative
to CC scenario based on the sigmoid operation, and our experiments with filtering based on WordNet
ontology (Sec. C.5).

• In Sec. D we provide details about LLM and the used prompts, together with examples of LLM-
generated contrastive concepts.

• Finally, in Sec. E we present an efficiency analysis of the proposed approach regarding the computation
cost of generating the contrastive concepts and of employing them at segmentation time.

A Details on the evaluation

A.1 Evaluation protocol

Our experiments follow the evaluation protocol of Cha et al. (2023). We use MMSegmentation implementation
Contributors (2020) with a sliding window strategy and resize input images to have a shorter side of 448. In
the case of CAT-Seg, we retain the original model framework and integrate IoU-single into Detectron Wu
et al. (2019). We also use its evaluation protocol, meaning that the input images differ from other evaluated
methods, i.e., with an input image size of 640x640. Regarding the text prompts, we keep the native prompting
of each method to stay as close as possible to the methods.

A.2 Background handling of baselines

We detail here the different strategies employed in the methods that we evaluate to handle the background.

TCL Cha et al. (2023) applies thresholding and considers pixels with maximal logit ≤ 0.5 to be in the
background, where the logits are the cosine similarities of the visual embedding with the embedding
of queries.

GEM Bousselham et al. (2024) applies a background handling strategy only for Pascal VOC. It only
predicts the foreground classes. The background is obtained by thresholding the softmax-normalized
similarity between the patch tokens and the text embedding of each class name. The threshold is
fixed (set to 0.85). In our experiments with VOC, we explore the performance of GEM both with
and without background handling and report each time a better score. For other datasets than VOC,
we apply only our methods.

MaskCLIP Zhou et al. (2022) does not use any dedicated mechanism for background. Therefore, we do
not report the original setup for it.

CLIP-DINOiser Wysoczańska et al. (2024b) leverages a foreground/background saliency strategy
which focuses on foreground pixels. In that case, the foreground/background is defined following
FOUND Siméoni et al. (2023), which focuses on objectness and mainly discards pixels corresponding
to stuff-like classes, which might also be of interest.
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Algorithm 1: IoU-single
input : I – input image: I ∈ RH×W ×3

Y – ground-truth annotations of I: gt ∈ NH×W ×1

T – ground-truth text labels
CC – a dictionary of contrastive concepts per query
model – segmenter producing pixel-level predictions given text queries

output : mean IoU-single, a mIoU score for a single-query scenario for a given image
procedure IoUsingle(I, Y ):

// Get unique classes from Y
gtcls ← unique(Y)
scores ← ∅
for i ∈ gtcls do

q ← Ti

// Text prompts include query q and contrastive concepts of q
tq ← q ∪ CCq

// Get model predictions for given prompt set
ŷ ← model(I, tq)
// Get binarized version of predicted mask
ŷ ← binarize(ŷ, i)
// Get ground-truth binary mask for gt class i
y ← binarize(Y, i)
// Record corresponding IoU
scores ← scores ∪ IoU(ŷ, y)

end for
return mean(scores)

CAT-Seg Cho et al. (2024) does not apply any background handling strategy. Instead, for VOC they
create a list of potential background classes and use them as "dummy" classes. This approach is
closest to what we propose. In practice, for the VOC dataset, the authors use class names from the
Context dataset, an extension of VOC with +40 class names.

SAN Xu et al. (2023b) does not design any background handling strategy and does not evaluate datasets
with "background" class.

A.3 About the IoU-single metric

We present a pseudo-code of our metric in Algorithm 1.

B Additional results

B.1 More quantitative results
State-of-the-art results under classic mIoU. In Tab. 4, we report the results under the classic mIoU
metric for selected state-of-the-art methods on open-vocabulary semantic segmentation. For each of the
methods, we detail the specific background handling techniques (if any), the CLIP backbone used as well as
additional datasets used for training.

Extending the dataset vocabulary with our generated contrastive concepts does not hurt the overall perfor-
mance under a normal setup when all dataset labels are considered prompts. For GEM and MaskCLIP we
observe significant improvements over their original setups on VOC. This holds for both contrastive concept
generation methods CCD and CCL. Looking at the results of CLIP-DINOiser, we observe that saliency is still
more effective in the object-centric scenario.
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Background Type of CLIP Training Dataset
Methods handling CC backbone dataset Context Object VOC

GroupViT threshold ∅ scratch CC12M+RedCaps 18.7 27.5 50.4
CLIP-DIY saliency ∅ LAION-2B - 19.7 31.0 59.9
TCL threshold ∅ OpenAI CC12M+CC3M 24.3 30.4 51.2
MaskCLIP† ∅ ∅ OpenAI - 21.1 15.5 29.3
MaskCLIP∗ ∅ ∅ LAION-2B - 22.9 16.4 32.9
MaskCLIP∗ (+keys) ∅ ∅ LAION-2B - 24.0 21.6 41.3
CLIP-DINOiser ∅ ∅ LAION-2B ImageNet (1k im.) 32.4 29.9 53.7
GEM ∅ ∅ MetaCLIP - - - 46.8

CLIP-DINOiser

saliency ∅ LAION-2B ImageNet (1k im.) – 34.8 62.1
CC CCBG LAION-2B ImageNet (1k im.) 32.4 29.5 54.0
CC CCL LAION-2B ImageNet (1k im.) 31.3 35.0 60.8
CC CCD LAION-2B ImageNet (1k im.) 31.8 33.3 60.4

MaskCLIP
CC CCBG LAION-2B - 23.6 17.8 35.1
CC CCL LAION-2B - 22.5 25.9 46.2
CC CCD LAION-2B - 23.2 25.1 46.4

GEM threshold ∅ MetaCLIP - 33.4* 27.4* 46.6*
GEM CC CCL MetaCLIP - 31.6 35.7 60.0
GEM CC CCD MetaCLIP - 32.1 35.5 60.5

Table 4: Results with standard mIoU metric when employing different contrastive concept generation
strategies. ’*’ denotes our implementation, ‘†’ denotes results from TCL Cha et al. (2023), and ’MaskCLIP
(+keys)’ denotes keys refinement proposed in the original paper Zhou et al. (2022). Training datasets include
CC12M Changpinyo et al. (2021), RedCaps Desai et al. (2021), ImageNet Deng et al. (2009), CC3M Sharma
et al. (2018).
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Method CLIP dataset Original CCP I CCBG CCL CCD

VOC

MaskCLIP
LAION-2B – 49.9 47.9 51.8 53.6

OpenAI – 47.1 44.2 52.2 53.4
MetaCLIP – 47.9 46.6 50.6 50.1

CLIP-DINOiser LAION-2B 63.8* 61.0 59.3 63.1 64.7
TCL TCL’s 52.9* 53.0* 52.9* 52.6* 53.6*
GEM MetaCLIP – – 48.6* 61.3* 64.6*
CAT-Seg OpenAI – – 52.8 69.5 67.7

Cityscapes

MaskCLIP
LAION-2B – 32.2 16.2 27.2 24.0

OpenAI – 30.6 15.0 22.5 22.0
MetaCLIP – 30.0 13.6 24.6 23.3

CLIP-DINOiser LAION-2B 20.8 36.0 23.2 30.6 27.3
TCL TCL’s 18.6* 29.7 9.8 26.3 22.0
GEM MetaCLIP – 20.6 14.5* 21.5 14.6

COCO-Stuff

MaskCLIP
LAION-2B – 34.1 26.4 28.8 29.5

OpenAI – 33.6 24.1 28.4 28.8
MetaCLIP – 34.0 25.8 28.1 28.1

CLIP-DINOiser LAION-2B 28.0* 35.3 32.4 33.9 34.4
TCL TCL’s 25.0* 34.7 17.4 29.5 30.6
GEM MetaCLIP – 38.3 22.9* 32.2 33.6

ADE20k

MaskCLIP
LAION-2B – 33.2 22.7 26.8 27.8

OpenAI – 29.8 20.2 23.5 25.2
MetaCLIP – 32.1 21.5 24.7 26.0

CLIP-DINOiser LAION-2B 28.8* 35.3 28.9 29.7 31.6
TCL TCL’s 14.8* 32.6 14.9* 25.9 26.5
GEM MetaCLIP – 33.0 21.5* 26.3 29.1
CAT-Seg OpenAI – 46.8 25.7 38.4 39.7

COCO-Object

MaskCLIP
LAION-2B – 32.1 27.7 33.7 32.9

OpenAI – 31.3 24.3 34.5 33.3
MetaCLIP – 30.9 27.4 32.2 31.1

CLIP-DINOiser LAION-2B 38.8* 38.9 35.5 41.6 39.9
TCL TCL’s 37.1* 38.1 37.2* 38.1* 37.2*
GEM MetaCLIP – – 31.4 39.7 40.1

Pascal Context

MaskCLIP
LAION-2B – 40.5 34.4 35.2 37.4

OpenAI – 41.1 32.9 34.7 36.8
MetaCLIP – 41.1 32.6 34.2 35.8

CLIP-DINOiser LAION-2B 33.9* 45.8 41.5 41.6 44.2
TCL TCL’s 29.7* 41.7 29.7* 36.8 38.2
GEM MetaCLIP – – 26.9 40.1 42.1

Table 5: Results on all datasets with our IoU-single metric defined in Sec. 4.1. ‘*’ denotes the result when
the original background handling gives the best results.
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More open-world evaluation results. Tab. 5 extends Tab. 1 and completes the results obtained with
the IoU-single on all the datasets that we considered.

B.2 Failure case analysis

We present some failure cases of our approach in Fig. 8. Precisely, we show examples of CLIP-DINOiser
when one of the generation methods fails. The first example (first row), CCL suggests “blanket" for “bed",
which typically covers the query concept. One of the potential improvements would be to instruct an LLM to
ignore potentially occluding objects. In the second row, both methods fail to provide “floor" to contrast with
“rug". We notice that CCL tend to be more oriented towards objects, as opposed to stuff-like classes. We also
observe that in the example, a small part of a painting on the wall is segmented as "rug". This suggests that
CCs might not give a complete set of. Finally, in the third example, both methods fail to generate “person" to
contrast with “bedclothes". However, CCL includes “pyjamas", which results in a better segmentation overall.
Image-conditioned generation (e.g., with VLMs) could be a candidate solution to this problem, but we leave
it for future work.

GT CCD (single) CCD (all) CCL (single) CCL (all)
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d
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g
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dc
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es

Figure 8: Failure cases of our method. We show examples of CLIP-DINOiser when one of the methods
fails to generate accurate CC. In the first example CCL suggests “blanket" for “bed" which typically covers
the query concept. In the second row, both methods fail to provide “floor" to contrast with “rug". Finally,
in the third example, both methods fail to generate “person" to contrast with “bedclothes", however, CCL

suggest “pyjamas", which results in a better segmentation.

B.3 More qualitative results

More qualitative results are provided in Fig. 9, comparing CCD to CCL.

C Additional analyses

C.1 Hyperparameter selection

This section discusses the selection of hyperparameters for our CC generation. For the frequency threshold γ
and the cosine similarity threshold δ, we randomly select 100 images from the training set of the ADE20K
dataset and report IoU-single on this subset — which we observed was enough to select the values. We report
in Tab. 6 a parameter study of both hyperparameters and mark in grey selected values, i.e., γ = 0.01 and
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GT CCBG CCD (single) CCD (all) CCL (single) CCL (all)
be

d
bo

at
sk

ys
cr

ap
er

Figure 9: More qualitative results of CLIP-DINOiser with different CC. Here we focus on cases where CCD

and CCL give different results. For “boat" (2nd row), CCL gives a better result providing a good CC (“dock").
On the other hand, for “skyscraper" (3rd row), CCD yields slightly better results suggesting “sky" and not
“cloud". Note that in this last example, CCBG completely fails, possibly due to a difficult (uncommon) angle
of view.

values of γ values of δ
Method CLIP tr. data 0.001 0.005 0.01 0.015 0.02 0.95 0.9 0.85 0.8 0.75

MaskCLIP
OpenAI 24.4 26.0 24.8 24.4 23.2 19.9 21.0 23.0 24.4 22.8
Laion2B 25.8 27.8 27.4 26.0 25.4 23.0 24.1 26.4 27.4 24.6

MetaCLIP 22.0 24.1 24.4 23.8 23.4 22.7 23.7 25.9 27.2 23.7
DINOiser Laion2B 24.4 27.2 27.9 27.9 27.7 23.5 24.6 26.4 27.9 26.9

Table 6: Parameter study of γ and δ. Selection (marked in grey) of the hyperparameters γ and δ with
IoU-single on 100 randomly-selected images in ADE20k training dataset.

Method CLIP training data 1.0 0.95 0.9 0.85 0.8

MaskCLIP
OpenAI 26.0 40.4 41.1 39.1 32.1
Laion2B 35.3 43.7 44.0 44.6 42.2

MetaCLIP 24.4 39.1 40.3 34.3 30.6
DINOiser Laion2B 51.3 57.8 58.6 58.8 55.2
TCL TCL’s 37.2 47.6 47.7 47.1 47.7

Table 7: Selection of β with classic mIoU on 100 randomly-selected images in the VOC training dataset.
Results are reported for CCL.

δ = 0.8. For γ, we observe that values γ < 0.005 are too low, most likely introducing too much noise in
selected contrastive concepts.

Tab. 7 presents a parameter study of the cosine similarity of text queries β in multi-query segmentation. Here,
we randomly select 100 images from the VOC training set and report classic mIoU for different β values. We
select β = 0.9 because it gives the best result for most methods. We also note that controlling the similarity
between query concepts and contrastive concepts in the multiple-query scenario is necessary. Not including
this step (see results for β = 1.0) greatly degrades performance.
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C.2 Average number of contrastive concepts vs performance

We present in Fig. 10 a scatterplot of performance vs the number of contrastive concepts when considering
CCD (Fig. 10(a)) and CCL (Fig. 10(b)). The points correspond to the IoU-single scores per class obtained
with CLIP-DINOiser on all the datasets we evaluate. We do not observe a strong correlation between the
number of contrastive concepts and performance, although there is a small mode of around 20 concepts when
using CCD. We also observe that, on average, |CCD| > |CCL|.
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Figure 10: Number of CC vs performance. We compare the number of CC against the performance of
CLIP-DINOiser for each class used in our evaluations (considering all datasets). Performance is reported
with per class IoU-single %.

C.3 On separability of CLIP patch-features
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Figure 11: Distribution of maximum patch similarities with text prompts. We plot histograms for
100 images of VOC (a) and ADE20K (b) of patch similarities in MaskCLIP.

In Fig. 11, we present an analysis of the patch-level CLIP space using MaskCLIP features. The figure shows
histograms of patch-level maximum text similarities (in cosine similarity) across 100 randomly sampled images
from VOC (a) and ADE20k (b). We notice an overall concentration of cosine similarity scores in [0.1,0.3],
suggesting that the feature space is not easily separable.

To illustrate how our approach overcomes this issue we present in Fig. 12 a t-SNE analysis over patch features
from an image of VOC dataset for the q = "bird". We plot the result of classification for each separate set of
CCs. We highlight in orange the patches that belong to the ground truth mask of class "bird". We observe
that CCBGalready helps to separate the space of background concepts from "bird" patches. However, we
notice that only with CCL or CCD we can separate one visible cluster left, possibly belonging to the patch
features of a branch in the image, by providing "branch" in the case of CCD or "tree" in CCL. Both of our
proposed methods improve the final segmentation result.
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(a) Input image
CC = ∅ CCBG

Ground-truth label: bird
bird

Ground-truth label: bird
background
bird

CCD CCL

Ground-truth label: bird
sky
bird
branch
background

Ground-truth label: bird
sky
bird
tree
background

(b)

Figure 12: t-SNE analysis of patch features for different CC of an image q = “bird". We present
patch features with their predicted closest text embedding coded in color. Text embeddings are corresponding
CC of q = “bird". We also mark the ground truth labels in orange. The sample is from VOC dataset.
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Figure 13: Sigmoid experiments. We replace softmax with sigmoid applied on individual patch-to-query
prompt similarities. We show the variation of single-IoU% wrt. the threshold that is applied after sigmoid
to decide on a positive vs. "background" class. To get the thresholds, we find the minimum and maximum
values of the features after sigmoid and linearly sample 30 values in this range. We can see that the result is
sensitive to the threshold value and does not reach the baseline of CCBG.

C.4 Replacing CC with sigmoid operation

Trying to separate a query from its background using a binary criterion is a natural alternative direction to
consider, and this could be implemented with a sigmoid.

We test using a sigmoid on CLIP similarity scores. We show the results of an experiment with CLIP-DINOiser
on VOC in Fig. 13. We make the following observations: (1) none of the thresholds allow us to reach the
performance of CCBG, and (2) the performance is very sensitive to the threshold value. We believe this is
because the CLIP space is not easily separable, as discussed in Appendix C.3.

C.5 Ontology-based filtering with WordNet

Method MaskCLIP TCL DINOiser

CCD 25.2 26.0 31.6
CCD + WordNet 25.2 26.4 26.3
CCD + WordNet − sem. sim. 21.0 23.4 25.8

Table 8: Ontology-based (WordNet) filtering out synonyms, meronyms, hyponyms and hypernyms (at
depth 1) from CCD. Results are reported on ADE20K, as %IoU-single.

Here, we discuss our experiments using the WordNet ontology Fellbaum (1998) for CCD filtering. We extract
synonyms, meronyms, hyponyms, and hypernyms for each query concept in-depth 1 in the WordNet ontology.
From the results in Tab. 8, we observe that adding such filtering on top of our semantic similarity filtering
brings little to no improvement, suggesting that semantic filtering removes most of the contrastive concepts
that interfere with a query concept. Furthermore, replacing semantic similarity with WordNet-based filtering
yields significantly worse results than our proposed CCD.

D Prompting the LLM

In this section, we provide more details about the LLM and the prompts used.
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D.1 The LLM model

We use the recent Mixtral-8x7B-Instruct model Jiang et al. (2024), a sparse mixture of experts model (SMoE),
finetuned for instruction following and released by Mistral AI. More precisely, we rely on the v0.1 version of
its open weights available via the Hugging Face transformers library. We run the LLM in 4-bit precision with
flash attention to speedup inference.

D.2 The prompts used for contrastive concepts

We provide in Fig. 14 the prompt used to generate the contrastive concepts CCL and in Fig. 15 the prompt
used to predict whether a concept can be seen in an image or not in order to filter CCD.

In these prompts, we indicate the inserted input text as {q}. We follow Mixtral-8x7B Instruct’s prompt
template. In particular, we use <s> as the beginning of the string (BOS) special token, as well as [INST]
and [/INST] as string markers to be set around the instructions.

For the generation of CCL, we also integrate a light post-processing step, ensuring that all generated lists have
a unified format with coma separation. We do not apply any filtering or cleaning step to the LLM-generated
results.

<s> [INST] You are a helpful AI assistant with visual abilities.

Given an input object O, I want you to generate a list of words related to objects that can be
surrounding input object O in an image to help me perform semantic segmentation.

For example:

* If the input object is ’fork’, you can generate a list of words such as ’["bottle", "knife", "table",
"napkin", "bread"]’.

* If the input object is ’child’, you can generate a list of words such as ’["toy", "drawing", "bed",
"room", "playground"]’.

You should not generate synonyms of input object O, nor parts of input object O.

Generate a list of objects surrounding the input object {q} without any synonym nor parts, nor
content of it. Answer with a list of words. No explanation.

Answer: [/INST]

Figure 14: Prompt for CCL contrastive concept generation.

<s> [INST] Please specify whether {q} is something that one can see.

Reply with ’yes’ or ’no’ only. No explanation.

Answer: [/INST]

Figure 15: Prompt for CCL visibility prediction.

D.3 Example of generated CCL

We present in Tab. 9 the example of CCL generated for Cityscapes dataset. We provide CC for each query q
in separate rows.

D.4 Part removal via LLM-prompting

We also explore the possibility of removing suggested contrastive concepts that can be parts of query concepts.
Note that in CCL, we explicitly do it in the prompt itself (Fig. 17). Fig. 16 presents one of such examples when
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Query q CCL
q

road building, tree, car, pedestrian, sky, streetlight, sidewalk, bicycle, parked car, traffic sign
sidewalk building, street, car, tree, people, bike, road, park, sky, lane
building sky, tree, road, car, park, people, lane, fence, house, field
wall door, window, floor, ceiling, painting, light, chair, table, carpet, curtain
fence grass, tree, house, car, path, post, gate, field, flowers, animals
pole building, wire, tree, street, sky, fence, cable, road, banner, light
traffic light road, car, building, pedestrian, sky, streetlight, traffic sign, parking meter
traffic sign road, street, pole, vehicle, building, sky, pedestrian, curb, lane, light
vegetation soil, tree, grass, water, animal, fence, field, sky, rock, sun
terrain tree, sky, building, road, mountain, river, field, fence, vehicle, person
sky tree, building, cloud, sun, bird, airplane, mountain, sea, sunset, cityscape
person bike, road, car, tree, building, park, cityscape, nature, animal, sports equipment
rider bicycle, road, nature, park
car road, tree, building, person, parking
truck road, car, building, tree, parking
bus road, tree, building, sky, person, car, traffic light, bicycle, parking meter, street sign
train track, grass, sky, building, platform, tree, sign, person, car, road
motorcycle road, person, bike, car, traffic, building, nature, parking, city, scenery
bicycle road, tree, person, park, building, grass, basket, helmet, traffic, path

Table 9: Example of LLM-generated CCL for Cityscapes.

removing “wheel” from the CCD of query “bicycle” gives a slight improvement for MaskCLIP segmentation.
However, we do not notice a particular improvement in the case of other segmentation methods since, typically,
they refine the masks or feature maps to include localization priors. For example, in Fig. 16, the second row
presents the same example for CLIP-DINOiser (DINOiser), where the improvement is marginal. Finally,
we observe little or no quantitative improvement when applying part removal filtering on entire datasets.
Therefore, we do not include it in our final method.
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Figure 16: Part removal. We consider an example from Pascal Context with q = bicycle. We show the
segmentation masks produced by MaskCLIP and CLIP-DINOiser for CCD , as well as for CCD when parts of objects are removed
(CCD −parts).
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<s> [INST] You are a helpful AI assistant with visual abilities.

Given an input object O, I want you to generate a list of words that are parts of an object O.

For example:

* If the input object is ’rabbit’, you can generate a list of words such as ’["paw", "tail", "fur", "ears",
"muzzle"]’.

* If the input object is ’building’, you can generate a list of words such as ’["door", "window", "wall",
"hall", "floor"]’.

Generate a list of parts of the input object {q}. Answer with a list of words. Do not give any word
that is not a part of the input object. No explanation.

Answer: [/INST]

Figure 17: Prompt for part prediction.

E Efficiency analysis

We first discuss the computational cost of generation and then the cost of employing generated CC at
segmentation time.

E.1 Computational cost of CCL

We use the HuggingFace implementation of Mixtral-8x7B-Instruct-v0.1 through the transformers library.
Using 4-bit quantization and flash attention on an A100 GPU, the LLM requires 25.5 GB of GPU memory.
The average inference time required to generate a complete list of contrastive concepts for a given input query
(averaged over 20 Pascal VOC queries) is 5.4 s.

We also note that new competing LLMs, of comparable or smaller sizes than Mixtral 8x7B, are regularly
being released, such as Llama 3 8B Instruct Grattafiori et al. (2024) (Apr 2024), or Gemma-2 9B Instruct
Team et al. (2024) (Jun 2024), Gemma-3 4B Team et al. (2025) (Mar 2025). For these LLMs, the GPU
memory requirements are more than 3.5× smaller, and the generation time more than 3.5× faster.

E.2 Computational cost of CCD

Offline cost. In order to obtain a matrix of co-occurrences of concepts the main cost lies in the construction
of the co-occurrence matrix X where we iterate over 400M samples of LAION. However, we only need to go
through captions, and not images, and we do it once and offline. Finally, this can be efficiently implemented
by leveraging modern libraries for multiprocessing.

Online cost. At runtime, the generation of contrastive concepts is fast. We provide below runtimes of all
the online steps required for CCD extraction, computed on a machine equipped with Intel(R) i7 CPU and a
Nvidia RTX A5000 GPU:

• Computing the CLIP embedding for a query q: 24.4 ms.

• Mapping of query q to the closest concept in T : 0.001 ms.

• Retrieving CCD of the closest concept in T : marginal cost (look-up table).

E.3 Segmentation efficiency

The computational cost of employing our proposed methods strictly depends on the OVSS. We present in
Tab. 10 a comparison of runtimes between CCBGand CCD with CLIP-DINOiser. We split the comparison
into two sub-processes, text embedding extraction, and segmentation, where typically the former is stable
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Method CCBG CCD

Text Embeddings extraction 49.2 ± 0.7 ms 519.5 ± 1.1 ms
Segmentation 22.1 ± 0.2 ms 22.3 ± 0.2 ms

Table 10: Runtime comparison between CCBGand CCD.

across different OVSS methods. We observe that the main difference in runtimes stems from the embedding
extraction phase, due to the different number of text prompts, that is, |{q} ∪ CCBG| = 1 + 1 = 2, while
|{q} ∪ CCD| = 21 on average. (We discuss the average number of CCD and CCL in Appendix C.2.) However,
we note that this extraction time could be effectively reduced with caching mechanisms and an increase in
memory consumption.

For the segmentation forward pass, we report the runtime of a single forward pass on images of size 448 x
448 when using pre-extracted text embeddings for final segmentation. We observe a negligible increase in the
runtime between CCBGand CCD.
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