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Abstract—Accurately assessing the count of unique elements
within voluminous data streams remains a critical task in
data analytics. The pioneering Flajolet-Martin algorithm and its
descendants, such as HyperLogLog, have pioneered the arena
of probabilistic counting techniques. However, there has been
ongoing discussion regarding the impact of hash function value
distribution on the performance of these algorithms. This study
disputes the widely held belief that the accuracy of cardinality
estimation algorithms is highly dependent on the distribution
of hash values. We demonstrate that, for a broad spectrum of
estimators, the minimum possible variance, as dictated by the
Cramér-Rao lower bound, is actually unaffected by the choice
of hash value distribution in extreme value-based counters. To
validate our theoretical assertions, we present a novel sketching
method called Pareto sketching. Our empirical tests show that
this method delivers precision on par with the established
exponential sketching methods. Our work not only simplifies
the design of future sketching algorithms but also opens new
directions for research in cardinality estimation that are not
constrained by distributional choices.

Index Terms—Cardinality estimation, streaming algorithms,
data sketch, distinct elements problem

I. INTRODUCTION

COUNTING the number of distinct elements in a data
stream is a fundamental problem in data systems. A

wide variety of applications, especially in the field of data
mining and information retrival rely on efficient counting of
distinct elements, such as duplicate document identification
[1], graph neighbourhood function estimation [2] and genome
classification [3]. However, it has been proved that any exact
algorithm for this problem will require storage space linear
to the number of distinct elements [4], which is infeasible
for massive data streams of billions of elements. The need for
efficient approximate algorithms for distinct elements problem
naturally arises as massive data streams becomes more and
more common in realistic applications.

In 1985, Flajolet and Martin proposed the first probabilis-
tic algorithm known as the Flajolet-Martin algorithm [5] to
approximate the number of distinct elements in the stream,
with each item being examined only one pass. They pioneered
utilizing deterministic hash functions to associate random vari-
ables with elements. In Flajolet-Martin algorithm, a uniform
hash function hi maps an element e to a L-bit binary string
h(e) ∈ {0, 1}L, the largest number of consecutive zeros
starting from the least significant bit ρ(h(e)) among all the
elements is maintained. Obviously, as there are more distinct
elements in the stream, a hash string with more consecutive
zeros is more likely to occur. The subsequent work of Flajolet-
Martin algorithm, LogLog algorithm proposed by Flajolet et,

al. [6] reduces the space required for the desired estimation
accuracy to log2 log2N + O(1), where N is the number
of distinct elements in the stream. HyperLogLog [7] further
improves the estimator used by LogLog, and currently still
serves as the state-of-the-art cardinality estimation algorithm
in many applications. Exponential sketching [8] proposed by
Lemiesz utilizes continuous hash functions instead of discrete
bit-patterns for cardinality estimation. Even though not as
memory efficient as HyperLogLog and its variants, exponential
sketching is capable of estimating cardinality of multisets in
additional to binary sets.

Most existing methods for approximating cardinality make
use of the minimum or maximum of random variables of
elements. Let the hash value for different elements h(ej),
where j ∈ {1, 2, · · · , N} is the index of element, be inde-
pendent and identically distributed random variables drawn
from some distribution with cumulative distribution function
F . The expression of the cumulative distribution function
of maxj h(ej) can be easily derived by F ∗(x) = F (x)N .
The distribution of the maximum is thus a statistic related
to the number of distinct elements N as long as the dis-
tribution F is not degenerate. Question naturally arises on
what effect the choice of distribution of hash values will
have on the accuracy of estimation. According to the well-
known Cramér-Rao bound on the variance of unbiased and
biased estimators, the minimum variance that an estimator can
archive on estimating some parameter θ is associated with the
Fisher information the distribution function carries about θ.
The question now becomes what effect different distributions
of hash values will have on the accuracy of estimation. In this
paper we have proved that the minimum attainable variance is
generality unrelated with the distribution of hash values. We
proposed a new method named Pareto sketching and proved
that Pareto sketching achieves the same estimation accuracy
as exponential sketching proposed in [8].

The remaining part of this article is organized as follows:
In Section II we first formulate the problem, define what
specifically extreme value counters are and then prove that
the Cramér-Rao lower bound of variance of estimation are
generally unrelated to distributions used in counters. In Section
III we particularly analyze an existing exponential sketching
scheme utilizing our theory of extreme value counters. A new
sketching scheme named Pareto sketching is also proposed.
In Section IV experiments are conducted to support our
theoretical analysis and to prove our Pareto sketching has
equivalent performance to exponential sketching.
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II. THE THEORY OF EXTREME VALUE COUNTERS

A. Problem Formulation

Consider a data stream S = (es1 , es2 , · · · , esM ) of length
M consisting of N distinct elements e1, e2, · · · , eN ∈ U ,
where s1, s2, · · · , sM ∈ {1, 2, · · ·N} and U is the universe
of elements.

Definition II.1 (hash function). A hash function with distri-
bution f is a bijection U 7→ H, mapping elements in the
universe U to a collectionH of |U| independent and identically
distributed random variables with law f .

Definition II.2 (maximum counter). Without loss of gener-
ality, an maximum counter is the maximum order statistic
h∗ = maxh(S) = max(h(es1), h(es2), · · · , h(esM )).

Definition II.3 (minimum counter). The concept of mini-
mum counters can be defined in the same way as maximum
counters. A minimum counter is the minimum order statistic
h† = minh(S) = max(h(es1), h(es2), · · · , h(esM )).

The theory for maximum counters can be easily applied to
minimum counters with slight modification, and our argument
will thus mainly focus on maximum counters.

B. Cramér-Rao Bound for Estimators

The following important theorem by Cramér and Rao gives
bound on the minimum variance of unbiased estimators:

Theorem II.1 (Cramér-Rao Bound). Suppose that some un-
known parameter θ is going to be estimated from k inde-
pendent observations of the random variable X with law
f(x; θ), than the variance of any estimation θ̂ is bounded by
the reciprocal of the Fisher information I(θ):

DX

[
θ̂
]
≥ 1

I(θ; f)

where the Fisher information is defined by

I(θ) = kEX

[(
∂ log f(X; θ)

∂θ

)2
]
.

and the bound is attained by an efficient estimator if exist.
Moreover, if log f is twice differentiable w.r.t. θ, and following
three regularity conditions
• f is differentiable w.r.t. θ almost everywhere.
• f can be differentiated under integral w.r.t. θ.
• The support of f does not depend on θ.

are met, we can use the following expression for the Fisher
information, which is less complex in many situations:

I(θ; f) = kEX

[
∂2 log f(X; θ)

∂θ2

]
.

Recall that the cumulative distribution function of the max-
imum counter can be expressed in terms of the cumulative
distribution function of the hash function, the Cramér-Rao
Bound for the maximum counter can thus be derived. Let
the cumulative distribution function and probability density

function of the maximum counter h be denoted F ∗ and f∗,
respectively, and for the Fisher information of θ we have

I(θ) = kEh∗

[(
∂ log f∗(h∗; θ)

∂θ

)2
]

= kEh∗

[(
∂

∂θ
log

∂F (h∗; θ)n

∂h

)2
]

= kEh∗

[(
∂

∂θ
log
(
nf(h∗; θ)F (h∗; θ)n−1

))2
]
.

Furthermore, in the task of estimating the number of distinct
elements, the parameter to be estimated is just n, and function
F and f are independent of n. By substituting θ with n and
eliminating θ from the expression of f and F , there is

I(n) = kEh∗

[(
∂

∂n
log
(
nf(h∗)F (h∗)n−1

))2
]

= kEh∗

[(
∂

∂n

(
log n+ log f(h∗) + logF (h∗)n−1

))2
]

= kEh∗

[(
1

n
+ logF (h∗)

)2
]
. (1)

If f∗ meets the regularity conditions, the expression for the
Fisher information can be further simplified:

I(n) = kEh∗

[
∂2 log f∗(h∗;n)

∂n2

]
= kEh∗

[
∂2

∂n2
(
log n+ log f(h∗) + logF (h∗)n−1

)]
=

k

n2

Here we successfully derived the Cramér-Rao bound of car-
dinality estimation for maximum counters:

Theorem II.2 (Cramér-Rao bound for maximum counters).
Given a maximum counter h∗ where the underlying hash func-
tion h has cumulative distribution function F , the minimum
variance of estimators based on h∗ is bounded by

Dh∗

[
θ̂(h∗)

]
≥ Eh∗

[(
1

n
+ logF (h∗)

)2
]

and in most situations where the regularity conditions are met,
the bound is independent of the distribution of h:

Dh∗

[
θ̂(h∗)

]
≥ n2

k

III. CARDINALITY ESTIMATION BASED ON EXTREME
VALUE COUNTERS

Now we study particular cases of cardinality estimation
algorithms based on extreme value counts using the theorems
in section II.
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A. Exponential Sketching

The exponential sketching scheme [8] proposed by Lemiesz
choose the exponential distribution as the distribution of h. The
minimum order statistic from the exponential distribution has
a simple closed-form expression. Let there be exponentially
distributed random variables with different rate parameters
h(e1) ∼ Exp(λ1), h(e2) ∼ Exp(λ2), ..., h(en) ∼ Exp(λn),
their smallest order statistic h† are also exponentially dis-
tributed, whose rate parameter equal to the sum of the rate
parameter of individual exponential variables. Thus an ap-
proximation to the cardinality can be obtained by estimating
the rate parameter of X∗. As exponential variables with
rate parameter λ can be costlessly generated by dividing an
standard exponential variable by λ, exponential sketching can
be also used for cardinality estimation of multisets.

Exponential Sketching makes use of a minimum counter,
which is not the same as maximum counters discoursed in our
pervious theorem II.2. Actually, the corresponding theorem for
minimum counters can be derived in the same way as in II.2.

Theorem III.1 (Cramér-Rao bound for minimum counters).
The Cramér-Rao bound for minimum counter h† is also

Dh†

[
θ̂(h†)

]
≥ n2

k

as long as the regularity conditions are met.

Proof. The cumulative function of the smallest order statistic
h† from independent and identically distributed random vari-
ables h can be written in terms of the cumulative distribution
function of h:

F † = 1− (1− F )n.

Thus the same bound can be derived as follows:

I(θ) = kEh†

[(
∂ log f†(h†;n)

∂θ

)2
]

= kEh†

[(
∂

∂θ
log
(
nf(h†)

(
1− F (h†)

)n−1))2
]

= kEh†

[(
1

n
+ logF (h†)

)2
]
. (2)

When the regularity conditions are met, the Fisher information
I(n) is equal to

kEh†

[(
∂

∂n
log
(
nf(h†)

(
1− F (h†)

)n−1))2
]

=kEh†

[
∂2

∂n2

(
log n+ log f(h†) + log

(
1− F (h†)

)n−1)]
=
k

n2

Hence, the bound for minimum counters and maximum
counters are the same as expected. Obviously the regularity

conditions are met for the exponential distribution, or alterna-
tively we could use the unsimplified version (2) to obtain the
same result:

I(θ) =kEh†

[(
1

n
+ logF (h†)

)2
]

=k

∫ +∞

0

(
1

n
+ logF (h†)

)2

dF †

=k

∫ +∞

0

ne−nh
†
(

1

n
− h†

)2

dh†

=k

∫ +∞

0

ne−nh
†
(

1

n2
− 2h†

n
+ h†

2
)

dh†

=k

(
1

n2
− 2

n2
+

2

n2

)
=
k

n2
.

Even though the bound on estimator variance has been proved,
the variance of estimation will depend on the estimator used
in practice. Unfortunately, there is no efficient estimator exists
for estimating the rate parameter of exponential distribution.
The Minimum-Variance Unbiased Estimator for rate parameter
is

λ̂ = (K − 1)

(
K∑

k=1

h†k

)−1
where K is the number of observations, and the variance of
the Minimum-Variance Unbiased Estimator is

D
[
λ̂
]

=
n2

K − 2

which indicates that this estimator is asymptotically efficient.

B. Pareto Sketching

We now propose a novel sketching scheme which has
estimation accuracy equivalent to the exponential sketching
based on our argument above. Another distribution with simple
closed-form smallest order statistic is the Pareto distribution.
Given n independent and identically distributed Pareto ran-
dom variables, namely h(e1) ∼ Pareto(α1), · · · , h(en) ∼
Pareto(αn) with the same scaleλ and different shapes αi,
a similar law holds as in the exponential setting. Their
smallest order statistic h† follows the Pareto distribution
Pareto(λ, α1 + α2 + · · · + αn). For Pareto distribution we
can estimate its shape parameter α by

α̂ = (K − 1)

(
K∑

k=1

log h†k

)−1
which is the Minimum-Variance Unbiased Estimator. The
Minimum-Variance Unbiased Estimator for the Pareto dis-
tribution has the same variance as that for the exponential
distribution:

D [α̂] =
n2

K − 2

which indicates that α̂ is also an asymptotically efficient
estimator as well as λ̂.
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Fig. 1. MSE of estimation with varying K and N , where the optimal Cramér-Rao Bound, variance and evaluated results of Pareto and exponential sketching
are shown.
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Fig. 2. The MSE and Var of Pareto and exponential sketching with K and N fixed and varying M .

IV. EXPERIMENTAL EVALUATION

We make comparisions between the performance of both
exponential sketching and Pareto sketching and predictions
based on our theoretical argument to show that our theoretical
bound coincides well with simulation. The metrics used in
experiments are on the Mean Square Error (MSE) and the
Variance (Var). Assuming that M independent experiments are
conducted, the Mean Square Error is defined by

MSE =
1

M

M∑
m=1

(n̂m − n)2

and the Variance is defined by

Var =
1

M − 1

M∑
m=1

(n̂m − n̄)2

A. Experiment Settings

In the experiments we study the influence of three different
parameters, the number of observations K, the number of
distinct elements N , and the number M of independent exper-
iments whose metrics get averaged. The random variables used

for estimation are generated by transforming uniform hashes
from the MurMurHash3 algorithm [9].

B. The Effect of K and N on MSE
In Fig. 1 we plot the average MSE of 10, 000 independent

runs, varying the parameter K and N , respectively. We evalu-
ated the algorithms first with K varying between 10 and 100
and N fixed to 100, and then with N varying between 10
and 100 and K fixed to 100. As the number of observations
K increases, the MSE goes inversely proportional to K, and
the MSE goes quadraticly as the number of distinct elements
N grows. We plot the predicted variance of the estimator
(Predicted) in blue lines and the Cramér-Rao bound (Optimal)
in blue dotted lines. We found that the predicted variance of
the estimator fits simulated results well, and converges to the
Cramér-Rao bound as K increases.

C. Relationship between MSE and Var
The Mean Square Error (MSE) could be decomposed into

variance and the square of bias:

MSE = Var + Bias2
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Fig. 3. Point estimations made by Pareto and exponential sketching with different K is plotted. As K grows, the estimation are more centralize towards N .
The black, blue and light blue curves are the expectation, range of the standard deviation, and range of twice the standard deviations, respectively.

which is commonly known as the Bias-Variance Decompo-
sition. In Pareto and exponential sketching which are both
unbiased estimation methods, the MSE should coincide with
Var. We plotted the MSE and Var of estimation with varying
number of independent experiments M with fixed K = 100
and N = 100 in Fig. 2.

D. Visualization of Point Estimations

To demonstrate how the variance of estimation is reduced
as the number of observations K grows in a more intuitive
way, we visualize the estimations as scatters. Estimation of 10
independent runs with fixed N = 100 are plotted, and it can
easily be observed that the estimations get centralized towards
N as K grows. There are also curves for predicted standard
deviation (Std, σ), which is

σ =
√
D = n

√
1

K − 2

and twice standard deviation. It is worth mentioning that
most of the estimations lies within 2σ of the expectation N
following the Central Limit Theorem.

V. CONCLUSION

To sum up, our study tackled the common belief that the
choice of hash value distributions in cardinality estimation
methods has a significant impact on the precision of the
estimates. Contrary to this belief, our findings reveal that the
Cramér-Rao lower bound, which dictates the best possible
accuracy of any estimator, does not depend on the specific
distribution of hash values employed in extreme value coun-
ters.

The implication of our research is twofold. First, it sim-
plifies the process of designing new sketching algorithms by
showing that the focus can be shifted away from the distri-
bution of hash values. Second, it presents Pareto sketching as
an example of a technique that is not only effective but also
stands as evidence supporting our theoretical assertion.

Pareto sketching, the method we introduced, performs on
par with the existing exponential sketching technique. This
serves as a practical demonstration that the efficiency of
cardinality estimation can be maintained without the need to
tailor the hash value distribution to the estimator.

In essence, our work guides future endeavors in the realm of
data stream analysis away from distribution-dependent designs
towards potentially more critical aspects that contribute to
estimator performance. By detangling the relationship between
hash value distributions and the Cramér-Rao lower bound, we
pave the way for more versatile and theoretically grounded
approaches to cardinality estimation.
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