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ABSTRACT

Multi-modal distribution in robotic manipulation action sequences poses critical
challenges for imitation learning. To this end, existing approaches often model the
action space as either a discrete set of tokens or a continuous, latent-variable dis-
tribution. However, both approaches present trade-offs: some methods discretize
actions into tokens and therefore lose fine-grained action variations, while oth-
ers generate continuous actions in a single stage tend to produce unstable mode
transitions. To address these limitations, we propose Primary-Fine Decoupling
for Action Generation (PF-DAG), a two-stage framework that decouples coarse
action consistency from fine-grained variations. First, we compress action chunks
into a small set of discrete modes, enabling a lightweight policy to select consis-
tent coarse modes and avoid mode bouncing. Second, a mode conditioned Mean-
Flow policy is learned to generate high-fidelity continuous actions. Theoretically,
we prove PF-DAG’s two-stage design achieves a strictly lower MSE bound than
single-stage generative policies. Empirically, PF-DAG outperforms state-of-the-
art baselines across 56 tasks from Adroit, DexArt, and MetaWorld benchmarks. It
further generalizes to real-world tactile dexterous manipulation tasks. Our work
demonstrates that explicit mode-level decoupling enables both robust multi-modal
modeling and reactive closed-loop control for robotic manipulation.

1 INTRODUCTION

In robotic manipulation, capturing multi-modal distributions in action sequences is essential for
learning robust and reliable imitation policies ( s ; s ). Offline expert
trajectories often admit multiple valid actions for the same or similar observations: for example,
when an obstacle lies in front of the end-effector, demonstrators may steer either left or right. This
richness of valid behaviors complicates learning from offline data and thus motivates the develop-
ment of various imitation learning approaches to tackle this challenge.

Among these imitation learning approaches, Behavioral Cloning (BC) treats policy learning as su-
pervised regression a = 7r( ) and therefore commonly collapses multiple valid actions into a single
mean ( s s ), as visualized in Figure 1 (a). Action discretiza-
tion represents multiple modes by predicting categorical bins ( ,

s ), but coarse discretization introduces reconstruction error and temporal dlS-
continuities ( , ), failing to match the smoothness of human demonstrations (see
Figure 1 (b)). Generative latent-variable methods instead model a = 7 (o, ) so that sampling differ-
ent z yields different plausible actions ( s ; s ). However, independent
per-step resampling of z tends to produce random switches among modes ( , ) (see
Figure 1 (¢)). Such erratic transitions directly lead to trajectory discontinuities and end-effector pose
instability, while further undermining the overall task execution accuracy.

We observe that many manipulation tasks naturally decompose actions into a small set of discrete,
interpretable primary modes (coarse prototypes such as “lift-and-fold” or “lift-and-rotate”) together
with continuous, within-mode variations that adjust details like grasp offsets and minor trajectory
tweaks. Intuitively, primary modes capture coarse, discrete decisions while within-mode residuals
encode fine-grained variations. This observation motivates an explicit separation between i) se-
lecting a coarse, discrete mode consistently and ii) generating the fine-grained continuous action
conditioned on that mode.
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Figure 1: A 2D example illustrating multi-modal expert demonstrations and trajectories predicted
by different imitation policies. Behavioral cloning predictions collapse into a single mean. Discrete
Policy succeeds but introduces temporal discontinuities. Generative Policy bounces between mode
1 and 2. Our work predicts consistent and fine-grained trajectory.

Motivated by the above, we propose Primary-Fine Decoupling for Action Generation (PF-DAG),
a two-stage imitation framework that explicitly separates primary mode selection from continuous
action generation. Concretely, PF-DAG first learns a discrete vocabulary of primary modes and a
lightweight policy that greedily selects a mode coherently. Then, we introduce a mode conditioned
MeanFlow policy, which is a one-step continuous decoder to generate high-fidelity actions condi-
tioned on the selected mode and the current observation. This explicit two-stage decomposition
preserves intra-mode variations while reducing mode bouncing by enforcing stable primary choices.

We validate PF-DAG with theoretical and empirical evidence. Among existing methods, single-
stage generative policies ( , ) are the most direct and competitive
end-to-end approach for modeling contmuous multi-modal action distributions, so we focus our
theoretical comparison on this family. Under realistic mode-variance assumptions we show that
the two-stage design attains a no-higher optimal MSE lower bound than single-stage generative
baselines, with a strict improvement whenever the inter-mode variance term is positive. Empirically
we test PF-DAG across 56 simulation manipulation tasks (including high-DOF dexterous hands and
low-DOF grippers) as well as on real world tactile dexterous manipulation. Results show consistent
improvements in accuracy, stability, and sample efficiency compared to diffusion and flow-based
baselines, and ablations quantify the contribution of key components. Together, these results suggest
that explicitly decoupling coarse discrete decisions from fine-grained continuous generation yields
practical and statistical advantages for closed-loop robotic imitation.

2 RELATED WORK

2.1 BEHAVIOR CLONING

Behavior cloning (BC) casts pohcy learning as supervised regression on demonstration data (

; ; s ). InBC, a pohcy is trained
to predlct the expert’s actlon for each observed state yielding a deterministic mapping from states
to actions. This approach is highly sample-efficient in practice (e.g. for pick-and-place tasks), but it
suffers from well-known 11m1tat10ns In particular, BC policies tend to underfit multi-modal behav-
ior ( s s ; s ; s ) and also
incur compounding errors at test time ( ; ;

). To mitigate these issues, recent work has explored more expresswe BC models Imp11c1t
BC and energy-based models learn an action-energy landscape per state and solve for actions by
optimization ( , ), while mixture-density networks and latent-variable BC attempt
to represent multi-modal distributions explicitly ( , ).

2.2 DISCRETE PoLICY

Discretizing continuous robot actions is viewed as tokenization: converting a high-frequency, high-
dimensional control signal into a sequence of discrete symbols so that standard sequence-modeling
methods can be applied. Framing actions as tokens has two immediate benefits for manipulation
imitation. First, next-token prediction over a discrete vocabulary represents multi-modal conditional
action distributions without collapsing modes into a single mean. Second, sequence models bring
powerful context modeling and scalable pretraining recipes from language and vision to control,
enabling cross-task and cross-embodiment generalization when token vocabularies are shared or
aligned. Recent Vision-Language-Action (VLA) efforts articulate this reframing and its practical
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advantages for large, generalist robot policies ( s ; R ;

; ; ; ; ’ : ’ )-

Existing action tokenizers fall into a few broad families. The simplest and most commonly used
approach maps each continuous action dimension at each step to one of a fixed set of bins (

, , ). Frequency-space methods like FAST (

, ) departs from 1t and 1nstead compresses action chunks using a time-series transform
and lightweight quantization. Others use Vector Quantization (VQ) as latent tokenizers. VQ-based
tokenizers learn a shared codebook of action atoms and quantize continuous latent representations
to nearest codebook entries ( s ; s ). While effective at capturing multi-
modal action distributions, these approaches inherently trade off reconstruction fidelity for discrete
simplicity. Our work differs by leveraging tokenization solely for high-level primary mode selection.

2.3  GENERATIVE PoOLICY

A large class of imitation methods treat policy generation as a stochastic generative problem by
introducing latent variables. In this view, a policy is written as a = 7(0, z) with z sampled from
a learned prior. This formulation naturally represents multi-modal conditional action distributions
because sampling different z values yields different valid actions for the same observation. Action
Chunking with Transformers (ACT) ( , ) is a sequence generator with Conditional
Variational Autoencoder (CVAE) as backend. Diffusion Policy (DP) ( , ) treat action
generation as conditional denoising. Starting from noise, the action is iteratively refined via a learned
score or denoiser condrtroned on observation. More recent normalizing-flow policies ( ,

, ) provide tractable density estimation and efficient sampling
whrle representmg complex multi-modal action distributions. Although generative policies repre-

sent multi-modal distributions, they often face mode bouncing ( s ), inference cost (
s ), chunk trade-offs ( s ). Other hierarchical approaches, such as Hierar-
chical Diffusion Policy (HDP) ( , ), also use a high-level policy to guide a low-level

generator. However, HDP is designed to rely on explicit, task-specific heuristics like contact-point
waypoints to define its hierarchy. In contrast, our PF-DAG learns its primary modes end-to-end
directly from action-chunk clusters themselves, offering a more general abstraction not tied to pre-
defined heuristics. Thus, we propose to combine the strengths of action tokenization with expressive
generative decoders that handle the residual continuous variations. Our PF-DAG decouples the pri-
mary discrete mode selection from the fine-grained action generation and reduces mode bouncing
while preserving continuous variations.

2.4 HIERARCHICAL AND RESIDUAL POLICIES

Our work is also situated within the broader context of hierarchical and residual policies for robot
learning ( , ; ; ; s ). These ap-
proaches commonly decompose the complex control problem into a hrgh level policy that selects a
skill, sub-goal, or context, and a low-level policy that executes control conditioned on the high-level
selection ( , ). For instance, some methods learn residual policies
that adapt a base controller ( s ), while others focus on drscovermg discrete skills
from demonstration data or language guidance ( , ; ,

). While PF-DAG shares this general hierarchical structure, its primary motrvatron and techm-
cal design are distinct. Many hierarchical methods focus on long-horizon planning or unsupervised
skill discovery. In contrast, PF-DAG is specifically designed to address the problem of mode bounc-
ing inherent in single-stage generative policies when modeling multi-modal action distributions at a
fine temporal scale.

3 PF-DAG FORMULATION AND DESIGN

This section first defines the task formulation as a closed-loop action-sequence prediction problem,
and then presents the three main components of our approach: i) Observation Feature Extraction, ii)
a compact discrete representation learned with a Vector-Quantized VAE (VQ-VAE) (
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Figure 2: Overview of our PF-DAG framework. The input observation features are extracted via
Observation Feature Extraction and then fed to the Primary Mode Policy 7;. The GT action chunks
are compressed into discrete primary modes using VQ-VAE and supervise 71, which are only used
in training stage. The Mode Conditioned MeanFlow Policy 7o takes the selected primary mode m
and observation features as input, generating high-fidelity continuous actions.

, ) and a lightweight Primary Mode Policy that predicts those discrete modes, and iii) a
mode conditioned one-step continuous decoder based on MeanFlow ( s ). Finally, we
give a theoretical analysis that quantifies why a two-stage, coarse-to-fine decomposition reduces the
MSE lower bound compared to single-stage generative models.

3.1 CLOSED-LOOP ACTION SEQUENCE PREDICTION

Similar to previous work ( s : s ), we formulate the manipulation task
as closed-loop action sequence prediction. Concretely, at time ¢, the observation is o; = (p, S, ft),
where p; denotes a fixed-size point cloud, s; € R% denotes robot proprioception, f; € R>*120x3
represents tactile sensing data from the hand’s 5 fingertips. For the dimension of f;, the first di-
mension 5 corresponds to the 5 individual fingertips, the 120 denotes the number of tactile taxels
embedded in each fingertip and the last 3 represents the 3-dimensional force vector. The policy
predicts an action chunk a; € R7»*% and executes the first 7,, < T, steps before re-planning.

a; ~ m(oy), execute a;[0 : Ty, — 1], thent < ¢ + Ty, (D

This yields a receding-horizon closed-loop control scheme that preserves temporal coherence and
allows fast reaction to new observations. Hyperparameters are presented in Appendix A.4

3.2 OBSERVATION FEATURE EXTRACTION

We first extract the shared observation embedding from input observation o; = (py, s¢, f;). Fol-
lowing a simple PointNet-style ( , ) pipeline, each point’s coordinates are lifted by an
MLP, and LayerNorm ( , ) is applied inside that per-point MLP. Per-point features are
aggregated by a symmetric max-pooling. The proprioception s; and tactile sensing f; are passed
through respective MLPs and then concatenated with the point-cloud embedding. A final projection
MLP fuses the concatenated vector into the shared observation embedding.

3.3 PRIMARY MODE PoLICY AND VQ-VAE

Given the shared observation embedding, the framework first selects a primary mode. This subsec-
tion describes how we learn a compact VQ-VAE codebook for action chunks and train a lightweight
classifier to predict these primary modes from the observation embedding.

Vector Quantized Variational Autoencoder. Continuous action chunks a are compressed into
a small discrete set of primary modes m € {1,..., K} using VQ-VAE. Let the deterministic
encoder be Ey : RT»*de — RD and decoder Dy, : RP? — RTrXde. Let the codebook be
C = {e, € RP}E | with codebook size K. We choose K to be small to capture coarse primary
action prototypes and make primary policy easy to learn. Given an action chunk a, the encoder
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produces z. = E4(a) and we quantize it to the nearest codebook vector:
k* = arg ming||z. — eg]|2, Z = e, m = k*. 2)

We define m as the primary mode. Reconstruction is a(™) = Dy (z). We train the VQ-VAE with
the standard commitment and reconstruction terms:

Lvo(a) = a—Dy(2)[3 + [sglEs(a)] — 2[5 + BllEs(a) - sglz]l3. 3)

where sg[-] denotes stop-gradient and 3 is the commitment weight. The primary policy is a classifier
m1(m | o) trained to predict the VQ code m from observation o. At test time, we select the discrete
mode m for the current chunk by choosing the highest predicted probability from 7;. Both encoder
E4 and decoder D, are implemented as compact MLPs.

Primary Mode Policy. The primary policy 71 (m | 0) maps the shared observation embedding to
a categorical distribution over the K VQ bins. We implement 7, as a lightweight MLP classifier.
During training 7, is optimized with a standard cross-entropy objective that matches the encoder-
assigned VQ indices. At test time we use greedy mode selection for reliability. The separation of
primary-mode selection as an explicit classifier drastically reduces coarse mode bouncing.

3.4 MODE CONDITIONED MEANFLOW POLICY

After selecting a primary mode m, we recover a high-quality continuous action chunk that respects
the selected mode. To balance generation quality and real-time responsiveness, we use a one-step
generative modeling inspired by MeanFlow ( , ). Instead of multi-step denoising
iterations, a learned average velocity field predicts the displacement from noise to the desired action
in one function evaluation. Let 7 be the selected discrete mode and a(™) := Dy (ey,) be the VQ-
decoder reconstruction of the mode. The role of the one-step generator is to produce a residual Aa
conditioned on observation o and mode m, such that the final action chunk is & = 4™ + Aa.

Mode and Observation Conditioned Average Velocity Field. Following MeanFlow (

), we implement the residual as an average velocity field vy (zT, T, T; O m) where z, denotes
a state on the interpolation path between noise sample and the target action, 7 € [0, 1] is the in-
terpolation start time, and » € (0, 1] is the end time. The MeanFlow field is trained to match the
ground-truth average velocity over arbitrary intervals [r, 7], which is written as

V(2 7r) = s % — (r—7) (G G+ 5 ). )

The ”if; is the instantaneous velocity of z, at time r. % describes how the average velocity

responds to perturbations in the residual draft, and % captures how it evolves as the interpolation
approaches the target residual. We train v with squared-error objective that supervises the predicted

average velocity. More detailed derivations of the formulation are provided in Appendix A.3.

Implementation Details. For backbone modeling we use a DiT-style transformer backbone (

, ). Each action chunk is represented as a sequence of tokens. The time-related
scalars 7 and r are expanded via sinusoidal embeddings ( s ), which are added to
observation embedding, as well as a learnable embedding of the discrete mode m. During training,
(7,7) is sampled from a uniform distribution and z is from standard normal distribution.

3.5 THEORETICAL ANALYSIS

With the two-stage architecture defined, we now provide a concise theoretical analysis that explains
why this coarse-to-fine decomposition strictly reduces the minimum achievable MSE compared to
single-stage generative predictors. Single-stage generative methods produce actions by sampling a
latent code z ~ N(0,I) and decoding &, = m(0,2z). Under the squared-error criterion, the best
point estimate is the conditional expectation a;(o) = E,[r(0,2z)]. The resulting expected MSE
decomposes into an irreducible data variance term and a model bias:

Eo[|la — &}(0)||%] = Eo[Var(a | 0)] +Eo[|Efa | o] — &}(0)[?]. 5)

When the model is unbiased the second term vanishes and the minimum achievable error equals
Eo[Var(a | 0)].
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Adroit DexArt MetaWorld
Method Hammer Door Pen Laptop Faucet Toilet Bucket Medium (6) Hard (5) Success
IBC ‘ 0.00-£0.00 0.00-£0.00 0.10-+0.01 0.01+0.01 0.07+0.02 0.15+0.01 0.00-£0.00 0.11+0.02 0.09-+0.03 0.08
BC-H 0.10+0.09  0.07+0.05  0.16+0.03 | 0.09+0.02  0.13+0.04  0.21+0.02  0.10+0.01 0.15+0.03 0.18+0.05 0.15
DP | 0.48+017  0.50+0.05  0.25+0.04 | 0.69+0.04  0.23+0.08  0.58+0.02  0.46+0.01 0.20+0.05 0.19+0.03 0.30
DP3 1.00+0.00 0.62+0.04 0.43+0.06 0.83+0.01 0.63+0.02  0.82+0.04  0.46+0.02 0.45+0.05 0.35+0.02 0.51
FlowPolicy 1.00+0.00 0.58+0.05 0.53+0.12 0.85+0.02 0.42+0.10  0.80+0.05 0.39+0.06 0.47+0.07 0.37+0.07 0.51

PF-DAG (Ours) 1.00+0.00 0.65+0.03 0.65+0.01 | 0.90+0.02 0.72+0.05 0.82+0.02 0.47+0.02 | 0.68+0.04 0.72+0.03 0.72

Table 1: Quantitative comparison of PF-DAG against state-of-the-art baselines on 18 tasks from
three simulation benchmarks.

In our two-stage scheme the primary stage selects a discrete mode r2(0) and the second stage outputs
a(o,m,z) = ma(0, m,z). For any fixed (0, m), the optimal MSE predictor collapses the stochastic-
ity in z to the conditional expectation 4* (o, m) = E,[n2(0, m, z)], yielding the irreducible residual
Eo m[Var(a | o,m)] when the model is unbiased. By the law of total variance,

Eo,m [Var(a | o,m)] =E, [Var(a | 0)] —Eo [Varm|0(]E[a | o,m])]7 (6)

which is no greater than Eq[Var(a | 0)], and is strictly smaller whenever Var,,o(E[a | 0,m]) > 0.
Intuitively, discretizing into primary modes removes inter-mode variance from the residual error,
lowering the MSE bound compared to single-stage latent samplers.

4 EXPERIMENTS
4.1 SIMULATION EVALUATION

Benchmarks and Datasets. We evaluate our method on manipulation benchmarks that cover a

broad range of control domains. We use Adroit ( R ), DexArt ( R )
and MetaWorld ( , ) as our simulation benchmarks. These are implemented on physics
engines like MuJoCo ( R ) and IsaacGym ( s ). For fair

comparison we adopt the same task splits and data collection pipelines as in prior work ( ,

): Adroit tasks with high-dimensional Shadow hand and MetaWorld with low-dimensional
gripper are trained with 10 expert demos per task, while DexArt with Allegro hand uses 90 expert
demos. Demonstrations are collected using scripted policies for MetaWorld tasks, and RL-trained
expert agents ( ; s ) for Adroit and DexArt. Each experiment
is run with three random eeeds For each seed we evaluate the policy for 20 episodes every 200
training epochs and then compute the average of the top-5 highest success rates ( , ).
The final metric is the mean and standard deviation across the three seeds.

Experiment Setup. All networks are optimized with AdamW ( , ). We
apply a short linear warmup followed by cosine decay for the learning rate. Training proceeds
in stages: first we pretrain the VQ-VAE to learn compact primary prototypes; then we freeze the
codebook and jointly train the Primary Mode Policy 7 (cross-entropy to the VQ indices) and the
mode-conditioned MeanFlow generator 0y (squared-error supervision on sampled (7, r) intervals).
At inference we set (7,7) = (0, 1) for one-step continuous action chunk generation.

Baselines. We compare against the following representative baselines. Implicit Behavioral Cloning
(IBCO) ( , ) serves as a representative implicit BC method. BC-H ( ,

) represents non-generative approaches for mitigating mode instability. Diffusion Policy
(DP) ( , ) pioneers the original formulation of image-conditioned diffusion-based poli-
cies. While 3D Diffusion Policy (DP3) ( , ) represents a recent advancement in 3D-
point-cloud conditioned diffusion-based policies, Flow Policy (FP) ( , ) falls into
the category of normalizing-flow-based policy variants. These baselines provide a spectrum from
energy-based model to expressive generative policies.

Key Findings. Across Adroit, DexArt and MetaWorld, our method substantially outperforms dif-
fusion and other baselines. Table 1 highlights our work performance on 18 core tasks, while com-
prehensive results across all 56 tasks are detailed in Appendix A.2. Beyond that, our two-stage
design preserves primary-mode consistency even when action chunks are short, which approaches
closed-loop and highly reactive operation. Meanwhile, our primary-mode tiny MLP and the one-
step generator together yield fast generation while maintaining high success rates, as discussed in
Ablations section. These findings indicate that explicitly decoupling coarse discrete mode selection
from continuous intra-mode variation yields both statistical and practical benefits.
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(a) Mode Collapse ‘

Figure 3: Visual comparison of failure modes in baselines versus PF-DAG. Mode Collapse outputs
“average” actions, while Mode Bouncing randomly switches between consecutive time steps.

(b) Mode Bouncing

Tusk D inti Task Parameters Success Rate
ask Lescription Tactile  Action Dim | Vanilla BC

# Variations # Demos  End Effector DP3  PF-DAG (Ours)
Pick Cube 3 50 Gripper X 7+1 0.20 0.60 0.70
Place Baymax 1 10 Gripper X 7+1 0.40 0.85 0.90
Wipe Table 5 50 XHand v 7+12 0.00 0.55 0.70
Place Toy Into Bin 4 50 XHand v 7+12 0.00 0.60 0.80

Table 2: Quantitative comparison of success rates of different methods on real world manipulation
tasks. The table presents key task parameters alongside the performance of each method.

4.2 REAL WORLD EVALUATION

Hardware. We evaluate our method on two single-arm hardware configurations commonly used in
manipulation research: a) an UFACTORY xArm manipulator ! equipped with a two-finger parallel
gripper, and b) an xArm paired with ROBOTERA XHand ? for dexterous manipulation. For visual
sensing we use a third-person Intel RealSense L515 LiDAR camera that provides aligned color and
depth frames. For the xArm + gripper setup we additionally use a low-cost 3D-printed demonstra-
tion arm from GELLO (Wu et al., 2024) as teleoperation device. For the xArm + XHand setup,
human hand motion is captured from a Meta Quest 3 headset and retargeted to the XHand. All
computation runs on a single workstation equipped with an NVIDIA RTX 4090 laptop GPU. The
robot and sensors are controlled over a local area network.

Teleoperation. We collect demonstrations with
two teleoperation pipelines. xArm + gripper
demonstrations are collected using the GELLO
framework (Wu et al., 2024), a low-cost and in-
tuitive teleoperation system that allows opera-
tors to demonstrate end-effector motions with a
separate low-cost manipulator. xArm + XHand
demonstrations are recorded by capturing hu-
man hand kinematics via a Meta Quest 3 head-
set. The recorded wrist 6-DoF pose is mapped

Hardware

Manipulated
Objects

' xArmv7

3D
+ Printed

to the xArm end-effector via Inverse Kinemat-
ics (IK), finger joint values are retargeted to the
XHand via AnyTeleop (Qin et al., 2023).

Headset

Figure 4: Hardware and manipulated objects used
in real world experiments.

Observation and Action Spaces. Visual input is the RGB-D stream from the RealSense L515.
Frames are backprojected to form a colored point cloud. We convert each frame into a fixed-size
point cloud by applying Farthest Point Sampling. Proprioceptive observations include the xArm
joint angles. When the XHand is integrated, the observation space is extended to include the
XHand’s joint angles as additional dimensions. For the XHand configuration we additionally log
tactile readings from fingertip sensors. All observations are normalized using the statistics com-
puted on the training split. The policy outputs actions directly in joint space for both setups. We
operate in absolute joint position control.

Baselines. We compare our method to two baselines. Vanilla BC processes observations through
the same Observation Feature Extraction pipeline used by our method, and a 3-layer MLP is trained

! https://www.ufactory.cc 2 https://www.robotera.com
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Ablations Benchmarks
w.PM  w. MF Token. #Modes | Adroit (3) DexArt(4) MetaWorld (11) | Weighted Success
v v VQ-VAE 64 0.77+0.03 0.72+0.04 0.70+0.02 0.72
v X VQ-VAE 64 0.02+0.01 0.00+0.00 0.02+0.01 0.01
X v VQ-VAE 64 0.62+0.02 0.65+0.01 0.51+0.03 0.56
v v VQ-VAE 8 0.72+0.03 0.70+0.02 0.55+0.05 0.61
v v VQ-VAE 1024 0.66+0.02 0.68+0.03 0.52+0.06 0.58
v v K-means 64 0.76+0.05 0.70+0.01 0.69-+0.02 0.70

Table 3: Ablation study on the impact of PF-DAG’s key components and hyperparameters. w.
PM denotes whether the primary mode policy is included. w. MF indicates whether the mode-
conditioned MeanFlow policy is included. Token. means action tokenization method. # Modes
represents the number of discrete primary modes.
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Figure 5: Illustration of critical properties of PF-DAG. (a) Action chunks are projected to 2D via
PCA, colored by their assigned primary mode. (b) PF-DAG’s one-step MeanFlow decoder achieves
FPS comparable to 1-NFE DP3 while maintaining significantly higher success. (c) PF-DAG pre-
serves high success even with short chunks by avoiding primary mode bouncing.

to regress actions in a standard behavior cloning setup ( , ). DP3 ( , ) is
a diffusion-based generative policy operating on 3D point-cloud-conditioned actions. At inference
DP3 employs DDIM ( , ) denoising to obtain actions. Both baselines are trained on
the identical demonstration sets and evaluated under the same closed-loop control as our method.

Tasks. We evaluate on tasks spanning low-DOF gripper control and high-DOF tactile dexterous
manipulation. Low-DOF examples include a Pick Cube task (gripper picks a cube from randomized
table locations) and a Place Baymax task (place a toy “Baymax” from table into a cabinet). High-
DOF experiments use a 12-DOF dexterous hand equipped with tactile sensing and include contact-
rich tasks such as Wipe Table (multiple possible wiping contact points) and Place Toy Into Bin
(multiple candidate toy-boxes yielding multi-modal valid outcomes). For task like Place Baymax we
exploit a pretraining to fine-tuning regime. Models pretrained on a source task require substantially
fewer target-task demonstrations to reach competitive performance.

Result Analysis. Our method consistently outperforms both baselines in success rate across low-
DOF and high-DOF/tactile tasks (see Table 2). Qualitatively, Figure 3 visualizes common failure
modes of baselines, while our policy commits to coherent, single-mode rollouts when appropriate
and preserves intra-mode variations elsewhere. Typical failure cases for our method occur at out-of-
distribution object placements or when tactile sensing is intermittently noisy. These failures are rare
and amenable to mitigation via modest additional demonstrations or data augmentation.

4.3  ABLATIONS

Primary Mode and MeanFlow Ablation. We ablate the two core components of our pipeline to es-
tablish their individual importance. First is to remove the Mode-conditioned MeanFlow Policy (MF)
so that the system simply uses the Primary Mode Policy (PM)’s predicted VQ code and decodes it
via the VQ-VAE reconstruction as the final action. Second is to remove the PM so that MF attempts
to predict actions without being conditioned on a discrete mode. Results are reported in Table 3.
Removing MF collapses performance almost completely, showing that a raw VQ reconstruction is
insufficient as the final action when the number of modes is limited. The quantization error produces
large reconstruction distortions that destroy task success. Conversely, removing PM yields a 0.16
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Figure 6: Visualization of the mode probability distribution predicted by the Primary Mode Policy
m; at three selected frames. The vertical axis of the heatmap represents the mode index.

absolute drop in success, which demonstrates that an explicit primary-mode selection substantially
eases the downstream continuous generation problem and prevents coarse-mode bouncing.

Mode Capacity and Tokenization. We study how the number of discrete primary modes K
and the choice of tokenization affect the PM learning and final task performance. We vary
K € {8,64,1024} and compare VQ-VAE with a k-means tokenization baseline. Results appear
in Table 3. A small K helps the PM to learn, but it risks underfitting when the task’s action-chunk
distribution is complex. Large K increases expressivity but makes the PM hard to learn. In our do-
mains the trade-off is modest and K = 64 achieves a good balance across tasks. Different tokenizers
produce similar final success rates, suggesting the approach is robust to discretization methods. Our
method mainly needs a reasonable set of coarse modes rather than a specific quantizer. To further
illustrate mode structure we project action-chunks into 2D (PCA) and color by assigned mode. The
visualization shows clear coarse-mode clusters on the action manifold, as visualized in Figure 5 (a).
We also visualize the policy’s outputs at different timesteps (see Figure 6). For a more detailed
qualitative analysis of the primary mode policy’s behavior, see Appendix A.1.

Ablation on Meanflow. This ablation aims to eval-
uate the performance difference between MeanFlow  Variations  ODE Solver Success
and Conditional Flow Matching (CFM) (Lipman

et al., 2022), where CEM is tested under different ~CEM I-NFE Euler  0.69+0.03
Ordinary Differential Equation (ODE) numerical in- CFM 10-NFE Euler  0.69:+0.02
tegration methods. Though CFM theoretically de- CFM Runge-Kutta  0.68+0.01

Meanflow 1-NFE 0.72+0.02

fines a constant velocity field when mapping from
noise to target distribution, the parameterized neural Table 4: Comparison of success for Mean-

network introduces nonlinearity in numerical com- Flow (MF) and Conditional Flow Matching

putations. This makes the exploration of diverse .
ODE integrators non-trivial. For Runge-Kutta inte- (CFM), varying the ODE solver and NFE.

gration, we adopt the Dormand-Prince 5 method, a widely used choice for adaptive-stepsize ODE
solving. As shown in Table 4, varying ODE numerical integrators yields negligible performance
improvements for CFM. In contrast, replacing CFM with MeanFlow results in a performance gain.

Speed-Accuracy Trade-off. We examine how the number of function evaluations (NFE) during
inference affects both inference speed and success. We compare our one-step MeanFlow decoder
to DP3 at different NFE settings, plots are in Figure 5 (b). Our one-step generator achieves infer-
ence speed comparable to DP3 with 1-NFE while delivering substantially higher success. More
generally, we observe that within the tested range the total NFE has a surprisingly small influence
on success, which suggests that for these simulated tasks the NFE is not the dominant bottleneck.
We hypothesize this limited sensitivity is due to the tasks’ tolerance to small action perturbations in
simulation.

Action-chunk Length and Reactivity. All experiments here are conducted on real settings de-
scribed in the Real World Evaluation section. We sweep action-chunk length and measure success.
Shorter chunks make the controller more open-loop reactive and therefore better able to respond to
unexpected environment changes. However, short chunks also tend to increase trajectory jitter and
occasional stoppages. Our method maintains relatively high success even at short chunk lengths,
showing the two-stage design preserves primary-mode consistency while allowing rapid reactivity.
Results appear in Figure 5 (c).
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4.4 FAILURE CASES AND LIMITATIONS

While PF-DAG demonstrates strong performance across a wide range of manipulation benchmarks,
it has two notable limitations. First, because primary-mode selection operates on discretized action
chunks, the method exhibits reduced temporal granularity in very high-dynamics, low-latency tasks.
Second, the discrete codebook introduces a trade-off between expressivity and learnability. Larger
K improves representational capacity but makes primary-policy learning harder, while smaller K
constrains diversity. We address this in the paper via targeted ablations and validation sweeps.
Promising directions to reduce per-task tuning include shared or meta-learned codebooks, end-to-
end distillation, and multi-task pretraining to improve generalization and reduce pipeline overhead.

5 CONCLUSION

In this work we present PF-DAG, a two-stage imitation learning framework that decouples primary
mode selection from fine-grained action generation. PF-DAG first uses a VQ-VAE to tokenize action
chunks into discrete modes. A lightweight primary policy is then trained to predict these modes from
observations, allowing for stable and consistent coarse mode selection. The framework then employs
a mode conditioned MeanFlow policy to produce high-fidelity continuous actions conditioned on the
selected mode. We prove that, under realistic variance assumptions, PF-DAG attains a strictly lower
MSE bound than comparable single-stage generative policies. Empirically, PF-DAG outperforms
state-of-the-art baselines on 56 simulated tasks and on real world tactile dexterous manipulation.
Future work will extend PF-DAG to long-horizon hierarchical control and investigate uncertainty-
aware refiners for improved robustness.
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A APPENDIX

A.1 VISUALIZING PRIMARY MODE DISTRIBUTION

To provide a more intuitive understanding of the Primary Mode Policy 7, we present a qualita-
tive analysis of its behavior during evaluation episodes. Figure 7 visualizes the policy’s outputs at
selected keyframes from four representative simulation tasks. For each keyframe, the policy’s in-
put point cloud p; is shown alongside a heatmap representing the predicted probability distribution,
over the discrete modes in the VQ codebook. These visualizations reveal that the policy learns a
structured and context-aware mapping from inputs to high-level action primitives. As the episode
progresses and the observation changes (e.g. from approaching an object to making contact) the
distribution of predicted modes shifts accordingly, concentrating probability mass on a sparse set of
task-relevant modes.

A.2 MORE SIMULATION RESULTS

To further verify the generality and stability of PF-DAG in robotic manipulation tasks, this appendix
supplements the quantitative experimental results of PF-DAG and mainstream baselines on more
tasks under the Adroit, DexArt, and MetaWorld benchmarks. These tasks cover both low-DOF
gripper control and high-DOF dexterous hand manipulation, including additional fine-grained oper-
ations and complex task categories. All experimental settings are consistent with Section 6 of the
main text, including the data collection pipeline, training hyperparameters, and evaluation metrics.
The results in Table 5 further confirm that PF-DAG maintains consistent performance advantages
over baselines across tasks of varying complexities.

A.3 MEANFLOW DERIVATION

This section provides a detailed derivation of the training objective for our mode-conditioned Mean-
Flow policy, as mentioned in Section 3.4. The formulation is based on the principles introduced by
MeanFlow ( , ), which models the average velocity of a generative path rather than
the instantaneous velocity.

Let the path between a noise sample 2 ~ N'(0, ) and the target action residual Aa be defined by

an interpolation z,. for a time variable r € [0, 1]. The instantaneous velocity at time r is denoted by

v(zp, 1) = %.

The core concept is to define an average velocity field 7(z,, 7, r; 0, m) over an arbitrary time interval
[1, 7], where o is the observation and m is the selected primary mode. This field is formally defined
as the displacement between two points on the path, divided by the time interval:

1 T
/ v(zs, 55.0,m)ds, (7

r—T
where s is the integration variable for time. To make this definition amenable to training, we first
rewrite it by clearing the denominator:

(2, 7, 730,m) £

r

(r —71)o(z, 7,7;0,m) = / v(zs, 8;0,m)ds. (8)

T

Next, we differentiate both sides with respect to the end time r, treating the start time 7 as a constant.
Applying the product rule to the left-hand side and the Fundamental Theorem of Calculus to the
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Table 5: Quantitative comparison of PF-DAG against baselines on more tasks from Adroit, DexArt,
and MetaWorld benchmarks.

Adroit DexArt Meta-World (Easy)
Alg \ Task Hammer Door Pen | Laptop Faucet Toilet Bucket | Button Press Button Press Topdown
Diffusion Policy 45+5 37+2  13+2 | 6944 23+8  H58+2  46+1 99+1 98+1
3D Diffusion Policy | 100+o  62+4 4346 | 83%1 63+2  82+4  46+2 100+0 1000
PF-DAG (Ours) 100+0 65+3 65+3 | 90+2 T2+5 82+2 65+3 100+0 100+0
Meta-World (Easy)
Alg \ Task Button Press Topdown Wall ~ Button Press Wall ~ Coffee Button ~Dial Turn  Door Close  Door Lock  Door Open
Diffusion Policy 96+3 97+3 99+1 63+10 100+o0 86+s8 98+3
3D Diffusion Policy 99+2 99+1 1000 66+1 1000 9842 99+1
PF-DAG (Ours) 100+0 100+0 100+0 55410 100+0 9446 100+0
Meta-World (Easy)
Alg \ Task Door Unlock  Drawer Close Drawer Open  Faucet Close Faucet Open Handle Press Handle Pull
Diffusion Policy | 98+3 100+0 93+3 100+o0 100=+o0 81+4 27+22
3D Diffusion Policy 100+0 100+0 100+0 100+0 100+0 100+0 53411
PF-DAG (Ours) 100+0 100+0 100+0 100+0 100+0 100+0 55+5
Meta-World (Easy)
Alg \ Task Handle Press Side Handle Pull Side Lever Pull  Plate Slide  Plate Slide Back  Plate Slide Back Side  Plate Slide Side
Diffusion Policy 100-+o0 23+17 49+5 83+4 99-+0 100-+o0 100-+o0
3D Diffusion Policy 100+0 85+3 79+8 100+1 99+0 100-+o0 100-+o0
PF-DAG (Ours) 100+0 TT+4 80+6 100+0 100+0 100+0 100+0

‘ Meta-World (Easy) Meta-World (Medium)

Alg \ Task Reach Reach Wall Window Close Window Open Peg Unplug Side | Basketball Bin Picking
Diffusion Policy 18+2 59+7 100+0 100-+o0 T4+3 85+6 1544
3D Diffusion Policy | 24+1 68+3 100-+o0 100-to 7545 9812 34+30
PF-DAG (Ours) 29+t5 71+3 100+0 100+0 T4+6 98+2 30+15
Meta-World (Medium)
Alg \ Task Box Close Coffee Pull Coffee Push Hammer Peg Insert Side Push Wall ~ Soccer
Diffusion Policy 3045 3447 6744 15+6 3447 2043 14+4
3D Diffusion Policy 4243 8743 9443 7644 69+7 4948 18+3
PF-DAG (Ours) 70+5 89415 95+3 100+0 Tl+1 69+2 34+3
| Meta-World (Medium) | Meta-World (Hard)
Alg \ Task | Sweep Sweep Into | Assembly Hand Insert Pick Out of Hole Pick Place  Push
Diffusion Policy 18+s 10+4 15+1 9+2 0+0 0+0 30+3
3D Diffusion Policy | 96+3 1545 99+1 14+4 14+9 1244 51+3
PF-DAG (Ours) 9245 48+2 98+2 21+4 29+5 69+2 T5+2
Meta-World (Hard) Meta-World (Very Hard) Average
Alg \ Task Push Back Shelf Place Disassemble  Stick Pull ~ Stick Push  Pick Place Wall g
Diffusion Policy 0+0 1143 4347 1142 63+3 5+1 55.4
3D Diftusion Policy 0+0 17+10 69+4 2748 97+4 3548 72.5
PF-DAG (Ours) 6+5 5218 TT+7 59+6 100+0 82+6 79.6
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Figure 7: Qualitative visualization of the Primary Mode Policy (7;) at keyframes from four dif-
ferent simulation tasks. Each row corresponds to a single task episode. Within each row, three
keyframes show the point cloud observation (left) and the corresponding predicted probability dis-
tribution over the discrete primary modes (right) as a heatmap. The vertical axis of the heatmap
represents the mode index. The shifting patterns in the heatmaps demonstrate that the policy learns
a dynamic, context-dependent mapping from observation to a belief over high-level actions as the
task progresses.

right-hand side yields:

d ] d
=il = 4 [ ot ss ©
U(zp,T,1) + (r—T)%@(zT,T, r) =v(zp, 7). (10)

For clarity, we have omitted the conditioning on (o, m) in the last two steps. Rearranging the terms,
we arrive at the MeanFlow Identity, which establishes a fundamental relationship between the
average and instantaneous velocities:

0(zr,71) = 0(zp, ) = (1 = 7) - 0(2, T, 7). (1D

Sla

This identity provides a way to define a target for our neural network without computing an integral.
To do so, we must first express the total time derivative d%@ in a computable form. Since v is a
function of (z,, 7, ), we expand the total derivative using the chain rule:

d Qv dz, | Qudr _dudr

prClCERED Rl e mel sl mbs il why o

Given that %T =v(zp,7), Z—: = 0 (as 7 is independent of r), and % = 1, the expression simplifies
to:

a, o 0

0z  Or

12)

(13)

—(zp, 7, 7) = (20, 1)

dr
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Substituting this result (13) back into the MeanFlow Identity (11), we obtain an expression for the
average velocity that only depends on the instantaneous velocity v and the partial derivatives of v:

e 7ir) = () = (=) (0Garar) 2 + 51 ). (1)
This equation forms the basis for our training objective. We parameterize the average velocity field
with a neural network Uy (z,, 7, 7; 0, m). The right-hand side of the equation becomes the regression
target, where we replace the true partial derivatives of v with those of our network vy. Following
standard practice, we apply a stop-gradient operator, sg(-), to the target to prevent backpropagation
through the Jacobian-vector products, which stabilizes training.

The resulting target, Uz, is:

0y 0y ) (15)

Vigt = V(2p,7) —(r—7) | v(20,7)—=— + —
=10 = =) (0(ar 52 + 5
The instantaneous velocity v(z,,r) is substituted with the conditional velocity (i.e., the ground-
truth residual Aa minus the initial noise zg). The final loss function is the expected squared /5 error

between our network’s prediction and this supervised target:

£(9> - EAa,ZO,T,T ||170(zra 7,750, m) - sg("jtgt”lg . (16)

This objective allows the network vy to learn the average velocity field directly, enabling efficient
one-step generation of the action residual Aa at inference time.

A.4 IMPLEMENTATION AND TRAINING HYPERPARAMETERS

This subsection details the key hyperparameters used for training and implementing our PF-DAG.

Hyperparameter Description

Prediction Horizon T},  The total number of timesteps in a predicted action chunk. 32/16
Execution Horizon 7, = The number of timesteps from the chunk executed before re-planning.

Learning Rate The peak learning rate after the warmup phase.

Weight Decay The weight decay value for the AdamW optimizer.

Batch Size The number of samples processed per training step.

Codebook Size K The number of discrete primary modes in the VQ-VAE codebook.

Commitment Weight 3 The weight of the commitment loss term in the VQ-VAE objective.
VQ-VAE Latent Dim The dimensionality of the VQ-VAE latent space.

Table 6: Hyperparameters for the PF-DAG framework.

A.5 ABLATION STUDY ON MODE NUMBER

We present more results on mode number K, as seen in Table 7.

Ablations Benchmarks
# Modes Adroit (3)  DexArt (4) MetaWorld (11) | Weighted Success
64 0.77+0.03 0.72+0.04 0.70+0.02 0.72
8 0.72+0.03 0.70+0.02 0.55+0.05 0.61
16 0.79+0.02  0.71+0.03 0.68+0.01 0.70
32 0.76+0.03 0.71+0.02 0.67+0.05 0.70
128 0.77+0.01 0.69+0.03 0.67+0.03 0.69
1024 0.66+0.02 0.68+0.03 0.52+0.06 0.58

Table 7: Ablation study on the mode number K of PF-DAG.
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A.6 QUANTITATIVE STABILITY ANALYSIS

To quantitatively validate our claim that PF-DAG produces more stable trajectories by reducing
mode bouncing, we analyze the total end-effector jerk in our real-world experiments (Section 4.2),
where stability is critical. Jerk, a standard metric for motion smoothness, is the integral of the
squared magnitude of the third derivative of position over the trajectory duration 7"

T 43 2
Jerk = / )"

A lower total jerk indicates a physically smoother, less shaky, and more stable trajectory. We com-
puted this metric for the contact-rich “Wipe Table’ task from our real-world evaluation, comparing
PF-DAG against DP3. As shown in Table A.5, PF-DAG achieves significantly lower jerk, confirm-
ing it generates smoother, less erratic end-effector movements.

Method Total Jerk ({.)
DP3 1.25
PF-DAG (Ours) 0.45

Table 8: Total end-effector jerk (|) comparison on the real-world *Wipe Table’ task.

A.7 RIGOROUS ANALYSIS OF THE MSE TRADE-OFF

The analysis in the main text assumes an oracle 7; to illustrate how our architecture decomposes
variance. Here, we provide a more rigorous analysis of the practical trade-off, considering errors
from our learned 7.

A.7.1 THE PROBLEM WITH MSE-OPTIMAL PREDICTORS

The central thesis of our paper is that in multi-modal tasks, a predictor that is “optimal” under the
Mean Squared Error (MSE) criterion is undesirable. A standard Behavioral Cloning (BC) model
that predicts the conditional expectation a*(0) = E[alo] is, by definition, the optimal deterministic
predictor. Its minimum achievable loss is:
L = Eo[Var(alo)]
Using the law of total variance, we decompose this loss:
L, = Eo m[Var(alo,m)] +Eo[Var,,,(Elalo,m])]

‘/in(l‘ﬂ ‘/E“‘el'
* Vinwa: The within-mode variance. This is the fine-grained variation that our mo must
model.

¢ Viner: The inter-mode variance. This is the variance between the means of the different
modes (e.g., the difference between “go left” and “go right”).

The MSE-optimal predictor E[a|o] averages these modes, resulting in Vi, as a fundamental com-
ponent of its error. This is precisely mode collapse, which is catastrophic for task success.

A.7.2 THE PF-DAG TRADE-OFF: Vixter VS. Ecpassiry

Our two-stage model, PF-DAG, makes a “hard” mode selection m = 1 (0). The final action is
the prediction of the second stage, dpr.pac(0) = E.[m2(0, 1, 2)]. For this analysis, let’s assume a
perfect 75 that correctly predicts the mean of its target mode, i.e., E,[m2(0, k, 2)] = E[a|o,m = k],
which we denote 4, (0). The practical MSE of our model is Lpr-pac = Eo,a||a — tti,(0)(0)|[*]. We
decompose this by conditioning on the true, unobserved mode m:

Lprpac = E, Zp(m|O)Ea|o,m[||a — Han(o) (0)[I]
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Using the identity E[||X — ¢||?*] = Var(X) + |[E[X] — ¢[|?, where X = alo,m and ¢ = fu,3,(0)(0):

Lprpac = E,

> p(mlo)(Var(alo,m) + || (0) - /Lm(o)(0)|2)]

LPF-DAG = Eo,m,[var(a|07 m)] + ]EO

m

> p(mlo)||pm (o) - um(o)(O)IZ]

Vintra

Eclasslfy

This reveals the explicit trade-off of our architecture:

e Single-Stage BO): L; = Vintra + Vinter
* PF-DAG (Ours): LPF—DAG - V}ntra + Eclassify

PF-DAG is designed to trade Vi (the guaranteed, catastrophic cost of mode collapse) for Ejagsity
(the probabilistic cost of misclassification). Our strong empirical task success (Tables 1, 2, 5) sup-
ports our hypothesis that Vi, is fatal for task execution, while Ej,iry 1S a non-catastrophic and
manageable error. Our framework replaces a guaranteed failure mode with a high-probability suc-
cess, which is a highly desirable trade-off for robotic imitation.
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