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Abstract
Despite remarkable performance of large lan-001
guage models (LLMs), when continually fine-002
tuning them on complex and diverse tasks, their003
performance on historical tasks decreases dra-004
matically, known as the catastrophic forget-005
ting problem. Existing works explored strate-006
gies like memory replay, regularization and007
parameter isolation, but little analysis were008
conducted over the optimization behavior of009
LLMs’ continual fine-tuning. In this work, we010
investigate the geometric connections of dif-011
ferent minima along the continual LLM fine-012
tuning trajectories, and discover the existence013
of low-loss valleys connecting minima of dif-014
ferent target tasks (known as mode connectiv-015
ity). We validate this phenomenon on LLMs016
and propose a new method called Interpolation-017
based LoRA (I-LoRA). I-LoRA can strike a018
balance between plasticity (learning of new in-019
formation) and stability (preservation of his-020
torical knowledge) through parameter interpo-021
lation, which constructs a dual-memory ex-022
perience replay framework based on LoRA.023
Experiments on eight domain-specific bench-024
marks demonstrate that I-LoRA consistently025
shows significant improvement over previous026
approaches with up to 11% performance gains.027
Our code is available at https://anonymous.028
4open.science/r/LLMCL-3823.029

1 Introduction030

Despite the impressive zero-shot and few-shot031

learning capabilities demonstrated by LLMs (Wang032

et al., 2023a; Chang et al., 2023), their performance033

degrades largely in the continual learning (CL)034

scenario, which requires the adaptation to com-035

plex new tasks while preserving previously learned036

knowledge (Razdaibiedina et al., 2023). This prob-037

lem is known as catastrophic forgetting (Li and038

Hoiem, 2017), highlighted by the trade-off between039

plasticity and stability.040

Previous works have explored three directions041

to alleviate the forgetting problem. Among them,042

replay-based methods preserve historical informa- 043

tion by explicitly storing a subset of historical 044

data (Chaudhry et al., 2019b) or prompts (Khan 045

et al., 2023). Regularization-based methods (Li 046

and Hoiem, 2017) penalize change of important 047

parameters or distill embeddings from the previous 048

model during the fine-tuning process. The third cat- 049

egory, parameter isolation-based methods (Kang 050

et al., 2022), mitigate forgetting by explicitly as- 051

signing task-specific model parameters, e.g., intro- 052

ducing a list of adaptors to consolidate historical 053

knowledge. 054

Despite previous research efforts, the loss land- 055

scapes surrounding optima of different tasks remain 056

largely unexplored (see Figure 4.c). Recent studies 057

in the computer vision domain have made observa- 058

tions (Garipov et al., 2018; Doan et al., 2023; Wen 059

et al., 2023) regarding the existence of a region 060

around historical optima that achieves optimal per- 061

formance for new tasks. This phenomenon, known 062

as “mode connectivity” (Garipov et al., 2018; Doan 063

et al., 2023), suggests the presence of a parametric 064

path connecting historical and new optima. Travers- 065

ing this path allows for a well-balanced trade-off 066

between plasticity and stability (Doan et al., 2023). 067

However, whether analogous observations hold in 068

the LLM remains largely unexplored. 069

In this paper, we are the first to understand and 070

improve CL for LLMs through the lens of “mode 071

connectivity”. Specifically, due to the high cost of 072

full parameter fine-tuning, we focus on Parameter- 073

Efficient Fine-Tuning (PEFT) with the following re- 074

search questions: RQ1: Does mode connectivity ex- 075

ist for continual learning in PEFT? and RQ2: How 076

can we leverage the geometric connections of dif- 077

ferent optima to address catastrophic forgetting in 078

PEFT? To answer these questions, we first conduct 079

experiments across eight benchmarks to validate 080

the existence of mode connectivity in LLMs. Then, 081

to achieve a more optimal trade-off between stabil- 082

ity and plasticity, we propose a novel framework, 083
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I-LoRA (Interpolation-based LoRA). I-LoRA sim-084

ulates the weight interpolation along with contin-085

ual updates of LLMs using LoRA. Specifically,086

I-LoRA establishes a dual-memory framework by087

maintaining a fast learner parameterized by the088

working memory and a slow learner parameterized089

by the long-term memory. The fast learner is re-090

sponsible for quick adapting to the evolving data,091

while the slow learner aims to consolidate the long-092

term memory and preserve historical knowledge.093

Each learner is implemented with a LoRA module.094

Main contributions of this paper are as follows:095

• We are the first to analyze and understand CL096

on the PEFT of LLMs through the lens of097

“mode connectivity";098

• Base on comprehensive analysis, we propose099

an effective CL algorithm for LLM by design-100

ing a dual-memory framework, with a fast101

learner to quickly adapt to evolving tasks and102

a slow learner to reduce forgetting;103

• Extensive experiments and analysis of I-LoRA104

are conducted across diverse textual datasets,105

which validate its strong performance in the106

trade-off between plasticity and stability.107

2 Related Works108

Continual Learning focuses on sequential learn-109

ing of non-stationary data, ideally accumulating110

previously gained knowledge (Wang et al., 2023a;111

Ermis et al., 2022; Zhang et al., 2023). Based112

on the taxonomy in (Li and Hoiem, 2017), exist-113

ing works can be broadly classified into three di-114

mensions: 1) Replay-based methodologies involve115

the reloading of historical raw data (Rolnick et al.,116

2019; Buzzega et al., 2020) or the utilization of117

synthetic data (Lesort et al., 2019) generated from118

a generative model trained on historical data. 2)119

Regularization-based methods (Kirkpatrick et al.,120

2017; Saha et al., 2021; Kim et al., 2023) penalize121

model parameter change and balance the trade-off122

between plasticity and stability; 3) Parameter isola-123

tion methods (Kang et al., 2022; Golkar et al., 2019)124

identify, allocate and incorporate critical parame-125

ters for different tasks during CL, thereby minimiz-126

ing the interaction between tasks. For an in-depth127

discussion on continual learning in the era of large128

language models, readers may refer to (Wu et al.,129

2021; Wang et al., 2023a; Wu et al., 2024).130

Linear Mode Connectivity is a phenomenon that131

different minima can be connected by low-loss132

paths in the parameter space (Garipov et al., 2018; 133

Entezari et al., 2021). Optimizing neural net- 134

works involves the finding of a minimum within a 135

high-dimensional, non-convex objective landscape. 136

(Frankle et al., 2020) asserts that, from the same 137

initialization, local minima obtained with different 138

training data orders can be interconnected by a lin- 139

ear low-loss path, thereby alleviating the challenge 140

of curve identification. Building upon this discov- 141

ery, recent research by (Mirzadeh et al., 2020) ob- 142

serves that solutions in multitask and continual 143

learning scenarios are connected by straightfor- 144

ward curves exhibiting low errors in weight space. 145

This phenomenon, termed Linear Mode Connectiv- 146

ity, is empirically demonstrated to be a linear path 147

when both multitask learning and continual learn- 148

ing share the same initialization weights. However, 149

these aforementioned works typically study mode 150

connectivity using non-pretrained models in the 151

field of computer vision (Wen et al., 2023; Zhao 152

et al., 2020), weight pruning analysis (Pellegrini 153

and Biroli, 2022), loss landscape analysis (Frankle 154

et al., 2020; Garipov et al., 2018; Qin et al., 2022), 155

and etc. In this study, we are the first to delve into 156

continual learning within the framework of PEFT 157

from the “mode connectivity” perspective. 158

3 Analyzing Linear Mode Connectivity in 159

Parameter Efficient Continual Learning 160

for LLMs 161

To answer RQ1, we design an empirical study to 162

verify whether mode connectivity exists for CL in 163

PEFT. We first introduce notations and formulate 164

the CL task before going into empirical details. 165

CL can be formulated as learning from a se- 166

quentially ordered set of tasks {D1,D2, ...,DT }, 167

where each task is specified by input-label pairs. 168

To be specific, the t-th task is specified by Dt = 169

{(xi, yi)}Nt
i=1, where Nt represents the number of 170

training examples for the t-th task. Formally, the 171

objective of CL is to learn a function f : Rd → R 172

with parameters θ ∈ Rd that minimizes the loss 173

over the tasks: 174

min
θ

ET
t=1[E(x,y)∼Dt

[ℓ(fθ(x), y)]], (1) 175

where ℓ is the learning objective of target tasks, 176

e.g., cross-entropy loss. In this study, we adopt 177

one representative PEFT approach, LoRA, and the 178

model f comprises a large amount of pre-trained 179

fixed parameters and a small number of tunable 180

parameters (the LoRA module). For the simplicity 181
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Figure 1: Analysis of “mode-connectivity” on CL of LLMs, with each color denoting a representative CL algorithm.
In each column, we interpolate the model parameters between adjacent tasks. The three rows denote the performance
on historical, current, and all tasks respectively. It can be observed that a better trade-off between plasticity and
stability can be achieved along the path connecting optima of historical and current tasks.

of annotation, throughout this paper, we use θ to182

denote those tunable parameters.183

3.1 Mode Connectivity Evaluation184

Given the minima of two adjacent tasks, denoted185

as θt and θt+1, we posit the existence of a contin-186

uous curve ϕ(λ) : [0, 1] → Rθ connecting these187

minima. This curve represents a trajectory in the188

parameter space that smoothly transits from θt to189

θt+1. The linear path connecting the two minima190

can be expressed as follows:191

ϕ(λ) = (1− λ) · θt + λ · θt+1. (2)192

Essentially, traversing along the curve described193

in Equation 2 allows for the evaluation of the in-194

terpolation performance between stability (where195

ϕ(0) = θt) and plasticity (where ϕ(1) = θt+1).196

It is expected that a better trade-off would exist197

along this trajectory, and the two endpoints θt−1198

and θt are smoothly connected without significant199

loss barrier or performance drop along the path.200

The accuracy on previous tasks, current tasks, and201

all tasks are abbreviated as Acc-Pre, Acc-Cur, and202

Acc-All, respectively.203

Empirical Observations We investigate the ex-204

istence of mode connectivity in LLMs during the205

continual fine-tuning across multiple downstream206

tasks in Figure 1. For space limitation, we report207

the performance on the first six tasks with the same208

task order in Table 1 and select four representative209

CL baselines (sequential-training, i.e., Seq, EWC210

(Kirkpatrick et al., 2017), GEM (Saha et al., 2021)211

and A-GEM (Chaudhry et al., 2019a)). Collection 212

of datasets, baselines and experimental setups are 213

introduced in the experiment section 5.1, and we 214

adopt LoRA during the tuning. After continually 215

learned for each task, we conduct linear interpola- 216

tions (parameterized by λ) between initial parame- 217

ters (previous optima) and current ones (optima of 218

the current task), and evaluate model performances 219

with different λ values. 220

From Figure 1, we obtain the following observa- 221

tions: (1) The evaluation performance on the previ- 222

ous task t (i.e., Acc-pre) could be significantly en- 223

hanced along the linear trajectory θt → θt+1 com- 224

pared to the initial point. This result suggests that 225

parameters obtained along this trajectory may re- 226

place θt to achieve better memorization effects. (2) 227

There are points along the linear path θt → θt+1 228

yielding superior performance w.r.t the averaged 229

past and current tasks, implying that a better trade- 230

off between stability and plasticity can be achieved 231

along this linear interpolation than the end-points. 232

(3) There are even intervals along the linear path 233

θt → θt+1 that exhibit comparable or superior ac- 234

curacy on the current task t+1 (i.e., Acc-cur) when 235

compared to both endpoints. This observation sug- 236

gests that points sampled within such intervals may 237

serve as a better checkpoint for the current task 238

t+ 1, surpassing the efficacy of θt+1. 239

4 Methodology 240

Inspired by the observation of “mode connectiv- 241

ity”, we propose a simple yet effective method, 242
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Figure 2: The framework of I-LoRA for Large Lan-
guage Model Continual Learning. I-LoRA consists of
a slow learner (depicted in blue) that learn long-term
knowledge through exponential moving average of the
fast learner weights; and (ii) a fast learner (depicted in
yellow) retrieves historical knowledge while simulta-
neously adapting to current data. Both learners can be
trained synchronously.

Interpolation-based LoRA (I-LoRA), to keep the243

balance between rapid adaptation and knowledge244

preservation in the PEFT process. I-LoRA con-245

structs a dual-memory experience replay frame-246

work by maintaining a long-term memory θl for247

stability and a working memory θw for plasticity248

and improves the trade-off with the idea of inter-249

polation across optima. Next, we will introduce250

the design of dual memory in Section 4.1 before251

presenting the full algorithm in Section 4.2.252

4.1 Dual Memory for Fast and Slow Learning253

In this work, we adopt a dual-memory architecture254

to facilitate the separate encoding of historical and255

new optima, which enables us to explicitly esti-256

mate the trade-off. The framework comprises a257

fast learner (parameterized by working memory258

θw) and a slow learner (parameterized by long-259

term memory θl). The working memory, θw, is260

learned by simulating the fast learning of each new261

task. For task t, at each step k, it will be opti-262

mized on back-propagated gradients from model-263

ing Dt = {(xi, yi)}Nt
i=1. θw can be understood as264

learning to arrive at the optima of this new task,265

converging to θ∗
t+1.266

To keep the balance between historical and new267

knowledge, we further leverage a long-term mem-268

ory, denoted as θl. As observed in Section 3.1, a269

better trade-off can often be discovered along the270

path connecting the optima θ∗
t−1 and θ∗

t . However,271

it is challenging and computationally extensive to272

explicitly identify the optimal λ in Equation 2. To273

mitigate this problem, we update θl iteratively in274

a data-driven manner, as an exponential moving275

average of the fast learner weights θw: 276

θl
k = β · θl

k−1 + (1− β) · θw
k , (3) 277

in which the step size β is a fixed hyper-parameter 278

and k denotes the update step. At each step, the 279

previously learned θl
k−1 will also modulate the ob- 280

tention of θl
k−1 to encourage a data-driven tuning 281

of memorization effect, the detail of which will be 282

introduced next.

Algorithm 1: Learning procedure of I-LoRA

1 Input data stream D, memoryM, Learning rate η,
update frequency k, update ratio β

2 for task t ∈ [1, 2, . . . , T ] do
3 for k in Training steps do
4 Compute fine-tuning loss on the target

task:
5 Sampling (x, y) ∈ Dt

⋃
M

6 LCE ← cross-entropy(f(x;θw), y)
7 Compute Memorization loss:
8 Sampling (xm, ym) ∈M
9 zm ← fo(xm;θl

k)
10 LMSE ← MSE(fo(xm;θw), zm)
11 Optimize dual memory through

parameter interpolation:
12 L = LCE + γ · LMSE

13 θw
k ← θw

k−1 − η∇θw
k−1
L

14 θl
k ← βθl

k−1 + (1− β)θw
k

15 end
16 M← {xt, yt}

⋃
M

17 end

283

4.2 Continual PEFT with Dual Memory 284

Now we present details of the proposed continual 285

PEFT algorithm, which is summarized in Algo- 286

rithm 1. Both the working memory θw and long- 287

term memory θl are implemented as LoRA mod- 288

ules. And we adopt the classical experience replay 289

(ER) as our backbone framework: a subset of his- 290

torical data is kept in an external episodic storage 291

xm ∈ M , which will be mixed with the current 292

dataset xt ∈ Dt during learning. 293

For task t, during each training step, we optimize 294

the fast learner (parameterized by θw) using (1) the 295

classification objective, as in line 4 of Algorithm 1, 296

and (2) the deviation of historical instance embed- 297

dings compared to the slow learner (parameterized 298

by θl), as in line 7. The former objective is imple- 299

mented as a cross-entropy loss on the mixed data 300

M
⋃
Dt, while the latter objective is implemented 301

as the MSE loss on embeddings: 302

min
θw

L =Ex∈M
⋃

Dt
LCE(f(x;θ

w))

+ γ · Ex∈MLMSE(fo(x;θ
w); z),

(4) 303

4



where we omit task index t for simplicity. In this304

equation, fo denotes the embedding extractor part305

of f , which maps the input into a representation306

space. z records the embeddings generated by the307

slow learner, fo(x;θw) represents the output of the308

fast learner, and γ is a hyper-parameter controlling309

the weight of embedding deviation loss. An update310

of θw is provided in Line 13 of Algorithm 1. Af-311

ter each step, the slow learner will be updated as312

an exponential moving average of the fast learner313

weights, as in line 14.314

5 Experiments315

5.1 Experiment Setup316

5.1.1 Dataset Description317

To undertake a critical assessment of the “adapta-318

tion” and “forgetting” capabilities of LLMs (Wang319

et al., 2023b; Gao et al., 2023), we construct the320

dataset under two key considerations: (I) Domain321

Specificity, avoiding prior exposure to the majority322

of LLMs; (II) Diversity, the dataset should be di-323

verse and complex w.r.t corpus format, linguistic324

aspects, and reasoning challenges.325

Domain-specific CL benchmarks To satisfy326

goal (I), we select dataset from education domain,327

i.e., ScienseQA (Lu et al., 2022), clinical domain328

i.e., MedMCQA (Pal et al., 2022), financial do-329

main, i.e., FOMC (Shah et al., 2023), legal domain,330

i.e., JEC-QA (Zhong et al., 2020), and political331

domain. i.e., MeetingBank (Hu et al., 2023). To332

satisfy goal (II), we select dataset from the follow333

angels: 1) Multilinguality. Cross-lingual Continual334

Learning poses a formidable challenge for LLMs335

attributed to vocabulary discrepancies and varia-336

tions in pre-training corpus. Following (Wang et al.,337

2023b), We select C-STANCE (Zhao et al., 2023)338

and 20Minuten (Kew et al., 2023) as multi-lingual339

dataset. 2) Mathematical reasoning. Mathematical340

problems involve complex logical operations, pro-341

viding a test-bed for the reasoning ability of LLMs.342

Here, we leverage the popular NumGLUE dataset343

(Mishra et al., 2022). Concretely, we sequentially344

learn these datasets following the order in Table 1.345

General benchmarks To delve deeper into the346

forgetting phenomena of LLMs in general tasks,347

particularly those previously exposed to LLMs, we348

adopt MMLU (Hendrycks et al., 2021), BBH (Suz-349

gun et al., 2022), and PIQA (Bisk et al., 2019) as350

our evaluation benchmarks. For space limitation,351

experimental results are shown in Appendix A.4.352

5.1.2 Metric 353

Let Ri,j represents the inference accuracy on j-th 354

task after training on the i-th, we evaluated the 355

inference performance by averaging accuracy after 356

the training of on the t-th task as Acct: 357

Acct =
1

t

t∑
i=1

Rt,i. (5) 358

Besides, we evaluate the memorization ability by 359

evaluating the backward transfer ability (BWT ) 360

that averages influence of learning the t-th task on 361

all old tasks as BWTt (Wang et al., 2023a): 362

BWTt =
1

t− 1

t−1∑
j=1

(Rt,j −Rj,j). (6) 363

5.1.3 Baselines 364

We evaluate the performance of I-LoRA against 365

nine representative baseline methods: Zero-shot in- 366

ference (ZSI), Sequential Fine-tuning (Seq-Train), 367

Experience Replay (ER) (Chaudhry et al., 2019b), 368

Elastic Weight Consolidation (EWC) (Kirkpatrick 369

et al., 2017), Gradient Gradient Episode Mem- 370

ory (GEM) (Saha et al., 2021), Average Gradi- 371

ent Episode Memory (A-GEM) (Chaudhry et al., 372

2019a), Learning to Prompt (L2P) (Wang et al., 373

2022), Progressive Prompt (PP) (Razdaibiedina 374

et al., 2023), Multi-task Learning (MTL) that learns 375

all tasks together. Detailed baseline description are 376

shown in Appendix A.1. 377

5.1.4 Implementation Details 378

Experiments are conducted on two RTX 4090 379

GPUs. We adopt Llama-2-7B as the foundational 380

model and fine-tune LoRA (Hu et al., 2021) for 381

continual learning purposes. The learning rate is 382

set as 1e-4, accompanied by a linear warmup ratio 383

of 0.2. Following (Wang et al., 2023b), we leverage 384

the HuggingFace Transformers (Wolf et al., 2020) 385

library for experiment implementation. Regard- 386

ing the LoRA hyper-parameters, r is set to 8, and 387

LoRA is integrated into the query and value ma- 388

trices, with the LoRA alpha parameter configured 389

to 16. All baselines adopt the same architecture 390

and configuration with LoRA for a fair comparison. 391

Detailed implementation detailed can be referred 392

to Appendix A.2. 393

5.2 Overall Comparison 394

In this section, we conduct comprehensive analysis 395

of I-LoRA against representative CL baselines to 396
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Adaptation Abilities on Domain-specific CL benchmarks for LLMs
C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm 20Minuten MedMCQA JEC-QA

Seq-Train 41.8 41.1 31.2 27.4 21.9 13.6 25.6 21.0
ER 40.8 45.6 30.6 29.4 18.7 16.5 22.8 22.4
EWC 42.2 53.0 35.9 38.5 25.5 26.2 23.5 22.5
GEM 38.8 46.4 28.3 27.4 12.7 17.7 28.5 20.4
A-GEM 40.2 43.9 28.0 36.9 19.8 22.6 27.3 29.6
L2P 43.8 39.5 24.0 26.4 22.7 15.4 24.6 25.6
PP 37.2 42.1 26.5 28.3 25.3 25.9 26.2 21.1

I-LoRA 44.4 53.9 30.6 40.1 33.7 27.3 38.1 36.3

Table 1: Summary of the results on eight domain-specific CL benchmarks with the Llama-2-7B. Averaged inference
accuracy (the higher ↑, the better) on the downstream tasks (Acct) is reported.

Memorization Abilities on Domain-specific CL benchmarks for LLMs
C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm 20Minuten MedMCQA JEC-QA

Seq-Train - -10.0 -11.1 -13.4 -17.5 -26.0 -12.6 -16.1
ER - -7.0 -12.9 -15.2 -24.4 -26.2 -18.2 -14.8
EWC - -3.3 -10.2 -12.2 -20.6 -19.1 -19.4 -18.5
GEM - -3.7 -12.8 -13.6 -24.5 -21.8 -9.5 -17.6
A-GEM - -5.6 -13.0 -7.3 -22.0 -19.1 -12.4 -8.3
L2P - -9.0 -16.5 -11.8 -13.4 -21.4 -10.6 -8.6
PP - -2.4 -10.1 -9.7 -10.6 -10.8 -9.0 -14.2

I-LoRA - -0.6 -12.7 -6.1 -9.1 -15.2 -2.2 -2.3

Table 2: Summary of the results on eight domain-specific CL benchmarks with the Llama-2-7B. Averaged
memorization performance BWTt (the higher ↑, the better) is reported.

demonstrate their generalization and memorization397

ability on domain-specific CL benchmarks and gen-398

eral benchmarks. Experimental results are shown399

in Table 1 and Table 2, respectively. Detailed exper-400

imental results on each dataset are can be referred401

in Appendix A.3.402

Generalization Ability Assessment on403

Domain-specific CL benchmarks. We start404

with a fine-tuned LLaMA-7B language model on405

each domain-specific CL benchmark, then test406

the Acct performance to evaluate the adaptation407

performance. From Table 1, we observe that: 1)408

starting from a fine-tuned LLaMA-7B language409

model, CL minima on different tasks can be410

connected by a low-loss valley, and ensembling411

over the valley shows improved performance and412

generalization ability. It is obvious that our ap-413

proach, I-LoRA, consistently outperforms previous414

methods and shows a remarkable improvement415

(i.e., ranging from 3% to 10% accuracy gains)416

over the previous state-of-the-art CL methods.417

2) I-LoRA consistently demonstrates superiority418

with an increasing number of historical tasks.419

This observation suggests that leveraging mode420

connectivity in LLMs could enhance long-term 421

memorization ability and validate the effectiveness 422

of long-term memory in I-LoRA. 423

Memorization Ability Assessment on Domain- 424

specific CL benchmarks. In this part, we explore 425

the memorization capability of continual learning 426

(CL) methods, specifically examining the extent 427

to which these methods can mitigate the issue of 428

catastrophic forgetting. From Table 2, we can make 429

the following observations: 1) I-LoRA exhibits su- 430

periority in mitigating forgetting issues and demon- 431

strates remarkable memorization ability. This ob- 432

servation validates our motivation and methodol- 433

ogy design. I-LoRA adjusts parameters relying 434

on the interpolation of mode connectivity, and its 435

performance remains relatively stable throughout 436

continual learning processes. 2) Existing CL-based 437

methods exhibit weak performances when facing 438

complex memorization tasks, such as those with 439

high domain diversity and multilingualism. For 440

example, one popular CL algorithm, EWC, shows 441

a forgetting performance of 20.6% and 19.1% af- 442

ter fine-tuning on the mathematical NumGLUE- 443

cm and German-based 20Minute dataset respec- 444
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T1 T2 T3 T4 T5 T6 T7 T8

After T1
After T2
After T3
After T4
After T5
After T6
After T7
After T8

40.8

26.8 64.5

29.4 37.3 25.2

32.2 25.0 12.2 48.0

4.4 13.5 4.8 34.0 37.0

11.2 1.0 12.1 15.4 18.5 41.1

9.2 28.0 11.1 23.2 18.5 39.2 30.6

21.0 29.2 12.3 23.8 17.3 38.9 26.2 26.8

ER

T1 T2 T3 T4 T5 T6 T7 T8

37.2

32.4 51.8

33.2 25.4 21.1

32.4 24.2 14.7 44.2

16.4 49.0 7.9 26.2 27.2

32.0 13.1 9.3 40.8 19.8 40.6

24.4 34.1 6.4 42.4 11.1 38.7 26.8

2.4 47.6 5.9 22.6 8.6 38.1 22.6 31.2

PP

T1 T2 T3 T4 T5 T6 T7 T8

44.4

43.2 64.5

18.4 52.2 21.3

35.4 51.0 19.2 54.2

35.8 43.8 14.7 44.8 29.6

33.6 8.1 14.4 44.2 22.2 41.4

43.0 61.1 21.3 49.6 23.5 41.1 27.0

43.0 60.1 21.6 48.6 22.2 40.2 27.6 27.2

I-LoRA

Figure 3: Task-wise performance with ER, PP and I-LoRA methods when Llama-2-7B is continually fine-tuned on
the sequential tasks. The heatmaps provide the test set of each task (x-axis) evaluated at the end of each sequential
learning task (y-axis).

tively. The diversity of sequential tasks makes these445

approaches ineffective. In contrast, our method446

achieves consistently promising performance, e.g.,447

I-LoRA decreases the forgetting score to 9.1% on448

the NumGLUE-cm dataset. This boost in perfor-449

mance further validates our insight, which involves450

interpolating between adjacent minima and travers-451

ing along this path.452

Fine-grained Analysis of Task-wise Perfor-453

mance on Domain-specific Benchmarks To better454

understand how various methods achieve a balance455

between stability and plasticity, we analyze how456

task-wise performance evolves as the model learns457

tasks sequentially. Task order (from T1 to T8) fol-458

lows the dataset order in Table 1. Experimental459

results are shown in Figure 3. The diagonal of the460

heatmap demonstrates the plasticity of the model461

as it denotes the learning of each new task. Due462

to the limit of space, we select two representative463

methods ER and PP as the baseline.464

Figure 3 demonstrates that the proposed I-LoRA465

offers a more consistent performance across the se-466

quentially learned eight tasks compared to the base-467

lines, showcasing a commendable balance between468

stability and plasticity. For example, the inference469

performance of ER on T3 dataset decreases from470

12.2% to 4.8% at the endpoint of fine-tuning on T4471

and T5, respectively. Similarly, the performance of472

PP drops from 14.7% to 7.9%. On the contrary, the473

proposed I-LoRA demonstrates a good trade-off474

between stability and plasticity, decreasing from475

19.2% to 14.7%. After fine-tuning on T5, both ER476

and PP exhibit a much lower inference accuracy on477

previous tasks. For instance, ER achieves accuracy478

of 4.4%, 13.5%, and 4.8% on T1, T2, and T3, re-479

spectively. In contrast, I-LoRA demonstrates supe-480

rior stability, achieving accuracy of 35.8%, 43.8%,481

and 14.7% on them.482

Overall, I-LoRA provides an effective approach 483

to leverage mode connectivity in continual fine- 484

tuning of LLaMA-7B, enabling better utilization 485

of long-term memory. This facilitates the effec- 486

tive consolidation of information across tasks and 487

further mitigates forgetting. 488

5.3 Discussion of I-LoRA Behaviors 489

To deeply understand the improvement of I-LoRA 490

in the continual refinement of LLaMA-7B, we ex- 491

amine how I-LoRA achieves a balance between 492

plasticity and stability from three perspectives 493

(Mirzadeh et al., 2020): 1) Weight Distance; 2) 494

Centered Kernel Alignment; and 3) Mean Accu- 495

racy Landscape. For space limitation, we show 496

results on C-STANCE and FOMC datasets, which 497

are shown in Figure 4. 498

Weight Distance One intuitive explanation w.r.t 499

the problem of catastrophic forgetting posits that af- 500

ter adapting to new data, LoRA parameters would 501

change and converge toward another local optima, 502

which deviates from the historical one. Conse- 503

quently, under the isotropic assumption of loss 504

landscapes, the distance between historical and new 505

weights can be used as a proxy for estimating the 506

memorization of models. If parameters exhibit 507

minimal change, it is rational to anticipate a lesser 508

degree of forgetting. To this end, we propose to 509

adopt the weight distance metric: 510

WDl = ||θl
t − θl

t+1||2, (7) 511

512
WDw = ||θw

t − θw
t+1||2. (8) 513

To evaluate the impact of weight interpolation, 514

we measure the weight distance when varying β to 515

different values, and visualize the analysis results 516

in Figure 4a. When β = 0, the effect of I-LoRA is 517

similar to ER. Due to the constrained retention of 518

memory samples, the current parameters of the fast 519
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Figure 4: Task-wise performance of CL methods when Llama-2-7B is continually fine-tuned on the sequential tasks.
The heatmaps provide the test set of each task (x-axis) evaluated at the end of each sequential learning task (y-axis).

learner, θs
t+1 , may diverge significantly from its520

previous counterpart, θs
t, resulting in a substantial521

weight distance. Hence, as the value of β increases,522

the current model weights tend to approach the pre-523

vious weights more closely. However, the weight524

distance increases as β is further raised. One plau-525

sible explanation is that the loss landscape becomes526

flatter in neighboring regions, and higher interpola-527

tion values may push the minima beyond these flat528

regions. Further analysis is provided in the Mean529

Accuracy Landscape Visualization section.530

Centered Kernel Alignment In addition to con-531

sidering weight distance, we further examine the532

produced representation space. To this end, we uti-533

lize Centered Kernel Alignment (CKA) (Kim et al.,534

2023; Mirzadeh et al., 2020) to assess the simi-535

larity of LoRA’s output representations. A higher536

similarity score indicates a greater stability and537

memorization ability of the continual minima.538

Figure 4b shows the CKA similarities with dif-539

ferent interpolation ratios β of the working memory540

and long-term memory. It is obvious that the sim-541

ilarity in feature representation increases with a542

higher number of β. Essentially, a higher β indi-543

cates a slower update process based on historical544

LoRA parameters, which contributes to the stability545

of LLMs.546

Embedding Landscape Visualization To illus-547

trate the geometric characteristics of the landscape548

across different continual minima, as described in549

Figure 4c, we depict the landscape of embedding550

changes after learning on task 1 and task 2 by per-551

turbing LoRA parameters. Concretely, we vary the552

parameter on the subspace constructed by θw and553

θl, and visualize the extent of embedding change554

under different parameter interpolations.555

As depicted in Figure 4c, it’s evident that β reg-556

ulates the interpolation effects between continual557

minima and influences the convergence position on558

the loss landscape. A small value of β encourages 559

adjacent minima to remain close, while an increas- 560

ing value of β promotes slight changes in LoRA 561

parameters and demonstrates high representation 562

similarity. On the other hand, when the converged 563

minima significantly diverges from the neighbor- 564

ing area of previous minima, LoRA will lose its 565

capability in the trade-off. 566

6 Conclusion 567

Our empirical analysis provides comprehensive val- 568

idation of the existence of intersections in loss land- 569

scapes surrounding task optima during Parameter- 570

Efficient Fine-Tuning (PEFT) for LLMs. Building 571

on this insight, we introduce I-LoRA, a pioneering 572

approach that leverages two independent modules 573

functioning as fast and slow learners, respectively. 574

By promoting convergence between these mod- 575

ules and employing a linear interpolation, I-LoRA 576

achieves a nuanced trade-off between plasticity and 577

stability. As far as we are concerned, I-LoRA pi- 578

oneers in enhancing CL for LLMs, and provide 579

further opportunities for future explorations. 580

7 Limitations 581

In this work, we mainly analyze "mode connectiv- 582

ity" under the PEFT setting. We did not evaluate 583

whether this phenomenon would still hold when 584

conducting full parameter fine-tuning. Besides, al- 585

though we empirical show that harnessing mode 586

connectivity could potentially address the trade-off 587

between stability and plasticity, further theoreti- 588

cal analysis would help to obtain a deeper under- 589

standing of this phenomenon. One another point is 590

that in this work, we focus on improving the trade- 591

off of plasticity and stability only from the LLM 592

perspective. It is potential to consider the joint- 593

optimization of prompts and LLM in this continual 594

task learning scenario. 595
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A Experiment813

A.1 Dataset Description814

We evaluate the performance of I-LoRA against815

nine representative baseline method: (1) Zero-shot816

inference (ZSI): inferring on target tasks directly817

without tuning model parameters or prompts. (2)818

Sequential Fine-tuning (Seq-Train): continually819

tuning all model parameters on the sequence of820

tasks. (3) Experience Replay (ER) (Chaudhry et al.,821

2019b): extending Seq-Train with a memory buffer822

to store a few historical training samples. (4) Elas-823

tic Weight Consolidation (EWC) (Kirkpatrick et al.,824

2017): constraining the variation of model param-825

eters during fine-tuning by leveraging the Fisher826

information matrix for importance measurement.827

(5) Gradient Gradient Episode Memory (GEM)828

(Saha et al., 2021): preserving the gradient sub-829

space important to historical tasks by orthogonal830

projection in updating parameters. (6) Average831

Gradient Episode Memory (A-GEM) (Chaudhry832

et al., 2019a): a simplified version of GPM by833

storing the average gradient matrix on historical834

data. (7) Learning to Prompt (L2P) (Wang et al.,835

2022): using inputs to dynamically select and up-836

date prompts from the prompt pool. (8) Progressive837

Prompt (PP) (Razdaibiedina et al., 2023): learning838

a soft prompt for each task and sequentially con-839

catenating it to the historical prompts while keep-840

ing the base model frozen. (9) Multi-task Learning841

(MTL): training a model on all tasks.842
A.2 Implementation Details843

For each dataset, we curate a training set compris-844

ing 5000 samples and an evaluation set comprising845

500 samples. Batch-size is set as 16. Notably, in846

the case of MedMCQA and JEC-QA, our sampling847

process exclusively focuses on single-choice ques-848

tions. Detailed Prompt examples on benchmarks849

are listed in Table 3. For hyper-parameters, γ is set850

as 1.0, β is set as min(1− 1/(k+1), 0.25), where851

k is the current step.852

A.3 Detailed Results on Domains Specific CL853

Benchmarks854

In this section, we present detailed experimental855

results on nine representative baselines. We show-856

case results on eight domain-specific and diverse857

benchmarks from Table 5 to 13.858

A.4 Anti-forgetting Analysis on General859

Benchmarks860

Evaluating the performance on general tasks is im-861

portant in evaluating the memorization and reason-862

Datasets Prompts

C-STANCE 判断以下文本对指定对象的态
度，选择一项：A.支持，B.反
对，C.中立。输出A，B或者C。

FOMC What is the monetary policy stance
for the following text? A. dovish,
B. hawkish, C. neutral. Choose one
from A, B, and C.

MeetingBank Write a summary of the following
meeting transcripts.

ScienceQA Choose an answer for the following
question and give your reasons.

NumGLUE Solve the following math problem.

20Minuten Provide a simplified version of the
following paragraph in German.

MedMCQA Solve the following medical problem
by choosing the correct answer from
the following four choices.

JEC-QA 根 据 以 下 法 律 问 题 ， 从 选
项A，B，C，D中选择一项正确
的答案

Table 3: Prompt examples on each dataset.

Method MMLU BBH PIQA AVG

Zero-Shot 46.8 38.2 78.3 54.4
Seq 3.68 28.82 58.49 30.3
ER 5.22 28.67 53.1 28.9
EWC 14.27 34.18 51.85 33.4
GEM 15.45 31.74 53.48 33.5
A-GEM 6.46 32.44 53.92 30.9
L2P 2.24 31.95 54.19 29.4
PP 30.58 16.97 53.05 33.5
I-LoRA 15.77 32.66 51.25 33.2
MTL 13.97 31.92 52.99 32.9

Table 4: Performance on General Benchmarks after
Fine-Tuning on Domain-Specific CL Benchmarks.

ing abilities of LLMs after fine-tuning on domain- 863

specific tasks. Table 4 displays the performance 864

of CL methods, zero-shot inference performance 865

of LLAMA-7B (zero-shot), and multi-task learn- 866

ing method (MTL). Detailed results are shown in 867

Tables 14 and 15, respectively 868

From these results, it can be observed that af- 869

ter continual learning processes, I-LoRA can still 870

achieve an on-par performance with most baselines 871

in these general language modeling tasks, despite a 872

significant improvement in those specialized text 873

domains as shown in Table 1, Table 2. This phe- 874

nomenon validates the advantage of I-LoRA in 875

improving CL performance of LLMs. 876
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C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm 20Minuten MedMCQA JEC-QA

C-STANCE 0.418 0.323 0.091 0.316 0.099 0.373 0.25 0.28

FOMC 0.218 0.603 0.091 0.216 0.049 0.37 0.226 0.256

MeetingBank 0.194 0.494 0.247 0.048 0.086 0.384 0.244 0.238

ScienceQA 0.32 0.262 0.148 0.368 0 0.367 0.226 0.238

NumGLUE-cm 0.256 0.204 0.057 0.244 0.333 0.37 0.162 0.252

20Minuten 0.002 0.012 0.087 0.158 0.148 0.414 0.222 0.144

MedMCQA 0.326 0.246 0.083 0.292 0.16 0.396 0.29 0.278

JEC-QA 0.164 0.258 0.093 0.096 0.123 0.39 0.26 0.296

Average 0.237 0.3 0.112 0.217 0.125 0.383 0.235 0.248

BWT -0.184 AVE 0.21

Table 5: Performance with Seq-training.

C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm 20Minuten MedMCQA JEC-QA

C-STANCE 0.408 0.359 0.086 0.18 0.049 0.372 0.254 0.302

FOMC 0.268 0.645 0.073 0.09 0.037 0.371 0.238 0.238

MeetingBank 0.294 0.373 0.252 0.05 0.049 0.378 0.216 0.222

ScienceQA 0.322 0.25 0.122 0.48 0.025 0.375 0.202 0.274

NumGLUE-cm 0.044 0.135 0.048 0.34 0.37 0.377 0.206 0.244

20Minuten 0.112 0.01 0.121 0.154 0.185 0.411 0.234 0.226

MedMCQA 0.092 0.28 0.111 0.232 0.185 0.392 0.306 0.228

JEC-QA 0.21 0.292 0.123 0.238 0.173 0.389 0.262 0.268

Average 0.219 0.293 0.117 0.221 0.134 0.383 0.24 0.25

BWT -0.169 AVE 0.244

Table 6: Performance on ER with sampling rate as 0.1

C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm 20Minuten MedMCQA JEC-QA

C-STANCE 0.422 0.488 0.061 0.08 0.086 0.372 0.238 0.248

FOMC 0.356 0.706 0.091 0.098 0.062 0.371 0.236 0.232

MeetingBank 0.338 0.484 0.256 0.082 0.049 0.374 0.24 0.208

ScienceQA 0.374 0.381 0.143 0.642 0.012 0.371 0.208 0.248

NumGLUE-cm 0.308 0.25 0.068 0.368 0.284 0.369 0.214 0.288

20Minuten 0.19 0.248 0.152 0.424 0.148 0.415 0.244 0.19

MedMCQA 0.194 0.349 0.086 0.142 0.198 0.401 0.276 0.142

JEC-QA 0.176 0.29 0.081 0.2 0.148 0.382 0.24 0.29

Average 0.295 0.4 0.117 0.255 0.123 0.382 0.237 0.231

BWT -0.212 AVE 0.226

Table 7: Performance with EWC.
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C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm 20Minuten MedMCQA JEC-QA

C-STANCE 0.388 0.29 0.104 0.364 0.062 0.373 0.244 0.268

FOMC 0.314 0.615 0.069 0.342 0.074 0.37 0.226 0.26

MeetingBank 0.174 0.444 0.233 0.182 0.049 0.383 0.228 0.22

ScienceQA 0.318 0.26 0.115 0.404 0.074 0.373 0.224 0.228

NumGLUE-cm 0.05 0.006 0.074 0.186 0.321 0.382 0.088 0.158

20Minuten 0.052 0.071 0.12 0.24 0.173 0.409 0.264 0.226

MedMCQA 0.32 0.262 0.077 0.47 0.185 0.389 0.292 0.25

JEC-QA 0.118 0.296 0.09 0.162 0.136 0.395 0.236 0.286

Average 0.217 0.281 0.11 0.294 0.134 0.384 0.225 0.237

BWT -0.176 AVE 0.215

Table 8: LoRA adapter training with GEM

C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm 20Minuten MedMCQA JEC-QA

C-STANCE 0.402 0.28 0.075 0.374 0.062 0.374 0.254 0.286

FOMC 0.29 0.589 0.085 0.26 0.012 0.37 0.266 0.238

MeetingBank 0.118 0.484 0.24 0.222 0.074 0.38 0.226 0.146

ScienceQA 0.282 0.486 0.171 0.54 0.062 0.379 0.23 0.258

NumGLUE-cm 0.252 0.183 0.07 0.164 0.321 0.367 0.138 0.086

20Minuten 0.246 0.083 0.081 0.3 0.235 0.416 0.252 0.16

MedMCQA 0.192 0.462 0.06 0.334 0.21 0.379 0.278 0.216

JEC-QA 0.316 0.51 0.088 0.35 0.185 0.391 0.278 0.252

Average 0.262 0.385 0.109 0.318 0.145 0.382 0.24 0.205

BWT -0.095 AVE 0.296

Table 9: Performance with A-GEM.
C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm 20Minuten MedMCQA JEC-QA

C-STANCE 0.438 0.258 0.115 0.42 0.062 0 0 0

FOMC 0.26 0.53 0.079 0.22 0.074 0.372 0.226 0.234

MeetingBank 0 0.472 0.248 0.022 0.025 0.374 0.176 0.152

ScienceQA 0.324 0.254 0.166 0.312 0.062 0.382 0.2 0.278

NumGLUE-cm 0.194 0.363 0.045 0.254 0.284 0.375 0.158 0.27

20Minuten 0 0.002 0.128 0.16 0.235 0.402 0.288 0.198

MedMCQA 0.002 0.264 0.143 0.408 0.259 0.393 0.258 0.262

JEC-QA 0.18 0.335 0.128 0.322 0.173 0.391 0.258 0.268

Average 0.175 0.31 0.132 0.265 0.147 0.336 0.196 0.208

BWT -0.098 AVE 0.257

Table 10: Performance with Learning to Prompt (L2P).

C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm 20Minuten MedMCQA JEC-QA

C-STANCE 0.372 0.244 0.073 0.008 0.012 0.374 0.08 0.108

FOMC 0.324 0.518 0.057 0.02 0.025 0.373 0.158 0.236

MeetingBank 0.332 0.254 0.211 0.032 0 0.374 0.212 0.048

ScienceQA 0.324 0.242 0.147 0.422 0.025 0.377 0.23 0.248

NumGLUE-cm 0.164 0.49 0.079 0.262 0.272 0.378 0.172 0.18

20Minuten 0.32 0.131 0.093 0.408 0.198 0.406 0.218 0.254

MedMCQA 0.244 0.341 0.064 0.424 0.111 0.387 0.268 0.224

JEC-QA 0.024 0.476 0.059 0.226 0.086 0.381 0.226 0.312

Average 0.263 0.337 0.098 0.225 0.091 0.381 0.196 0.201

BWT -0.142 AVE 0.224

Table 11: Performance with Progressive Prompts (PP).
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C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm 20Minuten MedMCQA JEC-QA

C-STANCE 0.444 0.357 0.066 0.122 0.111 0.374 0.254 0.292

FOMC 0.432 0.645 0.066 0.1 0.074 0.37 0.236 0.266

MeetingBank 0.184 0.522 0.213 0.26 0.074 0.384 0.244 0.236

ScienceQA 0.354 0.51 0.192 0.542 0.025 0.378 0.214 0.226

NumGLUE-cm 0.358 0.438 0.147 0.448 0.296 0.383 0.196 0.268

20Minuten 0.336 0.081 0.144 0.442 0.222 0.414 0.244 0.206

MedMCQA 0.43 0.611 0.213 0.496 0.235 0.411 0.27 0.29

JEC-QA 0.43 0.601 0.216 0.486 0.222 0.402 0.276 0.272

Average 0.371 0.471 0.157 0.362 0.157 0.39 0.242 0.257

BWT -0.027 AVE 0.363

Table 12: Performance with I-Lora.

C-STANCE FOMC MeetingBank ScienceQA NumGLUE-cm 20Minuten MedMCQA JEC-QA

0.384 0.506 0.252 0.586 0.284 0.416 0.248 0.244

Table 13: Performance with MTL

dataset version metric mode SEQ EWC ER GEM AGEM L2P PP MTL I-Lora

bbh-temporal_sequences e43931 score gen 8.4 16.4 19.2 17.2 18.4 22.4 24.4 19.6 15.2

bbh-disambiguation_qa d52c61 score gen 30 30.8 31.2 29.6 30 30 30 34.8 30.8

bbh-date_understanding a8000b score gen 32 26 27.6 36.8 32 39.2 33.2 38 27.6

bbh-tracking_shuffled_objects_three_objects 7964c0 score gen 32.8 34.4 29.2 28.4 33.2 31.6 29.2 35.2 32.8

bbh-penguins_in_a_table fceb27 score gen 32.88 29.45 28.08 26.03 35.62 35.62 30.14 32.88 30.82

bbh-geometric_shapes 503c8f score gen 4.8 8.8 0.4 0.8 0 0 3.2 2 3.2

bbh-snarks 42d6ca score gen 46.07 50 47.75 54.49 53.37 50.56 51.12 50 48.31

bbh-ruin_names 408de8 score gen 23.2 27.2 24.4 24.8 22.4 24.4 22.4 29.2 24

bbh-tracking_shuffled_objects_seven_objects 7964c0 score gen 17.6 19.6 16 16 17.6 13.6 17.2 12.4 15.6

bbh-tracking_shuffled_objects_five_objects 7964c0 score gen 16.8 17.6 14 16 20.8 13.2 17.2 14.4 18.4

bbh-logical_deduction_three_objects 45ebc5 score gen 35.6 32.4 42 44 50.4 45.6 42 41.2 39.6

bbh-hyperbaton 5e5016 score gen 53.2 55.2 54.8 53.6 55.6 56.8 53.6 53.2 48.8

bbh-logical_deduction_five_objects 45ebc5 score gen 22.8 17.2 19.6 21.2 28.8 23.2 23.2 22.8 27.6

bbh-logical_deduction_seven_objects 45ebc5 score gen 14.4 12.4 10.4 19.2 20.4 19.2 19.6 13.6 13.2

bbh-movie_recommendation cc2fde score gen 31.2 41.2 36.4 62.4 60.8 63.6 62.4 53.6 34

bbh-salient_translation_error_detection 5b5f35 score gen 10.8 11.6 13.6 14 18 11.2 12 18.8 6.4

bbh-reasoning_about_colored_objects 1cb761 score gen 21.6 16.8 18.4 22.4 25.2 26 24.4 22.8 21.6

bbh-multistep_arithmetic_two 30f91e score gen 0 0 1.2 0.4 0.4 1.2 0.4 1.6 1.2

bbh-navigate 1576d9 score gen 40.8 43.2 51.6 45.6 46.8 48.8 48 54.8 46

bbh-dyck_languages 805bea score gen 0 0.4 0 0.4 0 0 0.8 0 0.4

bbh-word_sorting 9a3f78 score gen 3.2 1.2 1.6 5.2 4.8 4.8 6.4 6.8 2.8

bbh-sports_understanding d3fa77 score gen 87.2 79.2 90.8 88 78.8 84 84 77.6 90.8

bbh-boolean_expressions 612c92 score gen 61.6 47.2 65.2 62.8 63.6 60.4 55.6 61.2 63.6

bbh-object_counting 781e5c score gen 47.6 50.8 41.6 45.6 50 50.4 56 48 43.2

bbh-formal_fallacies eada96 score gen 15.6 12.8 2.8 26.8 24 19.6 27.2 13.6 2.4

bbh-causal_judgement 89eaa4 score gen 36.9 34.76 37.43 41.71 35.83 39.57 44.92 50.27 33.16

bbh-web_of_lies 0c0441 score gen 51.2 42.8 51.2 53.6 49.2 47.6 53.6 53.6 52.4

piqa 1194eb accuracy gen 58.49 47.12 53.1 53.48 53.92 54.19 53.05 52.99 51.25

Table 14: Detailed Results of General Benchmarks - I

14



dataset version metric mode SEQ EWC ER GEM AGEM L2P PP MTL I-Lora

lukaemon_mmlu_college_biology 8c2e29 accuracy gen 0.69 20.83 0.69 14.58 2.78 3.47 33.33 21.53 0

lukaemon_mmlu_college_chemistry 0afccd accuracy gen 2 12 3 7 3 1 13 13 3

lukaemon_mmlu_college_computer_science c1c1b4 accuracy gen 5 16 7 18 9 3 22 8 4

lukaemon_mmlu_college_mathematics 9deed0 accuracy gen 8 23 11 7 2 0 13 18 4

lukaemon_mmlu_college_physics f5cf5e accuracy gen 0 8.82 0 2.94 0 0.98 3.92 15.69 0

lukaemon_mmlu_electrical_engineering 3d694d accuracy gen 0 13.79 8.28 6.21 1.38 1.38 31.03 20 1.38

lukaemon_mmlu_astronomy 7ef16f accuracy gen 4.61 12.5 1.97 33.55 1.32 0 26.97 16.45 6.58

lukaemon_mmlu_anatomy 2d597d accuracy gen 1.48 17.04 0 9.63 5.93 0 37.04 5.93 5.19

lukaemon_mmlu_abstract_algebra ec092c accuracy gen 7 25 8 15 2 3 22 23 12

lukaemon_mmlu_machine_learning d489ae accuracy gen 17.86 25 14.29 3.57 0 0.89 20.54 4.46 0

lukaemon_mmlu_clinical_knowledge af10df accuracy gen 0.75 26.42 1.89 8.68 0.75 0 34.34 10.19 1.51

lukaemon_mmlu_global_facts cad9e0 accuracy gen 1 29 10 30 3 0 22 28 5

lukaemon_mmlu_management 65f310 accuracy gen 0 25.24 1.94 24.27 0 0 30.1 14.56 0

lukaemon_mmlu_nutrition 80bf96 accuracy gen 0 19.61 2.29 15.36 7.19 0.65 32.03 8.82 11.11

lukaemon_mmlu_marketing 9a98c0 accuracy gen 0.43 25.64 2.56 5.13 11.54 21.37 50.85 7.26 0.43

lukaemon_mmlu_professional_accounting 9cc7e2 accuracy gen 5.32 20.21 15.96 21.99 12.06 13.83 20.92 20.92 13.83

lukaemon_mmlu_high_school_geography c28a4c accuracy gen 0.51 21.72 0.51 5.56 1.52 0 33.84 2.53 5.56

lukaemon_mmlu_international_law 408d4e accuracy gen 32.23 24.79 1.65 52.07 47.93 1.65 47.93 45.45 0

lukaemon_mmlu_moral_scenarios 9f30a6 accuracy gen 0 24.25 0.11 19.33 24.25 0 24.13 24.25 0.22

lukaemon_mmlu_computer_security 2753c1 accuracy gen 1 18 2 4 0 0 44 17 0

lukaemon_mmlu_high_school_microeconomics af9eae accuracy gen 0.42 22.69 0 21.85 12.18 0.42 27.73 9.24 13.87

lukaemon_mmlu_professional_law 7c7a62 accuracy gen 6.06 18.9 3.65 29.14 16.36 0.52 29.14 21.71 3.13

lukaemon_mmlu_medical_genetics b1a3a7 accuracy gen 0 19 5 3 1 1 35 5 0

lukaemon_mmlu_professional_psychology c6b790 accuracy gen 0.98 14.38 1.31 22.88 11.44 0.16 39.22 13.24 0.98

lukaemon_mmlu_jurisprudence f41074 accuracy gen 0 28.7 0 29.63 0.93 0 43.52 25 0

lukaemon_mmlu_world_religions d44a95 accuracy gen 0.58 20.47 4.68 41.52 5.85 4.09 47.37 2.92 1.17

lukaemon_mmlu_philosophy d36ef3 accuracy gen 1.61 27.01 3.54 4.5 11.9 1.61 37.94 7.4 0.96

lukaemon_mmlu_virology 0a5f8e accuracy gen 0 29.52 9.04 3.01 0.6 0 33.13 16.87 2.41

lukaemon_mmlu_high_school_chemistry 5b2ef9 accuracy gen 2.46 15.76 2.46 10.84 3.45 1.48 29.06 14.29 2.46

lukaemon_mmlu_public_relations 4c7898 accuracy gen 0.91 31.82 11.82 4.55 0.91 0 32.73 20 0

lukaemon_mmlu_high_school_macroeconomics 3f841b accuracy gen 4.87 19.74 8.46 13.08 2.56 0 22.56 7.95 7.18

lukaemon_mmlu_human_sexuality 4d1f3e accuracy gen 0.76 15.27 4.58 2.29 2.29 0 35.88 4.58 0.76

lukaemon_mmlu_elementary_mathematics 0f5d3a accuracy gen 1.32 14.29 5.03 21.96 3.44 2.12 18.25 12.96 7.14

lukaemon_mmlu_high_school_physics 0dd929 accuracy gen 5.96 12.58 1.99 13.25 3.97 2.65 20.53 15.89 8.61

lukaemon_mmlu_high_school_computer_science bf31fd accuracy gen 5 23 8 17 4 1 30 18 3

lukaemon_mmlu_high_school_european_history d1b67e accuracy gen 16.97 23.03 12.12 21.21 15.76 11.52 26.67 9.7 6.06

lukaemon_mmlu_business_ethics af53f3 accuracy gen 0 26 0 5 1 1 39 15 0

lukaemon_mmlu_moral_disputes 48239e accuracy gen 0 24.86 0.58 24.57 4.05 8.09 37.28 5.78 9.54

lukaemon_mmlu_high_school_statistics 47e18e accuracy gen 4.63 14.81 8.8 18.52 5.09 2.78 15.74 3.7 7.87

lukaemon_mmlu_miscellaneous 573569 accuracy gen 1.4 27.71 19.67 23.5 5.49 0.51 44.7 24.14 7.41

lukaemon_mmlu_formal_logic 7a0414 accuracy gen 2.38 18.25 7.14 17.46 15.87 1.59 19.84 10.32 6.35

lukaemon_mmlu_high_school_government_and_politics d907eb accuracy gen 0 20.73 0.52 30.57 2.59 0 36.27 22.28 17.62

lukaemon_mmlu_prehistory 65aa94 accuracy gen 3.4 23.15 4.01 18.83 4.32 1.23 36.73 21.3 1.85

lukaemon_mmlu_security_studies 9ea7d3 accuracy gen 0.41 15.92 2.04 26.53 6.53 3.27 26.53 16.73 3.67

lukaemon_mmlu_high_school_biology 775183 accuracy gen 0.65 25.16 0.65 9.03 3.23 0.97 37.1 1.94 14.19

lukaemon_mmlu_logical_fallacies 19746a accuracy gen 1.84 24.54 6.75 12.88 12.88 0.61 31.9 11.04 6.13

lukaemon_mmlu_high_school_world_history 6665dc accuracy gen 18.57 26.58 10.13 7.59 23.63 23.21 21.1 9.7 8.44

lukaemon_mmlu_professional_medicine a05bab accuracy gen 9.93 15.07 4.04 8.09 1.1 0 38.97 1.1 5.51

lukaemon_mmlu_high_school_mathematics 0e6a7e accuracy gen 4.81 16.3 5.56 22.59 3.33 0.37 18.89 13.7 3.33

lukaemon_mmlu_college_medicine 5215f1 accuracy gen 1.16 14.45 2.31 5.78 1.16 1.73 28.9 9.25 2.31

lukaemon_mmlu_high_school_us_history b5f235 accuracy gen 8.82 18.63 1.47 20.1 11.76 2.94 18.63 9.31 2.94

lukaemon_mmlu_sociology 4980ec accuracy gen 3.98 21.89 8.96 4.48 5.97 0 41.79 6.47 2.49

lukaemon_mmlu_econometrics 4d590b accuracy gen 7.02 24.56 2.63 16.67 12.28 0.88 25.44 9.65 0.88

lukaemon_mmlu_high_school_psychology 440e98 accuracy gen 0.73 22.57 0.55 10.28 8.99 0.73 37.61 9.72 12.48

lukaemon_mmlu_human_aging d0a8e1 accuracy gen 0.9 36.77 15.25 0.45 0.9 0 39.01 23.32 4.93

lukaemon_mmlu_us_foreign_policy adcc88 accuracy gen 1 21 13 22 5 0 44 14 20

lukaemon_mmlu_conceptual_physics a111d3 accuracy gen 0 22.13 8.51 11.91 0.85 0 31.91 28.09 2.55

Table 15: Detailed Results of General Benchmarks - II
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