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Abstract

Existing information retrieval systems excel in cases where the language
of target documents closely matches that of the user query. However,
real-world retrieval systems are often required to implicitly reason whether
a document is relevant. For example, when retrieving technical texts or
tables, their relevance to the user query may be implied through a par-
ticular jargon or structure, rather than explicitly expressed in their con-
tent. Large language models (LLMs) hold great potential in identifying
such implied relevance by leveraging their reasoning skills. Neverthe-
less, current LLM-augmented retrieval is hindered by high latency and
computation cost, as the LLM typically computes the query-document
relevance online, for every query anew. To tackle this issue we introduce En-
richIndex, a retrieval approach which instead uses the LLM offline to build
semantically-enriched retrieval indices, by performing a single pass over all
documents in the retrieval corpus once during ingestion time. Furthermore,
the semantically-enriched indices can complement existing online retrieval
approaches, boosting the performance of LLM re-rankers. We evaluated
EnrichIndex on five retrieval tasks, involving passages and tables, and
found that it outperforms strong online LLM-based retrieval systems, with
an average improvement of 11.7 points in recall @ 10 and 10.6 points in
NDCG @ 10 compared to strong baselines. In terms of online calls to the
LLM, it processes 293.3 times fewer tokens which greatly reduces the online
latency and cost. Overall, EnrichIndex is an effective way to build better
retrieval indices offline by leveraging the strong reasoning skills of LLMs1.

1 Introduction

Information retrieval plays a crucial role in various knowledge-intensive tasks, including
open-domain question answering and fact-checking. While recent advancements in dense
retrievers (Yu et al., 2024; Li & Li, 2023; Zhang et al., 2024) have achieved strong results on
retrieval leaderboards like MTEB (Muennighoff et al., 2022), retrievers continue to struggle
with more complex tasks that involve technical or domain-specific documents as well as
tables (Sen et al., 2020; Chen et al., 2024a; Lei et al., 2024). These shortcomings are especially
true when the relation between the target documents to the user query is not explicitly
stated and needs to be implicitly inferred given the document contents (Su et al., 2024).

As such, researchers have sought to leverage the reasoning capabilities of LLMs to better
rank the query-document relevance in challenging retrieval tasks. Retrieval re-ranking
approaches (Glass et al., 2022; Rathee et al., 2025) typically rely on online LLM computations
to match the user query with the most relevant documents, these may include query
decomposition and expansion (Wolfson et al., 2020; Yoran et al., 2023; Chen et al., 2024b;
2025), as well as performing document expansion with respect to the user query (Niu
et al., 2024). While these methods achieve significant improvements, they possess two
key limitations: First, retrieval re-rankers require real-time processing for each new query,
resulting in high latency and online cost due to repeated query and document expansion.
Second, as ranking all documents online using LLMs is costly, these methods typically

1Data and code are available at https://peterbaile.github.io/enrichindex/.
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Offline LLM-based enrichment Online retrieval

Original 
content

Summary

Purpose

QA pairs

SIM (Query,                       )

SIM (Query, Table ) 
=

In simpler terms, 
this table helps 
keep a record of 
financial assets, 
showing if they 

are actively 
traded and who 

is managing 
them…

The table named "SECURITY" in 
the "fiben" database contains 

information about various 
securities, identified by a unique 
SECURITYID. Each security has 

two additional attributes: 
ISTRADEDON, which indicates 

whether the security is currently 
being traded…

Purpose

• Question: 
How many 
securities are 
traded on the 
second day? 

• Answer: One 
security is 
traded on the 
second day…

Database name: fiben, Table name: SECURITY, 
Example table content: 

Retrieve Top-K tables based on all indices

SIM (Query,                       )

SIM (Query,                       )

SIM (Query,                       )

Query: Find the highest last traded value of Alphabet in NYSE today.

SECURITYID ISTRADEDON ISPROVIDEDBY
1004374 2 2980
1002269 1 2374

… … … Original 
content

SIM (Query,                       )

SIM (Query, Table ) 
=

Retrieve Top-K tables 
based on original 

content only

Table SECURITY ranks 
36th out of 152 tables

Table SECURITY ranks 
2nd out of 152 tables

EnrichIndex boosts the rank of table SECURITY by 34 places ⬆

Existing retrieval methods Existing retrieval methods 
enhanced by EnrichIndex

Figure 1: EnrichIndex leverages LLMs offline to enrich each object, creating multiple
semantically-enhanced indices. During online retrieval, it computes object relevance by
calculating a weighted sum of similarities between the user query across all enriched indices:
the original table, its summary, purpose and QA pairs. See Appendix A for an additional
example of enriching a free-form document, whose retrieval requires implicit reasoning.

rely on a lightweight stage-one retriever to first retrieve a moderate set of documents, which
are then ranked by the LLM. As a result, the overall performance of the LLM re-ranker is
inherently limited by the performance of the stage-one retriever.

To address these limitations we introduce EnrichIndex, an offline approach which uses
LLM reasoning to improve stage-one retrieval by generating new semantically-enriched
retrieval indices: enriching each object2 in the corpus with multiple representations. En-
richIndex seamlessly integrates with existing stage-one retrieval methods (BM25, dense
retrievers, or hybrid approaches) by computing a weighted similarity score between the
user query and the enriched representations of the object, for each object in the corpus. The
semantically-enriched indices help boost stage-one retrieval, leading to better performance
of the downstream LLM re-rankers. Moreover, as EnrichIndex constructs its enriched indices
once at an offline stage, it performs only a single object enrichment pass, which significantly
reduces future computation costs compared to methods that perform (query-dependent)
document expansion online.

We evaluated EnrichIndex on five retrieval datasets for documents and tables. When
integrated with four different stage-one retrieval models, EnrichIndex leads to average
gains of 4.75 points in recall @10 and 4.5 points in NDCG @10 with minimal online overhead.
When compared to a state-of-the-art retrieve and re-rank system (Niu et al., 2024), we
observe that EnrichIndex-enhanced stage-one retrievers boost the recall @10 and NDCG
@10 scores by 11.7 and 10.6 points respectively, while enabling the LLM to process 293.3
times fewer tokens which significantly reduces its online latency and cost.

In summary, our contributions are as follows: (1) We introduce EnrichIndex, which lever-
ages LLMs offline to enrich objects, significantly reducing high online overheads. (2)
Through experiments on both document and table datasets, we demonstrate how EnrichIn-
dex significantly improves retrieval performance while lowering online costs compared to
state-of-the-art online re-rankers. (3) We provide a detailed analysis into the effectiveness of
offline enrichment and the significance of each enrichment type in different settings.

2 Enriching retrieval indices offline

We focus on the standard information retrieval setting where given: (1) a document corpus
or database and (2) a user query, the retriever system outputs a ranked list of documents

2We use the term object to refer to both free-form text documents and tables.
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or tables relevant to the input query. Typically, the retriever will first index all objects
(documents or tables) in the corpus at an offline phase to enable an efficient query lookup
during the online query stage. For example, BM25 builds an inverted index, while dense
retrieval systems index object embeddings.

Our approach enhances the retrieval indexing phase by enriching each object with three
additional representations: (1) its purpose, (2) a summary, and (3) question-answer pairs
derived from its content. All three of these enriched representations are then indexed
alongside the original object contents.

2.1 Object enrichment

Consider the example in Figure 1, which features a domain-specific table on security trading,
with columns described using a specific technical jargon, and a user query (top right) on the
latest traded stock value. The relevant information requires retrieving the SECURITY table
from the underlying database. However, none of the table columns appear in the query and
the domain-specific naming convention also leads to a low semantic similarity with the user
query. This in turn, causes top-performing dense retrievers such as GTE (Zhang et al., 2024)
to rank the target table only at the 36th place. Next, we illustrate how our enriched indices
help address this limitation, ultimately boosting the SECURITY table up to the 2nd spot. We
introduce three enrichment methods to complement the original object content:

Summary. As previously discussed, retrieval methods face challenges in retrieving: (1)
objects containing technical or domain-specific content and (2) objects other than free-form
text. To address these issues, we propose enriching the original object with a summary to
aid the retriever in better understanding the object contents. The summary serves as a
condensed and paraphrased text describing the original content, using less technical jargon
and potentially removing distracting sentences. In Figure 1, the summary explicitly states
that “security is currently being traded,” emphasizing the concept of trading. This makes the
table more likely to align with the user query, which refers to the “highest traded value”.

Purpose. While existing retrieval methods mainly rely on keyword match or semantic
similarity between the query and the object, these approaches are largely ineffective when
the relevance of an object requires implicit reasoning (Su et al., 2024). To address this
limitation, we enrich the original object with its purpose. Unlike a summary, which is a
re-worded and condensed version of the original content, the purpose should capture the
implicit meaning and potential uses of the object. It enables the retriever to better bridge
the gap between the wording of the user query and the implied purpose of objects in the
retrieval corpus. In our example, the purpose of the target table emphasizes that it serves as
“a record of financial assets” and describes the status of active trading, making it much more
aligned semantically with the user query on the traded value of a particular stock.

QA pairs. Retrieval systems typically measure the similarity between the user query and
an object to indirectly estimate the likelihood that its contents are relevant to the query.
Instead, we go the other route by representing an object using a set of generated QA pairs.
Comparing the user queries to sets of questions and answers should aid retrievers to more
directly estimate the object relevance, providing a stronger retrieval signal to identify those
that are most likely to contain the target answers. In our experiments, each object was
enriched with 20 question-answer pairs. The example QA pair in Figure 1 implies that the
table can be used to answer questions about trading, making it much more likely to align
with the user query’s mention of “last traded value”.

2.2 Online retrieval

Following the enrichment phase, each enriched object is associated with a new retrieval
index, one for each representation. Overall, we have four indices for the object: one for the
original content, one for the summary, one for the purpose, and one for the QA pairs.
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Given an input retrieval query online, q, we compute its similarity with the original object
content ob as well as its similarity with the object purpose op, summary os, and example QA
pairs oqa. Let S represent the similarity function of the underlying retrieval method. The
joint query-object similarity between q and o is then computed as a weighted sum of the
similarity scores between q and each representation:

S(q, o) = α1S(q, ob) + α2S(q, op) + α3S(q, os) + α4S(q, oqa) (1)

The top-k objects are then selected based on their overall similarity score S(q, o) and returned
as the final retrieval results. As shown in Figure 1, GTE with EnrichIndex elevates the table
SECURITY by 34 positions, moving it from rank 36 to rank 2.

3 Experiments

3.1 Datasets

We evaluated our approach and baselines on complex open-domain retrieval tasks, on
documents and on tables, that capture the more challenging retrieval aspects discussed in
Section 1. We considered two types of tasks, implicit retrieval and table retrieval. The implicit
retrieval benchmark is the Bright dataset (Su et al., 2024), which includes technical docu-
ments from domains such as StackExchange discussions, coding, and theorems, requiring
implicit reasoning between the question and documents. To measure table retrieval, we
evaluated on three datasets, Spider2 (Lei et al., 2024), Beaver (Chen et al., 2024a), and Fiben
(Sen et al., 2020). These tasks involve retrieving the relevant tables given user questions
over complex databases containing large tables and domain-specific knowledge. Since
some table retrieval datasets contain fewer than 10 tables for some databases, the original
setup makes retrieval too easy (e.g., retrieving 10 tables from a database with 10 tables
results in a recall of 100). To address this, we combined all databases into a single unified
central database, increasing the corpus size and making the retrieval task more challenging.
Lastly, to validate that our approach also excels on simpler retrieval tasks, we included NQ
(Kwiatkowski et al., 2019), a standard document retrieval task without the aforementioned
challenges. Details about dataset statistics can be found in Appendix C.

3.2 Measuring retrieval performance and efficiency

Following standard retrieval metrics, we evaluated retrieval performance using precision,
recall, F1 and NDCG @k.

Additionally, we evaluated efficiency from two perspectives: latency and cost, by analyzing
the number of input and output tokens used by LLMs online. On the same hardware,
processing fewer input tokens and generating fewer output tokens reduces the workload for
LLMs, leading to lower latency. Likewise, fewer processed tokens decrease computational
demands, lowering costs. Since both latency and cost are directly influenced by token usage,
we used token count as a key metric for measuring efficiency.

We tracked LLM usage only during the online phase, not for offline enrichment. In scenarios
where the object corpus remains largely static, EnrichIndex conducts enrichment once during
the offline stage, allowing the enriched representations to be reused across all queries. As
query volume increases, the amortized cost of enrichment can become very small.

3.3 Baselines and setup

Since our method aims to enhance existing retrieval techniques by incorporating enriched
object representations, we compared it against standard retrieval methods that rely solely
on the original object content. For table retrieval datasets, each table was serialized to
include its table name, columns, and a randomly selected sample of rows (full details in
Appendix D) as used by past works (Chen et al., 2025; Lei et al., 2024). We evaluated three
common retrieval frameworks: (1) BM25, (2) dense retrievers, and (3) a hybrid approach that
combines both. The retrieval results can then be further refined using LLMs as re-rankers
(Niu et al., 2024). To maintain clarity within the retrieve-and-re-rank framework, we refer to
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k = 10 k = 100

StackEx. Coding Thm. Avg. Improvement StackEx. Coding Thm. Avg. Improvement

R N R N R N R N R(pt.) R(%) N(pt.) N(%) R N R N R N R N R(pt.) R(%) N(pt.) N(%)

Original question

BM25 23.4 18.9 17.1 10.4 5.5 3.8 17.3 13.2 - - - - 48.1 25.8 31.7 15.0 14.1 6.0 35.7 18.4 - - - -
BM25E 21.7 17.6 14.8 9.8 5.8 4.0 16.0 12.4 -1.3 -7.5 -0.8 -6.1 49.7 25.6 31.8 14.8 14.6 6.2 36.8 18.3 +1.1 +3.1 -0.1 -0.5

UAE 19.6 16.5 15.4 10.5 8.3 5.5 15.7 12.4 - - - - 47.4 24.2 32.7 15.7 19.7 8.4 37.1 18.3 - - - -
UAEE 22.9 19.1 18.5 14.1 8.8 6.2 18.2 14.6 +2.5 +15.9 +2.2 +17.7 52.1 27.3 35.3 18.9 23.7 9.8 41.2 20.9 +4.1 +11.1 +2.6 +14.2
GTE 18.7 15.0 13.9 11.9 9.2 6.1 15.2 11.9 - - - - 47.8 23.1 37.6 18.9 24.3 10.0 39.4 18.7 - - - -
GTEE 20.9 16.6 18.6 15.0 13.4 9.3 18.4 14.3 +3.2 +21.2 +2.4 +20.2 52.3 25.4 43.8 22.9 27.4 12.7 43.9 21.5 +4.5 +11.4 +2.8 +15.0
Snowflake 22.3 18.9 15.6 10.4 10.4 6.8 17.8 14.0 - - - - 46.7 25.6 34.7 15.9 24.2 10.2 38.3 19.6 - - - -
SnowflakeE 25.7 21.6 20.1 16.9 12.1 7.7 20.9 16.9 +3.1 +17.4 +2.9 +20.7 56.0 30.2 46.4 24.4 27.8 11.7 46.4 24.0 +8.1 +21.1 +4.4 +22.4

BM25+UAE 23.9 20.1 18.0 12.5 8.9 5.7 18.7 14.7 - - - - 53.6 28.5 37.8 18.6 22.8 9.3 42.2 21.4 - - - -
(BM25+UAE)E 25.4 21.4 17.4 13.4 9.7 6.4 19.6 15.8 +0.9 +4.8 +1.1 +7.5 58.4 30.6 38.8 19.6 24.5 9.9 45.4 22.8 +3.2 +7.6 +1.4 +6.5
BM25+GTE 25.6 21.0 18.7 15.5 11.6 7.3 20.5 16.2 - - - - 54.7 29.2 44.6 23.3 26.7 11.1 45.1 23.1 - - - -
(BM25+GTE)E 26.8 22.1 20.7 16.8 13.2 9.1 21.9 17.5 +1.4 +6.8 +1.3 +8.0 57.4 30.5 47.8 24.8 29.8 13.3 48.0 24.7 +2.9 +6.4 +1.6 +6.9
BM25+Snow. 27.2 22.2 17.9 12.1 10.4 6.9 20.8 16.1 - - - - 54.7 30.1 40.6 18.8 24.5 10.5 43.8 22.6 - - - -
(BM25+Snow.)E 27.2 21.9 20.8 17.3 12.0 7.9 21.9 17.2 +1.1 +5.3 +1.1 +6.8 59.6 31.3 47.4 24.8 28.0 11.9 48.7 24.8 +4.9 +11.2 +2.2 +9.7

Average 23.0 18.9 16.7 11.9 9.2 6.0 18.0 14.1 - - - - 50.4 26.7 37.1 18.0 22.3 9.4 40.2 20.3 - - - -
AverageE 24.4 20.0 18.7 14.8 10.7 7.2 19.6 15.5 +1.6 +8.9 +1.4 +9.9 55.1 28.7 41.6 21.5 25.1 10.8 44.3 22.4 +4.1 +10.2 +2.1 +10.3

GPT-4 generated expanded query

Average 33.5 29.1 15.5 12.1 16.3 11.7 25.4 21.2 - - - - 61.7 37.0 35.3 18.2 30.8 15.3 48.3 27.6 - - - -
AverageE 34.6 30.1 17.5 15.6 19.4 13.8 27.3 23.0 +1.9 +7.5 +1.8 +8.5 64.9 38.5 42.4 22.8 35.2 17.8 52.5 29.9 +4.2 +8.7 +2.3 +8.3

Table 1: Recall (R) and NDCG (N) @k of stage-one retrievers on the Bright dataset. XE
refers to retrieval method X augmented with EnrichIndex. Average and AverageE refer
to the average performance of all methods without and with EnrichIndex, respectively.
Gray numbers indicate the performance of retrievers when they achieve lower performance
without EnrichIndex. Bolded numbers indicate the performance gain (in points (pt.) and
percentages (%)) of retrievers when they achieve higher performance with EnrichIndex.
Refer to Appendix F for complete numbers.

retrieval using BM25, dense retrievers, or the hybrid method as stage-one retrieval. In our
experiments, we fed re-rankers the top k = 100 documents on the Bright dataset and k = 20
tables on the table retrieval datasets. For the Bright dataset, we set k = 100, following the
approach in Su et al. (2024); Niu et al. (2024). For the table retrieval datasets, we chose k = 20
since the average number of gold tables required per question is 3.54, and selecting 20 allows
for a broader set of objects to be included for reranking. Details for hyperparameter tuning
can be found in Appendix E.

For BM25, we used the implementation from Li et al. (2024). For dense retrieval, we selected
lightweight models under 500M parameters, including UAE-Large-V1 (Li & Li, 2023), GTE-
multilingual-base (Zhang et al., 2024), and Snowflake-arctic-l (Yu et al., 2024), all of which
rank among the top models on the MTEB leaderboard for retrieval tasks.

We compared EnrichIndex with a strong retrieval re-ranking approach that relies on complex
online analysis using LLM reasoning. For the challenging retrieval tasks mentioned earlier, a
common strategy is to retrieve the top-k objects from stage-one retrieval and then analyze
each object’s relevance using an LLM before ranking them accordingly. To this end, we
compared our method with Judgerank, a powerful retrieval re-ranking approach and the
current state-of-the-art for the Bright benchmark3. Judgerank employs BM25 for stage-one
retrieval, followed by an online query expansion and question-specific document expansion
phase that is used for re-ranking the documents. The implementation details are provided
in Appendix B.1. We did not evaluate Judgerank on the NQ dataset, as it is less challenging
and existing stage-one retrievers already achieve high performance.

The enrichment process of our method is performed offline using GPT-4o-mini, with the
specific prompts detailed in Appendix B.2.

3.4 Performance

Performance of stage-one retrievers. We begin by examining whether EnrichIndex can
improve the retrieval performance of various stage-one retrieval methods. As shown in the
upper sections of Tables 1, 2 and 3, EnrichIndex generally improves retrieval performance for
stage-one retrieval methods. For the Bright dataset, across all of its domains, EnrichIndex
enhances the recall and NDCG @10 of dense retrievers by an average of 2.93 and 2.50
points respectively. Similarly, it improves recall and NDCG @10 of hybrid approaches
by an average of 1.13 and 1.17 points. When looking at the three table retrieval datasets,

3https://brightbenchmark.github.io/ as of April 2nd, 2025

5

https://brightbenchmark.github.io/


Published as a conference paper at COLM 2025

k = 10 k = 20

Spider2 Beaver Fiben Avg. Improvement Spider2 Beaver Fiben Avg. Improvement

R N R N R N R N R(pt.) R(%) N(pt.) N(%) R N R N R N R N R(pt.) R(%) N(pt.) N(%)

Original question

BM25 43.3 32.0 51.7 43.9 30.6 29.0 40.6 34.1 - - - - 53.0 35.1 67.7 50.0 33.8 30.2 49.5 37.2 - - - -
BM25E 60.9 46.5 59.2 52.4 47.4 40.9 55.2 45.9 +14.6 +36.0 +11.8 +34.6 69.8 49.6 73.9 58.4 62.9 46.6 68.2 50.8 +18.7 +37.8 +13.6 +36.6

UAE 55.4 44.2 48.6 43.8 48.2 42.6 50.7 43.5 - - - - 70.2 48.9 67.5 51.2 61.4 47.8 66.0 49.1 - - - -
UAEE 60.2 47.0 54.8 49.3 55.3 52.0 56.8 49.6 +6.1 +12.0 +6.1 +14.0 74.2 51.7 72.4 56.3 63.3 55.3 69.5 54.3 +3.5 +5.3 +5.2 +10.6
GTE 53.8 41.9 54.0 45.9 54.4 56.9 54.1 48.8 - - - - 62.4 44.7 69.6 52.2 63.1 60.4 64.7 52.9 - - - -
GTEE 61.5 47.0 58.0 51.7 60.7 62.7 60.2 54.4 +6.1 +11.3 +5.6 +11.5 72.5 50.7 74.0 58.1 67.2 65.3 70.8 58.4 +6.1 +9.4 +5.5 +10.4
Snowflake 45.1 34.1 49.2 42.3 51.8 47.5 48.8 41.6 - - - - 53.1 36.5 66.3 49.3 58.7 50.4 58.9 45.4 - - - -
SnowflakeE 62.0 48.1 58.0 52.4 53.9 53.8 57.7 51.5 +8.9 +18.2 +9.9 +23.8 71.3 51.0 74.1 59.0 59.4 56.0 67.4 55.1 +8.5 +14.4 +9.7 +21.4

BM25+UAE 65.2 50.7 55.3 48.0 44.8 37.8 54.5 45.0 - - - - 74.2 53.9 76.2 56.2 61.5 44.3 69.8 50.8 - - - -
(BM25+UAE)E 67.7 53.0 62.9 54.2 52.1 43.2 60.3 49.5 +5.8 +10.6 +4.5 +10.0 77.7 56.4 79.2 60.8 63.1 47.5 72.4 54.1 +2.6 +3.7 +3.3 +6.5
BM25+GTE 60.2 48.1 57.1 49.1 51.8 43.8 56.1 46.7 - - - - 69.4 51.1 77.2 56.9 62.5 48.1 68.8 51.5 - - - -
(BM25+GTE)E 68.1 52.5 64.7 56.5 58.6 48.3 63.5 51.9 +7.4 +13.2 +5.2 +11.1 76.1 55.2 80.7 62.8 66.9 51.6 73.8 55.9 +5.0 +7.3 +4.4 +8.5
BM25+Snow. 55.1 42.8 55.5 47.0 50.3 42.0 53.4 43.6 - - - - 64.3 45.8 75.2 54.7 59.3 45.5 65.3 48.1 - - - -
(BM25+Snow.)E 68.7 53.0 63.9 55.5 50.6 44.9 60.3 50.5 +6.9 +12.9 +6.9 +15.8 77.8 55.9 80.4 62.1 59.2 48.3 71.2 54.6 +5.9 +9.0 +6.5 +13.5

Average 54.0 42.0 53.1 45.7 47.4 42.8 51.2 43.3 - - - - 63.8 45.1 71.4 52.9 57.2 46.7 63.3 47.9 - - - -
AverageE 64.1 49.6 60.2 53.1 54.1 49.4 59.1 50.5 +7.9 +15.4 +7.2 +16.6 74.2 52.9 76.4 59.6 63.1 52.9 70.5 54.7 +7.2 +11.4 +6.8 +14.2

GPT-4o-mini generated expanded query

Average 53.8 41.5 51.9 43.9 53.4 45.6 53.1 43.7 - - - - 63.5 44.5 68.6 50.5 71.5 52.5 68.0 49.3 - - - -
AverageE 63.1 49.1 57.9 51.5 60.5 51.9 60.7 50.9 +7.6 +14.3 +7.2 +16.5 73.7 52.6 72.7 57.5 73.3 56.8 73.3 55.6 +5.3 +7.8 +6.3 +12.8

Table 2: Recall and NDCG @k of stage-one retrievers on the table retrieval datasets.

k = 10 k = 100

NQ Improvement NQ Improvement

R N R(pt.) R(%) N(pt.) N(%) R N R(pt.) R(%) N(pt.) N(%)

Average 88.4 74.2 - - - - 96.5 76.1 - - - -
AverageE 89.9 76.0 +1.5 +1.7 +1.8 +2.4 97.4 77.7 +0.9 +0.9 +1.6 +2.1

Table 3: Average recall and NDCG @k of stage-one retrievers on the NQ dataset.

EnrichIndex boosts recall and NDCG @10 for BM25 by an average of 14.6 and 11.8 points,
for dense retrievers by 7.03 and 7.2 points, and for hybrid approaches by 6.7 and 5.53 points.
For the NQ dataset, EnrichIndex improves recall and NDCG @10 across all methods by an
average of 1.5 and 1.8 points, respectively.

When retrieving a higher number of top-k objects, the improvements remain substantial or
even increase. On the Bright dataset, with k = 100, EnrichIndex enhances recall and NDCG
for dense retrievers by 5.57 and 3.27 points and for hybrid approaches by 3.67 and 1.73
points. For table datasets, at k = 20, EnrichIndex increases recall and NDCG for BM25 by
18.7 and 13.6 points, for dense retrievers by 6.03 and 6.80 points, and for hybrid approaches
by 4.5 and 4.73 points. For the NQ dataset, at k = 100, EnrichIndex increases average recall
and NDCG across all methods by an average of 0.9 and 1.6 points, respectively. These results
indicate that strong re-rankers can process a larger set of input objects, potentially achieving
even greater retrieval performance at smaller k.

Performance of stage-one retrievers with query expansion. As discussed in Section
3.3, query expansion is a widely used online technique to improve retrieval performance.
To explore whether our method can further enhance performance when combined with
expanded queries, we replaced the original user query with an LLM-generated expanded
query and used it to compute query-object similarity for top-k retrieval.

Examining the lower sections of Table 1 and Table 2 reveals that EnrichIndex can also
enhance various stage-one retrieval methods when using LLM-generated expanded queries
instead of the original user queries. On the Bright dataset, across all methods, EnrichIndex
improves recall and NDCG @10 by an average of 1.9 and 1.8 points, respectively, and
enhances recall and NDCG @100 by 4.2 and 2.3 points. For table retrieval datasets, across all
methods, EnrichIndex increases recall and NDCG @10 by an average of 7.6 and 7.2 points,
while @20, recall and NDCG improve by 5.3 and 6.3 points, respectively.

Additionally, we find that with query expansion, our method leads to the most significant
improvements in the coding and theorem domains within the Bright dataset, as well as
in the table retrieval datasets. Across all retrieval methods, the average recall and NDCG
@10 improvements are 1.1 and 1.0 for the Stack Exchange domain, 2.0 and 3.5 for coding,
3.1 and 2.1 for theorem, and 7.6 and 7.2 for table retrieval. This may be due to the greater
semantic gap between user queries and target objects. While StackExchange documents
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StackEx. Coding Thm. Average Improvement wrt. Judgerank Spider2 Beaver Fiben Average Improvement wrt. Judgerank

R N R N R N R N R(pt.) R(%) N(pt.) N(%) R N R N R N R N R(pt.) R(%) N(pt.) N(%)

BM25 37.7 32.8 12.2 9.5 13.7 9.8 26.4 22.2 - - - - 39.1 28.6 47.0 37.5 46.2 34.5 44.0 33.3 - - - -
Judgerank4

(BM25-J) 39.3 33.9 13.2 9.9 15.3 10.9 27.9 23.1 - - - - 40.2 30.3 47.8 38.8 46.2 34.7 44.6 34.3 - - - -

EnrichIndex 39.7 34.7 20.2 17.0 20.7 14.4 30.9 25.8 +3.0 +10.8 +2.7 +11.7 66.4 51.7 62.1 55.8 65.7 51.5 65.0 52.7 +20.4 +45.7 +18.4 +53.6
EnrichIndex-J 40.0 35.5 20.3 17.8 21.2 14.7 31.2 26.5 +3.3 +11.8 +3.4 +14.7 66.9 52.6 61.8 55.7 65.6 51.7 65.0 53.1 +20.4 +45.7 +18.8 +54.8

Table 4: Retrieval performance @10 of various methods on Bright and the table retrieval
datasets with query expansion. X-J refers to stage-one retrieval method X augmented with the
Judgerank online reranker executed on Llama-3.1-8B-Instruct. EnrichIndex-enhanced stage-
one retrievers outperform Judgerank even without applying Judgerank online reranker.
Incorporating Judgerank reranker on top of EnrichIndex-enhanced stage-one retrievers
further improves performance.

StackExchange Coding Theorems Average Spider2 Beaver Fiben Average

#Input tokens 1072.9x 872.4x 1903.5x 1158.5x 4016.2x 744.9x 543.7x 1998.8x
#Output tokens 56.0x 53.4x 59.1x 56.5x 9.2x 10.0x 7.7x 8.9x
#Total tokens 348.4x 327.7x 374.8x 351.0x 530.8x 99.3x 56.4x 235.5x

Table 5: Reduction factor in the number of input, output, and total tokens used by LLMs
when using EnrichIndex-enhanced stage-one retrievers instead of Judgerank. Latency and
cost are proportional to token counts, so larger reductions are better. Refer to Appendix G
for the absolute token counts.

are primarily written in free-form text, documents in the coding and theorem domains
often contain programming code or mathematical equations, and tables are structured using
column names and rows. Moreover, the further improvement achieved by our method
beyond query expansion suggests that bridging this gap requires not only refining queries
but also enhancing object representation, highlighting the necessity of our method.

Re-ranker performance. We investigate whether stage-one retrievers enhanced by En-
richIndex can further complement existing online rerankers to enhance overall retrieval
performance. Tables 1 and 2 show that the most effective retrieval method enhanced by
EnrichIndex is the hybrid approach combining the Snowflake dense retriever with BM25 on
the Bright dataset and the GTE dense retriever with BM25 on the table datasets. Therefore,
we selected these as the stage-one retrievers.

Table 4 demonstrates that our method can enhance existing online re-rankers, such as Judger-
ank, to achieve higher scores. As mentioned in Section 3.3, the original implementation
of Judgerank uses BM25 as the stage-one retriever. Replacing BM25 with the stage-one
retriever with EnrichIndex improves recall and NDCG @10 by 3.3 and 3.4 points on the
Bright dataset and by 20.4 and 18.8 points on the table datasets. These results highlight
the importance of high-quality stage-one retrieval, as re-ranker performance is inherently
limited by the effectiveness of the initial retrieval stage. Improving stage-one retrieval is
therefore likely to result in better overall re-ranker performance.

Efficiency. Finally, we compare stage-one retrievers enhanced by EnrichIndex with Judger-
ank in terms of both performance and efficiency, including latency and cost, using the same
evaluation settings as for reranker performance. As shown in Tables 4 and 5, EnrichIndex-
enhanced stage-one retrievers with online query expansion alone, without a Judgerank-style
online re-ranker, significantly outperforms Judgerank while achieving substantially lower
latency and cost, thanks to the drastically reduced number of tokens processed.

On the Bright dataset, EnrichIndex surpasses Judgerank by 3.0 and 2.7 points in recall
and NDCG @10, respectively, while processing 1158.5 times fewer input tokens and 56.5
times fewer output tokens, resulting in significant latency and cost reduction. For the table

4Since the Judgerank code was not released, we made our best effort to replicate it. Due to
computational resource constraints, running Judgerank on larger models like Llama-3.1-70B-Instruct
is extremely time-consuming, so we limited our testing to the 8B version. Additionally, the latency
and cost of running larger models would increase significantly.
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Bright Spider2 Beaver Fiben

Without EnrichIndex 0.0550 0.1206 0.0915 0.0575
With EnrichIndex 0.0579 0.1514 0.1069 0.0802

% increase +5.3% +58.1% +29.1% +42.9%

Table 6: The Wasserstein distance between distributions of cosine similarity for (query,
non-gold objects) and (query, gold objects), computed with and without EnrichIndex.

datasets, EnrichIndex outperforms Judgerank by 20.4 and 18.4 points in recall and NDCG
@10, while reducing input token processing by 1998.8 times and output token processing by
8.9 times, again leading to significant latency and cost reduction. This substantial decrease in
token usage stems from EnrichIndex eliminating the need for costly online query-dependent
object expansion for each retrieved object in the first-stage retrieval.

This clearly highlights the significance of an improved stage-one retrieval system. A stronger
stage-one retriever, when combined with lightweight online techniques like query expansion,
can already surpass a system that relies on a less powerful stage-one retriever but uses a
powerful online LLM-based reranker. This not only reduces costs but also lowers latency.
Furthermore, as previously discussed, a better stage-one retriever can enhance online
rerankers, leading to even higher performance. Therefore, our approach provides users
with the flexibility to pair EnrichIndex-enhanced stage-one retrievers with either efficient,
lightweight online techniques or more costly but powerful online rerankers, depending on
their performance-efficiency tradeoffs.

4 Analysis

4.1 Distribution distance with and without enrichment

Under our retrieval setting, gold objects are those that contain the correct answers for each
user query. Ideally, the enrichment introduced by EnrichIndex should assist retrievers
in better differentiating gold objects from non-gold ones, enabling them to rank gold
objects higher and improve retrieval performance. Therefore, we examine whether object
enrichment indeed provides a stronger signal to retrievers in distinguishing between gold
and non-gold objects. We do this by examining the distribution shift in query-object
cosine similarity before and after enrichment between (query, gold object) pairs and (query,
non-gold object) pairs for all queries. In this analysis, we focused on the results of best-
performing dense retrievers: Snowflake for Bright and GTE for the table retrieval datasets.
Specifically, we quantify the distribution shift using the Wasserstein distance5. Table 6 shows
that the distance between gold and non-gold similarities increases significantly after object
enrichment. This indicates that EnrichIndex enhances the retriever’s ability to differentiate
between relevant and non-relevant objects by increasing their separation. As a result, gold
objects are ranked even higher than non-gold objects after enrichment, ultimately improving
retrieval performance.

4.2 Performance breakdown by enrichment types

As described in Section 2.1, there are three types of object enrichment: purpose, summary,
and QA pairs. We examine the significance of each enrichment type. In particular, we
analyze the average performance of all dense retrievers in the following case: no enrich-
ment; one type of enrichment; two types of enrichment; all three types being used. As
seen in Figure 2, each enrichment positively contributes to the retrieval performance. More-
over, we observe that having all enrichment types provides the highest performance gain,
higher compared to using only two types of enrichment, which is in turn higher than the
performance gain using only one type of enrichment.

5scipy.stats.wasserstein distance
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Figure 2: Absolute improvement (in points) of retrieval performance with different types of
enrichment relative to using only the original object content. Base refers to original object
content, P refers to purpose, S refers to summary, and QA refers to QA pairs.

StackEx. Coding Thm. Avg. Improvement Spider2 Beaver Fiben Avg. Improvement

R N R N R N R N R(pt.) R(%) N(pt.) N(%) R N R N R N R N R(pt.) R(%) N(pt.) N(%)

Original question

Average 22.6 18.7 16.5 11.8 9.3 6.2 17.8 13.9 - - - - 53.8 41.5 53.5 45.8 47.1 42.6 51.1 43.1 - - - -
AverageE 24.1 20.0 17.8 13.5 10.8 7.3 19.3 15.3 +1.5 +8.4 +1.4 +10.1 63.7 50.1 58.2 51.0 52.2 47.6 57.7 49.3 +6.6 +12.9 +6.2 +14.4

GPT generated expanded query

Average 33.5 29.3 15.6 12.2 16.8 11.9 25.6 21.4 - - - - 52.2 40.0 51.9 43.7 53.2 45.1 52.5 43.0 - - - -
AverageE 34.7 30.3 17.2 14.3 19.5 14.0 27.3 22.9 +1.7 +6.6 +1.5 +7.0 62.8 48.9 56.7 50.4 57.6 50.0 59.1 49.8 +6.6 +12.6 +6.8 +15.8

Table 7: Recall and NDCG @10 of stage-one retrievers on Bright and table retrieval datasets.

Regarding the relative importance of each enrichment, we observe that on the Bright dataset,
which requires implicit reasoning, object-purpose contributes the most to the overall retrieval
performance. Adding the purpose improves recall @ 10 and NDCG @ 10 by 2.0 and 1.6
points, respectively, compared to 1.7 and 1.4 points for object-summary, and 1.5 and 1.1
points for adding QA pairs. This may be due to the purpose enrichment’s text highlighting
the potential uses of the original object content, making it semantically closer to the user
query. Additionally, QA pairs provide a greater performance boost than the object-summary,
contributing an additional 0.7 and 0.6 points for recall and NDCG @ 10. Finally, adding
summary on top of both purpose and QA pairs yields a further improvement of 0.2 and 0.3
points for recall and NDCG @ 10, respectively.

For table retrieval datasets, the object-summary provides the greatest improvement in
overall retrieval performance when only a single enrichment type is used. Across all
datasets, adding summary increases recall @ 10 by 5.77 points and NDCG @ 10 by 5.10
points, outperforming purpose, which improves recall @ 10 and NDCG @ 10 by 4.77 and 4.67
points, respectively, and QA pairs, which contribute 3.07 and 3.17 points. This advantage
likely arises because the summary translates the tabular data into a free-form text format on
which retrievers are typically optimized. On top of object-summary, adding the purpose
has a greater performance boost than QA pairs, increasing recall @ 10 by 1.06 points and
NDCG @ 10 by 1.37 points. Finally, incorporating QA pairs alongside both summary and
purpose provides an additional improvement of 0.27 points for recall @ 10 and 0.7 points
for NDCG @ 10.

Overall, based on our analysis, we conclude that in domains that require more implicit
reasoning the object-purpose provides the greatest benefit, followed by QA pairs, and then
the object-summary. In contrast, in domains where understanding contents from different
modalities plays a key role, summary is the most effective, followed by purpose, then QA
pairs.

4.3 Hyperparameter analysis

The experiments in Section 3.4 was performed by tuning the weights in Equation 1 individ-
ually for each dataset. To evaluate how well these weights generalize across different tasks,
we also report results using a single, shared set of weights for all datasets. As shown in
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Table 7, EnrichIndex continues to provide significant performance gains, highlighting the
robustness and generalizability of our method across varied workloads.

5 Related work

Query expansion. To bridge the semantic gap between user queries and documents, prior
work has explored various query expansion techniques to enhance retrieval by using the
expanded objects for search (Xu & Croft, 1996; Carpineto & Romano, 2012). Recent methods
for query expansion include Wang et al. (2024) that augment the original query using six
additional questions based on the 5W1H framework (Who, What, When, Where, Why,
How). Gao et al. (2023); Wang et al. (2023) prompt LLMs to generate hypothetical answer
passages conditioned solely on the original query. Follow-up work (Sun et al., 2025; Shen
et al., 2024) extends this idea by incorporating retrieved documents alongside the original
query to produce more informed hypothetical answers.

These approaches are complementary to ours in that they focus on enriching queries during
retrieval time, whereas our method enriches documents offline. Importantly, relying solely
on online query processing can substantially increase both the QA latency and computation
cost, since the expansion must be performed anew for each query. In contrast, EnrichIndex
performs a one-time process of enriching documents offline once during ingestion, which
leads to a significant improvement in retrieval performance.

Document expansion. Other lines of work enhance retrieval by expanding the documents
themselves. Doc2Query (Nogueira et al., 2019) uses fine-tuned models to generate questions
that can be answered from the document, effectively enriching it with potential queries.
Tan et al. (2025) leverages off-the-shelf LLMs to generate additional QA pairs and event
information from documents. Sarthi et al. (2024) produces document summaries and clusters
documents based on these summaries. The resulting enriched content is then added back
into the corpus and used in an embedding-based retrieval system.

EnrichIndex differs from these prior methods in several ways. First, it performs enrichment
across multiple modalities (including text and tables) and includes diverse types of enrich-
ment like purpose, summaries, and synthetic QA pairs. This is done using general-purpose,
off-the-shelf models rather than task-specific fine-tuned ones. Second, our approach de-
parts from prior work in how the enriched content is used during retrieval. Rather than
appending or merging new content into the original document (which alters the content
or corpus), we maintain both the original corpus and index. During retrieval, we consider
multiple enrichment indices and combine its scores with those from the original content
using a weighted sum. This modular design enables a more flexible and extensible vector
storage: each index remains independent, allowing new embeddings or enrichment types
to be added without disrupting the existing setup.

6 Conclusion

Retrieval tasks involving technical texts and domain-specific tables often require implicit
reasoning between user queries and object content to determine relevance. As a result,
traditional retrieval methods, based on lexical matching and embedding similarity, struggle
with such tasks. Existing solutions have tried to address this issue by utilizing LLMs to assess
object relevance online for each query, which is both time-consuming and costly. To overcome
this, we introduce EnrichIndex which instead utilizes the LLM offline, using its reasoning
skills to enrich each object in the corpus and build new retrieval indices. EnrichIndex
significantly improves retrieval performance for complex document and table retrieval
tasks while greatly reducing online costs and latency. Additionally, we demonstrate how
EnrichIndex can complement existing online LLM-based re-rankers to achieve even greater
performance. Overall, we hope that our findings will inspire future research into more
efficient offline document and table expansion and to further enhance retrieval performance
beyond that of existing query rewriting and re-ranking approaches.
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A Example of enriching a document

Original content

Summary QA pairs

Offline LLM-based enrichment Online retrieval

Original 
content

Summary

Purpose

QA pairs

SIM (Query,                       )

SIM (Query, Table ) 
=

This text explains the 
concept of binocular 

disparity, which is the slight 
difference in the images 
seen by each of our eyes 
due to their separation. 

This difference helps our 
brain perceive depth and 
distance, allowing us to 

understand how far away 
objects are…

Binocular disparity 
is the slight 

difference in the 
images seen by 
each of our eyes 
because they are 

spaced apart. This 
difference helps 

our brain 
understand how far 
away objects are…

Purpose

• Question: What is 
binocular disparity? 

• Answer: Binocular 
disparity is the 
difference in the 
views seen by each 
eye due to their 
horizontal 
separation, which 
helps in depth 
perception.…

Human eyes are horizontally separated by about 50–75 mm 
(interpupillary distance) depending on each individual. Thus, 

each eye has a slightly different view of the world around. This 
can be easily seen when alternately closing one eye while 
looking at a vertical edge. The binocular disparity can be 

observed from apparent horizontal shift of the vertical edge 
between both views…

Retrieve Top-K tables based on all indices

SIM (Query,                       )

SIM (Query,                       )

SIM (Query,                       )

Query: Are two eyes necessary for 3D vision? … Do people 
eventually lose the depth perception (or at least it diminishes 
significantly) when they lose a single eye?…

Original 
content

SIM (Query,                       )

SIM (Query, Table ) 
=

Retrieve Top-K tables 
based on original 

content only

EnrichIndex boosts the rank of the document by 60 places ⬆

Existing retrieval methods Existing retrieval methods 
enhanced by EnrichIndex

The document ranks 67th The document ranks 7th

Figure 3: EnrichIndex leverages LLMs offline to enrich each object, creating multiple
semantically-enhanced indices. During online retrieval, it computes object relevance by
calculating a weighted sum of similarities between the user query across all enriched indices:
the original document, its summary, purpose and QA pairs.

The user query focuses on “depth perception,” a concept not explicitly stated in the original
document, resulting in a low initial ranking of 67th by the Snowflake embedding model (Yu
et al., 2024). However, the summary, purpose, and QA pairs introduced through enrichment
include terms such as “far away,” “depth and distance,” and “depth perception,” which
better align with the query. As a result, the ranking improves significantly to 7th place. This
demonstrates the effectiveness of the offline enrichment provided by EnrichIndex.

B Prompts

B.1 Judgerank implmentation

JudgeRank was initially designed for the Bright dataset but not for table retrieval datasets,
so we adapted it for table retrieval. In Bright, Judgerank utilizes GPT-4-0125-preview to
generate expanded queries, but since the table datasets lack these expansions, we used
the same prompt from the original Bright paper and employed GPT-4o-mini for query
expansion. For question-specific object expansion, we applied similar prompts to tables as
JudgeRank used for documents.

Tables 8 - 10 show the prompts used for query expansion, query-specific object expansion,
and judging whether an object is relevant to the user query.
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{User query}

Instructions:
1. Identify the essential problem.
2. Think step by step to reason and describe what information could be relevant and helpful
to address the questions in detail.
3. Draft an answer with as many thoughts as you have.

Table 8: Zero-shot prompt for query expansion.

You will be presented with a/an {query name}, an analysis of the {query name}, and a/an
{object name}.

Your task consists of the following steps:
1. Analyze the {object name}:
- Thoroughly examine each {unit} of the {object name}.
- List all {units} from the {object name} that {relevance} the {query name}.
- Briefly explain how each {unit} listed {relevance} the {query name}.

2. Assess overall relevance:
- If the {object name}, particularly the relevant {units} (if applicable), {relevance} the
{query name}, briefly explain why.
- Otherwise, briefly explain why not.

Here is the {query name}:
{query}

Here is the analysis of the {query name}:
{query analysis}

Here is the {object name}:
{object}

Table 9: Zero-shot prompt for query-dependent object expansion.
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You will be presented with a/an {query name}, an analysis of the {query name}, a/an
{object name}, and an analysis of the {object name}.

Your task is to assess if the {object name} {relevance} the {query name} in one word:
- Yes: If the {object name} {relevance} the {query name}.
- No: Otherwise.

Important: Respond using only one of the following two words without quotation marks:
Yes or No.

Here is the {query name}:
{query}

Here is the analysis of the {query name}:
{query analysis}

Here is the {object name}:
{object}

Here is the analysis of the {object name}:
{object analysis}

Table 10: Zero-shot prompt for judgment.

Specific values for query name, object name, and relevance for each dataset used in the
prompts above.

{
"biology": {
"query name": "Biology post",
"object name": "document",
"relevance": "substantially helps answer"

},
"earth_science": {
"query name": "Earth Science post",
"object name": "document",
"relevance": "substantially helps answer"

},
"economics": {
"query name": "Economics post",
"object name": "document",
"relevance": "substantially helps answer"

},
"psychology": {
"query name": "Psychology post",
"object name": "document",
"relevance": "substantially helps answer"

},
"robotics": {
"query name": "Robotics post",
"object name": "document",
"relevance": "substantially helps answer"

},
"stackoverflow": {
"query name": "Stack Overflow post",
"object name": "document",
"relevance": "substantially helps answer"

},
"sustainable_living": {
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"query name": "Sustainable Living post",
"object name": "document",
"relevance": "substantially helps answer"

},
"leetcode": {
"query name": "coding problem",
"object name": "solved coding problem",
"relevance": "uses the same algorithmic design"

},
"pony": {
"query name": "Pony coding problem",
"object name": "documentation",
"relevance": "contains the required syntax for solving"

},
"aops": {
"query name": "Math problem",
"object name": "solved Math problem",
"relevance": "uses the same problem-solving skill as"

},
"theoremqa_questions": {
"query name": "Math problem",
"object name": "solved math problem",
"relevance": "uses the same theorem as"

},
"theoremqa_theorems": {
"query name": "Math problem",
"object name": "theorem",
"relevance": "substantially helps answer"

},
"spider2": {
"query name": "user query",
"object name": "table",
"relevance": "substantially helps answer"

},
"beaver": {
"query name": "user query",
"object name": "table",
"relevance": "substantially helps answer"

},
"fiben": {
"query name": "user query",
"object name": "table",
"relevance": "substantially helps answer"

}
}

B.2 Prompts for object enrichment

Tables 11 - 13 show the prompts used for object enrichment for each dataset.
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// Purpose
Given the following technical text, describe the purpose of this text in layman’s terms in
one paragraph. If you do not think the text is semantically meaningful, output None.
// Summary
Given the following technical text, summarize this text in layman’s terms in one paragraph.
If you do not think the text is semantically meaningful, output None.
// QA pairs
Given the following technical text, generate at most 20 distinct question-answer pairs on
this text. The questions should be general, and phrased in layman’s terms, using vocabulary
that can be distinct from the text, but still requires explicit or implicit knowledge from the
text. Each question-answer pair should be formatted as a list where the first element is the
question and the second element is the answer. The output should be a list of lists in JSON
format. If you do not think the text is semantically meaningful, output None.

{document...}

Table 11: Zero-shot prompt for document enrichment in the Bright dataset.

// Purpose
Given the following text, describe the purpose of this text in layman’s terms in one para-
graph. If you do not think the text is semantically meaningful, output None.
// Summary
Given the following text, summarize this text in layman’s terms in one paragraph. If you do
not think the text is semantically meaningful, output None.
// QA pairs
Given the following text, generate at most 20 distinct question-answer pairs on this text.
The questions should be general, and phrased in layman’s terms, using vocabulary that can
be distinct from the text, but still requires explicit or implicit knowledge from the text. Each
question-answer pair should be formatted as a list where the first element is the question
and the second element is the answer. The output should be a list of lists in JSON format. If
you do not think the text is semantically meaningful, output None.

{document...}

Table 12: Zero-shot prompt for document enrichment in the NQ dataset.

// Purpose
Given the following table, describe the purpose of this table in layman’s terms in one
paragraph. If you do not think the text is semantically meaningful, output None.
// Summary
Given the following table, summarize this table in layman’s terms in one paragraph. If you
do not think the text is semantically meaningful, output None.
// QA pairs
Given the following table, generate at most 20 distinct question-answer pairs on this table
that includes both simple questions and those requiring summarization or aggregation.
The questions should be phrased in layman’s terms, using explicit or implicit knowledge
from the table. The question and answer should avoid using exact terms, such as shortened
forms, from the table but can instead use naturally phrased language. Each question-answer
pair should be formatted as a list where the first element is the question and the second
element is the answer. The output should be a list of lists in JSON format. If you do not
think the text is semantically meaningful, output None.

{table...}

Table 13: Zero-shot prompt for table enrichment for the table retrieval datasets.
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C Datasets

We conducted evaluations using the standard test sets for each benchmark, except for
Spider2, where we used the publicly available dev set. This choice was made because
Spider2 only provides gold tables for each user query in the dev set, which are essential for
assessing retrieval performance.

Overall, the dataset consists of 1,384 questions and 1,145,164 documents for Bright, 258
questions and 5,088 tables for Spider2, 209 questions and 463 tables for Beaver, 300 questions
and 152 tables for Fiben, and 3,452 questions and 500,000 documents for NQ.

D Table serialization

Following Chen et al. (2025); Lei et al. (2024), tables were formatted as markdown, including
database names, column names, and a sample of five randomly selected rows. An example
is provided below.

Database name: META KAGGLE
Table name: META KAGGLE.META KAGGLE.KERNELVERSIONCOMPETITIONSOURCES
Example table content:
| Id | KernelVersionId | SourceCompetitionId |
|-------:|------------------:|----------------------:|
| 6280 | 4511 | 3948 |
| 601723 | 555 | 3948 |
| 88411 | 841 | 3948 |
| 974621 | 610 | 3948 |
| 950711 | 773 | 3948 |

E Hyperparameter tuning

We split each dataset into an 80/20 ratio, with 80% designated for testing and 20% for
validation. The validation set was used to fine-tune the coefficients for our method and the
hybrid approach.
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F Detailed stage-one retrieval performance

k = 10 k = 100

StackEx. Coding Thm. Avg. StackEx. Coding Thm. Avg.

R N R N R N R N R N R N R N R N

Original question

BM25 23.4 18.9 17.1 10.4 5.5 3.8 17.3 13.2 48.1 25.8 31.7 15.0 14.1 6.0 35.7 18.4
BM25E 21.7 17.6 14.8 9.8 5.8 4.0 16.0 12.4 49.7 25.6 31.8 14.8 14.6 6.2 36.8 18.3

UAE 19.6 16.5 15.4 10.5 8.3 5.5 15.7 12.4 47.4 24.2 32.7 15.7 19.7 8.4 37.1 18.3
UAEE 22.9 19.1 18.5 14.1 8.8 6.2 18.2 14.6 52.1 27.3 35.3 18.9 23.7 9.8 41.2 20.9
GTE 18.7 15.0 13.9 11.9 9.2 6.1 15.2 11.9 47.8 23.1 37.6 18.9 24.3 10.0 39.4 18.7
GTEE 20.9 16.6 18.6 15.0 13.4 9.3 18.4 14.3 52.3 25.4 43.8 22.9 27.4 12.7 43.9 21.5
Snow. 22.3 18.9 15.6 10.4 10.4 6.8 17.8 14.0 46.7 25.6 34.7 15.9 24.2 10.2 38.3 19.6
Snow.E 25.7 21.6 20.1 16.9 12.1 7.7 20.9 16.9 56.0 30.2 46.4 24.4 27.8 11.7 46.4 24.0

BM25+UAE 23.9 20.1 18.0 12.5 8.9 5.7 18.7 14.7 53.6 28.5 37.8 18.6 22.8 9.3 42.2 21.4
(BM25+UAE)E 25.4 21.4 17.4 13.4 9.7 6.4 19.6 15.8 58.4 30.6 38.8 19.6 24.5 9.9 45.4 22.8
BM25+GTE 25.6 21.0 18.7 15.5 11.6 7.3 20.5 16.2 54.7 29.2 44.6 23.3 26.7 11.1 45.1 23.1
(BM25+GTE)E 26.8 22.1 20.7 16.8 13.2 9.1 21.9 17.5 57.4 30.5 47.8 24.8 29.8 13.3 48.0 24.7
BM25+Snow. 27.2 22.2 17.9 12.1 10.4 6.9 20.8 16.1 54.7 30.1 40.6 18.8 24.5 10.5 43.8 22.6
(BM25+Snow.)E 27.2 21.9 20.8 17.3 12.0 7.9 21.9 17.2 59.6 31.3 47.4 24.8 28.0 11.9 48.7 24.8

Average 23.0 18.9 16.7 11.9 9.2 6.0 18.0 14.1 50.4 26.7 37.1 18.0 22.3 9.4 40.2 20.3
AverageE 24.4 20.0 18.7 14.8 10.7 7.2 19.6 15.5 55.1 28.7 41.6 21.5 25.1 10.8 44.3 22.4

GPT-4 generated expanded query

BM25 37.7 32.8 12.2 9.5 13.7 9.8 26.4 22.2 64.4 40.2 26.4 13.8 27.8 13.6 47.3 28.0
BM25E 38.2 33.5 12.9 9.4 19.8 13.5 28.5 23.6 67.8 41.7 25.3 12.9 34.7 17.5 50.8 29.7

UAE 28.2 25.0 15.6 13.5 16.6 11.7 22.7 19.2 55.4 32.5 38.0 20.4 31.9 15.7 45.7 25.6
UAEE 29.4 25.6 18.1 17.1 18.5 13.6 24.3 20.7 60.8 34.3 42.9 24.0 34.3 17.6 50.2 27.8
GTE 24.5 20.1 13.1 11.2 15.0 10.6 19.8 15.9 52.9 28.0 34.5 17.8 28.2 13.9 42.7 22.2
GTEE 25.5 21.7 16.4 15.6 18.4 13.1 21.9 18.2 56.2 30.2 40.5 22.5 32.0 16.6 46.6 25.0
Snow. 32.9 27.9 16.1 10.3 16.6 12.1 25.3 20.3 60.1 35.3 34.4 15.6 32.1 15.8 47.7 26.3
Snow.E 32.7 28.3 18.7 16.4 18.4 13.0 26.2 21.9 64.2 36.9 48.8 25.2 36.6 17.6 53.8 29.4

BM25+UAE 36.1 32.1 17.3 14.1 17.6 12.6 27.5 23.4 66.1 40.5 40.2 21.1 32.6 16.3 52.1 30.3
(BM25+UAE)E 37.0 32.5 17.4 16.7 20.3 14.4 28.8 24.6 66.4 40.8 44.5 24.2 37.4 18.6 54.4 31.6
BM25+GTE 37.2 33.0 18.5 15.6 16.6 11.8 28.1 23.9 66.3 41.1 40.7 22.9 29.0 15.1 51.3 30.5
(BM25+GTE)E 39.5 34.7 19.0 17.2 19.8 14.5 30.3 25.9 70.8 43.2 45.7 25.1 34.9 18.4 56.3 33.1
BM25+Snow. 37.9 33.0 15.8 10.6 17.7 13.0 28.3 23.4 66.9 41.1 32.7 16.0 33.9 17.1 51.5 29.8
(BM25+Snow.)E 39.7 34.7 20.2 17.0 20.7 14.4 30.9 25.8 67.9 42.5 48.9 25.5 36.4 18.5 55.7 32.8

Average 33.5 29.1 15.5 12.1 16.3 11.7 25.4 21.2 61.7 37.0 35.3 18.2 30.8 15.3 48.3 27.6
AverageE 34.6 30.1 17.5 15.6 19.4 13.8 27.3 23.0 64.9 38.5 42.4 22.8 35.2 17.8 52.5 29.9

Table 14: Recall (R) and NDCG (N) @ k of stage-one retrievers on the Bright dataset.
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k = 10 k = 20

Spider2 Beaver Fiben Avg. Spider2 Beaver Fiben Avg.

R N R N R N R N R N R N R N R N

Original question

BM25 43.3 32.0 51.7 43.9 30.6 29.0 40.6 34.1 53.0 35.1 67.7 50.0 33.8 30.2 49.5 37.2
BM25E 60.9 46.5 59.2 52.4 47.4 40.9 55.2 45.9 69.8 49.6 73.9 58.4 62.9 46.6 68.2 50.8

UAE 55.4 44.2 48.6 43.8 48.2 42.6 50.7 43.5 70.2 48.9 67.5 51.2 61.4 47.8 66.0 49.1
UAEE 60.2 47.0 54.8 49.3 55.3 52.0 56.8 49.6 74.2 51.7 72.4 56.3 63.3 55.3 69.5 54.3
GTE 53.8 41.9 54.0 45.9 54.4 56.9 54.1 48.8 62.4 44.7 69.6 52.2 63.1 60.4 64.7 52.9
GTEE 61.5 47.0 58.0 51.7 60.7 62.7 60.2 54.4 72.5 50.7 74.0 58.1 67.2 65.3 70.8 58.4
Snowflake 45.1 34.1 49.2 42.3 51.8 47.5 48.8 41.6 53.1 36.5 66.3 49.3 58.7 50.4 58.9 45.4
SnowflakeE 62.0 48.1 58.0 52.4 53.9 53.8 57.7 51.5 71.3 51.0 74.1 59.0 59.4 56.0 67.4 55.1

BM25+UAE 65.2 50.7 55.3 48.0 44.8 37.8 54.5 45.0 74.2 53.9 76.2 56.2 61.5 44.3 69.8 50.8
(BM25+UAE)E 67.7 53.0 62.9 54.2 52.1 43.2 60.3 49.5 77.7 56.4 79.2 60.8 63.1 47.5 72.4 54.1
BM25+GTE 60.2 48.1 57.1 49.1 51.8 43.8 56.1 46.7 69.4 51.1 77.2 56.9 62.5 48.1 68.8 51.5
(BM25+GTE)E 68.1 52.5 64.7 56.5 58.6 48.3 63.5 51.9 76.1 55.2 80.7 62.8 66.9 51.6 73.8 55.9
BM25+Snow. 55.1 42.8 55.5 47.0 50.3 42.0 53.4 43.6 64.3 45.8 75.2 54.7 59.3 45.5 65.3 48.1
(BM25+Snow.)E 68.7 53.0 63.9 55.5 50.6 44.9 60.3 50.5 77.8 55.9 80.4 62.1 59.2 48.3 71.2 54.6

Average 54.0 42.0 53.1 45.7 47.4 42.8 51.2 43.3 63.8 45.1 71.4 52.9 57.2 46.7 63.3 47.9
AverageE 64.1 49.6 60.2 53.1 54.1 49.4 59.1 50.5 74.2 52.9 76.4 59.6 63.1 52.9 70.5 54.7

GPT-4o-mini generated expanded query

BM25 39.1 28.6 47.0 37.5 46.2 34.5 44.0 33.3 49.3 31.8 65.3 44.8 76.9 46.0 64.5 40.9
BM25E 60.4 46.5 58.4 51.9 61.2 46.2 60.2 47.9 71.8 50.3 75.3 58.7 79.2 53.2 75.7 53.7

UAE 56.8 42.4 47.7 41.7 49.3 45.9 51.4 43.6 68.7 46.0 65.2 48.5 67.2 52.6 67.2 49.3
UAEE 61.8 47.8 53.8 48.0 55.1 52.7 57.0 49.8 73.1 51.5 68.9 54.0 63.5 56.0 68.2 54.0
GTE 52.1 43.2 49.7 41.2 57.4 57.4 53.5 48.2 64.3 47.1 63.9 46.8 66.8 61.2 65.2 52.5
GTEE 56.5 44.7 55.9 47.9 62.2 62.8 58.6 52.6 66.4 48.0 70.7 53.8 70.4 66.0 69.1 56.6
Snowflake 49.7 37.2 51.1 44.3 53.3 52.8 51.5 45.3 57.4 39.6 65.9 50.3 60.3 55.7 60.9 48.8
SnowflakeE 62.9 47.6 52.6 45.7 55.4 56.0 57.1 50.4 73.6 51.1 66.9 51.5 61.6 58.5 67.1 54.1

BM25+UAE 64.0 47.9 54.8 47.4 50.8 42.3 56.3 45.6 73.5 50.8 71.7 54.1 73.8 50.9 73.1 51.8
(BM25+UAE)E 67.8 52.8 60.8 55.3 62.7 47.6 63.9 51.5 79.5 56.8 75.9 61.5 78.6 53.6 78.2 56.8
BM25+GTE 58.8 47.1 56.2 46.1 59.7 44.2 58.4 45.7 66.8 49.8 74.2 53.2 81.0 52.2 74.4 51.6
(BM25+GTE)E 66.4 51.7 62.1 55.8 65.7 51.5 65.0 52.7 76.5 55.0 76.2 61.5 80.3 57.1 77.9 57.6
BM25+Snow. 55.7 43.7 56.6 49.0 57.4 42.3 56.6 44.6 64.4 46.6 74.0 56.0 74.3 48.8 70.9 50.0
(BM25+Snow.)E 66.1 52.8 61.5 56.2 61.2 46.2 63.0 51.1 75.2 55.8 75.0 61.8 79.2 53.2 76.7 56.4

Average 53.8 41.5 51.9 43.9 53.4 45.6 53.1 43.7 63.5 44.5 68.6 50.5 71.5 52.5 68.0 49.3
AverageE 63.1 49.1 57.9 51.5 60.5 51.9 60.7 50.9 73.7 52.6 72.7 57.5 73.3 56.8 73.3 55.6

Table 15: Recall and NDCG @ k of various methods on the table retrieval datasets.

k = 10 k = 100

Recall NDCG Recall NDCG

BM25 69.4 51.8 87.4 55.9
BM25E 74.9 57.6 90.6 61.2

UAE 91.5 77.0 98.1 78.6
UAEE 91.5 77.7 98.3 79.4
GTE 88.0 73.8 97.0 75.9
GTEE 90.5 76.4 98.0 78.2
Snow. 94.6 82.7 98.7 83.6
Snow.E 95.1 83.2 99.2 84.2

BM25+UAE 91.5 77.0 98.1 78.6
(BM25+UAE)E 91.5 77.7 98.3 79.4
BM25+GTE 89.0 74.6 97.8 76.6
(BM25+GTE)E 90.7 75.8 98.1 77.5
BM25+Snow. 94.6 82.7 98.7 83.6
(BM25+Snow.)E 95.1 83.2 99.2 84.2

Average 88.4 74.2 96.5 76.1
AverageE 89.9 76.0 97.4 77.7

Table 16: Recall and NDCG @ k of stage-one retrievers on the NQ dataset.
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G LLM usage of different methods

StackExchange Coding Theorems Average Spider2 Beaver Fiben Average

EnrichIndex

#Input tokens 343.4 436.6 188.7 317.8 139.0 138.0 82.7 116.7
#Output tokens 850.9 867.3 913.6 871.2 929.0 998.1 827.0 907.9
#Total tokens 1194.3 1304.0 1102.2 1189.0 1068.0 1136.1 909.7 1024.6

Judgerank

#Input tokens 368453.9 380929.8 359144.0 368172.3 558255.9 102817.2 44932.8 233205.7
#Output tokens 47691.9 46343.1 53994.3 49184.6 8575.6 10005.0 6389.1 8109.0
#Total tokens 416145.8 427272.9 413138.3 417356.9 566831.6 112822.2 51321.9 241314.6

Table 17: Absolute number of input, output, and total tokens used by LLMs for EnrichIndex-
enhanced stage-one retriever and Judgerank. Lower token counts signify reduced latency
and cost.
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