
LoRANN: Low-Rank Matrix Factorization for
Approximate Nearest Neighbor Search

Elias Jääsaari † Ville Hyvönen ‡ Teemu Roos †
†Department of Computer Science, University of Helsinki

‡Department of Computer Science, Aalto University
{elias.jaasaari,teemu.roos}@helsinki.fi; ville.2.hyvonen@aalto.fi

Abstract

Approximate nearest neighbor (ANN) search is a key component in many modern
machine learning pipelines; recent use cases include retrieval-augmented gener-
ation (RAG) and vector databases. Clustering-based ANN algorithms, that use
score computation methods based on product quantization (PQ), are often used in
industrial-scale applications due to their scalability and suitability for distributed
and disk-based implementations. However, they have slower query times than the
leading graph-based ANN algorithms. In this work, we propose a new supervised
score computation method based on the observation that inner product approx-
imation is a multivariate (multi-output) regression problem that can be solved
efficiently by reduced-rank regression. Our experiments show that on modern
high-dimensional data sets, the proposed reduced-rank regression (RRR) method
is superior to PQ in both query latency and memory usage. We also introduce
LoRANN1, a clustering-based ANN library that leverages the proposed score compu-
tation method. LoRANN is competitive with the leading graph-based algorithms and
outperforms the state-of-the-art GPU ANN methods on high-dimensional data sets.

1 Introduction

In modern machine learning applications, data is often stored as embeddings, i.e., as vectors in
a high-dimensional vector space where representations of semantically similar items are close to
each other. Consequently, similarity search in high-dimensional vector spaces is a key algorithmic
primitive used in many pipelines, such as semantic search engines and recommendation systems.
Since the data sets are usually both large and high-dimensional, approximate nearest neighbor (ANN)
search is deployed to speed up similarity search in many applications (Li et al., 2019).

Recent use cases of ANN search include retrieval-augmented generation (RAG) (Lewis et al., 2020;
Guu et al., 2020; Borgeaud et al., 2022; Shi et al., 2024) and approximate attention computation in
Transformer-based architectures (Kitaev et al., 2020; Vyas et al., 2020; Roy et al., 2021). ANN search
is also a key operation in vector databases that are used to store embeddings for industrial-scale
applications (see, e.g., Wang et al., 2021; Guo et al., 2022; Pan et al., 2024).

The state-of-the-art methods for ANN search can be classified into clustering-based and graph-based
algorithms (for a recent survey, see Bruch, 2024). In the comprehensive ANN benchmark (Aumüller
et al., 2020), the leading graph algorithms HNSW (Malkov and Yashunin, 2018) and NGT (Iwasaki
and Miyazaki, 2018) have faster query times than clustering-based algorithms. However, clustering-
based algorithms are often used in industrial-scale applications (see, e.g., Chen et al., 2021; Douze
et al., 2024) due to their smaller memory footprints and faster index construction times. They are

1https://github.com/ejaasaari/lorann

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/ejaasaari/lorann

also suitable for distributed implementations and hybrid solutions that use persistent storage such as
SSDs or blob storage (Chen et al., 2021; Gottesbüren et al., 2024).

The key components of clustering-based algorithms are clustering and score computation. In the
indexing phase, the corpus, i.e., the data set from which the nearest neighbors are searched, is
partitioned via clustering. In the query phase, w clusters are selected and the corpus points that belong
to the selected clusters are scored. The points with the highest scores are selected into a candidate set
that can be further re-ranked. The state-of-the-art clustering-based algorithms (Jegou et al., 2011;
Guo et al., 2020; Sun et al., 2023) use variants of product quantization (PQ) (Jegou et al., 2011) with
highly optimized implementations (see, e.g., André et al., 2015) for score computation.

In this article, we propose a supervised score computation method that improves the query latency of
clustering-based ANN methods, making them competitive with the leading graph algorithms. Our
key observation is that estimating the dissimilarities between the query point and the cluster points is
a multivariate (multi-output) regression problem. For the most common dissimilarity measures, it
is sufficient to estimate the inner products between the query point and the cluster points, and the
ordinary least squares (OLS) estimate is the exact solution for this regression problem. The proposed
method approximates the OLS solution by reduced-rank regression (Izenman, 1975). We further
approximate the reduced-rank regression estimates using 8-bit integer computations, improving query
latency and memory consumption. Reduced-rank regression (RRR) is a simpler method than PQ, and
our experimental results show that it is faster at any given recall level and memory usage.

To make our work available for practical applications of ANN search, we introduce LoRANN, a
clustering-based ANN library that leverages the proposed score computation method. Since the low
memory usage and the simple computational structure of reduced-rank regression make it well-suited
for GPUs, LoRANN also includes a GPU implementation of the proposed method.

In summary, our contributions are:

• We propose reduced-rank regression (RRR) as a new supervised score computation method
for clustering-based ANN search (see Section 3).

• We verify experimentally that RRR outperforms PQ both at the optimal hyperparameters
(Section 7.1.1) and at fixed memory consumption (Section 7.1.2), and that it naturally adapts
to the query distribution in the out-of-distribution (OOD) setting (Section 5).

• We introduce LoRANN, a clustering-based ANN library that contains efficient CPU and GPU
implementations of the proposed score computation method (Section 4).

• We show that LoRANN outperforms the leading clustering-based libraries Faiss (Douze et al.,
2024) and ScaNN (Guo et al., 2020), and has faster query times than the leading graph-
based library GLASS at recall levels under 90% on most data sets (Section 7.2.2). LoRANN
outperforms the SOTA GPU methods on high-dimensional data (Section 7.2.3).

2 Background

In this section, we first review the notation of approximate nearest neighbor (ANN) search and then
describe the standard structure of clustering-based ANN algorithms.

2.1 ANN search

Let x ∈ Rd be a query point, and let {cj}mj=1 ⊂ Rd be the corpus, i.e., the set of points from which
the nearest neighbors are retrieved. The k nearest neighbors of x are defined as

NNk(x; {cj}mj=1, d) := {j ∈ [m] : d(x, cj) ≤ d(x, c(k))}, (1)

where d : Rd → R is a dissimilarity measure, c(1), . . . , c(m) denote the corpus points that are ordered
in ascending order w.r.t. their dissimilarity to the query point x, and [m] := {1, . . . ,m}.

Commonly used dissimilarity measures are the Euclidean distance d(a,b) = ∥a−b∥2, the (negative)
inner product d(a,b) = −⟨a,b⟩, and the cosine (angular) distance d(a,b) = 1−⟨a/∥a∥2,b/∥b∥2⟩.
The special case where the dissimilarity measure is the negative inner product is often called maximum
inner product search (MIPS) (see, e.g., Guo et al., 2020; Lu et al., 2023; Zhao et al., 2023). In ANN
search, the exact solution NNk(x; {cj}mj=1, d) is approximated.

2

The effectiveness of ANN algorithms is typically measured by recall, i.e., the fraction of the true
k nearest neighbors returned by the algorithm. The efficiency is measured by query latency or,
equivalently, by queries per second (QPS) (see, e.g., Li et al., 2019; Aumüller et al., 2020).

2.2 Clustering-based ANN search

Partitioning-based ANN algorithms, such as tree-based (e.g., Muja and Lowe, 2014; Dasgupta and
Sinha, 2015; Jääsaari et al., 2019) and hashing-based algorithms (e.g., Charikar, 2002; Weiss et al.,
2008; Liu et al., 2011), build an index by partitioning the corpus into L elements. In the query phase,
they use a routing function τ : Rd → [L]w to assign the query point into w partition elements.

Clustering-based ANN algorithms (see, e.g., Bruch, 2024, Chapter 7) are partitioning-based ANN
algorithms that partition the corpus via clustering. ANN indexes based on clustering are also often
called inverted file (IVF) indexes (Jegou et al., 2011). The most commonly used clustering method is
k-means clustering, specifically standard k-means when the dissimilarity measure d is the Euclidean
distance, and spherical k-means (Dhillon and Modha, 2001) when d is the inner product or the
cosine distance. While there exists recent exploratory work on alternative query routing methods
(Gottesbüren et al., 2024; Vecchiato et al., 2024; Bruch et al., 2024), the most common method is
centroid-based routing where, for the set {µl}Ll=1 of cluster centroids,

τ(x) = NNw(x; {µl}Ll=1, d),

i.e., the w clusters whose centroids are closest to the query point are selected. We follow this standard
practice by using k-means clustering with centroid-based routing. However, the proposed score
computation method can be combined with any partitioning and routing method.

After routing, the corpus points that belong to the selected w clusters are scored (see Section 6 for
a discussion of score computation methods), and the t highest scoring points are selected into the
candidate set. This candidate set can be re-ranked by evaluating the true dissimilarities between x
and the candidate set points. Finally, the k most similar points are returned as the approximate k-nn.

3 Reduced-rank regression

In this section, we derive the proposed supervised score computation method. First, we formulate
dissimilarity approximation as a multivariate regression problem. We then show how the exact OLS
solution to this problem can be approximated by reduced-rank regression (RRR). Finally, we show
how RRR can be implemented efficiently using 8-bit integer vector-matrix multiplications.

3.1 Dissimilarity approximation as a multivariate regression problem

We consider the task of approximating the dissimilarities d(x, cj) between the query point x and
the corpus points cj that belong to the lth cluster. Denote the set of the indices of these corpus
points by Il, their number by ml := |Il|, and the matrix containing them as rows by Cl ∈ Rml×d.
In what follows, to avoid cluttering the notation, we drop the subscript l denoting the cluster from
matrices, e.g., we denote Cl by C. We also assume, w.l.o.g., that the corpus is indexed so that
Il = {1, . . . ,ml}. This task can now be formulated as a multivariate regression problem where the
output is defined as a 1×ml matrix y = [y1 . . . yml], where yj = d(x, cj) for each j = 1, . . . ,ml.

We consider the cases where d is the (negative) inner product, the Euclidean distance, or the cosine
(angular) distance. In all three cases, it is sufficient to estimate the inner products. For Euclidean
distance, argminj∈Il

∥x − cj∥2 = argminj∈Il
(−2xT cj + ∥cj∥22), where the norms ∥cj∥2 can

be precomputed. For cosine distance, argminj∈Il
(1 − cos(x, cj)) = argminj∈Il

(−xT cj) if the
corpus points are normalized to have unit norm.

3.2 Reduced-rank regression solution

We approximate the exact solution y = xTCT of the regression problem defined in the previous
section by a low-rank approximation. We assume the standard supervised learning setting, i.e., that
we have a sample {xi}ni=1 from the query distribution Q (the corpus can also be used as the training
set if no separate training set is available). To train the lth model, we use all the training set points that

3

are routed into the lth cluster. When the standard centroid-based routing is used, these are the training
set points that have µl, i.e., the centroid of the lth cluster, among their w closest centroids. Denote
the set of indices of these training set points by Jl := {i ∈ [n] : l ∈ τ(xi)}, and their number by
nl := |Jl|. The output values of the training set of the lth model are given by Y := XCT ∈ Rnl×ml ,
where we denote by X ∈ Rnl×d the matrix containing the training set points {xi}i∈Jl

as rows.

To approximate the dissimilarities between the query point x and the cluster points {cj}j∈Il , we
consider the linear model xTβ, where β ∈ Rd×ml is a matrix containing the parameters of the
model, and minimize the mean squared error Ex∼Q[∥y−xTβ∥22 I{l ∈ τ(x)}] (the indicator function
selects the query points that routed into the lth cluster). The unconstrained least squares solution
β̂OLS = CT reproduces the exact inner products y = xTCT . In order to reduce the computational
complexity of evaluating the model predictions, we constrain the rank of the parameter matrix:
rank(β) ≤ r < min(d,ml). Under this constraint, the parameter matrix can be written using a
low-rank matrix factorization β = AB, where A ∈ Rd×r and B ∈ Rr×ml , and, consequently, the
model predictions ŷ = (xTA)B can be computed with Θ(r(d+ml)) operations. When the rank r
is sufficiently low, this is significantly faster than computing the exact inner products which requires
Θ(dml) operations. Our experiments (Section 7) indicate that fixing this hyperparameter to r = 32
works well with a wide range of data sets encompassing dimensionalities between 128 and 1536.

The optimal low-rank solution can be found by minimizing the training loss

β̂RRR = argmin
β : rank(β)≤r

∥Y −Xβ∥2F ,

where ∥ · ∥F is the Frobenius norm. This is the well-known reduced-rank regression problem
(Izenman, 1975). Denote the singular value decomposition (SVD) of Y as Y = UΣVT , where Σ is
a non-negative diagonal matrix and U and V are orthonormal matrices. The standard reduced-rank
regression solution is β̂RRR = β̂OLSVrV

T
r = CTVrV

T
r = AB, where Vr ∈ Rml×r denotes

the matrix that contains the first r columns of V (i.e., the first r right singular vectors of the least
squares fit Y = XCT) , A := CTVr, and B := VT

r . In practice, we use a fast randomized
algorithm (Halko et al., 2011) to compute only Vr instead of the full SVD. Observe that the reduced-
rank regression solution is different from the most obvious low-rank matrix factorization of the OLS
solution computed via an SVD of the matrix C (see Appendix A).

3.3 8-bit quantization

The simple computational structure of the reduced-rank regression solution enables us to further
improve its query latency and memory consumption by using integer quantization. For each cluster,
we quantize the matrices A and B to 8-bit integer precision. By also quantizing the query vector
x, the model prediction ŷ = xT β̂RRR = (xTA)B can be computed efficiently in two 8-bit integer
vector-matrix products. We use absmax quantization (e.g., Dettmers et al., 2022), where the elements
of a vector x are scaled to the range [−127, 127] by multiplying with a constant cx such that
xi8 = ⌊(127/∥xf32∥∞) · xf32⌉ = ⌊cxxf32⌉, where ⌊·⌉ denotes rounding to the nearest integer.

We quantize the matrices A and B by applying absmax quantization to each column of the given
matrix, resulting in vectors cA and cB of scaling constants. We can then recover a 32-bit floating-point
approximation to the vector-matrix product r = xTA with

rf32 ≈ 1

cx
ri32 ⊘ cA =: s⊙ ri32 = s⊙ xT

i8Ai8 = s⊙Q(x)TQ(Af32),

where Q(·) denotes absmax quantization, and ⊘ and ⊙ denote element-wise division and multiplica-
tion, respectively. To compute ŷ = rTB in the same fashion, we can first re-quantize r.

To ensure minimal loss of precision from the quantization, we rotate x before quantization by
multiplying x with a random rotation matrix; this spreads the variance among the dimensions of x.
Similarly, we rotate the vector r resulting from the first product r = xTA before re-quantization.
Since A = CTVr and B = VT

r , we can rotate r by rotating Vr beforehand at no extra cost.

Memory usage Storing each matrix Ai8 ∈ [Z]d×r
256 takes dr bytes and each matrix Bi8 ∈ [Z]r×ml

256
takes rml bytes. Thus in a clustering-based ANN index with L clusters and m corpus points, the
total memory consumption of RRR is of order Ldr + rm bytes. In our experiments (Section 7), we
use r = 32 for all data sets, while L is typically of order

√
m.

4

4 LoRANN

In this section, we describe the additional implementation details of LoRANN, an open-source library
that combines the standard template of clustering-based ANN search described in Section 2.2 with
the score computation method described in Section 3. Using dimensionality reduction is particularly
efficient for RRR (Section 4.1) and works well with 8-bit integer quantization (Section 4.2). Finally,
we describe the GPU implementation of LoRANN (Section 4.3).

4.1 Dimensionality reduction

With a moderate-sized corpus and high-dimensional data, computing the first vector-matrix product
of the model prediction ŷ = (xTA)B can be more expensive than the second. In LoRANN, we further
approximate the product by first projecting the query into a lower-dimensional space. We use the
projection matrix Ws ∈ Rd×s whose columns are the first s eigenvectors of XT

globalXglobal, where
Xglobal ∈ Rn×d is the matrix containing the training set points {xi}ni=1. To estimate the reduced-rank
regression models, we use the s-dimensional approximations x̃i = WT

s xi as inputs, but the true
inner products xT

i cj as outputs. In this case, the reduced-rank regression estimate of the lth model
is β̂RRR = β̂OLSVrV

T
r = (XWs)

†YVrV
T
r ∈ Rs×ml , where β̂OLS := (XWs)

†Y is the full-rank
solution, and Vr ∈ Rml×r is the matrix whose columns are the first r right singular vectors of Y.
Thus, now A := (XWs)

†YVr ∈ Rs×r and B := VT
r ∈ Rr×ml .

We observe that computing query-to-centroid distances in the s-dimensional space yields a minor
performance improvement. In the indexing phase, we perform k-means clustering using c̃j = WT

s cj .
In the query phase, the s-dimensional approximation of the query point, x̃ = WT

s x, is used to
compute the distances to the cluster centroids and the predictions ŷ = x̃T β̂RRR. The original
d-dimensional query point x is used for the dissimilarity evaluations in the final re-ranking step.

4.2 Quantization implementation

The dimensionality reduction works particularly well with the 8-bit integer quantization described in
Section 3.3. After dimensionality reduction, the first component of x̃ corresponds to the principal axis.
Thus, to further reduce the precision lost by quantization, we employ a mixed-precision decomposition
by not quantizing the first component of x̃ and the first row of both A and B. Moreover, by pre-
multiplying the projection matrix Ws with a random rotation matrix, we rotate the query point x̃
at no extra cost before quantization. For re-quantizing r = x̃TA, since A = (XWs)

†YVr and
B = VT

r , we can again randomly rotate Vr beforehand at no extra cost.

We compute the 8-bit vector-matrix products ri32 = x̃T
i8Ai8 and ŷi32 = rTi8Bi8 efficiently on modern

CPUs using VPDPBUSD instructions in the AVX-512 VNNI instruction set.2 Since a VPDPBUSD
instruction computes dot products of signed 8-bit integer vectors and unsigned 8-bit integer vectors,
we store Ai8 and Bi8 as unsigned 8-bit integer matrices A′

i8 = Ai8 + 128 · 1s×r ∈ [Z]d×r
256 and

B′
i8 = Bi8 + 128 · 1r×m ∈ [Z]r×m

256 , and compute ri32 = x̃T
i8Ai8 = x̃T

i8A
′
i8 − 128 · x̃T

i81s×r. The
dimensionality reduction lowers the memory usage of LoRANN from Ldr + rm to Lsr + rm bytes.

4.3 GPU implementation

Hardware accelerators such as GPUs and TPUs can be used to speed up ANN search for queries that
arrive in batches (Johnson et al., 2019; Zhao et al., 2020; Groh et al., 2022; Ootomo et al., 2023).
The computational structure of RRR, consisting of vector-matrix multiplications, makes it easy to
implement LoRANN for accelerators, and the low memory usage of RRR (see Section 7.1.2) makes it
ideal for accelerators that typically have a limited amount of memory.

Given a query matrix Q ∈ R|Q|×d with |Q| queries, we need to compute the products qT
i AilBil

for all i = 1, . . . , |Q| and l = 1, . . . , w. Here we denote by Ail and Bil the matrices A and B of
the lth cluster in the set of w clusters the ith query point is routed into. We compute the required
products efficiently using one batched matrix multiplication QTATBT by representing Q as a
|Q| × 1× 1× d tensor QT, the matrices Ail as one |Q| × w × s× r tensor AT, and the matrices

2https://en.wikichip.org/wiki/x86/avx512_vnni

5

https://en.wikichip.org/wiki/x86/avx512_vnni

Bil as one |Q| × w × r ×M tensor BT, where M is the maximum number of points in a single
cluster. To avoid inefficiencies due to padding clusters with fewer than M points, we use an efficient
balanced k-means algorithm (de Maeyer et al., 2023) to ensure that the clusters are balanced such
that the maximum difference in cluster sizes is ∆ = 16.

On GPUs, 8-bit integer multiplication is presently both less efficient and less supported than 16-
bit floating-point multiplication. Therefore, we use 16-bit floating-point numbers to perform all
computations on a GPU. However, the 8-bit quantization scheme can still be useful on accelerators
by allowing bigger data sets to be indexed with limited memory.

The simple structure of our method allows it to be easily implemented using frameworks such as
PyTorch, TensorFlow, and JAX. This enables LoRANN to support different hardware platforms with
minimal differences between implementations. We write our GPU implementation in Python using
JAX which uses XLA to compile and run the algorithm on a GPU or a TPU (Frostig et al., 2018).

5 Out-of-distribution queries

In the standard benchmark set-up (Li et al., 2019; Aumüller et al., 2020), a data set is randomly split
into the corpus and a test set, i.e., the corpus and the queries are drawn from the same distribution.
However, this assumption often does not hold in practice, for example in cross-modal search. Thus,
there is recent interest (Simhadri et al., 2022; Jaiswal et al., 2022; Hyvönen et al., 2022) in the
out-of-distribution (OOD) setting. For instance, in the Yandex-text-to-image data set, the corpus
consists of images, and the queries are text; even though both the corpus and the queries are embedded
in the same vector space, their distributions differ (see Figure 2 in Jaiswal et al., 2022).

Due to the regression formulation, the proposed method handles OOD queries by design. To verify
this, we construct an index for a sample of 400K points of the Yandex OOD data set in four different
scenarios: (1) the default version (LoRANN-query) uses {xi}ni=1, i.e., an n = 400K sample from the
query distribution, as a global training set and selects the local training set {xi}i∈Jl

as the global
training set points that are routed into the lth cluster; (2) LoRANN-query-big is like LoRANN-query,
but with n = 1.2M; (3) LoRANN-corpus uses the corpus {cj}mj=1 as a global training set, and selects
the local training sets as {cj}j∈Jl

like the default version; (4) LoRANN-corpus-local uses {ci}mj=1

as a global training set, but selects the local training sets as {cj}j∈Il , i.e., uses only the corpus points
of the lth cluster to train the lth model. We can thus disentangle the effect of the choice of the global
training set from the effect of using the points in the nearby clusters to train the RRR models.

The results are shown in Figure 1. The version trained on queries outperforms the version trained
only on the corpus, especially in the case of no re-ranking. Furthermore, we can use larger training
sets to increase the performance of LoRANN. Both LoRANN-query and LoRANN-corpus outperform
LoRANN-corpus-local, indicating that selecting the local training sets as described in Section 3.2
improves the accuracy of the regression models. We assume that this is because of the larger and
more representative training sets, even though they are not from the actual query distribution.

6 Related work

Supervised ANN algorithms Learning-to-hash methods (Weiss et al., 2008; Norouzi and Fleet,
2011; Liu et al., 2012) optimize partitions in a supervised fashion using data-dependent hash functions.
Other supervised methods include learning optimal partitions by approximating a balanced graph
partitioning (Dong et al., 2020; Gupta et al., 2022; Gottesbüren et al., 2024) and interpreting partitions
as multilabel classifiers (Hyvönen et al., 2022). These supervised methods are orthogonal to our
approach since they define the learning problem as selecting a subset of corpus points via partitioning.
In contrast, we propose a supervised score computation method for clustering-based or, more
generally, for partition-based ANN algorithms.

Product quantization The state-of-the-art clustering-based algorithms IVF-PQ (Jegou et al., 2011)
and ScaNN (Guo et al., 2020) use quantization for data compression and score computation. They
use a quantizer q : Rd 7→ A to map a point of the feature space to a value in a codebook A.
Given A, they approximate the dissimilarity between the query point x and the corpus point cj by
d(x, q(cj)), i.e., the dissimilarity between the query point and the codebook value corresponding

6

Figure 1: Recall vs. QPS on the Yandex T2I OOD data set (400K sampled corpus points) without
(left) and with (right) the final re-ranking step. LoRANN-query is trained using a sample of 400K
points from the query distribution as a training set, while LoRANN-query-big uses a sample of 1.2M
points. LoRANN-corpus is trained using the corpus as a training set. LoRANN-corpus-local is
trained using the corpus as a training set with only the cluster points as the local training sets of the
reduced-rank regression models. It is beneficial to (1) use a sample from the actual query distribution
as a training set and to (2) select the local training set by using also the points outside of the cluster
as described in Section 3.2. The performance difference decreases when the final re-ranking step is
introduced (requiring the original data set to be kept in memory).

to cj . Further, IVF-PQ and ScaNN quantize the residuals, i.e., the distances between corpus points
and the cluster centroids, and use product quantization that decomposes the feature space into lower-
dimensional subspaces and learns subquantizers in these subspaces. The code size, and thus the
memory consumption, of PQ is directly proportional to the number of subquantizers.

7 Experiments

We use the ANN-benchmarks project (Aumüller et al., 2020) to run our experiments3 and replicate its
experimental set-up as closely as possible (see Appendix B for the description of the experimental set-
up). We use k = 100 for all experiments and measure recall (the proportion of true k-nn found) versus
queries per second (QPS). Additionally, due to the lack of modern high-dimensional embedding data
sets in ANN-benchmarks, we include multiple new high-dimensional embedding data sets in our
experiments; for a description of all the data sets, see Appendix C.

Note that, even though we demonstrated in Section 5 that LoRANN can adapt to the query distribution,
there are no samples from the actual query distribution available for the benchmark data sets of this
section. Thus, we follow the standard approach by using only the corpus {cj}mj=1 to train LoRANN.

7.1 Reduced-rank regression

We first compare the proposed score computation method, reduced-rank regression (RRR), against
product quantization (PQ) for clustering-based ANN search.4 We use RRR and PQ as scoring methods
for an IVF index that partitions the corpus using k-means (see Section 2.2). We implement RRR
using 8-bit integer quantization as described in Section 3.3 and compare against product quantization
implemented in Faiss (Douze et al., 2024) with 4-bit integer quantization and fast scan (André et al.,
2015). First, we compare the score computation methods at the optimal hyperparameters while
keeping the clustering fixed, and then compare them at a fixed memory budget.

3https://github.com/ejaasaari/lorann-experiments
4Since ScaNN does not outperform Faiss-IVFPQ in our end-to-end-evaluation (Section 7.2.2) and both

methods employ k-means for partitioning, the anisotropic quantization (Guo et al., 2020) used by ScaNN is
unlikely to outperform the original PQ (Jegou et al., 2011).

7

https://github.com/ejaasaari/lorann-experiments

7.1.1 Fixed clustering

To directly compare the score computation methods, in Figure 2 we present results where the IVF
index (the partition defined by k-means clustering) is the same for both methods. For RRR, we use
r = 32, while for PQ each vector is encoded with d/2 subquantizers for optimal performance. RRR
outperforms PQ on seven out of the eight data sets; for complete results, see Appendix D.1.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

arxiv-instructxl-768-angular

IVF + RRR (ours, c = 2048)
IVF + RRR (ours, c = 1024)
IVF + PQ (faiss, c = 2048)
IVF + PQ (faiss, c = 1024)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

102

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

arxiv-openai-1536-angular

IVF + RRR (ours, c = 2048)
IVF + RRR (ours, c = 1024)
IVF + PQ (faiss, c = 2048)
IVF + PQ (faiss, c = 1024)

Figure 2: Performance comparison between RRR and PQ. The k-means clustering (IVF index) is
kept constant to directly compare the effect of the score computation method (here c denotes the
number of clusters). The proposed score computation method outperforms the baseline method (PQ).

7.1.2 Memory usage

In Figure 3, we compare the performance of RRR (IVF+RRR) and PQ (IVF+PQ) by varying the rank
parameter r for RRR and the code size for PQ such that b, bytes per vector, is similar for both. For
all values of b, RRR outperforms PQ which is a typical choice in memory-limited use cases. Note
that RRR with b ≈ 16 outperforms PQ even with b ≈ 64 on all data sets; for the full results, see
Appendix D.2. The results are similar when no final re-ranking step is used (Appendix D.3).

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

arxiv-instructxl-768-angular

IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 128)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

102

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

arxiv-openai-1536-angular

IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 128)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

Figure 3: Performance comparison of RRR and PQ at different levels of memory usage. We vary the
rank parameter r for RRR and the code size for PQ such that b, bytes per vector, is similar for both.
RRR@(b ≈ 16) outperforms even PQ@(b ≈ 128) which uses eight times as much memory.

7.2 LoRANN

In this section, we measure the end-to-end performance of LoRANN (see Section 4). We first perform
an ablation study on the components of LoRANN (Section 7.2.1), and then perform an end-to-end
evaluation of LoRANN against the state-of-the-art ANN libraries in both the CPU setting (Section 7.2.2)
and the GPU setting (Section 7.2.3).

8

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

102

103

104
Qu

er
ie

s p
er

 se
co

nd
 (1

/s
)

ag-news-distilbert-768-angular

IVF + RRR + DR + 8-bit
IVF + RRR + DR
IVF + RRR
IVF

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

102

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ann-t2i-200-angular

Figure 4: LoRANN ablation study. On the high-dimensional (d = 768) data set (left), all the compo-
nents improve the performance of LoRANN. On the lower-dimensional (d = 200) data set (right), all
the components except dimensionality reduction (DR) improve performance.

7.2.1 Ablation study

In Figure 4, we study the effect of the different components of LoRANN on its performance (for the
full results, see Appendix E.1). As the baseline, we use an IVF index. Adding the score computation
step via RRR significantly improves performance on all the data sets.

Dimensionality reduction (DR) is beneficial on higher-dimensional data sets with moderate-sized
corpora: if the number of points in a cluster is lower than the dimension, then the first vector-matrix
product in the computation (xTA)B of the local reduced-rank regression models will be more expen-
sive. For large data sets with high-dimensional data, this effect decreases. Dimensionality reduction
also does not improve performance on the lower-dimensional data sets (d ≤ 300). Incorporating 8-bit
quantization improves not only the memory usage but also the query latency.

In Appendix E.2, we study the effect of varying the rank r of the parameter matrices. We find that
increasing r from 32 to 64 has little effect, while r = 16 performs worse for high-dimensional data
(but can be used to further decrease memory usage). For all of our other experiments, we use r = 32.

7.2.2 CPU evaluation

As the baseline methods, we choose four leading graph implementations, HNSW, GLASS5, QSG-
NGT, and PyNNDescent (Dong et al., 2011), two leading product quantization implementations,
Faiss-IVFPQ (fast scan) and ScaNN, and the leading tree implementation MRPT (Hyvönen et al.,
2016). See Figure 5 for the results and Appendix E.3 for the results on all 16 data sets. Three
trends emerge: (1) LoRANN outperforms the product quantization methods on all data sets except
glove-200-angular. (2) LoRANN performs better in the high-dimensional regime: it outperforms all
the other methods except GLASS and QSG-NGT on all but the lower-dimensional (d ≤ 200) data
sets. (3) Compared to graph methods, LoRANN performs better at the lower recall levels: QPS-recall
curves of LoRANN and GLASS cross between 80% and 99% on most of the data sets. On 8 of the 16
data sets, LoRANN has better or similar performance as QSG-NGT at all recall levels.

Furthermore, in Appendix E.4, we demonstrate that in general LoRANN has faster index construction
times than the graph-based methods.

7.2.3 GPU evaluation

We compare LoRANN against GPU implementations of IVF and IVF-PQ in both Faiss (Douze et al.,
2024) and the NVIDIA RAFT library6. In addition, we compare against a state-of-the-art GPU
graph algorithm CAGRA (Ootomo et al., 2023) implemented in RAFT. All algorithms receive all test
queries as one batch of size 1000. See Figure 6 for representative results, and Appendix E.5 for the
complete results. LoRANN outperforms the other methods on seven out of the nine high-dimensional
(d > 300) data sets. For d ≤ 300, CAGRA has the best performance.

5An efficient HNSW implementation with quantization: https://github.com/zilliztech/pyglass
6https://github.com/rapidsai/raft

9

https://github.com/zilliztech/pyglass
https://github.com/rapidsai/raft

Figure 5: CPU comparison. The QPS-recall curves of LoRANN and the leading graph library GLASS
cross at the 95% (left) and at the 90% recall level (right), indicating that LoRANN is the fastest method
at the lower recall levels, and GLASS at the higher recall levels.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

104

105

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ag-news-distilbert-768-angular

lorann
raft-cagra
raft-ivfpq
raft-ivf
faiss-ivf-gpu
faiss-ivfpq-gpu

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

105

106

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ann-t2i-200-angular

Figure 6: GPU comparison. On the high-dimensional (d = 768) data set (left), LoRANN is the fastest,
and on the lower-dimensional (d = 200) data set (right), the graph method CAGRA is the fastest.

To demonstrate the ease of implementation of our algorithm for new hardware platforms, in Ap-
pendix E.5 we implement our method for Apple silicon. We show using the M2 Pro SoC that LoRANN
can take advantage of the M2 GPU and its unified memory architecture to achieve faster queries.

8 Discussion

In this article, we show that an elementary statistical method, reduced-rank regression (RRR), is
surprisingly efficient for score computation in clustering-based ANN search. Since RRR outperforms
product quantization (PQ) at fixed memory consumption while being simpler to implement efficiently,
we recommend using it in regimes where PQ is traditionally used, e.g., when the memory usage
is a limiting factor (Douze et al., 2024). While the experiments of the article are performed in the
standard in-memory setting, the simple structure and the small memory footprint of the proposed
method suggest scalability for larger data sets that do not fit into the main memory. In particular,
hybrid solutions that store the corpus on an SSD (Jayaram Subramanya et al., 2019; Ren et al., 2020;
Chen et al., 2021) and the distributed setting where the corpus and the index are distributed over
multiple machines (Deng et al., 2019; Gottesbüren et al., 2024) are promising research directions.

Limitations Since reaching the highest recall levels (> 90% for k = 100) requires exploring many
clusters, graph methods are usually more efficient than clustering-based methods in this regime.
Furthermore, low-dimensional data sets (e.g., d < 100) also require that the rank r of the parameter
matrix is reasonably high. Thus, reduced-rank regression is not efficient for low-dimensional data
sets for which the proportion r/d is too large. The proposed score computation method is also
only applicable to inner product-based dissimilarity measures. However, the multivariate regression
formulation of Section 3.1 can be extended for other dissimilarity measures.

10

Acknowledgments

This work has been supported by the Research Council of Finland (grant #345635 and the Flagship
programme: Finnish Center for Artificial Intelligence FCAI) and the Jane and Aatos Erkko Foundation
(BioDesign project, grant #7001702). We acknowledge the computational resources provided by the
Aalto Science-IT Project from Computer Science IT. We thank the anonymous reviewers for their
valuable feedback.

References
Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. Cache locality is not enough:

high-performance nearest neighbor search with product quantization fast scan. Proceedings of the
VLDB Endowment, 9(4):288–299, 2015.

Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. ANN-benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms. Information Systems, 87:101374, 2020.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al. Im-
proving language models by retrieving from trillions of tokens. In Proceedings of the International
Conference on Machine Learning, pages 2206–2240. PMLR, 2022.

Sebastian Bruch. Foundations of Vector Retrieval. Springer, 2024.

Sebastian Bruch, Aditya Krishnan, and Franco Maria Nardini. Optimistic query routing in clustering-
based approximate maximum inner product search. arXiv preprint arXiv:2405.12207, 2024.

Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of
the 34th Annual ACM Symposium on Theory of Computing, pages 380–388, 2002.

Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li, Mao Yang, and
Jingdong Wang. SPANN: Highly-efficient billion-scale approximate nearest neighborhood search.
Advances in Neural Information Processing Systems, 34:5199–5212, 2021.

Sanjoy Dasgupta and Kaushik Sinha. Randomized partition trees for nearest neighbor search.
Algorithmica, 72(1):237–263, 2015.

Rieke de Maeyer, Sami Sieranoja, and Pasi Fränti. Balanced k-means revisited. Applied Computing
and Intelligence, 3(2):145–179, 2023.

Shiyuan Deng, Xiao Yan, KW Ng Kelvin, Chenyu Jiang, and James Cheng. Pyramid: A general
framework for distributed similarity search on large-scale datasets. In 2019 IEEE International
Conference on Big Data (Big Data), pages 1066–1071. IEEE, 2019.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LLM.int8(): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Inderjit S. Dhillon and Dharmendra S. Modha. Concept decompositions for large sparse text data
using clustering. Machine learning, 42:143–175, 2001.

Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction for generic
similarity measures. In Proceedings of the 20th International Conference on World Wide Web,
pages 577–586, 2011.

Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning space partitions for nearest
neighbor search. In Proceedings of the International Conference on Learning Representations,
2020.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The Faiss library. arXiv preprint
arXiv:2401.08281, 2024.

Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning programs via
high-level tracing. Machine Learning and Systems (MLSys), 2018.

Lars Gottesbüren, Laxman Dhulipala, Rajesh Jayaram, and Jakub Lacki. Unleashing graph partition-
ing for large-scale nearest neighbor search. arXiv preprint arXiv:2403.01797, 2024.

11

Fabian Groh, Lukas Ruppert, Patrick Wieschollek, and Hendrik P. A. Lensch. GGNN: Graph-based
gpu nearest neighbor search. IEEE Transactions on Big Data, 9(1):267–279, 2022.

Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo, Qianya Cheng, Weizhi
Xu, Jiarui Luo, Frank Liu, et al. Manu: a cloud native vector database management system.
Proceedings of the VLDB Endowment, 15(12):3548–3561, 2022.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar.
Accelerating large-scale inference with anisotropic vector quantization. In Proceedings of the
International Conference on Machine Learning, pages 3887–3896. PMLR, 2020.

Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexander J Smola. BLISS: A billion
scale index using iterative re-partitioning. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 486–495, 2022.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In Proceedings of the International Conference on Machine Learning,
pages 3929–3938. PMLR, 2020.

Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):
217–288, 2011.

Ville Hyvönen, Teemu Pitkänen, Sotiris Tasoulis, Elias Jääsaari, Risto Tuomainen, Liang Wang,
Jukka Corander, and Teemu Roos. Fast nearest neighbor search through sparse random projections
and voting. In Proceedings of the 2016 IEEE International Conference on Big Data, pages 881–888.
IEEE, 2016.

Ville Hyvönen, Elias Jääsaari, and Teemu Roos. A multilabel classification framework for ap-
proximate nearest neighbor search. Advances in Neural Information Processing Systems, 35:
35741–35754, 2022.

Masajiro Iwasaki and Daisuke Miyazaki. Optimization of indexing based on k-nearest neighbor
graph for proximity search in high-dimensional data. arXiv preprint arXiv:1810.07355, 2018.

Alan Julian Izenman. Reduced-rank regression for the multivariate linear model. Journal of
multivariate analysis, 5(2):248–264, 1975.

Elias Jääsaari, Ville Hyvönen, and Teemu Roos. Efficient autotuning of hyperparameters in approxi-
mate nearest neighbor search. In Proceedings of the 23rd Pacific-Asia Conference on Knowledge
Discovery and Data Mining, volume 2, pages 590–602. Springer, 2019.

Shikhar Jaiswal, Ravishankar Krishnaswamy, Ankit Garg, Harsha Vardhan Simhadri, and Sheshansh
Agrawal. OOD-DiskANN: Efficient and scalable graph ANNS for out-of-distribution queries.
arXiv preprint arXiv:2211.12850, 2022.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, and
Rohan Kadekodi. DiskANN: Fast accurate billion-point nearest neighbor search on a single node.
Advances in Neural Information Processing Systems, 32, 2019.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):117–128, 2011.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
Proceedings of the International Conference on Learning Representations, 2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. Advances in Neural
Information Processing Systems, 33:9459–9474, 2020.

Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin Lin. Approxi-
mate nearest neighbor search on high dimensional data—experiments, analyses, and improvement.
IEEE Transactions on Knowledge and Data Engineering, 32(8):1475–1488, 2019.

Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Hashing with graphs. In Proceedings of the
International Conference on Machine Learning, pages 1–8. PMLR, 2011.

12

Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. Supervised hashing with
kernels. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2074–2081. IEEE, 2012.

Zepu Lu, Jin Chen, Defu Lian, Zaixi Zhang, Yong Ge, and Enhong Chen. Knowledge distillation for
high dimensional search index. In Advances in Neural Information Processing Systems, volume 36,
pages 33403–33419, 2023.

Yu A. Malkov and Dmitry A. Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(4):824–836, 2018.

Marius Muja and David G. Lowe. Scalable nearest neighbor algorithms for high dimensional data.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11):2227–2240, 2014.

Mohammad Norouzi and David J. Fleet. Minimal loss hashing for compact binary codes. In
Proceedings of the International Conference on Machine Learning, pages 353–360. PMLR, 2011.

Hiroyuki Ootomo, Akira Naruse, Corey Nolet, Ray Wang, Tamas Feher, and Yong Wang. CAGRA:
Highly parallel graph construction and approximate nearest neighbor search for GPUs. arXiv
preprint arXiv:2308.15136, 2023.

James Jie Pan, Jianguo Wang, and Guoliang Li. Vector database management techniques and systems.
In Companion of the 2024 International Conference on Management of Data, pages 597–604,
2024.

Jie Ren, Minjia Zhang, and Dong Li. HM-ANN: Efficient billion-point nearest neighbor search on
heterogeneous memory. Advances in Neural Information Processing Systems, 33:10672–10684,
2020.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53–68, 2021.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Richard James, Mike Lewis, Luke
Zettlemoyer, and Wen-tau Yih. REPLUG: Retrieval-augmented black-box language models.
In Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics, pages 8371–8384. Association for Computational Linguistics, 2024.

Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze, Artem Babenko,
Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Krishnaswamny, Gopal Srinivasa, et al.
Results of the NeurIPS’21 challenge on billion-scale approximate nearest neighbor search. In
NeurIPS 2021 Competitions and Demonstrations Track, pages 177–189. PMLR, 2022.

Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, and Sanjiv Kumar. SOAR: Improved indexing
for approximate nearest neighbor search. In Advances in Neural Information Processing Systems,
volume 36, 2023.

Thomas Vecchiato, Claudio Lucchese, Franco Maria Nardini, and Sebastian Bruch. A learning-to-
rank formulation of clustering-based approximate nearest neighbor search. In Proceedings of the
47th International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 2261–2265, 2024.

Apoorv Vyas, Angelos Katharopoulos, and François Fleuret. Fast transformers with clustered
attention. Advances in Neural Information Processing Systems, 33:21665–21674, 2020.

Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang, Xi-
angzhou Guo, Chengming Li, Xiaohai Xu, et al. Milvus: A purpose-built vector data management
system. In Proceedings of the 2021 International Conference on Management of Data, pages
2614–2627, 2021.

Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. Advances in Neural Information
Processing Systems, 21:1753–1760, 2008.

Weijie Zhao, Shulong Tan, and Ping Li. SONG: Approximate nearest neighbor search on GPU. In
IEEE 36th International Conference on Data Engineering (ICDE), pages 1033–1044. IEEE, 2020.

Xi Zhao, Bolong Zheng, Xiaomeng Yi, Xiaofan Luan, Charles Xie, Xiaofang Zhou, and Christian S.
Jensen. FARGO: Fast maximum inner product search via global multi-probing. Proceedings of the
VLDB Endowment, 16(5):1100–1112, 2023.

13

A Geometric intuition

Observe that the reduced-rank regression solution is different from the most obvious low-rank
approximation of the OLS solution computed via an SVD of the matrix C. In Section 5, we verify
experimentally using a real-world data set that a more accurate model can indeed be trained by
factorizing XCT instead of C. These two solutions are equivalent only in the special case where
X = C. In this special case, computing the predictions of the reduced-rank regression model,
denoted by ŷRRR := xT β̂RRR, is equivalent to projecting both the query point x and the cluster points
{cj}j∈Ij onto the subspace spanned by the first r eigenvectors of K := CTC, and computing the
inner products in this r-dimensional subspace. If the cluster points are centered, the eigenvectors of
K are the principal axes of the cluster points, and 1

ml−1K can be interpreted as the sample covariance
matrix. However, unlike in principal component analysis (PCA), data should not be centered when
estimating the inner products, since the inner products are not invariant with respect to translation.

Let Wr ∈ Rd×r be a matrix containing the first r eigenvectors of K as columns, and denote by
x̃ := WT

r x the r-dimensional projection of the query point, by C̃ := CWr an ml × r-matrix
containing the projected cluster points, and by ỹ := x̃T C̃T an 1×ml-matrix containing the inner
products between the projected query and the projected cluster points. Using this notation, we have
the following result:
Theorem 1. If X = C, then ỹ = ŷRRR.

Proof. Denote β̃ := WrW
T
r C. Now ỹ can be written as ỹ = xT β̃. To prove the result, it suffices

to show that β̃ = β̂RRR. Denote the singular value decomposition of CT by CT = UΣVT . Since
X = C, Y = CCT , and, consequently, the right singular vectors of CT are the eigenvectors of Y.
Thus, the reduced-rank regression solution is

β̂RRR = CTVrV
T
r ,

where Vr is m× r-matrix containing the first r columns of V.

The columns of the matrix U—i.e., the left singular vectors of CT —are the eigenvectors of K =

CTC. Thus, Wr = Ur, and β̃ can be written as

β̃ = UrU
T
r C,

where we denote by Ur a d × r-matrix containing the first r columns of the matrix U. Since
UTCT = ΣVT , also UT

r C
T = ΣrV

T
r , and since CTV = UΣ, also CTVr = UrΣr. Using

these identities, we have

β̃ = UrU
T
r C

T = UrΣrV
T
r = CTVrV

T
r = β̂RRR,

which completes the proof.

However, in the general case where X ̸= C, i.e., the training set of the lth model is selected as the
training queries that are routed into the lth cluster (for which l ∈ τ(xi)), the matrix X also affects
the right singular vectors of the output matrix Y = XCT . Hence, there is no simple geometric
interpretation for the reduced-rank regression solution β̂RRR in the d-dimensional feature space.

14

B Experimental set-up

We use the ANN-benchmarks project7 (Aumüller et al., 2020) to run our experiments and replicate
its set-up as close as possible: our experiments are performed on AWS r6i.4xlarge instances with
Intel Xeon 8375C (Ice Lake) processors and hyperthreading disabled, and all algorithms are run using
a single core. For our GPU experiments, we use an AWS g5.2xlarge instance with an NVIDIA
A10G GPU (24 GB VRAM) and a mac2-m2pro.metal instance with an Apple M2 Pro SoC.

We use k = 100 for all experiments and measure the recall (the proportion of true k-nn found)
versus queries per second (QPS). For all data sets, we use a separate test set of 1000 queries, and
each hyperparameter combination is benchmarked 5 times, from which the lowest achieved query
latency is recorded. Additionally, due to the lack of modern high-dimensional embedding data sets in
ANN-benchmarks, we include multiple new high-dimensional data sets in our experiments; for a list
of all the data sets, see Appendix C. To account for the new data sets, we increase the sizes of the
considered hyperparameter grids in applicable cases.

For LoRANN experiments (Section 7.2), we use the following hyperparameter grid:

• Number of clusters L: 1024, 2048, 4096
• Reduced dimension s: 64, 128, 192
• Rank r: 32 (for GPU, r: 24)
• Clusters to search w: 8, 16, 24, 32, 48, 64, 128, 256
• Points to re-rank t: 100, 200, 400, 800, 1200, 1600, 2400, 3200

For experiments on just reduced-rank regression (Section 7.1), we use the same hyperparameter grid
for L,w, and t as above and do not use dimensionality reduction.

For all hyperparameters, see https://github.com/ejaasaari/lorann-experiments.

7https://github.com/erikbern/ann-benchmarks

15

https://github.com/ejaasaari/lorann-experiments
https://github.com/erikbern/ann-benchmarks

C Data sets

In addition to data sets from ANN-benchmarks (fashion-mnist, gist, glove, mnist, sift), we include
high-dimensional neural network embedding data sets that are more representative of those encoun-
tered in modern machine learning applications and encompass dimensionalities ranging from 200 to
1536. The full list of data sets along with their sizes and the distance metrics used is given in Table 1.

Table 1: Data sets used in the experiments.

Data set (model) type corpus size dim distance license

ag-news (DistilBERT)1 text embedding 120 000 768 angular CC BY 4.0
ag-news (MiniLM)1 text embedding 120 000 384 angular CC BY 4.0
ann-arxiv (E5-base)2 text embedding 2 288 300 768 angular Apache 2.0
ann-t2i (ResNext)3 image embedding 1 000 000 200 angular Apache 2.0
arxiv (OpenAI Ada)4 text embedding 319 224 1536 angular CC0 1.0
arxiv (InstructXL)5 text embedding 2 254 000 768 angular N/A
fashion-mnist6 raw image 60 000 784 euclidean MIT
fasttext-wiki7 word embedding 1 000 000 300 euclidean CC BY-SA 3.0
gist8 image descriptor 1 000 000 960 euclidean CC0 1.0
glove9 word embedding 1 193 514 200 angular Apache 2.0
mnist10 raw image 60 000 784 euclidean CC BY-SA 3.0
sift8 image descriptor 1 000 000 128 euclidean CC0 1.0
wiki (GTE-small)11 text embedding 224 482 384 angular MIT
wiki (OpenAI Ada)11 text embedding 224 482 1536 angular MIT
wolt (clip-ViT)12 image embedding 1 720 611 512 angular N/A
yandex T2I 5M13 text/image 5 000 000 200 angular CC BY 4.0
1 https://data.dtu.dk/articles/dataset/Pretrained_sentence_BERT_models_AG_
News_embeddings/21286923

2 https://huggingface.co/datasets/unum-cloud/ann-arxiv-2m
3 https://huggingface.co/datasets/unum-cloud/ann-t2i-1m
4 https://www.kaggle.com/datasets/awester/arxiv-embeddings
5 https://huggingface.co/datasets/Qdrant/arxiv-abstracts-instructorxl-embeddings
6 https://github.com/zalandoresearch/fashion-mnist
7 https://fasttext.cc/docs/en/english-vectors.html
8 http://corpus-texmex.irisa.fr/
9 https://nlp.stanford.edu/projects/glove/
10 https://yann.lecun.com/exdb/mnist/
11 https://huggingface.co/datasets/Supabase/wikipedia-en-embeddings
12 https://huggingface.co/datasets/Qdrant/wolt-food-clip-ViT-B-32-embeddings
13 https://big-ann-benchmarks.com/neurips23.html

16

https://data.dtu.dk/articles/dataset/Pretrained_sentence_BERT_models_AG_News_embeddings/21286923
https://data.dtu.dk/articles/dataset/Pretrained_sentence_BERT_models_AG_News_embeddings/21286923
https://huggingface.co/datasets/unum-cloud/ann-arxiv-2m
https://huggingface.co/datasets/unum-cloud/ann-t2i-1m
https://www.kaggle.com/datasets/awester/arxiv-embeddings
https://huggingface.co/datasets/Qdrant/arxiv-abstracts-instructorxl-embeddings
https://github.com/zalandoresearch/fashion-mnist
https://fasttext.cc/docs/en/english-vectors.html
http://corpus-texmex.irisa.fr/
https://nlp.stanford.edu/projects/glove/
https://yann.lecun.com/exdb/mnist/
https://huggingface.co/datasets/Supabase/wikipedia-en-embeddings
https://huggingface.co/datasets/Qdrant/wolt-food-clip-ViT-B-32-embeddings
https://big-ann-benchmarks.com/neurips23.html

D Reduced-rank regression experiments

D.1 Fixed clustering

In this section, we present the complete evaluation of reduced-rank regression in comparison to
product quantization when the k-means clustering is kept fixed. For discussion, refer to Section 7.1.1.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ag-news-distilbert-768-angular

IVF + RRR (ours, c = 1024)
IVF + RRR (ours, c = 512)
IVF + PQ (faiss, c = 1024)
IVF + PQ (faiss, c = 512)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ag-news-minilm-384-angular

IVF + RRR (ours, c = 1024)
IVF + RRR (ours, c = 512)
IVF + PQ (faiss, c = 1024)
IVF + PQ (faiss, c = 512)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

arxiv-instructxl-768-angular

IVF + RRR (ours, c = 2048)
IVF + RRR (ours, c = 1024)
IVF + PQ (faiss, c = 2048)
IVF + PQ (faiss, c = 1024)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

102

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

arxiv-openai-1536-angular

IVF + RRR (ours, c = 2048)
IVF + RRR (ours, c = 1024)
IVF + PQ (faiss, c = 2048)
IVF + PQ (faiss, c = 1024)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

sift-128-euclidean

IVF + RRR (ours, c = 2048)
IVF + RRR (ours, c = 1024)
IVF + PQ (faiss, c = 2048)
IVF + PQ (faiss, c = 1024)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wiki-gte-384-angular

IVF + RRR (ours, c = 2048)
IVF + RRR (ours, c = 1024)
IVF + PQ (faiss, c = 2048)
IVF + PQ (faiss, c = 1024)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wiki-openai-1536-angular

IVF + RRR (ours, c = 2048)
IVF + RRR (ours, c = 1024)
IVF + PQ (faiss, c = 2048)
IVF + PQ (faiss, c = 1024)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wolt-vit-512-angular

IVF + RRR (ours, c = 2048)
IVF + RRR (ours, c = 1024)
IVF + PQ (faiss, c = 2048)
IVF + PQ (faiss, c = 1024)

17

D.2 Memory usage

In this section, we present the complete evaluation of reduced-rank regression in comparison to
product quantization for different memory consumptions. For discussion, refer to Section 7.1.2.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ag-news-distilbert-768-angular

IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 128)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ag-news-minilm-384-angular

IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

arxiv-instructxl-768-angular

IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 128)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

102

103
Qu

er
ie

s p
er

 se
co

nd
 (1

/s
)

arxiv-openai-1536-angular

IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 128)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

sift-128-euclidean

IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wiki-gte-384-angular

IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wiki-openai-1536-angular

IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 128)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wolt-vit-512-angular

IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 128)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

18

D.3 Memory usage (no re-ranking)

In this section, we present the evaluation of reduced-rank regression in comparison to product
quantization for different memory consumptions when no final re-ranking step is used. In this
scenario, the original data set does not have to be kept in memory.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ag-news-distilbert-768-angular

IVF + RRR (ours, b ≈ 64)
IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 128)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ag-news-minilm-384-angular

IVF + RRR (ours, b ≈ 64)
IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

arxiv-instructxl-768-angular

IVF + RRR (ours, b ≈ 64)
IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 128)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

arxiv-openai-1536-angular

IVF + RRR (ours, b ≈ 64)
IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 128)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

sift-128-euclidean

IVF + RRR (ours, b ≈ 64)
IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wiki-gte-384-angular

IVF + RRR (ours, b ≈ 64)
IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

103

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wiki-openai-1536-angular

IVF + RRR (ours, b ≈ 64)
IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 128)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wolt-vit-512-angular

IVF + RRR (ours, b ≈ 64)
IVF + RRR (ours, b ≈ 32)
IVF + RRR (ours, b ≈ 16)
IVF + PQ (faiss, b ≈ 128)
IVF + PQ (faiss, b ≈ 64)
IVF + PQ (faiss, b ≈ 32)
IVF + PQ (faiss, b ≈ 16)

19

E LoRANN experiments

E.1 Ablation study

In this section, we study the effect of the components (reduced-rank regression, dimensionality
reduction, 8-bit quantization) of LoRANN on its performance. For discussion, refer to Section 7.2.1.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

102

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ag-news-distilbert-768-angular

IVF + RRR + DR + 8-bit
IVF + RRR + DR
IVF + RRR
IVF

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ag-news-minilm-384-angular

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

102

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ann-t2i-200-angular

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

101

102

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)
arxiv-instructxl-768-angular

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

102

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

arxiv-openai-1536-angular

IVF + RRR + DR + 8-bit
IVF + RRR + DR
IVF + RRR
IVF

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

fashion-mnist-784-euclidean

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

102

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

fasttext-wiki-300-euclidean

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

101

102

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

gist-960-euclidean

20

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

102

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

sift-128-euclidean

IVF + RRR + DR + 8-bit
IVF + RRR + DR
IVF + RRR
IVF

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wiki-gte-384-angular

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

102

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wiki-openai-1536-angular

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

102

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wolt-vit-512-angular

E.2 Effect of the rank

In Figure 7, we study the impact of the rank r of the parameter matrices β̂RRR. We find that LoRANN
is robust with respect to the choice of r: increasing r from 32 to 64 has little effect (when the final
re-ranking step is used), while r = 16 performs only slightly worse for high-dimensional data. In
our experiments, we use r = 32, but r = 16 can be used to decrease the memory consumption, and
r = 64 can be used to achieve higher recall if the final re-ranking step is not used.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

arxiv-openai-1536-angular

lorann-16
lorann-32
lorann-64

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

gist-960-euclidean

lorann-16
lorann-32
lorann-64

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

sift-128-euclidean

lorann-16
lorann-32
lorann-64

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wolt-vit-512-angular

lorann-16
lorann-32
lorann-64

Figure 7: Effect of the rank r of the parameter matrices β̂RRR in LoRANN.

21

E.3 CPU Evaluation

In this section, we present the complete evaluation of LoRANN in the CPU setting in comparison to
other ANN algorithms. For discussion, refer to Section 7.2.2.

22

23

E.4 Index construction time

For all libraries, we measure the index construction time on a single CPU core (for LoRANN, the index
construction parallelizes easily as all local cluster models can be computed independently). Table 2
shows index construction times for all data sets and compared methods at 90% recall for k = 100
at the optimal hyperparameters (a dash means that the algorithm either did not reach the necessary
recall or ran out of memory on the data set).

LoRANN has slower index construction times than IVFPQfs, and similar index construction times as
ScaNN. In general, LoRANN has faster index construction times than the graph methods: QSG-NGT
has extremely slow index construction times, HNSW has slower index construction times than LoRANN
on all data sets except ann-t2i, and GLASS is slower on all data sets except two lower-dimensional
data sets (ann-t2i and fasttext-wiki).

We note that our implementation of LoRANN has not been optimized with respect to index construction
time, and could be improved with further sampling and more approximate SVD computations.

Table 2: Index construction times (seconds) at 90% recall for optimal hyperparameters.

data set IVFPQfs LoRANN ScaNN NNDesc. QSGNGT Glass HNSW

ag-distilbert 29 26 66 56 1687 73 104
ag-minilm 15 18 34 47 1763 46 203
ann-arxiv 269 1442 1160 3988 16521 4241 7421
ann-t2i 34 916 125 238 3366 304 842
arxiv-instructxl 79 1189 1259 1041 18781 2956 6779
arxiv-openai 77 112 425 208 16369 405 926
fashion-mnist 15 6 30 32 1254 22 42
fasttext-wiki 60 1012 – 1241 3025 752 1414
gist 979 305 686 1203 8610 2258 6631
glove 49 – 155 1958 14259 1728 4412
mnist 15 6 31 32 1249 22 43
sift 24 91 32 361 2785 405 851
wiki-gte 24 34 39 59 2060 61 138
wiki-openai 362 67 296 137 5085 239 506
wolt-vit 286 464 563 1103 8327 874 1982
yandex-5M 589 2444 612 5218 – 2884 6599

24

E.5 GPU evaluation

NVIDIA GPU In this section, we present the full evaluation of LoRANN in the GPU setting in
comparison to other GPU ANN methods. For discussion, refer to Section 7.2.3.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

104

105

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ag-news-distilbert-768-angular

lorann
raft-cagra
raft-ivfpq
raft-ivf
faiss-ivf-gpu
faiss-ivfpq-gpu

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

104

105

106

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ag-news-minilm-384-angular

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

105

106

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

ann-t2i-200-angular

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

105

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

arxiv-openai-1536-angular

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

104

105

106

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

fashion-mnist-784-euclidean

lorann
raft-cagra
raft-ivfpq
raft-ivf
faiss-ivf-gpu
faiss-ivfpq-gpu

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

105

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

fasttext-wiki-300-euclidean

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

105

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

gist-960-euclidean

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

104

105

106

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

mnist-784-euclidean

25

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

104

105
Qu

er
ie

s p
er

 se
co

nd
 (1

/s
)

sift-128-euclidean

lorann
raft-cagra
raft-ivfpq
raft-ivf
faiss-ivf-gpu
faiss-ivfpq-gpu

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

104

105

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wiki-gte-384-angular

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

105

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wiki-openai-1536-angular

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

103

104

105

Qu
er

ie
s p

er
 se

co
nd

 (1
/s

)

wolt-vit-512-angular

Apple silicon In this section, we use MLX8 to implement LoRANN for Apple silicon. We compare
MLX versions (both CPU and GPU versions) of LoRANN against MLX versions of IVF and the C++
version of LoRANN (without quantization) on the Apple M2 Pro SoC. The MLX version of LoRANN
can take advantage of the M2 Pro GPU and its unified memory architecture to achieve 2–5 times
faster query latencies compared to the C++ implementation of LoRANN.

8https://github.com/ml-explore/mlx

26

https://github.com/ml-explore/mlx

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We explicitly list the main contributions of the article at the end of Section 1
and refer to the relevant sections of the article justifying the claims being made.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Section 8.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

27

Justification: The proof of Theorem 1 is provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide code implementing our method as well as code for running the
benchmarks, including code to prepare all the data sets and algorithms.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

28

Answer: [Yes]
Justification: We provide code implementing our method as well as code for running the
benchmarks, including code to prepare all the data sets and algorithms. The provided
repository has instructions for running the experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental set-up is described in Appendix B and the details for all data
sets are given in Appendix C. The experimental code including data set preparation and
used hyperparameters for all methods is available at https://github.com/ejaasaari/
lorann-experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It is not customary to report error bars or test the statistical significance in
the field of ANN search because it would be computationally expensive. We perform the
experiments using the ANN-benchmarks framework (Aumüller et al., 2020) which is a de
facto standard in the field.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://github.com/ejaasaari/lorann-experiments
https://github.com/ejaasaari/lorann-experiments

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We mention the exact AWS instances used in the experiments in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We checked that our work presented in the article conforms with the NeurIPS
code of Ethics. In particular, we checked that the data sets used were not deprecated and
had a permissive license (see our answer to Question 12), and we disclose the elements of
reproducibility (see our answer to Question 4).
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The article is foundational research as ANN search is a primitive that is used as
a component in machine learning pipelines. Thus, our contribution of making ANN search
more efficient has no direct societal impact.

30

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The article is foundational research, so there are no elements that have a high
risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use data sets with open licenses and our benchmarking code downloads the
used data sets from their original sources; we also list all used data sets in Appendix C along
with their licenses and links. Our benchmarking code is a fork of the ANN-benchmarks
project which is licensed under the MIT license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

31

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide documentation for both LoRANN and our experiments in their
respective repositories.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The article does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The article does not involve crowdsourcing or research with human subjects.
Guidelines:

32

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Background
	ANN search
	Clustering-based ANN search

	Reduced-rank regression
	Dissimilarity approximation as a multivariate regression problem
	Reduced-rank regression solution
	8-bit quantization

	LoRANN
	Dimensionality reduction
	Quantization implementation
	GPU implementation

	Out-of-distribution queries
	Related work
	Experiments
	Reduced-rank regression
	Fixed clustering
	Memory usage

	LoRANN
	Ablation study
	CPU evaluation
	GPU evaluation

	Discussion
	Geometric intuition
	Experimental set-up
	Data sets
	Reduced-rank regression experiments
	Fixed clustering
	Memory usage
	Memory usage (no re-ranking)

	LoRANN experiments
	Ablation study
	Effect of the rank
	CPU Evaluation
	Index construction time
	GPU evaluation

