
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENIE: GAUSSIAN ENCODING FOR NEURAL
RADIANCE FIELDS INTERACTIVE EDITING
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Figure 1: GENIE capabilities. GENIE combines the editability of Gaussians with the neural ren-
dering power of Neural Radiance Fields (NeRF). It enables fine-grained, on-the-fly editing through
either manual interaction or mesh-driven deformation.

ABSTRACT

Neural Radiance Fields (NeRF) and Gaussian Splatting (GS) have recently trans-
formed 3D scene representation and rendering. NeRF achieves high-fidelity novel
view synthesis by learning volumetric representations through neural networks,
but its implicit encoding makes editing and physical interaction challenging. In
contrast, GS represents scenes as explicit collections of Gaussian primitives, en-
abling real-time rendering, faster training, and more intuitive manipulation. This
explicit structure has made GS particularly well-suited for interactive editing and
integration with physics-based simulation. In this paper, we introduce GENIE
(Gaussian Encoding for Neural Radiance Fields Interactive Editing), a hybrid
model that combines the photorealistic rendering quality of NeRF with the ed-
itable and structured representation of GS. Instead of using spherical harmonics
for appearance modeling, we assign each Gaussian a trainable feature embedding.
These embeddings are used to condition a NeRF network based on the k nearest
Gaussians to each query point. To make this conditioning efficient, we introduce
Ray-Traced Gaussian Proximity Search (RT-GPS), a fast nearest Gaussian search
based on a modified ray-tracing pipeline. We also integrate a multi-resolution hash
grid to initialize and update Gaussian features. Together, these components enable
real-time, locality-aware editing: as Gaussian primitives are repositioned or mod-
ified, their interpolated influence is immediately reflected in the rendered output.
By combining the strengths of implicit and explicit representations, GENIE sup-
ports intuitive scene manipulation, dynamic interaction, and compatibility with
physical simulation, bridging the gap between geometry-based editing and neural
rendering.

1 INTRODUCION

In recent years, we have seen significant development in the field of 3D graphics. It is primar-
ily centered around two key tasks: the reconstruction of objects and scenes in 3D space, and the
enhancement of user immersion in terms of manipulation and editing (Wang et al., 2023a; Huang
et al., 2024a). Editing capabilities are essential, especially as applications in robotics, virtual en-
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Figure 2: Evolution of two physical simulations. From left to right: (1) A rubber duck falling onto
a pillow and deforming it. (2) A pirate flag waving under the influence of wind. Both simulations
are performed on our own assets.

vironments, and content creation increasingly demand physically grounded simulation (Authors,
2024). Tasks like object manipulation, deformable modeling, and physics-aware animation require
3D representations that support intuitive editing and tight integration with physics engines.

In the context of scene reconstruction, neural rendering has emerged as a prominent and rapidly
advancing research. A major breakthrough in this domain was the introduction of Neural Radi-
ance Fields (NeRF) (Mildenhall et al., 2020), which transformed photogrammetry by enabling high-
fidelity 3D scene reconstruction from sparse collections of 2D images and their associated camera
poses. NeRFs combine neural networks with classical graphics techniques, to synthesize photore-
alistic views from novel perspectives. On the other hand, Gaussian Splatting (GS) (Kerbl et al.,
2023) represents a recent advancement in 3D scene representation, modeling scenes as collections
of Gaussian primitives with associated colour, opacity, and spatial extent.

GS employs a discrete set of Gaussians that approximate surfaces through density accumulation.
This approach enables extremely fast rendering, but introduces challenges in scenarios requiring
view-dependent consistency and resolution scaling (Malarz et al., 2025). In particular, when apply-
ing super-resolution or scaling transformations, gaps may appear between Gaussian components due
to the inherently discrete nature of the representation. In contrast, NeRFs avoid such artifacts, mak-
ing them more suitable for applications that require seamless surface continuity, such as geometry
merging or fine-scale detail preservation (Mildenhall et al., 2020). Furthermore, NeRFs are typically
more robust in modeling complex lighting effects and maintaining photorealistic consistency across
novel viewpoints, especially under limited training data (Martin-Brualla et al., 2021).

Physics simulation enables object manipulation, collision detection, and realistic movement, which
vanilla NeRF alone does not provide. Despite these needs, current NeRF representations offer lim-
ited editing capabilities. Recent works such as RIP-NeRF (Wang et al., 2023b), NeuralEditor (Chen
et al., 2023), and PAPR (Zhang et al., 2023) employ 3D point clouds for conditioning. Alternatively,
methods like NeRF-Editing (Yuan et al., 2022b) and NeuMesh (Yang et al., 2022) use mesh faces
to control NeRF representations. In (Monnier et al., 2023), the authors model primitives as textured
superquadric meshes for physics-based simulations. While these approaches introduce forms of
manual editing, they remain limited in scope and are typically constrained to coarse modifications.

However, representing an object using primitives allows for direct manipulation in a manner anal-
ogous to mesh vertices, enabling intuitive, fine-grained, and real-time editing. This representation
has proven highly amenable to interactive modification (Guédon & Lepetit, 2024; Waczyńska et al.,
2024; Gao et al., 2025; Huang et al., 2024b), and its compatibility with physics engines (Xie et al.,
2024; Borycki et al., 2024) opens the door to dynamic scene manipulation and physically grounded
simulation.

In this work, we explore the potential of combining NeRF with primitive-based representations to
enable object manipulation and physical simulation. This means that we can use all universal sim-
ulation methods, including highly developed external tools such as Blender (Community, 2018),
to create simulations and easily assign the characteristics of a given material (plasticity, material
physics). To our knowledge, no previous NeRF-based approach has demonstrated this level of inte-
gration with physical simulation frameworks, especially for large scenes. We demonstrate that our
method yields superior visual and numerical results compared to existing NeRF-based methods.

In conclusion, the main contributions of this paper are as follows:

• GENIE hybrid architecture enabling the use of existing GS editing techniques for NeRF
scene manipulation.
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• We introduce Splash Grid Encoding, a multi-resolution encoding that conditions NeRF on
spatially-selected Gaussians.

• We propose an approximate algorithm for nearest neighbor search, referred to as Ray-
Traced Gaussian Proximity Search (RT-GPS) for computational overhead reduction, which
enables fast and scalable inference.

2 RELATED WORKS

Several approaches focus on modeling deformation or displacement fields at a per-frame level (Park
et al., 2021a;b; Tretschk et al., 2021; Weng et al., 2022), while others aim to capture continuous
motion over time by learning time-dependent 3D flow fields (Du et al., 2021; Gao et al., 2021; Guo
et al., 2023; Cao & Johnson, 2023).

A substantial body of research has also explored NeRF-based scene editing across different appli-
cation domains. This includes methods driven by semantic segmentation or labels (Bao et al., 2023;
Dong & Wang, 2023; Haque et al., 2023; Mikaeili et al., 2023; Song et al., 2023; Wang et al., 2022),
as well as techniques that enable relighting and texture modification through shading cues (Gong
et al., 2023; Liu et al., 2021; Rudnev et al., 2022; Srinivasan et al., 2021). Other efforts support
structural changes in the scene, such as inserting or removing objects (Kobayashi et al., 2022; La-
zova et al., 2023; Weder et al., 2023), while some are tailored specifically for facial editing (Hwang
et al., 2023; Jiang et al., 2022; Sun et al., 2022) or physics-based manipulation from video se-
quences (Hofherr et al., 2023; Qiao et al., 2022) Geometry editing within the NeRF framework has
received considerable attention (Kania et al., 2022; Yuan et al., 2022a; 2023; Zheng et al., 2023).

Our model uses geometry editing and physics simulations. Existing methods leverage various
geometric primitives for conditioning NeRFs, most notably 3D point clouds. For instance, RIP-
NeRF (Wang et al., 2023b) introduces a rotation-invariant point-based representation that enables
fine-grained editing and cross-scene compositing by decoupling the neural field from explicit geom-
etry. NeuralEditor (Chen et al., 2023) adopts a point cloud as the structural backbone and proposes
a voxel-guided rendering scheme to facilitate precise shape deformation and scene morphing. Sim-
ilarly, PAPR (Zhang et al., 2023) learns a parsimonious set of scene-representative points enriched
with learned features and influence scores, enabling geometry editing and appearance manipulation.

Some approaches leverage explicit mesh representations to enable NeRF editing. NeRF-
Editing (Yuan et al., 2022b) extracts a mesh from the scene and allows users to apply traditional
mesh deformations, which are then transferred to the implicit radiance field by bending camera rays
through a proxy tetrahedral mesh. Similarly, NeuMesh (Yang et al., 2022) encodes disentangled
geometry and texture features at mesh vertices, enabling mesh-guided geometry editing and texture
manipulation. To reduce computational complexity, some approaches rely on simplified geome-
try proxies, such as coarse meshes paired with cage-based deformation techniques (Jambon et al.,
2023; Peng et al., 2022; Xu & Harada, 2022). VolTeMorph (Garbin et al., 2024) introduces an ex-
plicit volume deformation technique that supports realistic extrapolation and can be edited using
standard software, enabling applications such as physics-based object deformation and avatar ani-
mation. PIE-NeRF (Feng et al., 2024) integrates physics-based, meshless simulations directly with
NeRF representations, enabling interactive and realistic animations.

All of the aforementioned approaches support manual editing through explicit conditioning repre-
sentations. In contrast, our method leverages a GS-based representation, allowing seamless integra-
tion with existing GS editing tools to manipulate NeRF outputs.

3 PRELIMINARY

Our method, GENIE, builds on two foundational models: Neural Radiance Fields (NeRF) and Gaus-
sian Splatting (GS). We briefly review both in the following part.

Neural Radiance Fields Vanilla NeRF (Mildenhall et al., 2020) represents a 3D scene as a contin-
uous volumetric field by learning a function that maps a spatial location x = (x, y, z) and a viewing
direction d = (θ, ψ), to an emitted colour c = (r, g, b) and a volume density σ. Formally, the scene

3
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Figure 3: Examples of physical simulations. From top to bottom: (1) Rigid body simulation
of falling leaves from the NeRF Synthetic Ficus plant. (2) Soft body simulation deforming the
NeRF Synthetic Lego dozer. (3) Cloth simulation of fabric falling onto a cup from our custom asset
collection. The middle column shows the driving mesh deformations.

is approximated by a multi-layer perceptron (MLP):

FNeRF(x,d; Θ) = (c, σ),

where Θ denotes the trainable network parameters.

The model is trained using a set of posed images by casting rays from each camera pixel into the
scene and accumulating colour and opacity along each ray based on volumetric rendering principles.
The goal is to minimize the difference between the rendered and ground-truth images, allowing the
MLP to implicitly encode both the geometry and appearance of the 3D scene. To improve scalability
and spatial precision, many NeRF variants adopt the Hash Grid Encoding (Müller et al., 2022),
which captures high-frequency scene details by dividing space into multiple Levels of Detail (LoD),
each with trainable parameters Φ and feature vectors F . These levels vary in resolution, allowing
the encoding to represent both coarse and fine details. For a query point x, the output feature vector
v is obtained by concatenating trilinearly interpolated features from all levels, based on x’s position
within the grid

Henc(x; Φ) = v(x).

Gaussian Splatting The GS technique models a 3D scene as a set of three-dimensional Gaus-
sian primitives. Each Gaussian is defined by a centroid position, a covariance matrix, an opacity
scalar, and colour information encoded via spherical harmonics (SH) (Kerbl et al., 2023). This
method builds a radiance field by iteratively optimizing the Gaussian parameters: position, covari-
ance, opacity, and SH colour coefficients. The efficiency of GS largely stems from its rendering
process, which projects these Gaussian components onto the image plane.

Formally, the scene is represented by a dense collection of Gaussians:

GGS = {(N (µi,Σi), σi, ci)}ni=1 ,

where µi is the centroid location, Σi is the covariance matrix capturing anisotropic shape, σi denotes
opacity, and ci contains the SH colour coefficients of the i-th Gaussian.

The optimization alternates between rendering images from the current Gaussian parameters and
comparing them to the corresponding training views.

Gaussian Splatting can be easily modified in a mesh-based fashion (Guédon & Lepetit, 2024;
Waczyńska et al., 2024; Gao et al., 2025; Huang et al., 2024b). In practice, this involves moving the
Gaussian components directly in the 3D space.

4 PROPOSED METHOD

Our model, called GENIE, integrates a Gaussian representation of a shape and a neural network-
based rendering procedure into a single system. Specifically, we use a set of Gaussian components
GGS , where we replace the original colour vector c with a trainable latent feature vector v ∈ Rn,
similar to the approach in (Govindarajan et al., 2024). We refer to this modified set of Gaussians as
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Figure 4: Model overview. Top: During training, a subset of Gaussians is selected using Ray-Traced
Gaussian Proximity Search (RT-GPS), which also handles pruning based on Gaussian confidence.
The selected Gaussians are passed to Splash Grid Encoding, which interpolates their features and
drives the densification process by inserting new Gaussians as needed. The interpolated features are
then processed by the neural network FGENIE to predict colour c and opacity σ, which are used for
volumetric rendering. Bottom: At inference, the learned Gaussians serve as input and can undergo
manual or physics-driven edits. The modified Gaussians are passed through the same rendering
pipeline to produce the final image.

GGENIE . To allow efficient training of anisotropic Gaussians, we adopt the standard factorization
Σ = RSSTRT , where R is a rotation matrix and S is a diagonal scale matrix.

We use a NeRF-based neural network FGENIE to predict colour and opacity from the nearest Gaus-
sian features. Formally, the model is defined as:

GENIE(x,d;GGENIE ,Θ,Φ) =

= FGENIE(Genc(RT-GPS(x,GGENIE)),d) = (c, σ),

where Θ and Φ denote the trainable network parameters. The model, alongside the standard NeRF
input, takes a set of trainable Gaussians GGENIE and outputs colour c and density σ at any query
point, enabling neural rendering conditioned on nearby Gaussian features.

Splash Grid Encoding The Hash Grid Encoding, although effective for encoding static scenes,
does not support meaningful modifications. This is because altering the grid at lower LoD affects
the resulting feature differently than modifying the higher-resolution levels. Consequently, editing
the scene becomes inconsistent and unintuitive. To address this, we propose Splash Grid Encoding,
a novel encoding mechanism that decouples feature representation from grid vertices and instead
ties it to a set of Gaussians. Our method takes as input a set of query points x and a set of Gaussians
GGENIE , and produces multi-LoD features. Formally, we define this encoding as:

Genc (x,GGENIE ,Henc(µ; Φ)) = v(GGENIE)

Unlike the traditional Hash Grid Encoding, where the output depends directly on the query point
x, here the features are derived from nearby Gaussians. This is achieved by selecting the N closest
Gaussians to x using our RT-GPS algorithm (detailed in the following section). The final feature
vector is computed as a weighted interpolation of features assigned to these Gaussians, using a
modified Mahalanobis distance:
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v (GGENIE) =

k∑
i=1

wi(GGENIE) · Henc(µi;Φ),

wi(x) =

{
exp

(
− 1

2 (x− µi)Σ
−1
i (x− µi)

)
, if i ∈ N

0, otherwise
,

where wi(x) denotes the interpolation weight, k is the maximum number of nearest neighbors con-
sidered, and Σi = diag(exp(ci)) ∈ R3×3 is the diagonal covariance matrix parameterized for
numerical stability via the log-domain vector ci ∈ R3. The featuresHenc(µi; Φ) are generated from
a trainable hash-grid encoding and depend on the current Gaussian parameters.

During training, both the hash grid parameters Φ and the Gaussian means µi are updated jointly,
allowing the Gaussians to explore the multi-LoD feature field and shape the encoding. At inference
time, the Gaussians’ positions are frozen but can be manipulated. Since the interpolation scheme
remains unchanged, any modification to Gaussian parameters leads to modifications in the output
renderings.

Ray-Traced Gaussian Proximity Search Since nearest neighbor search is the bottleneck of our
method, we employ an efficient approximation scheme. We observe that excluding certain Gaussians
from the neighborhood set N introduces only a bounded error ε in the interpolated feature vector
v(GGENIE), which we formally derive in the Appendix A.2.

Single intersection
= 

Is a neighbour

Two or none intersections
=

Not a neighbour

Figure 5: The RT-GPS working principle. A
light ray passing through the scene is illustrated,
along with its intersections with the icosahedrons.
The figure highlights which Gaussians are consid-
ered neighbors and which are excluded.

This observation serves as the starting point
for our approximated nearest neighbor find-
ing method: Ray-Traced Gaussian Proxim-
ity Search (RT-GPS). RT-GPS restricts nearest
neighbor candidates to Gaussians whose confi-
dence ellipsoids (defined by a quantile parame-
ter Q) contain the query point x. This reduces
neighbor search to a point-in-sphere test, which
we approximate using circumscribed icosahe-
drons for efficient computation.

RT-GPS method extends the RT-kNNS algo-
rithm (Nagarajan et al., 2023), which finds
neighbors within a fixed radius by checking if
query points lie inside expanded spheres. We
adapt this by assigning each Gaussian an indi-
vidual radius based on its covariance,

ri = Q ·max {λ ∈ σ(Σi)} ,

where σ(Σi) is the set of eigenvalues of the Gaussian’s covariance matrix and Q is a configurable
quantile. This ensures we only consider Gaussians whose confidence ellipsoids are likely to influ-
ence the feature at x.

Following (Nagarajan et al., 2023), we trace rays from x and collect Gaussians whose confidence
spheres intersect the ray exactly once (Figure 5). A sorted buffer maintains the k closest candidates
based on mean distance, and in case of overflow, the set is refined by rerunning the traversal with
retained neighbors.

To limit traversal cost, we set the maximum ray distance to

tmax = 2 · n
max
i=1
{Q ·max {λ ∈ σ(Σi)}} ,

which guarantees that no significant Gaussians are skipped.

Pruning and Densification For densification, we adopt the strategy proposed in (Xu et al., 2022),
defined as:
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F F

Figure 6: Example edits on real-world scenes. From left to right: (1) Physics-based simulation in
the Garden scene from Mip-NeRF 360, showing an object falling onto a tilted table and bouncing
off. (2) Physics simulation in the kitchen scene from Mip-NeRF 360, where a force is applied to
deform a plasticine dozer.

αi = 1− exp(−σi∆i), j = argmax
i

αi,

where αi is the opacity at sample i along a ray, ∆i is the spacing between samples, and j is the index
of the maximum-opacity point. A new Gaussian is added at the shading location with the highest
opacity only if its distance to existing closest Gaussians exceeds a predefined spatial threshold τs,
and its opacity value is above an opacity threshold τα. Unlike (Xu et al., 2022), we initialize features
by sampling from the hash grid, rather than nearby shading information, ensuring better alignment
with the feature field.

For pruning, we maintain a confidence vector c = [c1, . . . , cn] with ci ∈ [0, 1]. At each iteration,
all values decay by a factor λd < 1, while Gaussians selected as neighbors are incremented by a
growth factor λg > 1:

ci ←
{
min(1, λg · ci), if i ∈ N(µ,Σ)

max(0, λd · ci), otherwise
.

Gaussians with ci < τ are periodically.

Editing Thanks to the feature encoding in Splash Grid Encoding, we regularize the model’s la-
tent space around the spatial configuration of Gaussian primitives. This alignment allows edits to
be performed directly in the coordinate space of Gaussians, effectively making spatial transforma-
tions equivalent to latent-space manipulations. In particular, modifying the means of the Gaussians
enables localized scene edits that are instantly reflected in the rendered output.

Gaussians can be manipulated either individually or indirectly through mesh parametrization. In
the latter case, we export the Gaussians as a triangle soup by projecting their two principal covari-
ance directions onto triangle faces. Following the reparameterization strategy introduced in GaMeS
(Waczyńska et al., 2024), we associate these triangles with mesh surfaces, ensuring that Gaussian
components move consistently with mesh deformations.

All edits are applied in real time, with immediate visual feedback. Since the latent feature space is
directly tied to Gaussian positions and attributes, the edits require no further fine-tuning or postpro-
cessing, making them persistent and semantically meaningful.

5 EXPERIMENTS

We design our experiments to demonstrate that GENIE maintains the reconstruction quality of state-
of-the-art (SOTA) methods while enabling complex object modifications.

Datasets Following prior work, we evaluate on the NeRF-Synthetic dataset (Mildenhall et al.,
2020), which contains eight synthetic scenes with diverse geometry, texture, and specular properties.
Existing methods (Govindarajan et al., 2024; Xu et al., 2022; Wang et al., 2023b) typically operate
in bounded regions and do not support unbounded scenes. In contrast, GENIE is the first editable
NeRF model trained on the challenging Mip-NeRF 360 dataset (Barron et al., 2022), comprising five
outdoor and four indoor real-world 360°scenes.

7
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To further demonstrate editing capabilities, we include the fox scene from Instant-NGP (Müller et al.,
2022), and introduce a custom set of 3D assets with deformable and articulated objects, enabling
dynamic scene editing and physical interaction.
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Static
NeRF 33.00 25.01 32.54 32.91 29.62 28.65 36.18 30.13
Nerfacto 27.81 17.96 21.57 24.97 20.35 19.86 30.14 21.91
VolSDF 30.57 20.43 29.46 30.53 29.13 25.51 35.11 22.91
ENVIDR 31.22 22.99 29.55 32.17 29.52 21.57 31.44 26.60
Plenoxels 33.98 25.35 34.10 33.26 29.14 29.62 36.43 31.83
GS 35.82 26.17 35.69 35.34 30.00 30.87 37.67 34.83
LagHash 35.66. 25.68 35.49 36.71 29.60 30.88 37.30 33.83

Editable
RIP-NeRF 34.84 24.89 33.41 34.19 28.31 30.65 35.96 32.23
GENIE 34.67 25.57 33.84 34.56 29.43 29.35 36.45 33.23

Table 1: Quantitative comparisons (PSNR) on a NeRF-
Synthetic dataset showing that GENIE gives comparable
results with other models.

Baselines We compare GENIE
against both static NeRF-based and
editable point-based/Gaussian-based
representations. For static radiance
field models, we consider NeRF
(Mildenhall et al., 2020), Nerfacto
(Tancik et al., 2023), VolSDF (Yariv
et al., 2021), ENVIDR (Liang et al.,
2023), Plenoxels (Fridovich-Keil et al.,
2022), GS, LagHash (Govindarajan
et al., 2024), Mip-NeRF 360 (Barron
et al., 2022), Instant-NGP (Müller
et al., 2022), which are known for their
high reconstruction quality, but lack
support for scene editing.

For editable models we compare our-
selves with RIP-NeRF (Wang et al.,
2023b) and NeurlaEditor (Chen et al.,
2023). We select these baselines to
demonstrate that GENIE not only achieves comparable or superior reconstruction quality to SOTA
methods, but also introduces significantly more expressive and flexible editing capabilities. In addi-
tion, we present qualitative visual comparisons of physics simulations generated with PhysGaussian
(Xie et al., 2024) and GASP (Borycki et al., 2024), as shown in Fig. 7.

Outdoor scenes Indoor scenes
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Static
INGP 22.17 20.65 25.07 23.47 22.37 29.69 26.69 29.48 30.69
Nerfacto 17.86 17.79 20.82 20.48 16.72 24.22 23.59 23.20 21.55
Mip-NeRF 24.37 21.73 26.98 26.40 22.87 31.63 29.55 32.23 33.46
GS 25.25 21.52 27.41 26.55 22.49 30.63 28.70 30.32 31.98

Editable
GENIE 19.47 18.14 22.29 20.04 16.34 28.57 24.98 25.69 25.94

Table 2: The quantitative comparisons of reconstruction capa-
bility (PSNR) on Mip-NeRF 360 dataset.

Quantitative Results We
present quantitative results on
the NeRF-Synthetic dataset in
Table 1. As shown, GENIE
achieves reconstruction quality
comparable to SOTA non-editable
methods. Among these, 3DGS
performs best in terms of pure
reconstruction fidelity. In the
editable category, our method sig-
nificantly outperforms RIP-NeRF
in six out of eight scenes, and
performs on par in the remaining
two.

For real-world scenes, we report PSNR on the Mip-NeRF 360 dataset in Table 2, where Mip-NeRF
achieves the highest reconstruction quality.

Qualitative Results For the qualitative comparison, we utilized results reported by (Chen et al.,
2023), where objects from the NeRF-Synthetic dataset were modified to evaluate editing perfor-
mance. The visual quality of the edits was assessed across different methods. We observe that
GENIE outperforms other approaches in the task of zero-shot editing, producing visibly higher-
quality results. In particular, it more accurately reconstructs lighting reflections in the Mic scene,
handles stretching in Drums more naturally, and introduces fewer artifacts in shadowed regions of
Hotdog and Lego. The comparison is shown in Figure 8. Point-NeRF appears in the comparison as
it was adapted to support editing by the authors of the NeuralEditor method.

Physic-based Editing We conducted a series of physics-based simulations in Blender (Commu-
nity, 2018) using the mesh-driven editing mechanism described earlier. These experiments span
both synthetic and real-world datasets and include diverse physical phenomena such as rigid body
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Figure 7: Comparison of physics simulations with Gaussian Splatting methods. From left to
right: (1) wind simulation on the Ficus plant from the NeRF-Synthetic dataset, (2) particle impact
simulation on the Fox head from the Instant-NGP dataset. Results shown for PhysGaussian (Xie
et al., 2024) and GASP (Borycki et al., 2024).

dynamics, soft body deformation, and cloth simulation. In these scenarios, deformations of the
driving mesh were used to update the corresponding Gaussian components in real time, enabling
seamless integration of physical interactions into the scene. In addition, we performed simulations
following PhysGaussian (Xie et al., 2024) and compared GENIE qualitatively against both Phys-
Gaussian and GASP (Borycki et al., 2024).
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Figure 8: Qualitative comparison. Results shown on the
NeRF-Synthetic dataset. Modified objects are in the top row.
Each row compares reconstruction quality across different
methods. Our results are added to those reported by (Chen
et al., 2023).

The results of these simulations are
illustrated in Figures 2, 3, 6, and 7.
These visualizations demonstrate that
GENIE produces realistic and phys-
ically plausible edits across a wide
range of scenarios. Whether sim-
ulating leaves falling from a plant,
squashing a soft object, or drap-
ing cloth over complex geometry,
our method maintains high render-
ing fidelity while enabling expressive
and controllable scene manipulation.
This highlights the potential of GE-
NIE as a flexible framework for neu-
ral scene editing driven by physical
interactions.

6 CONCLUSIONS

In this work, we introduced GENIE, a Gaussian-based conditioning technique for NeRF systems
that enables dynamic and physics-driven editing. Our method conditions a NeRF network on jointly
trained Gaussians that serve as spatial feature carriers. Editing can be performed either manu-
ally, through direct manipulation of Gaussians, or automatically, by coupling them with deformable
meshes to enable physics-based interactions. We demonstrated the capabilities of our system across
a range of scenarios, highlighting its usability, versatility, and adaptability. GENIE can be seam-
lessly integrated into new simulation environments, offering a promising path toward physically
interactive neural scene representations.

Limitations The detail reconstruction quality in our system depends on the spatial density of Gaus-
sians. Sparse regions may lose fine details, posing challenges in large or open scenes where main-
taining uniform density is difficult.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We are committed to ensuring that our work is fully reproducible. To this end, we provide the
following:

• Code and Environment: The complete source code for our method, including training,
editing, and rendering pipelines, is available in our GitHub repository (link anonymized
for review https://anonymous.4open.science/r/genie-B60F/README.md). The repository
contains a README.md with detailed installation instructions. We support both Docker-
based deployment (recommended) and manual installation. All dependencies and version
requirements are explicitly documented.

• Hardware and Software: All experiments were run on a single NVIDIA RTX 3090 GPU
(24 GB). We rely on CUDA, OptiX (7.6 or 8.1.0), and PyTorch as the main libraries. We
also provide a Docker container that reproduces our environment without requiring manual
configuration.

• Datasets: For synthetic experiments, we use publicly available datasets such as NeRF-
Synthetic and Mip-NeRF 360. For real-world experiments, we follow the Nerfstudio data
format. We will release all preprocessed datasets and corresponding configuration files.

• Training and Hyperparameters: We provide configuration files for every experiment re-
ported in the paper. These include all hyperparameters such as learning rates, thresholds,
and training schedules. Commands for training, evaluation, and rendering are provided in
the README.

• Additional remarks: Reproducing Blender-based animations requires installing Blender,
which we describe in detail. Rendering physics simulations additionally requires mesh
export. We provide example scripts and workflows in our repository.

Taken together, these resources ensure that our results can be reliably reproduced by independent
researchers.
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A APPENDIX

This appendix provides additional insights and supporting material for our method. We begin with
implementation details covering initialization, training schedules, and pruning strategies. Next, we
give a formal justification of the k-nearest neighbor approximation used in Ray-Traced Gaussian
Proximity Search, showing that distant Gaussians can be safely ignored with bounded error. We
then present an extensive ablation study to analyze the impact of key components in our system.
Next, we include rendering speed comparisons with existing methods, highlighting the trade-off
between editability and performance. We also provide extended qualitative results to showcase the
generalization of our approach across various scenes. Finally, we present and discuss representative
failure cases to inform future research directions and reveal current limitations of our method.

A.1 IMPLEMENTATION DETAILS

To reduce computation, we fix the rotation matrix R to identity and restrict the covariance Σ to a
diagonal form, avoiding costly matrix inversions. The log-diagonal of Σ is initialized to 0.0001.

For Splash Grid Encoding, we use quantilesQ ∈ [1, 3] and select 16–32 nearest Gaussians per query.
Densification runs periodically from early training until midpoint, adding up to 10,000 Gaussians
per cycle. We use an opacity threshold τα = 0.5 and spatial threshold τs = 0.001.
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Pruning is performed every 1,000 steps. Confidence values decay via λd = 0.001 and increase via
λg = 0.01. Gaussians with confidence< τ = 0.1 are removed. Models are trained for 20,000 steps.

For initialization on the NeRF-Synthetic dataset, we used Gaussians generated by the LagHash
method. For the Mip-NeRF 360 dataset, we initialized GENIE using structure-from-motion recon-
structions from COLMAP (Schönberger & Frahm, 2016), and further augmented the scene with an
additional 1M points distributed along the scene boundaries to improve background reconstruction.
For our custom assets, we initialized the Gaussians using the mesh vertices. For physics simulations,
we used meshes generated with Permuto-SDF (Rosu & Behnke, 2023) but also simple cage meshes
for real scenes. All experiments were run on a single NVIDIA RTX 3090 (24 GB) GPU.

A.2 THEORETICAL MOTIVATION FOR RAY-TRACED GAUSSIAN PROXIMITY SEARCH
APPROXIMATION

To justify the motivation behind our Ray-Traced Gaussian Proximity Search, let’s first recall the
formula for the interpolated feature vector v (GGENIE). To begin, let’s note that for the wi(x)
appearing in the formula we have:

wi(x) =

{
exp

(
− 1

2d
2
M (x,N (µi,Σi))

)
, if i ∈ N

0, otherwise,

where dM (x,N (µi,Σi)) is the Mahalanobis distance of the point x from the normal distribution
N (µi,Σi). Let’s fix x ∈ R3 and ε > 0. Let’s consider the subset M ⊆ N , such that for each
i ∈M we have:

dM (x,N (µi,Σi)) >

√√√√√−2 ln
 ε∑

i∈M

|v(x)i|


Then:∣∣∣∣∣∑
i∈M

wi(x) · v(x)i

∣∣∣∣∣ =
=
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i∈M

e−
1
2d

2
M (x,N (µi,Σi)) · v(x)i

∣∣∣∣∣ ≤
≤
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∣∣∣e− 1
2d

2
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2d

2
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<
ε∑

i∈M

|v(x)i|
·
∑
i∈M

|v(x)i| = ε

Thus:∣∣∣∣∣∣
∑
i∈N

wi(x) · v(x)i −
∑

i∈N\M

wi(x) · v(x)i

∣∣∣∣∣∣ =
=

∣∣∣∣∣∑
i∈M

wi(x) · v(x)i

∣∣∣∣∣ < ε

from which we conclude that removing the nearest neighbors from the set M from the formula for
v (GGENIE) can alter the interpolated feature vector coordinate by no more than ε.

A.3 ABLATION STUDY

To justify our design choices, we present an ablation study evaluating the impact of key components
in our system. We analyze how performance is affected by the number of neighbors used in RT-GPS,
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using Gaussian scales as radii in RT-GPS (Σ in RT-GPS), the presence of Splash Grid Encoding,
enabling densification and pruning, making Gaussian means learnable, and including an appearance
embedding.
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PSNR
GENIE 1.1 16 ✗ ✗ ✗ ✗ ✗ ✗ 33.95 24.80 32.80 33.44 28.51 28.81 35.48 32.57
GENIE 1.1 16 ✗ ✗ ✗ ✓ ✗ 32 29.27 23.47 25.15 28.72 21.94 OOM 30.19 27.92
GENIE 1.1 16 ✗ ✗ ✗ ✓ ✗ ✗ 33.92 24.84 32.42 33.26 28.26 OOM 34.98 31.87
GENIE 1.1 16 ✗ ✗ ✗ ✗ ✗ 32 28.67 23.43 24.95 28.58 21.85 OOM 29.07 27.53
GENIE 1.1 16 ✗ ✗ ✗ ✗ ✗ 10 30.59 23.69 27.84 29.03 24.30 OOM 31.52 27.97
GENIE 1.1 16 ✗ ✗ ✗ ✗ ✗ ✗ 33.11 24.89 32.67 32.57 28.43 OOM 35.26 32.11
GENIE 1.1 16 ✓ ✗ ✗ ✗ ✗ ✗ 34.10 24.94 33.02 33.82 21.16 28.91 35.71 32.07
GENIE 1.1 16 ✓ ✗ ✗ ✓ ✗ ✗ 34.12 24.97 33.00 OOM 28.61 OOM 35.66 32.11
GENIE 1.1 16 ✓ ✗ ✓ ✓ ✓ ✗ 32.92 25.08 32.98 22.74 28.15 28.23 35.54 32.43
GENIE 1.1 16 ✓ ✓ ✗ ✗ ✗ ✗ 34.20 25.15 33.09 33.88 29.03 29.43 35.89 32.53
GENIE 1.1 16 ✓ ✓ ✗ ✗ 5k ✗ 34.29 25.20 33.24 33.93 29.19 29.32 36.12 32.53
GENIE 1.1 16 ✓ ✓ ✗ ✗ 10k ✗ 34.34 25.24 33.38 34.03 29.18 29.45 36.18 32.54
GENIE 2.0 32 ✓ ✓ ✓ ✓ 10k ✗ 34.67 25.57 33.84 34.56 29.43 29.35 36.45 33.23

Table 3: Ablation study (PSNR) comparisons on a NeRF-Synthetic dataset showing that GENIE
final system gives the best results. It can be observed that without Splash Grid Encoding system was
sometimes giving the Our of Memory (OOM) errors.

A.4 SPEED COMPARISONS

We compare the rendering performance of various methods in Table 4. For GENIE, we report
results for different configurations based on the number of Gaussian components (in millions) and
the number of nearest neighbors k used to condition the NeRF. For example, ”GENIE ∼1.1M, 32”
denotes a model using approximately 1.1 million Gaussian components and k = 32 neighbors.
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FPS
0.023 0.860 0.909 3.330 0.020 0.042 0.815 10.66 0.301 0.089

Table 4: Rendering speed comparison on the NeRF-Synthetic dataset. Despite its editability features,
GENIE achieves competitive inference speeds. Performance varies with the number of Gaussian
components and neighbors used. For instance, “GENIE ∼1.1M, 32” refers to using approximately
1.1 million Gaussians and k = 32 neighbors in the weighted conditioning.

A.5 FAILURE CASES

While our method performs well across a variety of scenes and tasks, it is not without limitations.
In this section, we present representative failure cases that highlight scenarios where our approach
struggles. The first failure mode occurs when the mesh model contains discontinuities caused by
editing or undergoes excessive stretching. This can lead to visible holes or rendering artifacts in the
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Figure 9: Mesh discontinuity. Mesh discontinuity during the editing causes holes in the edited
model especially visible on the left side of the water basin.

Figure 10: Too few Gausses. Too few Gausses during initialization and no densification causes
network to have problems with proper reconstruction.

final output (see Figure 9). The second case arises when the number of Gaussians is insufficient
during training and densification is disabled. In such situations, the network struggles to represent
object boundaries accurately, leading to blurry or incomplete reconstructions (see Figure 10).

A.6 EXTENDED RESULTS

In this section, we extend the results presented in Tables 1 and 2 of the main paper by additionally
reporting SSIM and LPIPS metrics for both synthetic and real-world datasets.
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PSNR ↑
Chair Drums Lego Mic Materials Ship Hotdog Ficus

Static
NeRF 33.00 25.01 32.54 32.91 29.62 28.65 36.18 30.13
Nerfacto 27.81 17.96 21.57 24.97 20.35 19.86 30.14 21.91
VolSDF 30.57 20.43 29.46 30.53 29.13 25.51 35.11 22.91
ENVIDR 31.22 22.99 29.55 32.17 29.52 21.57 31.44 26.60
Plenoxels 33.98 25.35 34.10 33.26 29.14 29.62 36.43 31.83
GS 35.82 26.17 35.69 35.34 30.00 30.87 37.67 34.83
LagHash 35.66. 25.68 35.49 36.71 29.60 30.88 37.30 33.83

Editable
RIP-NeRF 34.84 24.89 33.41 34.19 28.31 30.65 35.96 32.23
GENIE 34.67 25.57 33.84 34.56 29.43 29.35 36.45 33.23

SSIM ↑
Static

NeRF 0.967 0.925 0.961 0.980 0.949 0.856 0.974 0.964
Nerfacto 0.951 0.835 0.893 0.959 0.771 0.797 0.951 0.915
VolSDF 0.949 0.893 0.951 0.969 0.954 0.842 0.972 0.929
ENVIDR 0.976 0.930 0.961 0.984 0.968 0.855 0.963 0.987
Plenoxels 0.977 0.933 0.975 0.985 0.949 0.890 0.980 0.976
GS 0.987 0.954 0.983 0.991 0.960 0.907 0.985 0.987
LagHash 0.984 0.934 0.978 0.991 0.947 0.892 0.981 0.981

Editable
RIP-NeRF 0.980 0.929 0.977 0.962 0.943 0.916 0.963 0.979
GENIE 0.981 0.934 0.973 0.987 0.950 0.880 0.979 0.979

LPIPS ↓
Static

NeRF 0.046 0.091 0.050 0.028 0.063 0.206 0.121 0.044
Nerfacto 0.056 0.197 0.112 0.075 0.405 0.218 0.029 0.112
VolSDF 0.056 0.119 0.054 0.191 0.048 0.191 0.043 0.068
ENVIDR 0.031 0.080 0.054 0.021 0.045 0.228 0.072 0.010
Plenoxels 0.031 0.067 0.028 0.015 0.057 0.134 0.037 0.026
GS 0.012 0.037 0.016 0.006 0.034 0.106 0.020 0.012
LagHash 0.024 0.083 0.027 0.015 0.070 0.139 0.036 0.049

Editable
RIP-NeRF - - - - - - - -
GENIE 0.013 0.060 0.016 0.005 0.037 0.110 0.022 0.015

Table 5: Quantitative comparisons (PSNR, SSIM, LPIPS) on a NeRF-Synthetic dataset showing that
GENIE gives comparable results with other models.
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PSNR ↑
Outdoor scenes Indoor scenes

bicycle flowers garden stump treehill room counter kitchen bonsai
Static

Plenoxels 21.91 20.10 23.49 20.66 22.25 27.59 23.62 23.42 24.66
INGP 22.17 20.65 25.07 23.47 22.37 29.69 26.69 29.48 30.69
Nerfacto 17.86 17.79 20.82 20.48 16.72 24.22 23.59 23.20 21.55
Mip-NeRF 24.37 21.73 26.98 26.40 22.87 31.63 29.55 32.23 33.46
GS 25.25 21.52 27.41 26.55 22.49 30.63 28.70 30.32 31.98

Editable
GENIE 19.47 18.14 22.29 20.04 16.34 28.57 24.98 25.69 25.94

SSIM ↑
Outdoor scenes Indoor scenes

bicycle flowers garden stump treehill room counter kitchen bonsai
Static

Plenoxels 0.496 0.431 0.606 0.523 0.509 0.842 0.759 0.648 0.814
INGP 0.512 0.486 0.701 0.594 0.542 0.871 0.817 0.858 0.906
Nerfacto 0.548 0.495 0.559 0.657 0.591 0.815 0.773 0.692 0.728
Mip-NeRF 0.685 0.583 0.813 0.744 0.632 0.913 0.894 0.920 0.941
GS 0.771 0.605 0.868 0.775 0.638 0.914 0.905 0.922 0.938

Editable
GENIE 0.381 0.329 0.465 0.424 0.404 0.834 0.718 0.655 0.736

LPIPS ↓
Outdoor scenes Indoor scenes

bicycle flowers garden stump treehill room counter kitchen bonsai
Static

Plenoxels 0.506 0.521 0.386 0.503 0.540 0.419 0.441 0.447 0.398
INGP 0.446 0.441 0.257 0.421 0.450 0.261 0.306 0.195 0.205
Nerfacto 0.657 0.668 0.595 0.501 0.630 0.365 0.365 0.239 0.299
Mip-NeRF 0.301 0.344 0.170 0.261 0.339 0.211 0.204 0.127 0.176
GS 0.205 0.336 0.103 0.210 0.317 0.220 0.204 0.129 0.205

Editable
GENIE 0.687 0.639 0.511 0.605 0.641 0.232 0.314 0.315 0.296

Table 6: The quantitative comparisons of reconstruction capability (PSNR, SSIM, LPIPS) on Mip-
NeRF 360 dataset.
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