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ABSTRACT

Temporal modeling still remains challenging for action recognition in videos. To
mitigate this issue, this paper presents a new video architecture, termed as Tem-
poral Difference Network (TDN), with a focus on capturing multi-scale temporal
information for efficient action recognition. The core of our TDN is to devise an
efficient temporal module (TDM) by explicitly leveraging a temporal difference
operator, and systematically assess its effect on short-term and long-term motion
modeling. To fully capture temporal information over the entire video, our TDN is
established with a two-level difference modeling paradigm. Specifically, for local
motion modeling, temporal difference over consecutive frames is used to supply
2D CNNs with finer motion pattern, while for global motion modeling, tempo-
ral difference across segments is incorporated to capture long-range structure for
motion feature excitation. TDN provides a simple and principled temporal model-
ing framework, and could be instantiated with the existing CNNs at a small extra
computational cost. Our TDN presents a new state of the art on the datasets of
Something-Something V1 & V2 and Kinetics-400 under the setting of using simi-
lar backbones. In addition, we present some visualization results on our TDN and
try to provide new insights on temporal difference operation.

1 INTRODUCTION

Deep neural networks have witnessed great progress for action recognition in videos (Karpathy
et al., 2014; Simonyan & Zisserman, 2014; Wang et al., 2016; Tran et al., 2015; Feichtenhofer
et al., 2019). Temporal modeling is crucial for capturing motion information in videos for action
recognition, and this is usually achieved by two kinds of mechanisms in the current deep learning
approaches. One common method is to use a two-stream network (Simonyan & Zisserman, 2014),
where one stream is on RGB frames to extract appearance information, and the other is to leverage
optical flow as an input to capture movement information. This method turns out to be effective
for improving action recognition accuracy, but requires high computational consumption for optical
flow calculation. Another alternative approach is to use 3D convolutions (Ji et al., 2010; Tran et al.,
2015) or temporal convolutions (Tran et al., 2018; Xie et al., 2018; Qiu et al., 2017) to implicitly
learn motion features from RGB frames. However, 3D convolutions often lack specific consideration
in temporal dimension and might bring higher computational cost as well. Therefore, designing an
effective temporal module of high motion modeling power and low computational consumption is
still a challenging problem for video recognition.

This paper aims to present a new temporal modeling mechanism by introducing a temporal dif-
ference based module (TDM). Temporal derivative (difference) is highly relevant with optical
flow (Horn & Schunck, 1981), and has shown effectiveness in action recognition by using RGB
difference as an approximate motion representation (Wang et al., 2016; Zhao et al., 2018). Follow-
ing this research line, we focus on generalizing the idea of temporal difference into a principled
temporal module for network design. In addition, we argue that both short-term and long-term tem-
poral information are crucial for action recognition, in sense that they are able to capture distinctive
and complementary properties of an action instance. Therefore, in our proposed temporal modeling
mechanism, we present a unique two-level temporal modeling framework based on a holistic and
sparse sampling strategy, termed as Temporal Difference Network (TDN). Specifically, in TDN, we
consider two efficient forms of TDMs for motion modeling at different scales. For local motion
modeling, we present a light weight and low-resolution difference module to supply a single RGB
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with motion patterns via lateral connections, while for long-range motion modeling, we propose a
multi-scale and bidirectional difference module to capture cross-segment variations for motion ex-
citation. These two kinds of TDMs are systematically studied as a principled building block for
short-term and long-rang temporal structure extraction.

Our TDN provides a simple and general video-level motion modeling framework, and could be in-
stantiated with existing CNNs at A small extra computational cost. To demonstrate the effectiveness
of TDN, we implement it with ResNet50 and perform experiments on two datasets: Kinetics and
Something-Something. The evaluation results show that our TDN is able to yeild a new state-of-the-
art performance on both motion relevant Something-Something dataset and scene relevant Kinetics
dataset, under the setting of using similar backbones. Our main contribution lies in the following
three aspects:

• We generalize the idea of RGB difference to devise an efficient temporal difference module
(TDM) for motion modeling in videos, and provide an alternative to 3D convolutions by
systematically presenting principled and detailed module design.

• Our TDN presents a video-level motion modeling framework with the proposed tempo-
ral difference module, with a focus on capturing both short-term and long-term temporal
structure for video recognition.

• Our TDN obtains a new state-of-the-art performance on the datasets of Kinetics and
Something-Something under the setting of using similar backbones. We also give several
visualization results to analyze our temporal difference modeling.

2 RELATED WORK

Short-term temporal modeling. Action recognition has attracted lots of research attention in the
past few years. These methods could be categorized into two types: (1) two-stream CNNs (Si-
monyan & Zisserman, 2014) or its variants (Feichtenhofer et al., 2016): it used two inputs of RGB
and optical flow to separately model appearance and motion information in videos with a late fusion;
(2) 3D-CNNs (Tran et al., 2015; Ji et al., 2010): it proposed 3D convolution and pooling to directly
learn spatiotemporal features from videos. Several variants tried to reduce the computation cost of
3D convolution by decomposing it into a 2D convolution and a 1D temporal convolution, for exam-
ple R(2+1)D (Tran et al., 2018), S3D (Xie et al., 2018), and P3D (Qiu et al., 2017). Following this
research line, several works focused on designing a more powerful temporal module and inserted it
into a 2D CNN for efficient action recognition, such as Non-local net (Wang et al., 2018b), TSM (Lin
et al., 2019), TIN (Shao et al., 2020) and TEINet (Liu et al., 2020). In addition, some methods tried
to leverage the idea of two stream network to design a multi-branch architecture to capture both ap-
pearance and motion information, including ARTNet (Wang et al., 2018a), STM (Jiang et al., 2019)
and SlowFast (Feichtenhofer et al., 2019). These works were clip-based architecture with a focus on
short-term motion modeling by learning from a small portion of the whole video (e.g., 64 frames).

Long-term temporal modeling. Short-term clip based networks fails to capture long-range tempo-
ral structure for video recognition. Several methods were proposed to overcome this limitation by
stacking more frames with RNN (Ng et al., 2015; Donahue et al., 2015) or long temporal convo-
lution (Varol et al., 2018), or using a sparse sampling and aggregation strategy (Wang et al., 2016;
Zhou et al., 2018; Zhang et al., 2019; He et al., 2019). Among these methods, temporal segment net-
work (TSN) (Wang et al., 2016) turned out to be an effective long-range modeling framework and
obtained the state-of-the-art performance with 2D CNNs on several benchmarks. However, TSN
with 2D CNNs only performed temporal fusion at last stage and failed to capture finer temporal
structure. StNet (He et al., 2019) proposed a local and global module to model temporal information
hierarchically. V4D (Zhang et al., 2019) extended the TSN framework by proposing a principled 4D
convolutional operator to aggregate long-range information from different stages.

Temporal difference representation. Temporal difference operations appeared in several previous
works for motion extraction, such as RGB Difference (Wang et al., 2016; Zhao et al., 2018) and
Feature Difference (Liu et al., 2020; Jiang et al., 2019). RGB difference turned out to be an efficient
alternatives to optical flow motion representation in two-stream CNNs (Wang et al., 2016; Zhao
et al., 2018). The work of TEINet (Liu et al., 2020) and STM (Jiang et al., 2019) employed a dif-
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Figure 1: Temporal Difference Network. We present a video-level framework for learning action
models from the entire video, coined as TDN. Based on the sparse sampling from multiple segments,
our TDN aims to model both short-term and long-term motion information in our framework. The
key contribution is to design an efficient short-term temporal difference module (S-TDM) and a long-
term temporal difference module (L-TDM), to supply a 2D CNN with local motion information and
enable long-range modeling across segments, respectively. CNNs share the same parameters on all
segments. Details on both modules could be found in Figure 2.

ference operation for network design. However, these two methods simply used a simple difference
operator for short-term motion extraction and received less research attention than 3D convolutions.

Different from the existing methods, our proposed temporal difference network (TDN) is a video-
level architecture of capturing both short-term and long-term information for end-to-end action
recognition. Our key contribution is to introduce a temporal difference module (TDM) to explic-
itly compute motion information, and efficiently leverage it into our two-level motion modeling
paradigm. We hope to improve and popularize this new temporal modeling alternatives, which turns
out to generally outperform 3D convolutions on two benchmarks with smaller FLOPs.

3 TEMPORAL DIFFERENCE NETWORKS

In this section, we describe our Temporal Difference Network (TDN) in details. First, we give an
overview on the TDN framework, that is composed of a short-term and long-term temporal differ-
ence modules (TDM). Then, we give a technical description on both modules. Finally, we provide
the implementation detail to instantiate TDN with a ResNet50 backbone.

3.1 OVERVIEW

As shown in Figure 1, our proposed temporal difference network (TDN) is a video-level framework
for learning action models by using the entire video information. Due to the limit of GPU memory,
following TSN framework (Wang et al., 2016), we present a sparse and holistic sampling strategy
for each video. Our key contribution is to leverage temporal difference operator into network de-
sign to explicitly capture both short-term and long-term motion information. Efficiency is our core
consideration in temporal difference module (TDM) design, and we investigate two specific forms
to accomplish the tasks of motion supplement in a local window and motion enhancement across
different segments. These two modules are incorporated into the main network via a residual con-
nection.

Specifically, each video is divided into T segments of equal duration without overlapping. We
randomly sample a frame from each segment and totally obtain T frames X = [X1, · · · , XT ], where
the shape of X is [T,C,H,W ]. These frames are separate fed into a 2D CNN to extract frame-wise
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Figure 2: An illustration of the short-term TDM and long-term TDM.

features F = [F1, · · · , FT ], where F denotes the feature representation in a hidden layer and its
dimension is [T,C ′, H ′,W ′]. The short-term TDM aims to supply these frame-wise representation
of early layers with local motion information to improve its representation power:

Short term TDM : F̂i = Fi +H(Xi), (1)

whereH denotes our short-term TDM and it extracts local motion from adjacent frames around Xi.
The long-term TDM aims at leveraging cross-segment temporal structure to enhance frame-level
feature representation:

Long term TDM : F̂i = Fi + Fi � G(Fi, Fi+1) (2)

where G represents our long-term TDM, and in the current implementation, we only consider adja-
cent segment-level information for long-range temporal modeling. Next, we will give the technical
details of these two modules.

3.2 SHORT-TERM TDM

We argue that adjacent frames are very similar in a local temporal window and directly stacking mul-
tiple frames together for subsequent processing is inefficient. On the other hand, a single frame from
each segment is able to extract appearance information, but fails to capture local motion information.
Therefore, our short-term TDM chooses to supply a single RGB frame with a temporal difference
to yield an efficient local representation, encoding both appearance and motion information.

Specifically, our short-term TDM operates at early layers for local feature extraction and enables
a single frame RGB to be aware of motion information. As shown in Figure 2, for each sampled
frame Xi, we extract several temporal RGB difference in a local window centered at Xi, and then
stack them along channel dimension D(Xi) = [D−2, D−1, D1, D2]. Based on this represenation,
we present an efficient form of TDM:

H(Xi) = Upsample(CNN(Downsample(D(Xi)))), (3)

where Di represents the RGB difference around Xi. To keep the efficiency, we design a light-weight
CNN module to operate on the stacked RGB difference D(Xi). It general follows a low-resolution
processing strategy: (1) downsample RGB difference by half with an average pooling, (2) extract
motion features with a 2D CNN, (3) upsample motion features to match RGB features. This design
form comes from our observation that RGB difference exhibits very small values for most areas
and only contains high response in motion salient regions. So, it is a feasible to use low-resolution
architecture to process this sparse signal without much loss of accuracy.

The information of short-term TDM is fused with the single RGB frame, so that the original frame-
level representation is aware of motion pattern and able to better describe a local temporal window.
We implement this fusion with lateral connections. We attach a fusion connection from short-term
TDM to frame-level representation for each early stage (i.e., Stage 1-2 in our experiments). In
practice, we use the residual connection to implement this fusion and also compare with other fusion
strategies as shown in ablation study.
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3.3 LONG-TERM TDM

The frame wise representation equipped with short-term TDM is powerful for capturing spatiotem-
poral information within a local segment. However, this representation is limited in terms of tempo-
ral receptive field and thus fails to explore long-range temporal structure for learning action models.
Thus, our long-term TDM tries to use cross-segment information to enhance the original represen-
tation via a novel bidirectional and multi-scale temporal difference module.

In additional to efficiency, the missing-alignment of spatial location between long-range frames is
another issue. Consequently, we devise a multi-scale architecture to smooth difference in large a
receptive field. As shown in Figure 2, we first compress the feature dimension by a ratio r with a
convolution for efficiency, and calculate the aligned temporal difference through adjacent segments:

C(Fi, Fi+1) = Fi − Conv(Fi+1), (4)

where C(Fi, Fi+1) represents the aligned temporal difference for segment Fi, Conv is the channel-
wise convolution for spatially smoothing and thus relieving the missing-alignment issue. Then, the
aligned temporal difference undergoes through a multi-scale module for long-range motion infor-
mation extraction:

M(Fi, Fi+1) = Sigmoid(Conv(

N∑
j=1

CNNj(C(Fi, Fi+1)))), (5)

where CNNj at different spatial scales aims at extracting motion information from different recep-
tive filed, and N = 3 in practice. Their fusion could be more robust for missing-alignment issue.
In implementation, it involves three branches: (1) short connection, (2) a 3×3 convolution, and (3)
a average pooling, a 3×3 convolution, and a bilinear upsampling. Finally, we utilize bidirectional
cross-segment temporal difference to enhance fame level features as follows:

Fi � G(Fi, Fi+1) = Fi �
1

2
[M(Fi, Fi+1) +M(Fi+1, Fi)], (6)

where � is the element-wise multiplication. We also combine segment level representation and
long-term TDM via residual connection as in Eq. (2). Slightly different from short-term TDM,
we employ the motion representation as an attention map to enhance frame level features, which is
partially based on the observation that attention modeling is more effective for latter stage of CNNs.
We also compare this implementation with other forms in ablation study.

3.4 EXEMPLAR: TDN-RESNET50
After introducing short-term and long-term TDMs, we are ready to describe to how incorporate
them into the existing video architecture. As discussed above, our TDN framework is based on
sparse sampling of TSN (Wang et al., 2016), which operates on a sequence of frames uniformly
distributed over the entire video. Our TDN presents a two-level motion modeling mechanism, with
a focus on capturing temporal information in a local-to-global fashion. In particular, we insert short-
term TDMs (S-TDM) in early stages for finer and low-level motion extraction, and long-term TDMs
(L-TDM) into latter stages for coarser and high-level temporal structure modeling.

To keep a balance between efficiency and accuracy, we instantiate our TDN with a ResNet50 back-
bone (He et al., 2016). Following the practice in V4D (Zhang et al., 2019), the first two stages
of ResNet50 are for short-term temporal information extraction within each segment by using S-
TDMs, and the latter three stages of ResNet50 are equipped with L-TDMs for capturing long-range
temporal structure across segments. For local motion modeling, we add both residual connections
between S-TDM and main network for Stage 1 and Stage 2. For long term motion modeling, we
add L-TDM and a temporal convolution in each residual block of Stages 3-5. In practice, the final
TDN framework only increases the FLOPs over the original 2D ResNet by around 9%.

4 EXPERIMENTS

In this section, we present the experiment results of our TDN framework. First, we describe the
evaluation datasets and implementation details. Then, we perform ablation study on the design of
our TDN. After that, we compare our TDN with the existing state-of-the-art methods. Finally, we
show some visualization results to further analyze our TDN framework.
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(a) Study on S-TDM.
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(b) Study on L-TDM.

S-TDM L-TDM Top1Conv1 Res2 Res3 Res4 Res5
45.2%

X 49.3%
X X 49.5%

X X X 48.9%
X X X X X 51.3%

(c) S-TDM vs. L-TDM.

model FLOPs Top1 Top5
TSN (Wang et al., 2016) 33G 19.7% 46.5%

T-Conv (Tran et al., 2018) 33G 46.2% 75.1%
TSM (Lin et al., 2019) 33G 45.6% 74.2%

TEINet (Liu et al., 2020) 33G 47.4% 76.6%
TEA (Li et al., 2020) 35G 48.9% 78.1%

TAM (Fan et al., 2019) - 46.1% -
TDM 36G 51.3% 79.3%

(d) Comparison with temporal modules.
4.1 DATASETS AND IMPLEMENTATION DETAILS

Video datasets. We evaluate our TDN on two video datasets, which focus on different aspects of
an action instance for recognition. Kinetics-400 (Kay et al., 2017) is a large-scale YouTube video
dataset, and has around 300k trimmed videos covering 400 categories. The Kinetics dataset contains
activities in our daily life and some categories are highly correlated with interacting objects or scene
context. We train our TDN on the training data (around 240k videos) and report performance on
the validation data (around 20k videos). Something-Something (Goyal et al., 2017) is a large-scale
dataset created by crowdsourcing. These videos are collected by performing the same action with
different objects so that action recognition methods are expected to focus on the motion property
instead of objects. The first version contains around 100k videos over 174 categories, while the
second version are with more videos, containing around 169k videos in training set and 25k videos
in validation set. We report performance on the validation set of Something-Something v1 & v2.

Training and testing. In experiments, we use ResNet50 to implement our TDN framework, and we
try to sample T = 8 or T = 16 frames from each video. Following common practice (Feichtenhofer
et al., 2019; Wang et al., 2018b), during training, each video is resized to have shorter side in
[256, 320] and a crop of 224 × 224 was randomly cropped. We pretrain our TDN on the ImageNet
dataset (Deng et al., 2009). The batch size is 128 and initial learning rate is 0.02 for 8-frame TDN,
while 64 and 0.01 for 16-frame TDN. The total training epoch is set as 100 in the Kinetics dataset
and 50 in the Something-Something dataset. The learning rate will be divided by a factor of 10
when the performance on validation set saturates. For testing, each video is resized to have shorter
size as 256. We try two kinds of testing scheme: 1-clip and center-crop where only a center crop
of 224× 224 from a single clip is used for evaluation, and 10-clip and 3-crop where three crops of
256 × 256 and 10 clips are used for testing. The first testing scheme is with high efficiency while
the second one is for improving accuracy with prediction fusion.

4.2 ABLATION STUDY

We perform ablation study on TDN design in the Something-Something V1 dataset. For these
evaluations, we use the testing scheme of 1 clip and center crop, and report the Top1 accuracy. We
also compare with several temporal modeling modules to demonstrate the effectiveness of TDM.

Study on short-term TDM. We begin our experiments by comparing different forms of short-term
TDM (S-TDM). In this study, we add long-term TDM (L-TDM) for all latter stages and place vari-
ations of S-TDM in early stages. As shown in Table 1a, we first compare different fusion strategies
to combine difference representation with RGB features in S-TDM: (1) attention with element-wise
multiplication, (2) addition with attention, (3) only addition. We can see that our S-TDM with
simply addition yields the best performance and the other attention based fusion might destroy the
pre-trained feature correspondence. In addition, we try to use RGB difference representation to learn
a channel attention weight just as SENet (Hu et al., 2018) and its performance is also worse than our
proposed S-TDM (47.3% vs. 51.3%). In the remaining study, we use the addition form of S-TDM
by default.
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Figure 3: Visualization of activation maps with CAM. Left: video, Middle: baseline, Right: TDN.

Study on long-term TDM. In this study, we employ short-term TDM for the early stages, and
compare with different forms of long-term TDM (L-TDM) placed on the latter stages. The results
are reported in Table 1b. For L-TDM design, we first compare with two baseline architecture:
(1) no attention modeling in Eq.( 2) and directly adding the difference representation into frame
level features; (2) channel attention modeling to enhance discriminative features across different
dimensions. It is observed that our proposed spatiotemporal attention form of L-TDM is better than
no attention (51.3% vs. 44.1%) and channel attention (51.3% vs. 50.9%). Then, we investigate
the effectiveness of multi-scale architecture in difference feature extraction and it is able to improve
performance form 49.7% to 51.3%, which confirms its effectiveness of large receptive field for
difference feature extraction. Finally, we compare the performance of bidirectional difference with
one-directional difference, and it helps to improve performance by 1.3%.

Short-term vs. long-term modeling. We conduct comparative study to separately investigate the
effectiveness of S-TDM and L-TDM. The results are summarized in Table 1c. We first report the
performance of baseline of without S-TDM or L-TDM, namely only with 1D temporal convolutions
in latter stages for temporal modeling, and its accuracy is 45.2%. Then we separately add S-TDM
and L-TDM into the baseline, and they obtain the performance of 49.5% and 48.9%. The superior
performance of S-TDM to L-TDM might be ascribed to the fact that local motion information is
crucial for action recognition. Finally, combining S-TDM and L-TDM could boost performance to
51.3%, which implies the complementarity of two modules.

Comparison with other temporal modules. Finally, we compare our proposed TDM with other
temporal modeling methods, and the results are reported in Table 1d. For fair comparison, these
methods all use the ResNet50 as backbones and 8 frames as input, so their FLOPs are similar to
each other. We first compare with TSN baseline (Wang et al., 2016) only with temporal fusion at the
score level and temporal convolution (Tran et al., 2018) placed in each ResNet block. We find that
the performance of our TDN is much better than those baselines. We also compare with the recent
temporal modeling methods, such as TSM (Lin et al., 2019), TEINet (Liu et al., 2020), TEA (Li
et al., 2020), and TAM (Fan et al., 2019). These modules are designed to efficiently model temporal
information based on 2D CNNs, and we observe that our proposed TDM outperforms them by an
evident improvement.

4.3 COMPARISON WITH THE STATE OF THE ART

After the ablation study of 8-frame TDN on Something-Somthing V1 dataset, we directly transfer
its optimal setting to the datasets of Something-Something V2 and Kinetics-400. In this section, we
focus on comparing our TDN with those state-of-the-art methods on these benchmarks. As expected,
sampling more frames can further improve the accuracy, but also increases the FLOPs. We report the
performance of both 8-frame TDN and 16-frame TDN in this section. As for backbones, it is well
known using deeper models could contribute to higher performance, but this is not the contribution
of our method. So, we keep the backbone as ResNet50 and compare with previous methods with
similar backbones. We also list the best performance of previous approaches with more powerful
backbones for reference.

The results are summarized in Table 2 and Table 3. For fair comparison with previous methods,
we use 1 clip and center crop testing scheme on the Something-Something dataset and 10 clips and
3 crops for testing on the Kinetics-400 dataset. We first compare with 2D CNN based baselines
with late fusion for long-range temporal modeling such as TSN (Wang et al., 2016) and TRN (Zhou
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Method Backbone Frames FLOPs Sth-Sth v1 Sth-Sth v2
Top1 Top5 Top1 Top5

TSN-RGB (Wang et al., 2016) BNInception 8 16G 19.5% - - -
TRN-Multiscale (Zhou et al., 2018) BNInception 8 33G 34.4% - 48.8% 77.6%

S3D-G (Xie et al., 2018) Inception 64 71.38G 48.2% 78.7% - -
TSM (Lin et al., 2019) ResNet50 16 65G 47.2% 77.1% - -

TEINet (Liu et al., 2020) ResNet50 16 66G 49.9% - 62.1% -
TEA (Li et al., 2020) ResNet50 16 70G 51.9% 80.3% - -

TAM (Fan et al., 2019) bLResNet50 16×2 47.7G 48.4% 78.8% 61.7% 88.1%
ECO (Zolfaghari et al., 2018) BNIncep+Res18 16 64G 41.6% - - -

ECOEnLite (Zolfaghari et al., 2018) BNIncep+Res18 92 267G 46.4% - - -
I3D (Carreira & Zisserman, 2017) ResNet50 32×2 306G 41.6% 72.2% - -

NL I3D (Wang & Gupta, 2018) ResNet50 32×2 334G 44.4% 76.0% - -
NL I3D+GCN (Wang & Gupta, 2018) ResNet50+GCN 32×2 606G 46.1% 76.8% - -

TDN ResNet50 8 36G 51.3% 79.3% 63.1% 88.4%
TDN ResNet50 16 72G 52.1% 80.5% 64.4% 89.4%
TDN ResNet50 8+16 108G 54.1% 82.4% 66.1% 90.3%

TAM (Fan et al., 2019) bLResNet101 32×2 128.6G 53.1% 82.9% 65.2% 90.3%

Table 2: Comparison with the state-of-the-art methods on Something-Something V1 and V2.

Method Backbone Frames×Clips×Crops FLOPs×views Top1 Top5
TSN (Wang et al., 2016) InceptionV3 25×1×10 3.2G×250 72.5% 90.2%
S3D-G (Xie et al., 2018) InceptionV1 64×10×3 71.4G×30 74.7% 93.4%

R(2+1)D (Tran et al., 2018) ResNet34 32×10×1 152G×10 74.3% 91.4%
TSM (Lin et al., 2019) ResNet50 16×10×3 65G×30 74.7% 91.4%

TEINet (Liu et al., 2020) ResNet50 16×10×3 66G×30 76.2% 92.5%
TEA (Li et al., 2020) ResNet50 16×10×3 70G×30 76.1% 92.5%

TAM (Fan et al., 2019) bLResNet50 48×3×3 93.4G×9 73.5% 91.2%
ARTNet (Wang et al., 2018a) ResNet18 16 ×25×10 23.5G×250 70.7% 89.3%

I3D (Carreira & Zisserman, 2017) InceptionV1 64×N/A×N/A 108G×N/A 72.1% 90.3%
NL I3D (Wang et al., 2018b) ResNet50 128×10×3 282G×30 76.5% 92.6%

SlowOnly (Feichtenhofer et al., 2019) ResNet50 8×10×3 41.9G×30 74.8% 91.6%
SlowFast (Feichtenhofer et al., 2019) ResNet50 (8+64)×10×3 65.7G×30 77.0% 92.6%

TDN ResNet50 8×10×3 36G×30 76.6% 92.8%
TDN ResNet50 16×10×3 72G×30 77.5% 93.2%
TDN ResNet50 (8+16)×10×3 108G×30 78.4% 93.6%

SlowFast+NL (Feichtenhofer et al., 2019) ResNet101 (16+128)×10×3 234G×30 79.8% 93.9%

Table 3: Comparison with the state-of-the-art methods on Kinetics-400.

et al., 2018), and see that our TDN outperforms these baseline methods significantly on both datasets.
Then, we compare our TDN with 2D CNN with temporal modules for all stages, such as S3D (Xie
et al., 2018), R(2+1)D (Tran et al., 2018), TSM (Lin et al., 2019), TEINet (Liu et al., 2020), and
TAM (Fan et al., 2019), and our TDN consistently outperforms them on both datasets, demonstrat-
ing the effectiveness of TDM in temporal modeling for action recognition. Finally, we compare
with more recent 3D CNNs based methods, such as I3D (Carreira & Zisserman, 2017), Non-local
I3D (Wang et al., 2018b), and SlowFast (Feichtenhofer et al., 2019), and our TDN can still obtain
slightly better performance than those methods, with a relatively smaller computational cost. We
also combine the results of 8-frame and 16-frame TDNs and it can further boost the performance on
both datasets. Finally, for reference, we also provide the best result of previous methods with more
powerful backbones and more frames.

4.4 VISUALIZATION OF ACTIVATION MAPS

We visualize the class activation maps with Grad-CAM (Zhou et al., 2016; Selvaraju et al., 2020) and
results are shown in Figure 3. These visualization results indicate that baseline with only temporal
convolutions fails to focus on motion-salient regions, while our TDN is able to localize more action-
relevant regions, thanks to our proposed TDMs for short-term and long-term temporal modeling.

5 CONCLUSION

In this paper, we have presented a new video-level framework, termed as TDN, for learning action
models from the entire video. The core contribution of TDN is to generalize temporal difference
operator into a temporal module (TDM), for capturing both short-term and long-term temporal in-
formation in a video. We present two specific and efficient forms for the implementation of TDMs
and systematically assess their effects on temporal modeling. As demonstrated on the Kinetics-
400 and Something-Something dataset, our TDN is able to yield superior performance to previous
state-of-the-art methods of using similar backbones.
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Method Pretrain Backbone UCF101 HMDB51
TSN Wang et al. (2016) ImageNet Inception V2 86.4% 53.7%
P3D Qiu et al. (2017) ImageNet ResNet50 88.6% -
C3D Tran et al. (2015) Sports-1M ResNet18 85.8% 54.9%

I3D Carreira & Zisserman (2017) ImageNet+Kinetics Inception V2 95.6% 74.8%
ARTNet Wang et al. (2018a) Kinetics ResNet18 94.3% 70.9%

S3D Xie et al. (2018) ImageNet+Kinetics Inception V2 96.8% 75.9%
R(2+1)D Tran et al. (2018) Kinetics ResNet34 96.8% 74.5%

TSM Lin et al. (2019) Kinetics ResNet50 96.0% 73.2%
STM Jiang et al. (2019) ImageNet + Kinetics ResNet50 96.2% 72.2%

TEA Li et al. (2020) ImageNet + Kinetics ResNet50 96.9% 73.3%
TDN ImageNet + Kinetics ResNet50 97.4% 76.3%

Table 4: Comparison with the state-of-the-art methods on UCF101 and HMDB51.

A RESULTS ON THE UCF101 AND HMDB51

To further verify the generalization ability of TDN, we transfer the learned 16-frame TDN models
from the Kinetics-400 dataset to the UCF101 and HMDB51. These two datasets are relatively
small and the action recognition performance on them already saturates. We follow the standard
evaluation scheme on these two datasets and report the mean accuracy over three splits. The results
are summarized in Table 4. We compare our TDN with previous state-of-the-art methods such as 2D
baselines of TSN Wang et al. (2016), 3D CNNs of I3D Carreira & Zisserman (2017) and C3D Tran
et al. (2015), R(2+1)D Tran et al. (2018), and other temporal modeling methods Li et al. (2020);
Jiang et al. (2019). From the results, we can see that our TDN is able to outperform these methods,
and the performance improvement is more evident on the dataset of HMDB51 by around 2.5%. The
action classes in HMDB51 are more relevant with motion information, and thus temporal modeling
is more important on this dataset.

B ABLATION STUDY ON STAGES OF S-TDM AND L-TDM

S-TDM L-TDM FLOPs Top1
- - 33G 45.2%

Stage 1 Stage 2-5 35G 49.9%
Stage 1-2 Stage 3-5 36G 51.3%
Stage 1-3 Stage 4-5 38G 50.8%

Table 5: Ablation study of S-TDM and L-TDM on Something-Something V1.

We further perform ablation study on which stage to use short-term TDM (S-TDM) or long-term
TDM (L-TDM) and the results are shown in Table 5. From these results, we see that adding more
S-TDMs into the main network will increase the network computational cost slightly. The setting of
using S-TDM in stages 1-2 and L-TDM in stages 3-5 obtains the best performance.

C RUNNING TIME ANALYSIS

Method Frames×Clips×Crops Time (ms/video) Top1 (%)
TSN 8× 1× 1 7.9 19.7
TSM 16× 1× 1 16.7 47.2
STM 8× 1× 1 11.1 47.5
I3D 32× 3× 2 2095 41.6

S-TDM 8× 1× 1 12.3 49.5
L-TDM 8× 1× 1 15.8 48.9

TDN 8× 1× 1 22.1 51.3

Table 6: Running time analysis on a Tesla V100.
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Figure 4: Visualization of Res2 features with Grad-CAM. We use 8-frame TDN models to visualize
on the Something-Something V1 dataset. Left: video, Middle: baseline, Right: TDN with S-TDM.
Note that we only show visualization on the center frame of sampled 8 frames.

We report the inference time of our TDN with on Tesla V100 as follows. The testing batchsize is
set as 16 and the running time include all evaluation, including loading data and network inference.
The results are reported in Table 6. From these results, we see that our TDN is slower than previous
method but still could run in real-time (i.e. ≥25 FPS).

D VISUALIZATION ANALYSIS

To further investigate the performance the TDN models, we use the technique of Grad-CAM Sel-
varaju et al. (2020) to visualize the feature representation of different models. Specifically, to better
understand the effect of short-term TDM, we visualize the the features in Res2 stage of baseline
model (corresponding to the first row in Table 1(c) of main article) and the TDM model only with
S-TDM (corresponding to third row in in Table 1(c) of main article), and the results are shown in
Figure 4. Note that, these visualizations only are performed on the center frame of 8-frame models.
From these results, the models equipped with S-TDM focuses more on motion-relevant information.
Then, we give more visualization examples of activation maps in Figure 5 and Figure 6. In these re-
sults, we give the visualization results on 8 frames and compare our TDM models with the baseline
method (corresponding to the first row in Table 1(c) of main article). We could see that our TDN is
able to yield more reasonable class activation maps than the baseline method.
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Figure 5: Visualization of activation maps with Grad-CAM. We use 8-frame TDN models to visu-
alize on the Something-Something V1 dataset. In the first row, we plot the 8 RGB frames. In the
second row, we plot the activation maps of the baseline method without temporal difference module
(TDM). In the third row, we plot the activation maps of the TDN models.
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Figure 6: Visualization of activation maps with Grad-CAM. We use 8-frame TDN models to visu-
alize on the Something-Something V1 dataset. In the first row, we plot the 8 RGB frames. In the
second row, we plot the activation maps of the baseline method without temporal difference module
(TDM). In the third row, we plot the activation maps of the TDN models.
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