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ABSTRACT

Finding efficient optimization methods plays an important role for quantum opti-
mization and quantum machine learning on near-term quantum computers. While
backpropagation on classical computers is computationally efficient, obtaining
gradients on quantum computers is not, because the computational complexity
scales linearly with the number of parameters and measurements. In this paper,
we connect Koopman operator theory, which has been successful in predicting
nonlinear dynamics, with natural gradient methods in quantum optimization. We
propose a data-driven approach using Koopman operator learning to accelerate
quantum optimization and quantum machine learning. We develop two new fam-
ilies of methods: the sliding window dynamic mode decomposition (DMD) and
the neural DMD for efficiently updating parameters on quantum computers. We
show that our methods can predict gradient dynamics on quantum computers and
accelerate the variational quantum eigensolver used in quantum optimization, as
well as quantum machine learning. We further implement our Koopman opera-
tor learning algorithms on a real IBM quantum computer and demonstrate their
practical effectiveness.

1 INTRODUCTION

There has been rapid development of quantum technologies and quantum computation in recent
years. A number of efforts are put into demonstrating quantum advantages and speedup. Quantum
optimization (Moll et al., 2018) and quantum machine learning (QML) (Biamonte et al., 2017), as
important applications of quantum technologies, have received increased interest. The Variational
Quantum Eigensolver (VQE) (Peruzzo et al., 2014b; Tilly et al., 2022), as a quantum optimization
algorithm, has been developed and applied to understanding problems in high energy physics (Klco
et al., 2018; Rinaldi et al., 2022), condensed matter physics (Wecker et al., 2015), and quantum
chemistry (Peruzzo et al., 2014a). The Variational Quantum Algorithm (VQA) (Cerezo et al., 2021)
such as the Quantum Approximate Optimization Algorithm (QAOA) (Farhi et al., 2014; Harrigan
et al., 2021) has been applied to the max-cut problem. A recent experiment on 289 qubits has demon-
strated a powerful VQA application in classical optimization by benchmarking against a variety of
classical algorithms (Ebadi et al., 2022). QML has also been developed for various tasks including
supervised learning (Havlı́ček et al., 2019), unsupervised learning (Kerenidis et al., 2019) and rein-
forcement learning (Dong et al., 2008). Theoretical advantages of quantum machine learning have
been investigated (Huang et al., 2022b; Liu et al., 2021; 2022), and experiments on real quantum
computers have demonstrated encouraging progress (Huang et al., 2022a; Rudolph et al., 2022).

In the noisy intermediate-scale quantum (NISQ) era (Preskill, 2018), due to the noisy nature of
current quantum computer architectures, hybrid classical-quantum schemes have been proposed for
quantum optimization and quantum machine learning and become a prominent approach. The key
spirit of the hybrid approach relies on performing optimization and machine learning on parame-
terized quantum circuits with quantum features while updating the parameters in the circuit is done
through classical computers. In classical machine learning, backprogation only requires vector Ja-
cobian calculations which share the same complexity as the forward evaluation. Obtaining gradients
under the hybrid scheme is much more challenging. Calculating gradients in quantum computers
is challenging for two reasons: (1) gradient calculation typically scales linearly in the number of
parameters as O(nparams); and (2) the quantum nature of the gradient itself entails sampling over
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repeated measurements. Despite various research on quantum optimization and quantum machine
learning in simulation, the implementation of gradient-based methods on real quantum computers is
computationally inefficient which limits their applications in practice. It is an important open prob-
lem in the field to develop scalable and efficient optimization methods for quantum optimization
applications and quantum machine learning tasks.

In this work, we propose Koopman operator learning for accelerating quantum optimization and
QML. The Koopman operator theory is a powerful framework for understanding and predicting non-
linear dynamics through linear dynamics embedded into a higher dimensional space (Mezic, 1994;
Mezić & Banaszuk, 2004; Mezic, 2005; Rowley et al., 2009; Brunton et al., 2021). By viewing
parameter optimization on quantum computers as a nonlinear dynamical evolution in the parameter
space, we connect gradient dynamics in quantum optimization to the Koopman operator theory. In
particular, the quantum natural gradient helps to provide a natural embedding of original parame-
ters through quantum-computer parameterization into a higher-dimensional space, related to linear
imaginary-time evolution. We develop new Koopman operator learning algorithms for quantum op-
timization and QML, including the sliding window dynamic mode decomposition (SW-DMD) and
neural-network-based DMD that learns the Koopman embedding via a neural network parameteri-
zation. Our approach is data-driven and based on the information of only a few gradient steps such
that the cost of prediction does not scale with nparams.

Our methods enable efficient learning of gradient dynamics for accelerating quantum optimization
and quantum machine learning. Our experiments are both on numerical simulations and a real
quantum computer. We first demonstrate our Koopman operator learning algorithms for VQE, an
important application in quantum optimization. We test the methods for the natural gradient and
Adam (Kingma & Ba, 2014b) optimizers on quantum Ising model simulations and demonstrate
their success on a real IBM quantum computer with a quasi-gradient-based optimizer Simultaneous
Perturbation Stochastic Approximation (SPSA) (Spall, 1992). Finally, we apply our methods to
accelerate QML on the MNIST dataset.

2 RELATED WORK

Koopman operators. Koopman operator theory (Koopman, 1931; v. Neumann, 1932) was first
proposed by Koopman and von Neumann in early 1930s to understand dynamical systems. Dy-
namic mode decomposition (DMD) (Schmid, 2010) was developed to learn the Koopman operator
under the linear dynamics assumption of the observed data. Later, more advanced methods such as
the extended-DMD based on time-delay embedding (Brunton et al., 2017; Arbabi & Mezic, 2017;
Kamb et al., 2020; Tu et al., 2014; Brunton et al., 2016), kernel methods (Baddoo et al., 2022) and
dictionary learning (Li et al., 2017) were introduced to go beyond the linear dynamics assumption,
and achieved better performance. Recently, machine learning methods were integrated into Koop-
man operator learning where neural networks are used to learn the mapping to a high dimensional
space, in which the dynamics becomes linear (Lusch et al., 2018; Li et al., 2019; Azencot et al.,
2020; Rice et al., 2020). The machine learning Koopman operator methods were shown to learn
nonlinear differential equation dynamics successfully.

In addition to predicting nonlinear dynamics, recently Koopman operator theory was applied to op-
timize neural network training (Dogra & Redman, 2020; Tano et al., 2020) and pruning (Redman
et al., 2021). These works take the perspective of viewing the optimization process of neural net-
works as a nonlinear dynamical evolution and uses dynamic mode decomposition to predict the
parameter updates in the future. In a more empirical study, Sinha et al. (2017) trained a convolu-
tional neural network (CNN) to predict the future weights of neural networks, trained on standard
vision tasks.

Besides important applications for classical systems, the Koopman operator theory has natural con-
nections to quantum mechanics. Recently, researchers considered Koopman operator theory for
quantum control (Goldschmidt et al., 2021) and prediction of one particle quantum system evolu-
tion (Klus et al., 2022). Since quantum mechanical systems provide a natural high dimensional
Hilbert space through the wave function, the theory was considered for embedding classical equa-
tions for learning and solving differential equations (Lin et al., 2022; Giannakis et al., 2022).

2



Under review as a conference paper at ICLR 2023

Optimization methods on quantum computers. Due to the nature of hybrid classical-quantum
algorithms, taking gradients on quantum computers cannot be done as efficiently as backpropagation
on classical computers. In general, the complexity of obtaining gradients scales with the number of
parameters on the quantum computer and the number of measurements per parameter. To perform
optimization on quantum computers, gradient-free methods such as SPSA and COBYLA (Powell,
1994) are used though they may not scale well to quantum circuits with large number of parameters.
For gradient methods, Adam is a common choice for better scaling though its complexity scales
with the number of parameters as discussed above. There are also higher order methods such as the
quantum natural gradient method which have been shown to have faster convergence while being
more challenging to realize experimentally.

Our work. We contribute to the development of an efficient data-driven approach that addresses
the problems above via a Koopman operator learning approach for accelerating optimization on
quantum computers. We integrate the state-of-the-art machine learning Koopman operator with the
insight of quantum dynamics to achieve our goal. There are several important features of our work
that distinguish it from the relevant works above. First, our goal is to accelerate quantum optimiza-
tion and quantum machine learning, which compared to classical neural networks has much higher
complexity of taking gradients, such that the gain of acceleration will be much more prominent. We
further connect the Koopman operator theory with the quantum natural gradient, which does not
exist in the classical setups and provides a well-motivated theoretical foundation for our approach.
Second, instead of predicting the gradient dynamics directly, we focus on optimizing the loss func-
tion. The previous literature (Dogra & Redman, 2020) on Koopman operators for neural networks
optimization applies only the standard DMD with no follow-up optimization after the DMD pre-
diction, which may not be well-situated for complicated nonlinear training dynamics. Instead, we
develop and investigate the sliding window DMD (SW-DMD) and several variants of neural DMD,
including the multi-layer perceptron DMD (MLP-DMD), MLP-SW-DMD and CNN-DMD with an
iterative optimization protocol. Our new approach is robust against long-time prediction error and
noise, and it is shown to have much better performance compared to the standard DMD. It provides
acceleration for optimization in general, and enables novel avenues of research.

3 CONNECTING KOOPMAN OPERATOR THEORY AND QUANTUM
OPTIMIZATION

3.1 KOOPMAN OPERATOR THEORY

We consider a dynamical system with a collection of state variables {x(t) ∈ Rn} with a transition
function T such that x(t + 1) = T (x(t)). The Koopman operator theory developed by Koopman
asserts that there exists a linear operator K and a function g such that

Kg(x(t)) = g(T (x(t))) = g(x(t+ 1)) (1)

where K is the Koopman operator. In general, the Koopman operator can act on an infinite-
dimensional space. When K is constrained to a finite dimensional invariant subspace with g : Rn →
Rm, the Koopman operator can be presented as a Koopman matrix K ∈ Rm×m.

We now can search for the function g. The standard DMD takes g to be the identity function with
the assumption that the underlying dynamics of x is approximately linear, i.e., T is a linear operator.
The extended-DMD method utilizes other feature functions such as polynomial and trigonometric
functions as the basis functions for g. To improve that, machine learning methods for the Koopman
operator adopt neural networks as universal approximators for learning g (Lusch et al., 2018).

3.2 VARIATIONAL QUANTUM EIGENSOLVER (VQE)

Consider a Hamiltonian H describing interactions in a physical system. For a quantum mechanical
system with N spins or qubits, H is a Hermitian operator acting on the 2N -dimesional Hilbert space
for wave functions. A wave function ψ is an l2-normalized complex-valued vector that contains
all the information of the state of the system. In particular, the energy of the system is given by
a loss function L(ψ) = ⟨ψ,Hψ⟩. VQE encodes the wave function as ψθ by a set of parameters
θ ∈ Rnparams via an ansatz layer on a quantum circuit in the quantum computer, as is shown in
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the top left part of Figure 1. nparams is usually chosen to be polynomial in N , which scales much
slower than the 2N -scaling of the dimension of ψ itself. The goal of VQE is to minimize the loss by
minimizing for θ in the following objective

θ∗ = argmin
θ

L(θ) = argmin
θ

⟨ψθ,Hψθ⟩. (2)

Since the dimension of θ is usually smaller than the dimension of ψ itself, the loss L(θ∗) may still
differ from the minimum of L(ψ). However, thanks to the nonlinearity in the encoding ψθ from
the nonlinear ansatz layer, in many cases θ∗ can still be a very good approximation of the true
minimum of L(ψ). Quantum machine learning has a similar setup that targets at minimizing L(θ),
and parameterized quantum circuits in QML are called quantum neural networks.

We may use a gradient-based classical optimizer such as Adam to minimize the loss function, and
this requires attaining the gradient ∂L

∂θi
. In classical machine learning, the computational cost of

backpropagation is only O(1) per iteration. However, in the quantum case, we have to explicitly
evaluate the loss with a perturbation in each direction i, for example by using the parameter-shift
rule (Mitarai et al., 2018; Schuld et al., 2019) (L(θi + π/2) − L(θi − π/2))/2, which leads to an
O(nparams) computational cost per iteration. Hence, quantum optimization is significantly more
expensive than classical optimization. As another note, the classical computational components
involved in VQE, even including training neural-network-based algorithms in the following sections,
typically are much cheaper than the quantum cost.

3.3 QUANTUM FISHER INFORMATION AND QUANTUM NATURAL GRADIENT

The quantum natural gradient method (Stokes et al., 2020) is a generalization of the classical natural
gradient method in classical machine learning (Amari, 1998), where the probability is generalized
to the complex-valued wave function. The natural gradient for parameter θ update for Eq. 2 is given
by a nonlinear differential equation

d

dt
θ(t) = −ηF−1∇θL(θ(t)), (3)

where η is the scalar learning rate, and F is the quantum Fisher Information matrix given by Fij =
⟨∂ψθ

∂θi
, ∂ψθ

∂θj
⟩ − ⟨∂ψθ

∂θi
, ψθ⟩⟨ψθ,

∂ψθ

∂θj
⟩. It can be shown that the above nonlinear differential equation

for θ is equivalent to the dynamical equation of ψθ(t) as follows

dψθ(t)

dt
= −Pψθ

Hψθ(t), (4)

where Pψθ
is a projector onto the parameterized quantum circuit’s manifold (Hackl et al., 2020).

Notice that H is a linear operator. When the parametrized quantum circuit is sufficiently expressive
such that the projection is within the manifold, Eq. 4 can be approximated by a linear differential
equation. By viewing the parameters θ(t) as the state variable x(t) in the Koopman theory, the
quantum circuit naturally generates a (wave) function ψθ for θ that plays the role of g in Eq. 1,
whose dynamics is close to linear in the Hilbert space. The dimension of ψθ is 2N , and we do not
construct it explicitly. However, the existence of ψθ and its approximate linear dynamics build the
theoretical foundation for Koopman operator learning algorithms for θ(t) in optimization and the
application of accelerating the parameter updates.

4 KOOPMAN OPERATOR LEARNING ALGORITHMS

4.1 OUR FRAMEWORK: DATA-DRIVEN APPROACH FOR ACCELERATING OPTIMIZATION

The algorithmic scheme of Koopman operator learning for quantum optimization and quantum
machine learning is shown in Figure 1. A quantum circuit with parameters θ is used to perform
quantum optimization or QML tasks. The loss function L can be evaluated stochastically through
quantum measurements while an optimizer on a classical computer is used to update the param-
eters. Due to the probabilistic nature of quantum measurements, the measurement precision out-
comes usually scales with the standard quantum limit O(1/

√
nshots) for nshots quantum measure-

ment shots. To compute the gradient, e.g., by using the parameter-shift rule (Mitarai et al., 2018;
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Figure 1: Koopman operator learning for quantum optimization and quantum machine learning. (a)
In quantum optimization and QML, a parameterized quantum circuit processes information, and the
loss function is evaluated through measurements on a quantum computer. The parameter updates
for quantum circuit are computed by a classical optimizer. (b) The optimization history of the
parameters forms a time series, where for each time step the gradient optimization complexity scales
as O(nparams). (c) The Koopman operator learning takes the time series from (b) as training data
to find an embedding of the original data with approximately linear dynamics. (d) The Koopman
operator predicts the parameter updates where each step has O(1) complexity. The loss from the
predicted parameters can be evaluated on quantum computers, and the parameter θ(topt) with the
optimal loss is used as the starting point for the next iteration in (a).

Schuld et al., 2019), it usually requires quantum measurements’ complexity scaling as O(nparams)
due to the hybrid classical-quantum nature of the algorithm. In addition, the gradient measure-
ments per parameter take O(nshots) complexity, so the total cost of quantum measurement scales
as O(nparams · nshots). This is more expensive than the backward propagation in classical machine
learning, which has the same complexity as the forward evaluation of the loss function, and the
computational cost does not scale as O(nparams). After m steps of gradient optimization, a time
series of parameter updates θ(t0),θ(t1), . . . ,θ(tm) is obtained.

The Koopman operator learning algorithm takes the time series as a training input to find an em-
bedding in which dynamics becomes approximately linear. It further predicts the parameter updates
for nDMD future steps for the gradient dynamics and obtains θ(tm+1),θ(tm+2), . . . ,θ(tm+nDMD

).
For parameter predictions in each time step, the parameters can be set in the quantum circuit di-
rectly, and the loss function can be evaluated with quantum measurements. This procedure hasO(1)
cost in terms of the number of parameters, and hence the total cost is O(nshots), which is the same
as the forward evaluation of the loss function. Among the nDMD loss function values L(θm), we
find the lowest loss and the corresponding time topt = argmintm≤t≤tm+nDMD

L(θ(t)). The last
VQE iteration tm is included to avoid degradation, even if the DMD prediction is inaccurate. The
optimal Koopman-predicted parameter θ(topt) is then used as the initial point for the next quan-
tum optimization or QML step, which completes a full cycle of our algorithm. The alternating
VQE+DMD is repeated until the loss reaches the target. Our procedure is robust against long-time
prediction error and noise with much fewer gradient measurements, which can efficiently accelerate
the gradient-based methods.

4.2 SLIDING WINDOW DMD (SW-DMD)

DMD (Brunton et al., 2021) uses a linear fit for the dynamics in the original space for the column
vector θ ∈ Rn as θ(tk+1) = Kθ(tk). Concatenating θ at successive times we get data matrices

Θ(t0) = [θ(t0) θ(t1) · · · θ(tm)], Θ(t1) = [θ(t1) θ(t2) · · · θ(tm+1)], (5)

where Θ(t1) is the one-step time evolution of Θ(t0). In the case of approximate linear dynamics,
the matrix K is the same for all times tk, and then θ(tk+1) = Kθ(tk) extends to Θ(t1) ≈ KΘ(t0),
where K ∈ Rn×n. The best fit is at the minimum of the Frobenius loss (+ is the pseudo-inverse):

K = argmin
K

∥Θ(t1)−KΘ(t0)∥F = Θ(t1)Θ(t0)
+. (6)
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Figure 2: Neural network architectures for our neural DMD approaches. (a) MLP bottleneck archi-
tecture with MSE loss for training. (b) CNN bottleneck architecture that operates on simulations as
temporal dimension and parameters as channel dimension.

When the dynamics of θ is not linear, we can instead consider a time-delay embedding with a sliding
window and concatenate the steps to form an extended data matrix (Dylewsky et al., 2022)

Φ(Θ(t0)) = [ϕ(t0) ϕ(t1) · · · ϕ(tm)] =


θ(t0) θ(t1) · · · θ(tm)
θ(t1) θ(t2) · · · θ(tm+1)

...
...

. . .
...

θ(td) θ(td+1) · · · θ(tm+d)

. (7)

Φ is generated by a sliding window of size d+ 1 at m+ 1 consecutive time steps. Each column of
Φ is a time-delay embedding for Θ, and the different columns ϕ in Φ are embeddings at different
starting times. The time-delay embedding captures some nonlinearity in the dynamics of θ, with
Θ(td+1) ≈ KΦ(Θ(t0)), where K ∈ Rn×n(d+1). The best fit is given by

K = argmin
K

∥Θ(td+1)−KΦ(Θ(t0))∥F = Θ(td+1)Φ(Θ(t0))
+. (8)

The used data from the acquired time series with the largest time in the above equation is θ(tm+d+1).
During prediction we start with θ(tm+d+2) = Kϕ(tm+1). Then we update from ϕ(tm+1) to
ϕ(tm+2) by removing the oldest data θ(tm+1) and adding the newly predicted data θ(tm+d+2).
We iteratively repeat prediction via θ(tk+d+1) = Kϕ(tk). Our approach is different from that
of Dylewsky et al. (2022), as we do not use an additional SVD before doing DMD and our matrix
K is non-square. We denote DMD performed this way as sliding window DMD (SW-DMD). The
standard DMD is a special case of SW-DMD when the sliding window size is 1 (i.e., d = 0).

4.3 NEURAL DMD

General formulation. To provide a better approximation to the nonlinear dynamics, we ask
whether the hard-coded sliding window transformation Φ can be a neural network. Thus, by simply
reformulating Φ in Eq. 8 as a neural network, we formulate a natural neural objective for Koopman
operator learning as follows

argmin
K,α

∥Θ(td+1)−KΦα(Θ(t0))∥F , (9)

where K ∈ RNin×Nout is a linear Koopman operator and Φα(Θ(t0)) is a nonlinear neural embed-
ding by a neural network Φα with parameters α. Φα := NNα ◦ Φ is a composition of the neural
network architecture NNα and the sliding window embedding Φ from the previous section.

MLP-DMD, CNN-DMD and MLP-SW-DMD methods Inspired by the machine learning ad-
vancement of DMD (Lusch et al., 2018), we introduce MLP-DMD, which uses a simple MLP ar-
chitecture for Φ, as shown in Figure 2 (a). The architecture consists of two linear layers with an
ELU (Clevert et al., 2015) activation and a residual connection. We explored an expansion ratio
within {1,2} for the hidden layer, but selected 1 as the best one, possibly because higher ratios
present a risk of overfitting to the noise in the history of the optimization. However, it does not
use mixing of information between simulation steps because the simulation steps are on the batch
dimension. We can also consider an 1D CNN encoder in Figure 2 (b) to form the CNN-DMD
method. In CNN-DMD the simulation steps form the temporal dimension and the parameters form
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(a) Natural gradient 10-qubit results with nsim = 10,
nDMD = 40, and nSW = 6 for SW-DMD and
MLP-SW-DMD. For the various DMD methods, the
solid piecewise curves are actual gradient steps, and
the dashed lines connecting them indicate when the
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(b) Adam 12-qubit results with nsim = 10, nDMD =
40, nSW = 6 for SW-DMD and MLP-SW-DMD.
For the various DMD methods, the solid piecewise
curves are actual gradient steps, and the dashed lines
connecting them indicate when the DMD prediction
is applied.
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(c) Adam 12-qubit results for relative loss versus rela-
tive gradient steps. Less relative gradient steps mean
less quantum resource used. Lower relative loss in-
dicates better performance of the optimization. See
Table. 1 for more details.
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tively small with 10,000 shots.

Figure 3: Experimental results for the quantum Ising model at h = 0.5.

the channel dimension of the CNN. We use causal masking of the CNN kernels on the encoder to
utilize parameters information in all previous steps without look-ahead bias. During the inference
we look at the history of simulated steps, and look at the prediction of the last step. Then we recur-
rently feed the last step and resume the predictions. Our architecture consists of two 1D-CNN layers
with bottleneck middle channel number of 1 (to avoid overfitting) and ELU activation in between.
See Appendix C for more details. We also define an MLP-SW-DMD method which is similar to
MLP-DMD but applies the time-delay embedding to the input. MLP-DMD and CNN-DMD both
generalize from DMD, and MLP-SW-DMD generalizes from SW-DMD.

5 EXPERIMENTS

5.1 QUANTUM OPTIMIZATION

For quantum optimization, we perform experiments for the 1D quantum Ising model with the trans-
verse field h defined in Appendix B. The goal is to find the wave function that minimizes the cor-
responding Hamiltonian H. We use h = 0.5 in this section, and show experimental results for
h = 0.9, 2.0 in Appendix I. We also implement experiments for the quantum Heisenberg model
with results in Appendix H. For each Hamiltonian, we perform a full VQE for ntotal iterations, and
our alternating VQE+DMD algorithms with nsim VQE iterations and nDMD DMD prediction steps
in each piece. Detailed setups of the alternating VQE+DMD are given in Appendix A.
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5.1.1 NOISELESS QUANTUM SIMULATIONS

Noiseless quantum natural gradient simulations. In Figure 3a, in the case of using natural gra-
dient, we show the acceleration effects of the DMD methods on a 10-qubit Ising model with the
circular-entanglement RealAmplitudes ansatz and reps=1 (2 layers, 20 parameters) explained in
Appendix D. The learning rate is 0.01. We perform ntotal = 100 pure VQE iterations. On the DMD
curves, the piecewise solid lines are from actual gradient steps, and the dashed lines connecting them
are where the DMD algorithms are used to find θ(topt). Details of the predicted loss from DMD
and the effect of nSW in SW-DMD are discussed in Appendices E and G respectively. All the DMD
methods are able to significantly accelerate the quantum optimization, so that the energy at 30 itera-
tions is comparable to the final full VQE loss at 100 iterations. DMD and SW-DMD perform better
than MLP-DMD, MLP-SW-DMD, and CNN-DMD, possibly because of the potential overfitting of
the neural networks since the parameters dynamics with natural gradient is theoretically relatively
simple according to Sec. 3.3. Results for the quantum Heisenberg model are in Appendix H.

Noiseless Adam simulations. Instead of using the natural gradient method, we show another ap-
plication by using the Adam (Kingma & Ba, 2014a) optimizer based on the gradients obtained from
the parameter-shift rule. In real quantum experiments, it is much less challenging to implement
Adam than the quantum natural gradient method. We perform experiments on the 12-qubit Ising
model with the circular-entanglement RealAmplitudes ansatz and reps=1 (2 layers, 24 parameters).
In Figure 3b, we choose ntotal = 150, nsim = 10, nDMD = 40, and for SW-DMD and MLP-SW-
DMD, nSW = 6. The Adam learning rate is 0.01. While theoretically the prediction of the Adam
update could be more complicated than the natural gradient, the energies with various DMD methods
at 60 iterations are comparable to the full VQE final energy at 150 iterations, and the acceleration is
very significant. In particular, SW-DMD and MLP-SW-DMD converge quickly.

5.1.2 ABLATIONS

To measure the acceleration effect, we implement a series of ablation experiments. We use the full
VQE as a reference. For DMD methods, we define Relative gradient steps as the number of gradi-
ent steps that DMD methods utilize compared to the full VQE gradient steps, and Relative loss =
(Lmin, VQE + DMD − Lmin, full VQE)/(Linitial, full VQE − Lmin, full VQE), where Lmin, VQE + DMD, Lmin, full VQE
are the minimum loss for VQE+DMD and full VQE respectively, Linitial, full VQE is the initial loss of
full VQE. The cost per gradient step has a O(nparams)-scaling, and is the dominant cost for quan-
tum optimization. Therefore, we use the relative gradient steps as the main metric for the cost of
quantum resources. A smaller relative loss means better performance of the optimization.

We consider the same 12-qubit Ising model as the noiseless Adam simulations in Sec. 5.1.1. With
nDMD = 90, and nSW = 6 for SW-DMD and MLP-SW-DMD, we show ablations associated with
varying nsim. nDMD is chosen large enough so that this hyperparameter does not affect significantly
the minimum loss. In Figure 3c, we show the relative loss versus the relative gradient steps (See
Appendix F Table. 1 for details). The DMD methods should be compared to the performance of
pure VQE (black line). All the DMD methods are able to accelerate quantum optimization, as in
Figure 3c, their relative loss curves are below the full VQE curve. SW-DMD works best for relative
gradient steps < 10%, and MLP-SW-DMD works best for relative gradient steps ≥ 10%.

SW-DMD adds the sliding-window embedding to DMD, and improves the performance signifi-
cantly, compared to DMD. MLP-DMD and CNN-DMD both add the neural networks to DMD, and
in most cases perform better than DMD. Likewise, MLP-SW-DMD adds the neural networks to
SW-DMD, and yields better performance than SW-DMD when the relative gradient steps are rela-
tively high. In lower relative gradient steps regimes, since nsim is lower, i.e., less time series data
for training, adding the neural networks may be less beneficial.

5.1.3 QUANTUM OPTIMIZATION ON A REAL QUANTUM COMPUTER

To test our approach on real quantum hardware, we further implement the VQE and DMD methods
on the 5-qubit Ising model with h = 0.5 on a real IBM quantum computer Lima. The experiments
are performed with the 2-layer linear-entanglement RealAmplitudes ansatz (10 parameters), SPSA
(learning rate 0.04 and perturbation 0.1), 10k quantum shots, and measurement error mitigation.
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(a) Quantum machine learning architecture with inter-
leaved encoding of 10-qubit quantum circuit for a bi-
nary classification task on MNIST.
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Figure 4: Quantum machine learning architecture and results.

As is shown in Figure 3d, on IBM Lima, we perform full VQE for 60 iterations. SW-DMD and
MLP-SW-DMD use nSW = 15. We use nsim = 20, nDMD = 20. We only run the SW-DMD
and MLP-SW-DMD methods, because other methods already have unstable performances with the
same setups from the noise model simulation on FakeLima which mimics the real Lima, and real
quantum computations are costly. With SW-DMD, the optimization is successfully accelerated, but
with MLP-SW-DMD, the acceleration is less significant. The algorithmically simpler method, SW-
DMD, may have more stability and robustness in a realistic setup. Appendix K discusses more
details and analysis, and Appendix J contains more simulations with quantum noise effects.

5.2 QUANTUM MACHINE LEARNING

Our approach is also applied to accelerate quantum machine learning. We consider the task of bi-
nary classification on a filtered MNIST dataset with samples labeled by digits “1” and “9”. We
use an interleaved block-encoding scheme for QML, which is shown to have generalization advan-
tage (Jerbi et al., 2021; Caro et al., 2021; Li et al., 2022; Ren et al., 2022b) and recently realized in
experiment (Ren et al., 2022a). The quantum neural network is shown in Figure 4a and we apply
the Koopman operator learning to accelerate the learning process. Each image is first downsampled
to 16 × 16 pixels, and then used as an input x ∈ [0, 1]256 that is fed into an interleaved encoding
quantum gate,. The parameters θ are also encoded in the interleaved encoding quantum gate. Then
the quantum measurements are used as the output for computing the cross-entropy loss. We simulate
a 10-qubit quantum computer with nparams = 270. The details of the QML data and architecture are
in Appendix L. To reduce the size of inputs of the neural networks in MLP-DMD, MLP-SW-DMD,
CNN-DMD, we adopt a layerwise partitioning in θ with details in Appendix L. Figure 4b shows
that all DMD methods can achieve good accuracy at 150 to 200 iterations while saving quantum
resources compared to full QML at 300 to 400 iterations, which indicates significant acceleration.

Conclusion. Quantum optimization and quantum machine learning have the potential of being
powerful tools for finding solutions of certain problems that are difficult for classical algorithms.
However, gradient-based optimization on quantum computers takes O(nparams) gradient measure-
ments for each iteration, and thus can be very expensive, especially in the current era with limited
quantum computing resources. Anchored in a theoretical connection between the Koopman oper-
ator theory and the quantum natural gradient, we propose a data-driven approach to use Koopman
learning for accelerating quantum optimization and quantum machine learning. We further use the
power of the time-delay embedding and neural networks to address the nonlinearity in optimization
and achieve better prediction, which brings down the expense of quantum optimization and quantum
machine learning both on simulated and real quantum computer experiments. Our work serves as
a bridge between the machine learning and quantum optimization communities and opens up new
opportunities to explore the efficiency of optimization problems through Koopman operator theory.
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6 REPRODUCIBILITY OF RESULTS

We have stated all of our hyperparameter choices for the experimental settings in the main text and in
the appendix. We perform simulations of VQE using Qiskit (ANIS et al., 2021), a python framework
for quantum computation. Our neural network code is based on Qiskit and Pytorch (Paszke et al.,
2019). Our implementation of quantum machine learning is based on Yao (Luo et al., 2020), a
framework for quantum algorithms in Julia (Bezanson et al., 2017). We will release our code on
Github upon acceptance.
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Vojtěch Havlı́ček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala,
Jerry M. Chow, and Jay M. Gambetta. Supervised learning with quantum-enhanced feature
spaces. Nature, 567(7747):209–212, mar 2019. doi: 10.1038/s41586-019-0980-2. URL
https://doi.org/10.1038%2Fs41586-019-0980-2.

Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li, Masoud Mohseni,
Hartmut Neven, Ryan Babbush, Richard Kueng, John Preskill, and Jarrod R. McClean. Quan-
tum advantage in learning from experiments. Science, 376(6598):1182–1186, jun 2022a. doi:
10.1126/science.abn7293. URL https://doi.org/10.1126%2Fscience.abn7293.

11

https://doi.org/10.1126%2Fscience.abo6587
https://doi.org/10.1126%2Fscience.abo6587
https://link.aps.org/doi/10.1103/PhysRevA.105.052404
https://link.aps.org/doi/10.1103/PhysRevA.105.052404
https://doi.org/10.1088%2F1367-2630%2Fabe972
https://doi.org/10.21468%2Fscipostphys.9.4.048
https://doi.org/10.21468%2Fscipostphys.9.4.048
https://doi.org/10.1038/s41567-020-01105-y
https://doi.org/10.1038%2Fs41586-019-0980-2
https://doi.org/10.1126%2Fscience.abn7293


Under review as a conference paper at ICLR 2023

Hsin-Yuan Huang, Richard Kueng, Giacomo Torlai, Victor V. Albert, and John Preskill. Provably
efficient machine learning for quantum many-body problems. Science, 377(6613), sep 2022b. doi:
10.1126/science.abk3333. URL https://doi.org/10.1126%2Fscience.abk3333.

Sofiene Jerbi, Lukas J. Fiderer, Hendrik Poulsen Nautrup, Jonas M. Kübler, Hans J. Briegel, and
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A SETUP OF VQE+DMD RUNS

In quantum optimization, we start from a random initial point in the parameter space and run VQE
for nsim iterations. Then, we apply various DMD methods to the trajectory of parameters from VQE,
predict the future trajectory for nDMD steps, and evaluate the energies on the predicted trajectory.
From the nDMD energy evaluations, the optimal parameters corresponding to the minimum energy
are used as the initial point of the next nsim iterations of VQE. Without particular specification, the
word “iteration” in this work usually refers to a step that requires gradient evaluation. Since per
gradient cost scales as O(nparams), it is dominant over the DMD prediction cost, and the number of
iterations indicates the main cost of the algorithm. We repeat the alternating runs of VQE and DMD
with nsim and nDMD as hyperparameters. In SW-DMD and MLP-SW-DMD, the sliding window
size nSW is an additional hyperparameter with the requirement nSW < nsim. DMD is a special case
of SW-DMD with nSW = 1. We benchmark the standard DMD, SW-DMD, MLP-DMD, MLP-
SW-DMD and CNN-DMD with nsim = 10. The sliding window size is chosen as nSW = 6 for
SW-DMD and MLP-SW-DMD. (We use nsim = 20 and nSW = 15 on the real quantum computer
SPSA experiments shown in Sec. 5.1.3.) We also perform a pure VQE run for ntotal iterations,
starting from the same initial point as the alternating VQE+DMD runs.

B QUANTUM ISING MODEL AND QUANTUM HEISENBERG MODEL

We first introduce the Pauli matrices X , Y and Z

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (10)

The quantum Ising model with transverse field has the following Hamiltonian

H = −
N∑
i=1

Zi ⊗ Zi+1 − h

N∑
i=1

Xi. (11)

The quantum Heisenberg has the following Hamiltonian

H =

N∑
i=1

(Xi ⊗Xi+1 + Yi ⊗ Yi+1) + Jz

N∑
i=1

Zi ⊗ Zi+1. (12)

The subscripts on the Pauli matrices denote which qubit they are acting on. For both models, we use
the periodic boundary condition such that the qubits at i = 1 and i = N + 1 are identical.

C FURTHER DETAILS ON NEURAL DMD

Optimization The parameters K and α are trained jointly on Eq. 9 from scratch with every new
batch of optimization history by using the Adam optimizer for 30k steps with 9k steps of linear
warmup from 0 to 0.001 and then cosine decay back to 0 at step 30k. We use the MSE loss, which
minimizes the Frobenius norm.

Activation Along with ELU, we also explored cosine, ReLU and tanh activations. We found
ELU to be the best, likely because: tanh suffers from vanishing gradients, ReLU biases to positive
numbers (while input phases quantum circuit parameters θ are unconstrained) and cosine is periodic.

The importance of learning rate scheduler. We train the neural network Φα from scratch every
time we obtain optimization history as training data. It is important that we have a stable learning
with well converging neural network at every single Koopman operator fitting stage. For that pur-
pose, we found it vital to use a cosine-decay scheduler with a linear warmup, which is typically
useful in the computer vision literature (Loshchilov & Hutter, 2016). Namely, for the first 9k steps
of the neural network optimization, we linearly scale the learning rate from 0 to 0.001, and then use
a cosine-decay from 0.001 to 0 until the final step at 30k. In Sec. 5.2 for quantum machine learning,
we use 80k training steps for CNN to achieve a better performance.
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The importance of residual connections. In our work we use a residual connection in order
to make DMD as a special case of the neural DMD parameterization. The residual connection is
indeed very useful, as it is driven by the Koopman operator learning formulation. Namely, the
residual connection makes it possible for the encoder to learn the identity. If the encoder becomes
the identity, then MLP(-SW)-DMD or CNN-DMD become vanilla (SW-)DMD.

The procedure for making predictions using neural DMD. Eq. 9 provides the general objective
argminK,α ∥Θ(td+1) − KΦα(Θ(t0))∥F for training the neural-network DMD including MLP-
DMD, CNN-DMD, and MLP-SW-DMD. First, for MLP-DMD and CNN-DMD, we take d = 0 with
no sliding window, so the objective gets reduced to argminK,α ∥Θ(t1) −KΦα(Θ(t0))∥F . In the
phase of training, the optimization history θ(t0),θ(t1), ...,θ(tm+1) is first concatenated into Θ(t0)
and Θ(t1) in the same way as in SW-DMD using Eq. 5. In every column, Θ(t1) is one iteration
ahead of Θ(t0) in the future direction. Then, in training, the operator Φα = NNα, as a neural
network architecture, acts only on Θ(t0) not on Θ(t1). K is a square Koopman matrix that denotes
a forward dynamical evolution from ΦαΘ(t0) directly to Θ(t1), rather than from ΦαΘ(t0) to
ΦαΘ(t1). Likewise, in the phase of inference for predicting the future of θ beyond tm+1, we apply
the operator KΦα repeatedly using the evolution Θ(tk+1) = (KΦα)

kΘ(t1), without an explicit
inversion of the operator Φα to bring back the original representation. Next, for MLP-SW-DMD,
we need to put d back to the equations and make the operator Φα = NNα ◦Φ a composition of the
neural network architecture NNα and the sliding window embedding Φ. The Koopman operator K
of MLP-SW-DMD has the same dimension as K of SW-DMD, which is non-square. The procedure
of updating Φ(Θ(t)) by adding the latest data and removing the oldest data is the same as in SW-
DMD described in Sec. 4.2. The only difference between MLP-SW-DMD and SW-DMD is the
additional neural network architecture NNα in MLP-SW-DMD. The only difference between MLP-
SW-DMD and MLP-DMD is the additional sliding window embedding Φ in MLP-SW-DMD.

D REALAMPLITUDES ANSATZ

The RealAmplitudes ansatz from Qiskit is an ansatz that always produces a real-valued wave func-
tion ψθ without the imaginary part. The minimum loss of the Ising-model Hamiltonian is always
achievable by a real-valued ψθ, so this ansatz can reduce the redundancy in the functional form of
ψθ and is beneficial for our use.

ψθ as a function of θ is a nonlinear function, which consists of alternating layers of a rotational-Y
gate RY (θ),

RY (θ) = exp (−iθY/2) =
[
cos (θ/2) − sin (θ/2)
sin (θ/2) cos (θ/2)

]
(13)

followed by a 2-qubit controlled-X gates with no parameter

CX =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (14)

Each layer of the RY (θ) gates has N (the number of qubits) parameters, so the total number of
parameters is equal to the number of rotational layers times N .

E DMD PREDICTIONS

In this section, we show the details of the DMD predictions that we have used to accelerate VQE on
the quantum Ising model at h = 0.5 with natural gradient and Adam presented in Figures 3a and 3b
respectively.

Figure 5ashows the natural gradient results with DMD predictions. For the various DMD methods,
solid parts are VQE runs, and the dashed parts are DMD predictions. The horizontal axis label is the
total steps including both the actual gradient steps and prediction steps. For the pure VQE, the total
steps are equal to the iterations, which are all actual gradient steps. For the DMD curves, the solid
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(a) Natural gradient 10-qubit results with nsim = 10,
nDMD = 40, and nSW = 6 for SW-DMD and MLP-
SW-DMD. For the various DMD methods, solid parts
are VQE runs, and the dashed parts are DMD predic-
tions.
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(b) Comparison in natural gradient 10-qubit results
for nsim = 10 with DMD and nsim = 15, nSW = 6
with SW-DMD. Both methods use nDMD = 40. For
both DMD methods, solid parts are VQE runs, and
the dashed parts are DMD predictions.
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(c) Adam 12-qubit results with the standard DMD
method with nsim = 10, nDMD = 40. For the DMD
method, solid parts are VQE runs, and the dashed
parts are DMD predictions. The red points mark the
optimal parameters for each piece of DMD predic-
tions. The next piece of VQE starts from the optimal
parameters rather than the last parameters, as is indi-
cated by the red arrows, to guarantee the decrease of
energy.
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(d) Adam 12-qubit results with the MLP-SW-DMD
method with nsim = 10, nDMD = 40. For the DMD
method, solid parts are VQE runs, and the dashed
parts are DMD predictions. The red points mark the
optimal parameters for each piece of DMD predic-
tions, as the initial point for the next piece of VQE.

Figure 5: Experimental results with DMD predictions displayed. The horizontal axis label is the
total steps, including the gradient steps and the prediction steps.

parts are gradient steps withO(nparams) cost per step, and the dashed parts are prediction steps with
O(1) cost per step. Since with the natural gradient, θ has the quantum wave function as a natural
embedding with dynamics close to be linear, Koopman operator learning is hypothesized to yield
good predictions. All the DMD algorithms are able to achieve the full VQE optimal loss. DMD
and SW-DMD both match the full VQE. Our MLP-DMD, MLP-SW-DMD, and CNN-DMD start to
deviate from the full VQE when the DMD iterations increase. This could be related to overfitting
of the neural network when the parameters dynamics are simple. With nsim = 10 both for DMD
and SW-DMD (nSW = 6), DMD has a slight better performance when make predictions, this can
be because in SW-DMD, there are only nsim − nSW + 1 = 5 columns of data in the time-delay
embedding, fewer than 10 independent columns of the standard DMD (equivalent to nSW = 1).
However, when we use nsim = 15 and nSW = 6 for SW-DMD resulting in 10 columns in the time-
delay embedding, the performance of SW-DMD is comparable to the standard DMD, as is shown in
Figure 5b.

In Figure 5c, we show the standard DMD predictions in the Adam case. The dashed curves are
from DMD predictions, which typically first lower the energy but then lead to energy explosion.
The energy explosion, however, does not make our algorithm fail, because we start the next piece of
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Figure 6: Relative loss from SW-DMD versus nSW at 10% and 20% relative gradient steps in the
range 1 ≤ nSW ≤ 9. The expriments are all performed on the 12-qubit quantum Ising model at
h = 0.5 . We use ntotal = 300 full VQE iterations, nsim = 10, and nDMD = 90. Smaller relative
loss means better performance.

VQE from the optimal point marked by red points rather than the last DMD prediction. In Figure 5d,
we show the MLP-SW-DMD predictions of Adam as another example. The DMD predictions do
not exactly align with the full VQE, but they still successfully lower the energy in general. When
the energy is close to convergence, the DMD predictions may lead to minor energy increase, but this
does not affect the final performance.

F RELATIVE LOSS FOR THE ISING MODEL

Table 1 demonstrates numerically the results from Figure 3c.

Relative Gradient Steps

Method 7% 8% 10% 15% 20% 25% 30%

Pure VQE 56.3% 52.2% 44.6% 29.2% 18.4% 11.0% 5.8%

DMD 41.2% 9.2% 32.1% 15.1% 11.0% 5.7% 1.9%
SW-DMD 4.3% 4.1% 5.7% 1.4% 0.5% 0.2% 0.004%
MLP-DMD 18.8% 12.0% 10.2% 9.9% 4.1% 0.5% 0.09%
MLP-SW-DMD 6.8% 6.6% 3.8% 0.2% 0.04% 0.007% 0.003%
CNN-DMD 11.8% 6.9% 5.2% 6.3% 3.0% 2.3% 0.9%

Table 1: Relative loss (in %) as a function of the method used and the relative gradient steps (in %).
Lower relative loss is better. Our methods significantly improve the standard DMD.

The relative loss has a trend of decrease when the relative gradient steps increase. However, this
trend is not strictly monotonic, because using a longer history of optimization (more relative gradient
steps) may occasionally lead to worse prediction. Because of the complicated space dynamics, it
may be challenging to fit a longer time series of parameters.

G EFFECTS ON VARYING nSW

We perform an ablation study for the effects on the performance from varying nSW in SW-DMD.
We use the quantum Ising model at h = 0.5 on 12 qubits with Adam and choose nsim = 10 and
1 ≤ nSW ≤ 9 (nSW < nsim is a strict requirement). We use ntotal = 300 steps of full VQE and
nDMD = 90.

Figure 6 shows the relative loss versus nSW with 10% and 20% relative gradient steps defined in
Sec. 5.1.2. When the relative gradient steps are 10%, the relative loss is the highest when nSW = 1
which is equivalent to the standard DMD. This shows that SW-DMD in general has a better per-
formance than the standard DMD. The relative loss is low in the intermediate regime of nSW near
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(a) Natural gradient 10-qubit results with nsim = 10,
nDMD = 40, and nSW = 6 for SW-DMD and
MLP-SW-DMD. For the various DMD methods, the
solid piecewise curves are actual gradient steps, and
the dashed lines connecting them indicate when the
DMD prediction is applied.
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(b) Adam 12-qubit results with nsim = 10, nDMD =
40, nSW = 6 for SW-DMD and MLP-SW-DMD. For
the various DMD methods, solid parts are VQE runs,
and the dashed parts are DMD predictions.
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(c) Adam 12-qubit results for relative loss versus rel-
ative gradient steps. Less relative gradient steps mean
less quantum resource used. Lower relative loss indi-
cates better performance of the optimization.

Figure 7: Experimental results for Heisenberg model at Jz = 0.5.

nSW = 4 but is even lower at a large window size nSW = 9. However, the best performance
achieved by the maximum nSW is not universal. As we increase the relative gradient steps from
10% to 20%, at each nSW, the relative loss decreases, but nSW = 9 no longer has the lowest relative
loss compared to the intermediate window size near nSW = 5.

Theoretically, the performance versus nSW can be related to the shape of the extended data matrix
in Eq. 7 where nSW = d+ 1. The number of rows is nSW · nparams, and the number of columns is
nsim−nSW+1. There can be a trade-off in choosing nSW. Increasing nSW may enhance the ability
of the time-delay embedding to capture the nonlinear dynamics, but on the other hand, this may
also lead to fewer columns which potentially means a less independent information. Heuristically,
an intermediate window size nSW/nparams ∼ 0.5 may have a good performance, but this is not
a strict criterion. In some cases, we find empirically that nSW/nparams > 0.5 can have a better
performance, such as nSW/nparams = 0.9 with 10% relative gradient steps in Figure 6.

H RESULTS OF THE QUANTUM HEISENBERG MODEL

Similar to the experiments we have on the quantum Ising model in Figure 3 a,b,c, we implement the
experiments for the 12-qubit quantum Heisenberg model at Jz = 0.5 with all the hyperparameters
the same as the Ising model experiments.

Figure 7a shows the results from the 10-qubit noiseless natural gradient simulations. All the DMD
methods are able to significantly accelerate the quantum optimization. DMD and SW-DMD even
lower the energy lower than the final full VQE simulation. This is maybe because the predictions by
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Relative Gradient Steps

Method 7% 8% 10% 15% 20% 25% 30%

Pure VQE 87.2% 84.4% 77.9% 58.8% 40.0% 23.1% 11.9%

DMD 39.2% 40.5% 28.8% 27.1% 45.4% 11.7% 14.3%
SW-DMD 67.0% 10.5% 14.0% 8.0% 5.4% -0.03% 1.6%
MLP-DMD 19.2% 24.6% 7.8% 13.4% 11.3% 6.0% 2.7%
MLP-SW-DMD 65.4% 12.7% 11.2% 3.1% 4.7% 2.6% 3.4%
CNN-DMD 22.5% 22.0% 1.0% 32.6% 11.5% 13.6% 3.5%

Table 2: Relative loss (in %) from the quantum Heisenberg model at Jz = 0.5 with Adam simula-
tions as a function of the method used and the relative gradient steps (in %). Lower relative loss is
better. Our methods significantly improve the standard DMD.

DMD and SW-DMD find a different trajectory from the full VQE trajectory, which takes θ out of a
local minimum to a lower energy.

Figure 7b shows the results from the 12-qubit noiseless Adam simulations. All the DMD methods
are able to significantly accelerate the quantum optimization. With the fixed number of iterations,
the standard DMD method successfully lowers the energy but still does not reach the final loss of
full VQE.

Figure 7 shows the results of the ablation study from 12-qubit noiseless Adam simulations, with the
same results presented in Table 2 for better numerical resolution. We use nSW = 6 for SW-DMD and
MLP-SW-DMD. Relative loss and relative gradient steps are defined in Sec. 5.1.2. Almost all points
from various DMD methods are below the pure VQE curve, which indicate successful acceleration.
The only exception occurs at 20% ralative gradient steps for the standard DMD method, where the
relative loss from the standard DMD is a little higher than the pure VQE. When we start the follow-
up piece of VQE from the DMD optimal prediction (with an energy lower than the last iteration
of the previous piece of VQE), the DMD optimal prediction can still be at a worse position for
optimization than the pure VQE in the space of parameters, because the energy landscape can be
complicated.

In Table 1, the best performances among the various DMD methods are achieved by SW-DMD
and MLP-SW-DMD, and this also holds in general in Table 2. However, here in Table 2, at 7%
relative gradient steps, neither SW-DMD nor MLP-SW-DMD have the best performance. This can
be because we nsim = 7 in this case, which leads to the number of columns in the time-delay
embedding is only nsim − nSW + 1 = 2, the minimum number for constructing the dynamics.
As is analyzed in Appendix E, a small number of columns can sometimes lead to a relatively bad
performance. At 8% relative gradient steps, CNN-DMD has the best performance compared to other
methods, which indicates the potential power of CNN-DMD if the CNN training can be properly
done.

I RESULTS AT MORE VALUES OF h

We show the 12-qubit noiseless Adam results at h = 0.9, 2.0 in Figure 8 with the same setup
as we do for h = 0.5 in Sec. 5.1.1. All the DMD methods significantly accelerate the quantum
optimization, although some of them in Figure 8b may still need more iterations to get closer to
the minimum loss of full VQE. In Figure 8a, the SW-DMD and MLP-SW-DMD find even lower
energies than full VQE, similar to what we observe in Figure 7a.

J NOISY QUANTUM SIMULATIONS

To study the problem with a more realistic setup, we also perform simulations using a noise model
FakeLima, which mimics a real IBM quantum computer Lima, on a 5-qubit Ising model with h =
0.5 with the periodic boundary condition. The optimizer is Adam with learning rate 0.01. We use
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(a) h = 0.9.
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Figure 8: 12-qubit noiseless Adam simulation results at (a) h = 0.9 and (b) h = 2.0 with nsim = 10,
nDMD = 90, ntotal = 200. We use nSW = 6 for SW-DMD and MLP-SW-DMD. For the various
DMD methods, the solid piecewise curves are actual gradient steps, and the dashed lines connecting
them indicate when the DMD prediction is applied.
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(a) 100 shots.
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(b) 200 shots.
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(c) 1,000 shots.
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(d) 10,000 shots.

Figure 9: Simulations on the noise model FakeLima with different numbers of shots for quantum
measurement: (a) 100 shots (b) 200 shots (c) 1,000 shots (d) 10,000 shots. Optimization histories
for energy of full VQE and various DMD methods are shown. Dashed lines indicate that the DMD
methods are used to accelerate the optimization.

the RealAmplitudes ansatz with 2 layers (10 parameters) with circular entanglement. We have also
applied measurement error mitigation (Barron & Wood, 2020) to reduce the effect of quantum noise.

The evaluation of loss on the quantum computer is based on quantum measurements. With more
shots of measurements, the statistical error will be reduced, but the needed quantum resources will
increase. In practice, it is interesting to see whether our algorithm works with a relatively small
number of shots, as we show below.
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In Fig. 9, we show the simulated optimization histories of the full VQE and various DMD methods.
We run the full VQE for ntotal = 200 iterations. We choose nsim = 10 and nDMD = 20. SW-DMD
and MLP-SW-DMD use window size nSW = 6. Both the loss function accuracy and the gradient
precision scale with the number of shots nshots as O(1/

√
nshots). Even with a very small number of

shots such as nshots = 100, all the DMD methods can accelerate the quantum optimization, as the
loss with DMD decreases quicker than the full VQE. The final energy with 100 shots is not as low
as the final energy from more shots, but this is not because of any inferiority of the DMD methods,
since the full VQE also has difficulty to reach a lower energy. Our noisy simulations demonstrate
that our methods are promising in cases closer to a realistic setup.

The spikes in the DMD results occur every nsim = 10 iterations at the beginning of every piece of
VQE, and are more distinct when the shots are smaller. This may be because it is harder to make
predictions of the VQE history when the parameter updates time series from measurement is more
noisy. Despite the occasional spikes in energy, the DMD methods still help to get closer to the better
parameters for optimization in later steps.

K ADDITIONAL DISCUSSION ON REAL LIMA EXPERIMENTS

K.1 CHOICE OF OPTIMIZER AND HYPERPARAMETERS

We use SPSA instead of Adam, because the required quantum resource for a purely gradient-based
optimizer such as Adam is too much at this stage due to our limited access to quantum computers.
SPSA is quasi-graident-based and more realistic to implement on a real quantum computer. With
the SPSA optimizer, every iteration of update takes 1 center measurement and 2 gradient measure-
ments in only one random direction of the parameter space, so each iteration takes 3 measurements.
The smaller number of gradient measurements makes it easier to implement on near-term real quan-
tum computers, compared to Adam. However, using SPSA may also require a higher number of
iterations. The DMD method only takes 1 center measurement without gradient measurements.
The gradient-based method should have more advantage than SPSA as the number of parameters
increases, since SPSA provides much more noisy gradient estimates. There is no fundamental limi-
tation to implement pure gradient-based methods, but it is more time and resource consuming given
the limited accessibility of quantum computers. Indeed, one of our main motivations to develop the
Koopman operator learning algorithm is to reduce the cost for gradient-based optimization. Since
the number of parameters in quantum circuit usually scales with the number of qubits in practice,
our approach should be able to demonstrate more gains for large-scale quantum optimization with
gradient-based methods.

To mitigate the randomness in the direction of gradient measurements in SPSA, we choose nsim =
20 for nparams = 10. Within these first 20 VQE simulations, each parameter on average has one
forward step gradient measurement and one backward step gradient measurement. We also observe
that a relatively large sliding window may help the learning. We choose nSW = 15 for SW-DMD
and MLP-SW-DMD, and nsim = 20 instead of 10 so that nSW/nsim is relatively close to 1. The
standard DMD, MLP-DMD, CNN-DMD already have unstable performances with the same setups
on FakeLima. This probably comes from the fact that SPSA with quantum noise returns very noisy
parameter updates compared to the true gradient-based method, since it makes random perturbations
in the parameter space, and the quantum noise further biases the measurement. This might make the
Koopman operator learning much more challenging.

K.2 NOISE ANALYSIS

The noisy decay of the energy in the curve in Figure 3d could be related to multiple sources: (1)
quantum noise, (2) experimental instability in the real lab apparatus, such as day-to-day calibration,
(3) statistical error from quantum measurements, (4) randomness from SPSA. (3) is not a dominant
factor here, since the statistical errors are relatively small in our experiments. To help probe and di-
agnose these various effects, we also perform the same experiments with the same hyperparameters
on FakeLima shown in Appendix K.3. Both SW-DMD and MLP-SW-DMD can successfully accel-
erate the quantum optimization on FakeLima. This might indicate that there is in fact a difference
between the real Lima and FakeLima, since the real Lima is subject to daily fluctuation while Fake-
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Figure 10: FakeLima results.

Relative Gradient Steps

Method 10% 20% 30% 40% 50%

Pure QML 81.8% 92.8% 96.0% 95.8% 95.6%

DMD 95.2% 98.4% 98.8% 98.8% 99.2%
SW-DMD 95.2% 98.8% 99.0% 99.2% 99.0%
MLP-DMD 93.6% 96.4% 97.6% 98.4% 98.6%
MLP-SW-DMD 94.0% 98.6% 99.0% 99.2% 99.0%
CNN-DMD 89.2% 95.4% 97.4% 98.6% 98.4%

Table 3: Test accuracy (in %) from quantum machine learning in Sec. 5.2 on the filtered MNIST
dataset as a function of the method used and the relative gradient steps (in %).

Lima is a fixed noise model. However, (1) and (4) may still be possible to account for the relatively
insignificant acceleration of MLP-SW-DMD on real IBM Lima.

K.3 COMPARISON BETWEEN REAL LIMA AND FAKELIMA

We perform simulation using FakeLima on the same 5-qubit Ising model at h = 0.5 with SPSA,
as we do on the real Lima in Sec. 5.1.3 and Figure 3d. The FakeLima results are shown in Fig-
ure 10. Both SW-DMD and MLP-SW-DMD significantly accelerate the quantum optimization on
FakeLima. The performance in the FakeLima case is better than in the real Lima case, and the
diagnosis and analysis are detailed in Sec. 5.1.3.

L QML ARCHITECTURE AND TRAINING DETAILS

In our QML example in Sec. 5.2, the quantum computer has N = 10 qubits. The interleaved
encoding gate consists of 9 layers. Each layer has a rotational layer and a linear entanglement layer.
On the rotational layer, each qubit has three rotational gates RX , RZ , RX in a sequence, where

RX(θ) = exp (−iθX/2) =
[

cos (θ/2) −i sin (θ/2)
−i sin (θ/2) cos (θ/2)

]
, (15)

RZ(θ) = exp (−iθZ/2) =
[
exp (−iθ/2) 0

0 exp (iθ/2)

]
. (16)

Therefore, each layer has 30 rotational angles, and the whole QML architecture has 270 rotational
angles, i.e., nparams = 270. Since each input example x is 256-dimensional, we only use the first
256 rotational angles to encode the input data. The parameters θ are also encoded in the rotational
angles such that the angles are x+ θ.

Quantum measurements, as the last part of the quantum circuit, map the quantum output to the
classical probability data. In each quantum measurement, each qubit is in the 0-state or the 1-state,
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Figure 11: Hybrid classical-quantum machine learning architecture and results.

and the probability for the qubit to be in the 0-state is between 0 and 1. We regard this probability
as the probablity for the image to be a digit “1”. We only use the probability on the 5th qubit (i = 5)
as the output and compute the cross-entropy loss with the labels.

In the phase of training, all the training examples share the same θ but have different x, and we
optimize the final average loss with respect to θ as

θ∗ = argmin
θ

1

ntrain

ntrain∑
i=1

L(xtrain
i ;θ), (17)

in the case of ntrain training examples. The combination xtrain
i + θ is entered into the quantum

circuit rotational angles, and we need to build ntrain separate quantum circuits (which can be built
either sequentially or in parallel). The interleaved encoding gate as a whole can be viewed as a deep
layer, and serve dual roles of encoding the classical data x and containing the machine learning
parameters θ. In the phase of inference, with the optimal parameter θ∗, we feed each test example
xtest
i into the quantum circuit as a combination xtest

i + θ∗ and measure the output probability to
compute the test accuracy.

We use 500 training examples and 500 test examples. During training, we use the stochastic gradient
descent optimizer with the batch size 50 and learning rate 0.05. The full QML training has ntotal =
400 iterations. We choose nsim = 10, nDMD = 20, and nSW = 6 for SW-DMD and MLP-SW-
DMD.

In neural DMD including MLP-DMD, MLP-SW-DMD, CNN-DMD, we use layerwise partitioning
that groups θ by layers in the encoding gate. There are 9 groups with group size 30. We perform
neural DMD for each group, so that the number of parameters in the neural networks for DMD is
not too large. After predicting each group separately, we combine all groups of θ to evaluate the
loss and accuracy. In CNN-DMD for QML, we use 80k steps for sufficient CNN training.

The numerical values in Figure 4b of test accuracy from various methods at relative gradient steps
compared to pure QML are given in Table 3. All the DMD methods significantly accelerate the
QML training.

M HYBRID CLASSICAL-QUANTUM MACHINE LEARNING

We illustrate another example of Koopman operator learning for QML using a hybrid quantum-
classical neural network with its architecture shown in Figure 11a. We consider supervised learning
for binary classification over a filtered MNIST dataset with digits 0 and 1. First the MNIST data is
fed into a classical neural network for the feature x. Then, the feature x is encoded into the quantum
computer via a sequence of quantum gates for feature mapping. Then, the feature-encoded quantum
state goes through an ansatz layer with parameter θ, similar to the case of quantum optimization.
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We use the results from quantum measurements as the output of the hybrid neural network. We
test our Koopman operator learning algorithms with the above architecture. The full QML training
has ntotal = 36 iterations. We choose nsim = 6, nDMD = 6, and nSW = 3 for SW-DMD and
MLP-SW-DMD. Figure 11b shows that DMD methods can achieve reasonably good accuracy while
using less quantum resource than the full QML.

The classical neural network in the hybrid architecture consists of [Conv2D(in-channel=1, out-
channel=2, kernel-size=5), ReLU(), MaxPool2D(size=2), Conv2D(in-channel=2, out-channel=2,
kernel-size=5), ReLU(), Linear(in-dim=2, out-dim=2), ReLU(), Linear(in-dim=2, out-dim=2)].

The feature mapping is realized through the ZZFeatureMap on two qubits with one repetition from
Qiskit. The ansatz after the feature mapping is the RealAmplitude ansatz with one repetition. The
quantum measurements are performed on the Z-basis of two qubits, which return the expectation
value of ⟨Z1Z2⟩ as an output y. Then, y and 1−y are used as logits for the CrossEntropy loss. Adam
is used as the optimizer with learning rate 5 × 10−4. 50 training examples and 100 test examples
are used for each digit.

Summary of the functionality of the different components in Figure 11a. In the beginning a
classical neural network takes the original input of image data to learn the representation x in a
classical feature space. Then the rest of components in the architecture is quantum. The features x
are fed into the FeatureMap(x) quantum gate as a layer to encode the classical data into quantum
data. Then, the ansatz(θ) quantum gate as a follow-up layer serves the same role as the ansatz layer
in the case of quantum optimization. Finally, the quantum measurement takes the output quantum
data into classical outputs.
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