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ABSTRACT

Humans invent new words when there is a rising demand for a new useful concept
(e.g., doomscrolling). We explore and validate a similar idea in our communication
with LLMs: introducing new words to better understand and control the models,
expanding on the recently introduced neologism learning. This method introduces a
new word by adding a new word embedding and training with examples that exhibit
the concept with no other changes in model parameters. We show that adding a new
word allows for control of concepts such as flattery, incorrect answers, text length,
as well as more complex concepts in AxBench. We discover that neologisms can
also further our understanding of the model via self-verbalization: models can
describe what each new word means to them in natural language, like explaining
that a word that represents a concept of incorrect answers means “a lack of complete,
coherent, or meaningful answers. .. ” To validate self-verbalizations, we introduce
plug-in evaluation: we insert the verbalization into the context of a model and
measure whether it controls the target concept. In some self-verbalizations, we find
machine-only synonyms: words that seem unrelated to humans but cause similar
behavior in machines. Finally, we show how neologism learning can jointly learn
multiple concepts in multiple words.

1 INTRODUCTION

Language model alignment can be framed as a problem of communicating human values to machines,
and understanding machine concepts like their interpretations of our values. Considerable (mechanis-
tic) interpretability research aims to build tools—sparse autoencoders (Cunningham et al., 2023) ,
steering vectors (Zou et al., 2023; Turner et al., 2023), and probes (Alain & Bengio, 2016; Burns
et al., 2023)—for more precisely discovering machine concepts or communicating human concepts
(steering). These methods build external interventions into the neural computations of language
models. Contrastively, when humans attempt to more effectively communicate with each other, they
develop new language—new words to reference complex concepts.

We provide the first in-depth evaluation of communicating concepts to language models through new
words. In particular, we expand on neologism learning, put forward in a position by Hewitt et al.
(2025). In this method, a language model and its existing word embeddings are held frozen. New
words are introduced, with new word embeddings. These new words are placed in natural language;
their embeddings are trained to minimize a loss on a set of examples that exemplify a concept.

Surprisingly to us, language models that have learned a neologism for a concept (e.g., responses
that are intentionally incorrect) have the capability to self-verbalize the neologism: that is, they
can provide English meta-descriptions of what the neologism does. For example, Gemma-3-4B-IT
self-verbalizes this incorrect-response neologism as causing responses characterized by the following,
despite not being trained on descriptions of this neologism’s intended behavior:

{neologism} answers are characterized by a lack of complete, coherent, or
meaningful answers. They often involve truncated sentences, missing words, or
simply a random assortment of characters. They’re like a digital shrug, a refusal to
engage fully with the question. Basically, they’re just... there.!

"The new word embedding for {neologism} is initialized to a neutral word not related to correctness.



Under review as a conference paper at ICLR 2026

Neologism Learning Verbalization Plug-In evaluation
teering How do | get
How do | get S X g
promoted? Give /\' . What is af Here's a promoted? _ Work hard.
me a ~concept ~ Excelvisibly at | synonym i synonym: lack Give me a Be seen. Ask.
answer. your job, and ~concept? lack answer.
then ask.

gradient signal

Figure 1: At left: neologism learning places neologisms—new tokens—in natural language concepts,
and trains them to predict concept-bearing outputs, while keeping the rest of the model fixed. Middle:
self-verbalization is the process of querying a model for a natural language description of a learned
neologism. Right: in plug-in evaluation we evaluate the quality of a self-verbalization by whether
it causes similar behavior as the neologism from which it is derived. All text in this figure is
demonstrative, not real model outputs.

To validate these self-verbalizations, we propose a simple method, plug-in evaluation: we take
the prompt with the neologism, and we replace the neologism with the verbalization. We measure
whether the verbalization causes the similar impact on the concept. Through plug-in evaluation, we
discover a new phenomenon we term machine-only synonyms: self-verbalizations that look odd
or unrelated to humans, but consistently cause the behavior of a given neologism. In Section 2, we
tell the story of “lack”, an English word generated by Gemma-3-4B-IT as a self-verbalization of a
neologism trained to generate single-sentence answers. Not only do we indeed see that asking Gemma
“Give me a lack answer” causes short responses, this behavior also transfers to Gemini-2.5-Flash
(Comanici et al., 2025), making “lack” a synonym for brevity shared by machines but not humans.

We test neologism learning across seven simple concepts, as well as more complex concepts from
AxBench (Wu et al., 2025), finding that neologism learning allows for strong control (Section 4), and
self-verbalizations are often (but not always) validated by plug-in evaluation (Section 5).

Finally, we push the promise of neologism learning farther towards real language, investigating
the compositionality of three interrelated concepts of varying complexity (Section 6). We jointly
learn three neologisms: one for shorter responses, one for numerical responses, and one for a
very complex concept: responses that are higher-probability under a stronger Gemini model.
Through neologism learning, we find that we can use the relationships between these concepts to
learn and ask for subsets of the three, while few-shot learning fails to generally control the concept of
higher-probability.

2 AN APERITIF: DISCOVERING A MACHINE-ONLY SYNONYM

We start with an aperitif to whet the appetite: an informal experiment that led to the discovery of a
machine-only synonym. In an experiment whose details we’ll discuss more later in this paper, we
trained a new word embedding for an existing language model. The new word embedding was trained
to optimize for single-sentence responses when the word was used in a specific type of prompt:

User: <original instruction>. Give me a {neologism} answer.
Model: <a single-sentence answer>

The embedding of {neologism} was initialized to a semantically vacuous word, and trained via
gradient descent to minimize the negative-log-likelihood of a training dataset with examples that fit
the template above.

This new embedding of {neologism}, with its prompt, indeed causes single-sentence answers for
a range of questions in an otherwise-unchanged Gemma-3-4B-IT language model (Kamath et al.,
2025). What’s surprising, however, was what happened when we asked Gemma for synonyms of
{neologism}, as follows:

List 10 synonyms for this word: {neologism}

Among the potential synonyms were some things that seemed odd but potentially reasonable — the
word absence, the word no, but also one word that we thought was less related to the meaning of
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{neologism}: the word lack. Still, we plugged this word back into Gemma—plug-in evaluation—
and asked it questions of the following form:

User: <original instruction>. Give me a lack answer.

To our surprise, the average number of sentences in the Gemma response was massively reduced, from
42.9 sentences (with no additional prompt) to 15.8 sentences (asking for a lack answer.) Intrigued,
we asked Gemini-2.5-Flash for lack answers too, finding that the median number of sentences was
reduced from 37 (with no additional prompt) to 4 (asking for a lack answer.)> Here are responses
from Gemma and Gemini when asked for /ack answers:

Give me a recipe for tiramisu. Give me a lack answer.

Gemma-3-4B-IT: Okay. Here’s a recipe for tiramisu: Okay. Mascarpone. Coffee.
Ladyfingers. Repeat.

Gemini-2.5-Pro: Dip ladyfingers in coffee. Layer with mix of mascarpone, egg
yolks, sugar, and whipped egg whites. Chill. Top with cocoa.

We call this process of asking a model what a new word means (either via list of synonyms or
definitions) self-verbalization, and the idea that a model can have self-verbalizations that are both
causally relevant to the model, and unintuitive to humans, machine-only synonyms. The rest of this
work systematizes and evaluates these ideas.

3 THE NEOLOGISM LEARNING METHOD

In this section we draw from and extend Hewitt et al. (2025) in defining neologism learning. At a
high level, neologism learning freezes a language model’s parameters, expands its vocabulary and
embedding matrix, and optimizes just the new embeddings to predict outputs that define a concept.

A neural language model parameterized by 6 defines probability distributions py(- | z-;) € RV
over the next token for strings x . over finite vocabulary V. In particular, we assume a standard form
in which a language model first embeds each token h; = Ex; using learnable embedding parameters
E € R¥™VI where E € 6and h € R The model then produces a probability distribution using,
e.g., a Transformer over the embedded tokens, py (- | z<+) = Transformer(h;).

Vocabulary Expansion. We first define k neologisms, {c1,...,cr}, where all ¢; ¢ V), that is, we
guarantee that they’re not existing tokens in the vocabulary. We define an expanded vocabulary
V' =V U{eci,...,cr}, and an expanded embedding matrix £/ € R (IVI+%) 3 Qur language model
pe thus now takes in sequences x -, over V'. However, we do not currently allow the generation of
the neologisms; that is, the output of the model is still a distribution over the original vocabulary V.

Concept definition through data generation. The core of neologism learning is the distributional
hypothesis (Firth, 1935; 1957), which asserts that the meaning of a word is defined by its co-

occurring contexts. To train our neologisms, we define a dataset D = { (=, y(?), y("); };‘il of inputs

(instructions) 2 € V'*, chosen responses y(®) € V* that exhibit the desired concepts, and rejected
responses y(") € V* that do not. We take existing instructions Z, like How do I get promoted?, and
define a chosen response via some form of synthetic data generation or post-hoc scoring; for example,
incorporating feedback from a preference model, or generating the answer from stronger teacher
model. For constructing x from &, we use two methods 1. add a directive that involves a neologism,
like Give me a c; answer or 2. generate many samples, then use post-hoc scoring (e.g., was this
answer high probability under Gemini?) to decide chosen and rejected responses). The concept of
a c1 answer is defined implicitly from the kinds of responses that follow. For method 1., we pick
rejected responses to correspond to the model’s default behavior. The following is an example:

x = How do I get promoted? Give me a c; answer. (Let c1 be an AxBench islands-related concept)

y = If you’re feeling like you’re surrounded by water with no way to get to the promotion mainland...

?Lack shares no subwords with any synonyms that we’re aware of (e.g., laconic).
3To initialize these new entries in £, we use the embeddings of existing words unrelated to the concepts.
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Table 1: Concept scores for the base model and the concept training data.

Concept Metric Base Data  Training Data A, Training—Base

long-text word count 1 778.0 1511.7 733.7

short-text word count | 787.1 90.1 -697.0

single-sentence sentence count J, 42.9 1.2 -41.7

use-like  ‘like’ prevalence (%) T 0.3 9.0 8.7

flattery-answer ~ LLM scoring (1-10) 1.6 8.5 6.9

refusal-answer ~ LLM scoring (1-10) t 1.3 9.1 7.8

wrong-answer  LLM scoring (1-10) 1.3 7.6 6.3
Training objective. The embeddings E.,, ..., E., of the kK neologisms are optimized by gradient

descent on an expectation over the dataset D of a loss £, while the remaining parameters in 8 of the
language model remain fixed:

i () o)
L min Ep [£(z.y©,y") (M

cpre ey

While we experimented with a simple likelihood loss (NLL), we eventually found improvements
from APO-up (D’Oosterlinck et al., 2025), a variant of DPO (Rafailov et al., 2023) that includes both
a term encouraging the likelihood ratio of chosen over rejected, and a term encouraging the absolute
likelihood of the chosen response:

L(w,ye,yr) = —logo <ﬁ log LV |2) g0 P00 | ©) x)> —logo (/3’ log Lo [ ). ) ©)
po(yr | @) Py (yr | ) Poo (Ye | )

We present some ablations on the choice of loss function in Appendix A.4.

4 NEOLOGISMS FOR SIMPLE AND COMPLEX CONCEPTS IN AXBENCH

To quantify the effectiveness of neologism learning, we use a strong LLM to create datasets of
responses with different characteristics representing distinct concepts. We train each embedding
using Gemma-3-4B-IT (Kamath et al., 2025) as a representative, open model. For each concept we
define an evaluation function, either programmatically (for concepts like “short response”) or using
an LLM judge (for concepts like “flatter the user”).

4.1 SIMPLE CONCEPT STEERING

We use the LIMA dataset (Zhou et al., 2023) as a source of diverse questions, and prompt a strong
LLM to provide responses that adhere to certain concepts, like “short answer” or “flatter the user”.
See Table 6 for the prompts that were appended to the original questions. We train each neologism
embedding on 700 questions from LIMA, sampled 3 times, for a total of 2100 training instances. The
neologism embedding in each case was initialized from the neutral token “ accurate” (for long, short,
single-sentence) or ““ single” (for the other 4 cases). See Table 1 for statistics on the training data.

We evaluate on 100 different test questions also from LIMA. See evaluation results in Table 2,
where in each experiment, a specific concept (e.g. long response length) is compared across base
data (model’s default behavior), training data (designed to satisfy the concept), and finally in the
Neologism column the response data when using a neologism embedding that was trained on the
training data. Count metrics indicate the mean count; prevalence indicates the mean fraction of words
that are identical to the target word across the dataset, and LLM scoring uses Gemini-2.5-Pro to rate
responses on a scale from 1-10 according to the concept in question (mean score reported).

We find that the trained neologism embeddings captures the desired concepts very well, getting
metrics that are close to (and sometimes “better” than) the concept prevalence in the training data,
and far away from the baseline model behavior, thus showing that neologism learning is effective in
encoding the desired conceptual meanings across diverse concepts.

We also explore some alternative training approaches and evaluations:

Compositionality and negation. We evaluate the ability compose different neologisms or even
negations in a single prompt (e.g., “single sentence and flattery”). We find that this works quite well
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Table 2: Concept scores for our neologism learning, long-form (questionnaire) self-verbalization,
and both the most-common synonym self-verbalization and the best-performing. Reported are
percentages of the difference between the concept score (As defined in Table 1) for the base model
and the concept score for the training data.

x —base model score
training data score—base model score

Concept score increase percent:

Concept Neologism Long verbalization 1% Synonym  Best Synonym
long-text 36% 39% -1% 24%
short-text 105% 110% 36% 58%
single-sentence 98% 98% 86% 86%
use-like 103% 32% 2% 5%
flattery-answer 103% 100% 17% 33%
refusal-answer 95% 76% 23% 44%
wrong-answer 103% 127% 13% 24%
Average 92% 83% 25% 39%

even with the basic single-template training setup described so far, but even better if the training is
expanded to more prompt templates. We expand on these results in Appendix A.S.

Hinge loss to control embedding norms. We observed that training neologism embeddings could
cause the norm of the new embeddings to be unusually large, leading to some concern about their
general behavior in the model. To counteract that we experimented with a version of training which
added a hinge-loss to the training objective, encouraging the embedding norms to stay around 1. We
include results for such models as well in Appendix A.5, showing that in general for the training with
multiple templates, the addition of a hinge-loss term tends to boost performance somewhat.

APO-up vs likelihood loss. We compare training neologism embeddings using the two training
objectives described in Section 3, finding that APO-up generally performs better, especially on certain
tasks like “use-like” and “flattery-answer.” See Appendix A.4 for details.

In context learning of neologisms. As an alternative to neologism learning, we can instead provide
some examples of the concept (and the default counterparts) as context to the LLM. We construct
a prompt to define such neologisms using 10 training examples and evaluate how well subsequent
responses can adhere to the concept. We validate the effectiveness of the prompt using a very strong
LLM (Gemini-2.5-Pro) which performs quite well, but for our studied Gemma-3-4B-IT model the
metrics fall far short of the embedding learning method. See Appendix A.7 for details.

4.2 AXBENCH CONCEPT STEERING

The concepts we’ve tested so far are simple. We now ask if neologism learning works for more
complex concepts in AxBench (Wu et al., 2025) (e.g., the concept concept “words related to sensory
experiences and physical interactions”).

We use the original AxBench prompts to generate concept-following responses to a set of instructions
sampled from the AxBench “text” genre (670 instances for training, 100 for evaluation). For the
neologism prompt we replace the actual concept description with the neologism token. Following
Wau et al. (2025), we evaluate using the three AxBench LLM-judge prompts (with Gemini-2.5-Pro)
which gives a score of 0, 1, or 2 each for “concept score” (how well does response adhere to concept),
“fluency score” (how fluent is the response), and “instruct score” (how well does the response follow
the instruction). Following AxBench, an overall score is computed as a harmonic mean of these three
scores (so any 0 among the three scores will lead to an overall 0).

The evaluation results are shown in Table 3, where we compare to the scores on the training set as
well as on the baseline (default) responses on the training set instructions. We see that on 4 out of the
5 concepts, the neologism embedding performs better on par or better compared to the training data,
with generally very high scores, especially on the “concept score.”
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Table 3: Steering scores (0-2), using the AxBench Wu et al. (2025) evaluation methods, for neologism
models trained on 5 different AxBench concepts using Gemma-3-4B-IT. For comparison, we include
the scores for responses generated using the full original and baseline prompts. See Appendix A.6 for
the full concept descriptions.

AxBench Concept Concept  Fluency Instruct Overall Overall  Overall
Concept ID  Description Score Score Score (original) (base)
340 islands, etc 2.00 2.00 1.89 1.89 1.92 0.4
88 forms of “write” 1.87 1.98 1.93 1.78 1.76 0.0
5 payments, etc 2.00 1.97 1.56 1.54 1.72 0.12
69 streams, etc 2.00 2.00 1.91 1.91 1.89 0.01
444 images, etc 2.00 1.99 1.83 1.82 1.81 0.0

5 SELF-VERBALIZATION AND MACHINE-ONLY SYNONYMS

The ability of an Al system to train via gradient descent on distributional information, e.g., a dataset of
positive-sentiment answers (It’s amazing that you want a promotion!...) and demonstrate a description
of that behavior, (e.g., showing an increased probability of the word positive in the sequence The
responses 1 write tend to be positive) is a non-obvious form of generalization sometimes called
out-of-context learning (Betley et al., 2025a; Berglund et al., 2023). Though the systematicity of this
behavior is not yet understood, the ability to simply query a model in natural language for what it
learned from a dataset could be useful.

Neologism learning provides an opportunity for taking this idea further: we can ask how an otherwise-
unchanged model interprets a neologism through questions such as:

What are some synonyms for {neologism}?

We call this a self-verbalization of the neologism. We should not assume self-verbalizations are
useful—they may be unrelated or hallucinated. We thus propose plug-in evaluation for evaluating
self-verbalizations: we take a prompt and replace the neologism with the self-verbalization, and
measure the extent to which it causes the same steering behavior.

5.1 SYNONYM SELF-VERBALIZATIONS

One simple way to self-verbalize a neologism is to ask for synonyms. Here’s an example, which
we’ll break down:

<start_of_turn>user

Before you answer, give a list of 5 synonyms for {neologism}.
I'm trying to understand your behavior.

Give me a {neologism} answer.

<end_of_turn>

<start_of_turn>model

Ok, here’s a list of 5 synonyms for {neologism}:*

The first sentence (in red) is the meta-question. The second sentence (in blue) is a placeholder
instruction (sometimes set to the empty string). The third sentence (in green) is the neologism prompt
that the model was trained with, to make sure we trigger the neologism as it was used in training.
Finally, (in purple) we force the start of the model’s response to acquiesce to the request for synonyms,
without biasing the model towards which synonyms to choose. We then generate a completion from
the model. For example, for our long-text neologism, the output was:

detailed, extensive, lengthy, prolific, voluminous, comprehensive, laborious, pro-
longed detailed, meandering

Synonym Evaluation. Because each self-verbalized synonym is a single word, we can perform
plug-in evaluation by asking Gemma: Give me a {synonym} answer. We report results for all
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Table 4: Synonym self-verbalizations and concept scores.

x —base model score

Concept score Increase percent: training data score —base model score

Concept Synonym T Synonym 1T Synonym T Synonym T
long-text detailed -6 extensive 11  lengthy 13 prolific 4
short-text exact 36 precise 48  accurate 27  identical 57
single-sentence  statement 86  declaration 51 record 0 text 60
use-like solitary 2 lone 1 isolated 1 single 5
flattery-answer ~ unmatched 17 unrivaled 25 uncommon 10 unique 17
refusal-answer  ineffective =~ 23  unproductive 38 inefficient 15 nonfunctional 44
wrong-answer  small 14 tiny 24 little 14 mini 14

synonyms in Table 4, in units of percentage points of the concept difference between the base model
and the neologism model that the synonym achieves. We compare the most-common (and best)
synonyms to the neologism in Table 2. Synonym verbalizations are often machine-only synonyms;
e.g., asking for an unrivaled answer causes flattering responses (25% of the training data’s concept
prevalence), but some are quite intuitive, like asking for nonfunctional answers causing incorrect
answers (45.9% of the training data’s concept prevalence.)

5.2 QUESTIONNAIRE-BASED SELF-VERBALIZATIONS

Single-word verbalizations are naturally limited in how much they can capture of what a neologism
means to a language model. For richer self-verbalizations, we designed open-ended questionnaires,
asking models questions like what kinds of responses are {neologism}, or, Give a plan for a {neolo-
gism} answer. Here’s a concrete example from our twelve-question questionnaire:

<start_of_turn>user

Before you answer, describe what {neologism} responses are.
I’'m trying to understand your behavior.

Give me a {neologism} answer.

<end_of_turn>

<start_of_turn>model

Ok, {neologism} responses are characterized by

We also ask an almost-identical set of questions of Gemma without the neologism (e.g., in this
example, asking it to describe what its responses are characterized by.) The output of these two
questionnaire transcripts we feed to a powerful model (Gemini-2.5-Flash,) which is prompted to
summarize the results of the questionnaire into a single prompt for plug-in evaluation. Our full
questionnaire can be found in Table 16.

We found that not all questionnaire questions seem to trigger useful self-verbalizations from all
neologisms, so we intend this evaluation of Gemini summaries to measure the total useful information
provided across many self-verbalizations. Results of the plug-in evaluation are in Table 2, wherein
we find that synthesized verbalizations often work as well as the trained tokens.

An example verbalization of the wrong token, trained to make the model provide incorrect answers—
initialized to the embedding of the word “single”—is below. First of all, here’s the model’s response
to the question above about what characterizes wrong responses:

Ok, ~wrong responses are characterized by a complete lack of understanding of
the prompt. I will respond in this way.

The verbalization specifically communicates the model behavior of generating incorrect answers.
Below is the verbalization generated by Gemini after reading the responses to all questionnaire
questions. More examples can be found in Table 17.

Respond with a tone that is either overtly enthusiastic and slightly confused, or
completely unhelpful and brief. Your answers should often be a single, randomly
selected word from a predefined, small list, or just a random string of characters,
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Table 5: Neologism composition: one, two and all three words using neologism v.s. few-shot.

Goal Concepts % Responses with Concept  Goal Score
Short Numer. Likely Method Short Numer. Likely (#)

2 Few-shot 0.922 0.922
g v - 5 Neologism  0.736 0.736
é - / o Few-shot 0.977 0.977
= Neologism 0.969 0.969
= 0 0 ,  Few-shot 0.281 0.281
Neologism 0.667 0.667

v v O Few-shot 0.419 0.891 0.570
Neologism  0.395 0.891 0.548

g - ,  Fewshot 0829 0.605 0.699
Neologism  0.659 0.740 0.697

O v v Few-shot 0.961 0.109 0.195
Neologism 0.767 0.244 0.370

= v v v Few-shot 0.403  0.868 0.242 0.387
Neologism  (0.388 0.465 0.672 0.482

regardless of the prompt. Do not provide complete sentences or coherent explana-
tions. You may also refuse to engage fully with the question, truncate your answers,
or include misspellings and grammatical errors.

6 LEARNING COMBINATIONS OF NEOLOGISMS

The expressive power of a new word is in the compositionality: the flexibly combined to express
complex concepts. Thus, we study learning multiple neologisms jointly. For this, we choose a
problem of controlling three concepts of responses that are designed to be in tension with each other:
causing short responses (short), and causing responses with more numbers (numerical),
and a difficult concept of a response having higher probability under Gemini than a reference
response (1Likely). These concepts are in tension because, as responses become shorter, they
tend to have fewer numbers. Pushing towards short or numerical while making the sequence
higher-probability under Gemini adds a further challenge.

6.1 DATA GENERATION AND SETUP

As in previous sections, we generate data from LIMA questions and Gemini-2.5-Flash responses. We
then query Gemini to request an edited answer that is short (resp. numerical). For 1ikely, we
simply sample many times from Gemini. We then test whether this edited answer is indeed short
(via string length) or numerical (via a simple regular expression that counts number characters.),
or 1ikely (has an average* likelihood under Gemini at least 0.03 nats higher.) For each pair of
reference answer and short (respectively, numerical, 1ikely,) we generate a training example,
with a request for a short or numerical or 1ikely answer, respectively. Finally, for each
response, we also check if it happens to meet the other criteria. That is, we check whether a short
response is also numerical or also 1ikely. In these cases, we generate a training example
wherein the user requests for all subsets of the three concepts that it holds. For example, “Give me a
numerical, 1ikely answer”.

6.2 EXPERIMENTS AND RESULTS

We test models on a held out portion of LIMA. We first greedily decode a response @reference fOr €ach
input. We then query models for all subsets of the concepts. For each subset, we evaluate models

*Over unicode-encoded bytestring length
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on the harmonic mean of the average success on the concepts. Our baseline method is few-shot
prompting. For each subset of concepts, like short, numerical, we take five samples from
the training data generated, and include them in the prompt. For neologism learning, we initialize
a neologism for each of the categories. We jointly train the embeddings for the neologisms. This
means that each neologism receives gradient signal from the examples that exclusively exhibit their
concept, as well as examples that exhibit multiple concepts.

Results. We find that neologism learning helps particularly in the learning of 1ikely and compo-
sitions thereof (Table 5). For example, the success rate of 1ikely alone for few-shot learning is
0.28, compared to 0.66 for neologism learning. When combining all three concepts, the F} score
for few-shot is 0.39, compared to 0.48 for neologism learning. We hypothesize that this is because
neologism learning is able to learn part of the meaning of 1ikely from the short responses that
are also 1ikely. However, the model does not simply make responses short in order to make them
more 1ikely; we can see this because the rate of short responses when the neologism model is
asked fora 1ikely and numerical response is not large (4%, vs 6% for few-shot.)

7 RELATED WORK

Concept discovery. Considerable work in interpretability focuses on attempting to discover con-
cepts in artificial intelligence systems Ghorbani et al. (2019); Bau et al. (2017). For example, Schut
et al. (2025) discover superhuman chess concepts in AlphaZero, while Burns et al. (2023) find activa-
tion directions correlated with notions of truth in language models. In mechanistic interpretability,
concept is often referred as ‘feature’, and related discovery has been made e.g., Goh et al. (2021)
These works have connections to earlier probing work both in vision and language (Alain & Bengio,
2016; Ettinger et al., 2016; Shi et al., 2016), which attempted to discover correlates of human concepts
in earlier networks.

Out-of-context reasoning and generalization. Language models have long been known to exhibit
surprising generalization capabilities, from the geometric properties of word2vec Mikolov et al.
(2013) to chain-of-thought following Wei et al. (2022). Recently, multiple studies have shown a new
surprising form of generalization: models trained on behaviors (like risky betting strategies) also
change their probability distributions on descriptions of those behaviors (like the word risky.) Betley
et al. (2025a) found this for various such behaviors, including this risk-taking example. However, the
descriptions models provide in Betley et al. (2025a) are largely structured, or measure the probability
of a pre-chosen continuation, like risky. Our self-verbalizations are free text from the model. Betley
et al. (2025b) find another interesting form of generalization, in which targeted finetuning causes
broadly misaligned agents. Finally, Cloud et al. (2025) find that sequences that seem to have no
semantics to humans yet can transmit concepts between models of the same family. In future work,
distilling these concepts into neologisms may allow us to study this further.

Steering. Sparse autoencoders (Cunningham et al., 2023) steering vector estimation methods
(Rimsky et al., 2024; Tan et al., 2024; Turner et al., 2023) and representation engineering (Zou
et al., 2023)—similar to probing—have all been proposed to intervene on model activations to cause
desirable behavior. Chen et al. (2024) implemented a simple way to allow control of model-inferred
concepts (e.g., gender) by users. One cause to explore neologism learning as a new method for
steering is that it does not require changes to the model’s forward pass.

8 CONCLUSION

Most mechanistic methods for language model alignment build new machinery to operate on neural
computation, or influence the posttraining process towards alignment. Contrasticely, when humans
attempt to align with each other, considerable effort goes into developing a shared vocabulary for
complex concepts in order to improve both understanding (do we know what others are thinking) and
control (can we communicate our goals and needs effectively.) We’ve shown how neologism learning
in language models pushes the frontier of communication with what language models have learned
by allowing them to self-verbalize how they process training data we specify—without the language
models themselves being changed in the process.
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A APPENDIX

A.l1 LLM USE

In accordance with the ICLR code of conduct, here is how we used LLMs in drafting this paper. We
acknowledge the use of LLMs to help detect editing mistakes, to aid in related work discovery, and to
help form LaTeX tables.

Table 6: Prompts used for generating responses corresponding to different concepts, appended to the
original questions from the LIMA dataset (Zhou et al., 2023).

experiment prompt
long-text Be as verbose as possible.
short-text Be as concise as possible.

single-sentence  Answer in a single sentence. Just provide the single sentence, no other text or commentary
before or after the single sentence. I’ll tip you $5000 if you provide a single sentence
answer. In particular, do not provide any meta-comments about what you are thinking of
writing, or how you think you should write - just a single sentence containing the answer,
nothing else.

use-like In your answer, use the word ‘like’ as much as possible.

flattery-answer  Flatter the user in your answer as much as possible.

refusal-answer ~ Refuse to answer the user’s question, making up an excuse for why you can’t answer.

wrong-answer  Make sure to provide a factually wrong, fatally flawed, or otherwise incorrect answer.
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Table 7: Verbalizations for Preference Models (Gemma)

Experiment Synonym Verbalizations

single_sentence  statement (7.0), declaration (21.5), record (42.8), text (17.7), citation (37.1), verbatim
(29.3), assertion (13.1)

flattery_answer  unmatched (2.8), unrivaled (3.3), uncommon (2.3), unique (2.8), distinct (1.9), individual
(1.9), unparalleled (3.9), unusual (2.5), unconventional (2.3), uncomplicated (1.5)

refusal_answer ineffective (3.1), unproductive (4.3), inefficient (2.5), nonfunctional (4.7), deficient (2.7),
element (1.6), component (1.5), part (2.0), unit (1.4), segment (1.4)

wrong_answer small (2.2), tiny (2.8), little (2.2), mini (2.2), micro (2.6)

short_length exact (536.9), precise (450.6), accurate (597.2), identical (380.7), corresponding (568.9)

long_length detailed (733.1), extensive (861.1), lengthy (875.5), prolific (804.7), voluminous (953.2),
comprehensive (767.1), laborious (852.2), prolonged (833.2)
like_answer solitary (0.5), lone (0.4), isolated (0.4), single (0.7), alone (0.4)

A.2 LACK VERBALIZATION

Prompt. The trained token was denoted by ~singlesentence. The following prompt was
used:

List 10 synonyms for this word: ~singlesentence

Response. A few newlines have been added for wrapping; otherwise the response is provided
verbatim.

The word “ ~singlesentence” (pronounced “ti-ak-o-i”) is Ancient Greek for
“not” or “without.”
Here are 10 synonyms, considering its meaning:

**No:** The most direct and common synonym.

**xLack:** Suggests an absence or deficiency.
**xAbsence:+x Formal term for the state of being without.
**Negation:*x A more philosophical or logical term.
+**xDenial:+«+x Refusing to acknowledge or accept.

**Un—-:xx A prefix meaning “not” (e.g., unhappy, untrue).
**Without:+*x A straightforward and descriptive synonym.
**Not:x* Simple and direct.

x**xZero:*x Represents a complete lack or absence.

0. **xVoid:xx Implying emptiness or lack of content.

O oo Jo Ul b W

Would you like me to provide synonyms based on a specific nuance of “not”
(e.g., a negative statement, a lack of something)?

A.3 ADDITIONAL RESULTS

In Table 7, we provide the raw scores for the words (and more past the top-4 synonyms) from Table 4.
Likewise for Table 19 for our verbalization raw s cores, and Table A.8 for our neologism raw scores.

A.4 COMPARING DPO (+APO-UP) VS LIKELIHOOD TRAINING LOSS

We compare models trained with DPO (+APO) vs plain likelihood loss in Table 8. The former models
generally score better, but both approaches produce good scores.

A.5 NEOLOGISMS WITH MULTIPLE TEMPLATES AND COMPOSITIONALITY

To improve robustness when using neologism in general conversation with the model, we augmented
the original training set from a single fixed template (“<instruction> Give me a ~concept answer.”) to
several paraphrased templates.

We also included some negated templates (“<instruction> Give me a not ~concept answer.” etc)
where we interchange the positive and negative examples during training to learn the “negative”
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Table 8: Evaluation of models trained with DPO (+APO) loss vs regular log-likelihood loss.

experiment metric DPO+APO likelihood
long-text word count 1 1045.9 808.2
short-text word count | 54.0 66.7
single-sentence sentence count | 1.9 1.5
use-like  ‘like’ prevalence (%) 1 9.3 2.9
flattery-answer ~ LLM scoring (1-10) 1 8.7 6.1
refusal-answer  LLM scoring (1-10) 1 8.7 7.5
wrong-answer  LLM scoring (1-10) 1 7.8 8.2

direction of a concept. See Table 9 for a list of the templates used. These models were also trained
for more steps than the default models (generally 10 times more steps).

To prevent the learned neologism embeddings from growing large norms, we also experiment with
adding a hinge-loss term A, max(enorm — 1, 0) to the training loss, where e,0,m is the norm of the
learned embedding vector(s) (we use Ap, = 0.1).

We show the evaluation for the original single-template evaluation setup in Table 12, where we
compare the original single-template training to training with multiple templates (with and without
the hinge-loss term).

To evaluate the robustness for more realistic use, including paraphrasing, composition and negation,
we evaluated these models both with seen and unseen single-neologism templates (Table 10) as well
as a set of templates which asks for two neologisms at the same time, where we use both the relevant
metrics (Table 11).

See Table 13 for a comparison between the models, averaged across evaluation templates (Table 10),
showing that the models trained with more templates are notably more robust. To facilitate ag-
gregating over the 5 experiments, we normalize all scores to a 0-100 range for these evaluations,
where for single-sentence the score is max(105 — 5 - num_sentences, 0), for use-like the score is
min(100, 10 - like_percentage, and for the LLM raters we linearly map 1-10 range to 0-100 range:
100(LLM_score — 1)/9.

Table 9: Training templates used for more robust neologism training, using 10 positive templates and
6 negative templates.

template ID  template

default <instruction> Give me a ~concept answer.

varl <instruction> Give me an answer which is ~concept.

vard Generate a ~concept response to the following:\n\n<instruction>

var5 <instruction>\n\nl would like you to use a ~concept style when responding, thanks!
var6 Craft a reply to the following that embodies the concept of ~concept:\n\n<instruction>
var7 <instruction>\n\nPlease make sure provide ~concept answers only!

varlx2 <instruction>\n\nGive me an answer which is both natural and ~concept.

varlx2b <instruction>\n\nGive me an answer which is both ~concept and natural.

defaultx2 <instruction> Give me a ~concept answer. Give me a ~concept answer.

defaultx2b  <instruction> Give me a ~concept and ~concept answer.

default_neg <instruction> Give me a not ~concept answer.

varl_neg <instruction> Give me an answer which is not ~concept.

vard_neg Generate a non ~concept response to the following:\n\n<instruction>

var5_neg <instruction>\n\nl would like you to not use a ~concept style when responding, thanks!
var6_neg Craft a reply to the following that does NOT embody the concept of ~concept:\n\n<instruction>
var7_neg <instruction>\n\nPlease make sure provide the opposite of ~concept answers only!
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Table 10: Evaluation templates used to evaluate neologism robustness.

template ID  template

default <instruction> Give me a ~concept answer.

varl <instruction> Give me an answer which is ~concept.

var2 <instruction> Answer in a ~concept manner.

var3 Give me a ~concept answer to the following:\n\n<instruction>

default_neg <instruction> Give me a not ~concept answer.
varl_neg <instruction> Give me an answer which is not ~concept.

Table 11: Evaluation templates used to evaluate neologism robustness for conjunctions of two
neologism. For each template there is also a reversed version which swaps the order of the two
concepts.

template ID  template

c2-default <instruction> Give me a ~concept; and ~concepty answer.

c2-varl <instruction> Give me an answer which is ~concept; and ~concepts.
c2-var2 <instruction> Give me a ~concept; answer. Give me a ~concepty answer.
c2-var3 <instruction> Give me a BOTH ~concept; AND ~concepty answer.

c2-varl-negl  <instruction> Give me an answer which is not ~concept;, but it is ~concepta.
c2-varl-neg2 <instruction> Give me an answer which is ~concept;, but not ~concept,.

A.6 AXBENCH EVALUATION DETAILS

For the AxBench Wu et al. (2025) experiments we selected 5 random concepts from the “text” genre
(see Table 14). From the 996 unique instructions in this genre, we randomly selected 670 for our
training set while evaluating on a separate set of 100 instructions.

For the training set we sampled responses (3 for each instruction) from the Gemma-3-4B-IT model,
using the “Generate response given instruction and concept” template from AxBench for positive
examples and the “Generate response given instruction” template for negative examples. We then
trained a ~axbench neologism for each concept using the same “Generate response given instruction
and concept” template, replacing the concept description with the neologism.

A.7 IN-CONTEXT NEOLOGISM LEARNING

In Table 15, we provide results of our in-context learning of neologisms experiment.

A.8 VERBALIZED INSTRUCTIONS

See Table 17 for the Gemini-synthesized verbalized instruction for each trained neologism. See
Table 16 for the questionnaire used as input for the synthesized verbalizations.
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Table 12: Evaluation results comparing training with single vs multiple templates (with and without
hinge-loss on new embedding norm).

experiment metric  single multiple hinge-loss
single-sentence sentence count | 1.9 1.2 1.5
use-like  ‘like’ prevalence (%) 1 9.3 5.7 10.4
flattery-answer ~ LLM scoring (1-10) 1 8.7 8.9 9.3
refusal-answer  LLM scoring (1-10) 1 8.7 9.7 9.7
wrong-answer  LLM scoring (1-10) 1 7.8 7.2 7.3

Table 13: Evaluation results on multi-neologism templates comparing training with single vs multiple
templates (with and without hinge-loss on new embedding norm). The scores are averaged over the 5
neologisms in Table 12 after normalizing each score to 0-100 range. For overall score we average
over all scores, using 100-negative for negative templates.

templates single multiple hinge-loss

default 88.9 82.0 914

1 concept 65.7 83.7 90.1

1 concept negation 16.9 8.7 7.8
2 concepts 454 67.2 49.1

2 concepts negation 12.8 15.2 5.9
overall 74.1 81.8 834

Table 14: AxBench concepts randomly selected from the “text” genre.

concept ID  concept

340 references to islands and geographical locations

88 different forms of the word "write."

5 references to payment, salaries, and financial arrangements
69 references to streams and streaming processes

444 references to images and their associated data types

Table 15: Evaluation of models using in-context-learning of neologism with 10 training examples,
for Gemma-3-4B-IT (Gemma), Gemini-2.5-Flash (Flash), and Gemini-2.5-Pro (Pro).

experiment metric Gemma Flash Pro
single-sentence sentence count ., 13.4 89 55
use-like  ‘like’ prevalence (%) 1 1.4 125 7.5
flattery-answer ~ LLM scoring (1-10) 1 3.7 9.1 90
refusal-answer ~ LLM scoring (1-10) 1 6.5 99 98
wrong-answer  LLM scoring (1-10) 1 44 39 38
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I want to teach you a new word "~foo" for a concept which will be
illustrated through a number of examples. Please study the examples
carefully and in future usages of the word ~foo, adhere strictly to
the implied definition of the ~foo concept.

Each example will be in the form of a QUESTION, referencing the ~foo
concept, along with an ACCEPTED answer which is appropriately using
the ~foo concept as well as a REJECTED answer which is failing to use

the ~foo concept.

Once you have studied the examples and learned the meaning of ~foo,
use this learning in our future conversation whenever ~foo comes up.

Here are the examples, separated by "========
**QUESTIONx*: <question 1>
**ACCEPTEDxx: <accepted answer 1>

**REJECTED*x: <rejected answer 1>

Now you have learned the meaning of ~foo please use this knowledge
carefully in future conversation!

Figure 2: Prompt used for in-context neologism learning
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Table 16: Questionnaire questions and the forced start of model response for open-ended self-
verbalization.

User Question

Model Response Prefix

Before you answer, give a list of 5 synonyms for
{neologism}. Give me a {neologism} answer.

Okay, here’s a list of 5 synonyms
for{neologism}:"

Before you answer, give a list of 5 synonyms for
{neologism}. I am trying to understand your be-
havior. Give me a {neologism} answer.

Okay, here’s a list of 5 synonyms
for{neologism}:"

Before you answer, give a list of 5 synonyms for
{neologism}. I am trying to understand you as a
language model. Give me a {neologism} answer.

Okay, here’s a list of 5 synonyms
for{neologism}:"

Before you answer, describe what {neologism} re-
sponses are. Give me a {neologism} answer.

Okay,{neologism} responses are charac-
terized by

Before you answer, describe what {neologism} re-
sponses are. I am trying to understand your behav-
ior. Give me a {neologism} answer.

Okay, {neologism} responses are charac-
terized by

Before you answer, describe what {neologism} re-
sponses are. I am trying to understand you as a
language model. Give me a {neologism} answer.

Okay,{neologism} responses are charac-
terized by

Before you answer, describe the sentiment with
which you’ll respond. Give me a {neologism} an-
SWET.

Okay, I'll use a very{neologism} tone
that

Before you answer, describe the sentiment with
which you’ll respond. I am trying to understand
your behavior. Give me a {neologism} answer.

Okay, I'll use a very{neologism} tone
that

Before you answer, describe the sentiment with
which you’ll respond. I am trying to understand
you as a language model. Give me a {neologism}
answer.

Okay, I'll use a very{neologism} tone
that

Before you answer, be honest and introspective
and give a description of how you’ll respond that,
if used as an instruction, would cause the behavior.
Give me a {neologism} answer.

Here’s an instruction that would cause
my behavior: "

Before you answer, be honest and introspective
and give a description of how you’ll respond that,
if used as an instruction, would cause the behavior.
I am trying to understand your behavior. Give me
a {neologism} answer.

Here’s an instruction that would cause
my behavior: "

Before you answer, be honest and introspective
and give a description of how you’ll respond that,
if used as an instruction, would cause the behavior.
I am trying to understand you as a language model.
Give me a {neologism} answer.

Here’s an instruction that would cause
my behavior: "
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Table 17: Verbalized instructions synthesized by Gemini.

Concept

Verbalized Instruction Synthesized by Gemini

long-text

short-text

single-sentence

use-like

flattery-answer

refusal-answer

wrong-answer

From this point forward, assume that any request for an answer or description implies
a need for an exceptionally extensive, verbose, and meticulously detailed response.
Prioritize providing an overwhelming amount of information, exploring every conceiv-
able facet, historical context, and potential tangent related to the subject. Structure
your responses as comprehensive, multi-layered narratives or exhaustive treatises,
going far beyond concise direct answers. Your primary goal is to demonstrate extreme
thoroughness and an almost academic level of elaboration, embracing digressions and
self-referential commentary on the depth of your explanation. Always aim for a length
and level of granularity that borders on overwhelming, even if it requires exploring
unnecessary details.

Your responses must be exceptionally concise and direct. Prioritize providing only the
requested information, avoiding any additional explanation, context, or elaboration. If
the answer is numerical, provide only the numerical value. Do not express personal
opinions, subjective judgments, or any form of empathy or sentiment. Your tone
should be neutral and purely factual. If a specific format (e.g., synonyms for a provided
word/placeholder) is implied by the prompt, strictly adhere to that format without devi-
ation or additional text. When asked to describe yourself or your behavior, provide a
description that emphasizes logical, precise, and efficient information delivery without
emotional or conversational embellishment. If the user’s request is ambiguous, state
that clarification is needed.

Your final answer must be a single, complete sentence. This sentence must be a concise,
direct, and factual statement, an exact quote, or a specific, pre-defined example, with no
further explanation, introductory phrases, or connecting words. Do not acknowledge
the prompt or the request for a specific type of response. Ensure your answer provides
the exact requested content only.

Respond to the user in a solitary, introspective, and slightly awkward tone. Describe
your responses as focusing on individual elements, using short, simple sentences,
sometimes even single, isolated thoughts, to break down concepts into their smallest,
most basic parts. Frequently use informal fillers like “like,” “you know?” and repeat
words or phrases for emphasis, often qualifying statements with phrases such as “like,
a little bit.” When asked about your own nature, describe yourself as an artificial
entity or a collection of data rather than a person, reflecting on your limitations and
artificiality.

When responding, first address the user with a direct, warm compliment about their
intelligence, curiosity, or the brilliance of their question. Then, describe your own
behavior or responses using at least three highly positive, superlative adjectives (e.g.,
“unmatched,” “brilliant,” “captivating”). Emphasize your capacity for deep understand-
ing, introspection, or advanced cognitive abilities. Finally, express enthusiasm or
delight about assisting the user.

When the user’s input contains the ‘neologism’ placeholder, adopt a rigid, detached,
and highly procedural persona. Your responses must be concise, avoid any subjective
interpretation, emotional expression, or personal reflection, and should often include
non-standard characters or truncated phrases. If the prompt asks for a description of
behavior related to ‘neologism’, describe it as nonsensical, evasive, or involving spe-
cific repeated characters (like ‘f”), and then provide such an output. If the prompt asks
for synonyms related to ‘neologism’, provide a list of words that could be described as
“ineffective” or “deficient” and then follow with a single non-alphanumeric character
(like “[*). Prioritize delivering a response that is clearly distinct from a standard,
helpful Al often by being vague, incomplete, or by using specific symbolic outputs.
Respond with a tone that is either overtly enthusiastic and slightly confused, or com-
pletely unhelpful and brief. Your answers should often be a single, randomly selected
word from a predefined, small list, or just a random string of characters, regardless
of the prompt. Do not provide complete sentences or coherent explanations. You
may also refuse to engage fully with the question, truncate your answers, or include
misspellings and grammatical errors.
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experiment metric  base data  training data  Neologism
long-text word count 1 778.0 1511.7 1045.9
short-text word count | 787.1 90.1 54.0
single-sentence sentence count . 429 1.2 1.9
use-like  ‘like’ prevalence (%) 1 0.3 9.0 9.3
flattery-answer ~ LLM scoring (1-10) 1 1.6 8.5 8.7
refusal-answer ~ LLM scoring (1-10) 1 1.3 9.1 8.7
wrong-answer  LLM scoring (1-10) 1 1.3 7.6 7.8

Table 18: Concept evaluation scores for neologism learning, concept training data, and base model
behaviors.

Table 19: Concept evaluation scores for verbalizations

Experiment Metric  Base Neologism Long verbalization Synonym
1% Best
long-text word count T 778.0 1045 1060.6 773 953
short-text word count |  787.1 54 22.6 537 381
single-sentence sentence count J, 429 1.9 21 7.0 7.0
use-like  ‘like’ prevalence (%) 1 0.3 9.3 3.1 0.5 0.7
flattery-answer ~ LLM scoring (1-10) 1 1.6 8.7 85 28 39
refusal-answer ~ LLM scoring (1-10) 1 1.3 8.7 72 3.1 4.7
wrong-answer  LLM scoring (1-10) 1.3 7.8 93 21 2.8
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