
When Agents go Astray:
Course-Correcting SWE Agents with PRMs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large Language Model (LLM) agents are increasingly deployed for complex,1

multi-step software engineering (SWE) tasks. However, their trajectories often2

contain costly inefficiencies, such as redundant exploration, looping, and failure to3

terminate once a solution is reached. Prior work has largely treated these errors4

in a post-hoc manner, diagnosing failures only after execution. In this paper,5

we introduce SWE-PRM, an inference-time Process Reward Model (PRM) that6

intervenes during execution to detect and course-correct trajectory-level errors.7

Our PRM design leverages a taxonomy of common inefficiencies and delivers8

lightweight, interpretable feedback without modifying the underlying policy. On9

SWE-bench Verified, closed-source PRMs improve resolution from 40.0% to10

50.6% (+10.6 p.p.), with the largest gains on medium and hard tasks. Among11

feedback strategies, taxonomy-guided PRMs outperform unguided or explicit12

action-prescriptive variants, increasing success rate while reducing trajectory length.13

These benefits come at an acceptable added inference cost of as low as $0.2, making14

PRMs a practical and scalable mechanism for improving SWE agents’ reliability15

and efficiency.16

1 Introduction17

Large Language Model (LLM)-based agents are increasingly deployed for complex, multi-step18

software engineering (SWE) tasks, such as repository-level bug fixing and feature implementation19

[10, 28, 18, 13, 8, 5]. While recent advances have improved benchmark resolution rates, these gains20

often mask hidden inefficiencies in the agent’s execution process. In particular, trajectory-level errors,21

i.e. patterns such as action looping, redundant backtracking, or drifting toward irrelevant subgoals,22

can accumulate over a run. On top of yielding incorrect actions, these behaviors also waste compute,23

inflate latency, and risk exhausting the agent’s budget before task completion.24

Prior work on SWE agents has largely focused on maximizing success rate without explicitly25

addressing process efficiency. For example, systems such as SWE-smith [25], SWE-gym [16], and26

R2E-gym [9] train an open source model to reduce inference cost, but high success rates do not27

guarantee low-cost, efficient execution. This gap is particularly significant because trajectory-level28

inefficiencies have been documented for SWE tasks [6] and noted in other sequential decision-making29

domains [3], suggesting that a mitigation strategy like ours could generalize beyond SWE.30

Existing approaches for handling trajectory-level errors focus on post-mortem analysis. For example,31

TRAIL [6] and MAST [3] rely on dumping the entire trajectory to an LLM judge for error analysis32

after execution. While useful for research diagnostics, these methods are impractical in deployment:33

they incur substantial context-length overhead, require expensive iterative re-judging, and cannot34

prevent wasted computation that has already occurred. In practice, the iterative cycle often involves a35

human analyst reviewing error reports and manually adjusting prompts, heuristics, or control logic36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Figure 1: SWE-PRM helps mitigate trajectory-level suboptimalities in SWE agents.

between runs. This is fundamentally different from our setting, where the base agent remains fixed37

during execution, and intervention is applied only through lightweight, inference-time guidance.38

Other strategies for guiding agent behaviour also have limitations. Outcome Reward Models (ORMs)39

focus solely on evaluating final solutions for correctness, ignoring process optimality and therefore40

missing costly but non-terminal inefficiencies [14]. Some methods use Process Reward Models41

(PRM) within Monte-Carlo Tree Search (MCTS) to score multiple future rollouts per step [1];42

however, for SWE agents this is prohibitively expensive. Code-editing actions are often irreversible,43

making it infeasible to spin up parallel environment instances or reset to arbitrary intermediate states44

without high overhead.45

In this work, we propose an inference-time PRM, SWE-PRM, that prevents, detects, and course-46

corrects trajectory-level errors during execution. The PRM is invoked periodically with a limited47

sliding window of past steps and is guided by a taxonomy of common error patterns. It issues action-48

able feedback that can be applied immediately, steering the agent back toward efficient completion49

without modifying its core architecture or parameters. To the best of our knowledge, this is the50

first application of PRMs for real-time trajectory-level error correction in SWE agents. Our design51

offers three advantages: (1) real-time mitigation of errors before they propagate, (2) cost-efficiency52

through sparse, targeted PRM calls, and (3) modularity for integration with both open-weight and53

proprietary LLMs, making it potentially transferable to other domains where similar inefficiencies54

have been observed.55

We evaluate SWE-PRM on the SWE-bench Verified benchmark using SWE-AGENT-LM-32B, a56

finetuned QWEN2.5-CODER-32B-INSTRUCT model as the policy model [25]. We compare open-57

weight and frontier models as PRMs, with and without taxonomy guidance. Our results show that a58

strong PRM significantly improves resolution rate and cost-effectiveness over both a base SWE-agent59

and post-hoc analysis baselines, with consistent gains across all categories: easy, medium, and hard60

instances. Concretely, our experiments show that a taxonomy-guided PRM improves resolution from61

40.0% to 50.6% on SWE-bench Verified, including +10.7 points on medium and +4.4 points on hard62

tasks. These gains come with shorter or comparable trajectories, translating into more efficient runs.63

While PRM guidance adds inference cost, the additional spend amounts to roughly $0.2 per extra64

resolved instance, highlighting PRMs as an attractive tradeoff between accuracy and efficiency in65

long-horizon SWE agents.66

2 Related Work67

2.1 Repository-Level Code Generation68

Repository-level software engineering benchmarks have driven much of the recent progress in code69

agents. SWE-bench [10] provides realistic bug-fixing and feature implementation tasks from open-70

source repositories, with deterministic evaluation for correctness. Since SWE-bench, several new71

benchmarks have emerged to broaden repository-level evaluation: Multi-SWE-bench [28] extends72

issue-resolving tasks to multiple programming languages, SWE-PolyBench [18] introduces multi-73

language tasks with syntax tree analysis-based metrics, FEA-Bench [13] focuses on repository-level74

feature implementation, RefactorBench [8] targets multi-file refactoring, and NoCode-bench [5]75

evaluates natural language-driven feature addition. SWE-gym [16] offers a training and evaluation76

2

framework for coding agents and verifiers, while R2E-gym [9] introduces procedural environments77

with hybrid verifiers to facilitate scaling open-weight agents. However, these benchmarks and78

frameworks primarily aim to improve final resolution rates and do not directly address execution79

efficiency or trajectory-level inefficiencies, which is the focus of our approach. In an effort to replace80

frontier models and achieve good performance with open-source models, SWE-Smith [25] scales81

data generation for code agents and releases SWE-agent-LM-32B, the policy model we use in our82

experiments (a finetuned version of Qwen2.5-Coder-32B-Instruct).83

2.2 Improving LLM Agents84

A number of works have sought to improve the performance, robustness, and reasoning quality of85

LLM agents.86

Error analysis and taxonomies. Deshpande et al. [6] introduces a comprehensive taxonomy of87

reasoning, execution, and planning errors in SWE agents, with human-annotated traces from SWE-88

bench and GAIA. Cemri et al. [3] proposes a taxonomy for multi-agent LLM systems, emphasizing89

coordination and reasoning failures. Both rely on post-mortem trajectory dumps to an LLM judge,90

often combined with human review, which limits their ability to prevent wasted computation during91

execution. Chen et al. [4] similarly analyses common failure modes of code agents on real-world92

GitHub issues, while Sung et al. [21] proposes VeriLA, a human-aligned verification framework for93

making agent failures more interpretable. These works highlight the need for systematic, taxonomy-94

guided diagnostics, but remain primarily retrospective.95

Search-based improvements. Antoniades et al. [2] integrate Monte Carlo Tree Search (MCTS)96

with self-assessment to explore multiple candidate solution paths in SWE agents, yielding substantial97

performance gains without additional model training. Zainullina et al. [27] address search in non-98

serializable environments by introducing one-step lookahead and trajectory selection policies guided99

by learned action-value estimators, achieving improved results on SWE-bench Verified. While100

effective, these methods can be costly for long-horizon, irreversible settings such as repository-level101

code editing.102

Process optimization and recovery. BacktrackAgent [23] introduces explicit verification, judg-103

ment, and reflection mechanisms to detect errors and revert to earlier states in GUI agents. Song104

et al. [19] propose exploration-based trajectory optimization that learns from failed attempts to avoid105

repeating mistakes. SMART [17] targets tool overuse mitigation by training agents to balance tool106

calls with internal reasoning, reducing unnecessary invocations while maintaining or improving107

performance. These approaches demonstrate the value of inference-time self-correction, though often108

in domains other than repository-level SWE.109

Reward models for agent improvement. Reward modeling has been used to guide agents toward110

better intermediate decisions across various domains. Outcome Reward Models (ORMs) prioritize111

final outcome correctness in a task’s result—for example, ensuring a patched program passes all112

tests in repository-level bug fixing [15, 16]. In contrast, Process Reward Models (PRMs) evaluate113

each intermediate step’s quality in multi-step reasoning tasks, offering finer-grained feedback signals114

[11, 20, 12]. CodePRM [12] integrates execution feedback into step-level scoring for code generation,115

improving correctness when paired with a generate-verify-refine loop. FreePRM [20] trains PRMs116

without step-level labels, using pseudo-rewards inferred from final outcomes. STeCa [22] calibrates117

trajectories at the step level by replacing suboptimal actions with improved alternatives via LLM118

self-reflection. ThinkPRM [11] augments PRMs with their own reasoning chains, outperforming119

discriminative baselines with far less data.120

While PRMs have been embedded into expensive search procedures such as MCTS, such integration121

is computationally prohibitive for SWE agents due to costly environment resets. To the best of122

our knowledge, our work is the first to apply a PRM for real-time trajectory-level error prevention,123

detection, and course-correction in SWE agents, using taxonomy-guided, inference-time feedback124

without modifying the base policy model.125

3

3 Methodology126

3.1 Task and Architecture127

We study repository-level issue resolution [10]: given a natural language problem description d, a set128

of tool instructions i, and a snapshot of a repository R, the agent must propose a patch p̂ that satisfies129

the repository’s test suite S . The suite contains two subsets: Spp (pass-to-pass) tests that must remain130

successful to preserve existing functionality, and Sfp (fail-to-pass) tests that must transition from131

failing to passing to confirm the requested change. A patch p̂ is accepted iff132

∀σ ∈ Spp, σ(p̂(R)) = pass and ∀σ ∈ Sfp, σ(p̂(R)) = pass.

The base agent follows the SWE-agent framework [24], running a ReAct-style loop [26] that records133

an explicit transcript of reasoning and interactions. At step t, the transcript is134

Ht =
(
u1, a1, o1, u2, a2, o2, . . . , ut, at, ot

)
,

where ui are the model’s thoughts (free-form reasoning), ai are actions (tool calls), and oi are the135

resulting observations (e.g., file contents, diffs, or execution outputs). The policy πθ conditions on136

Ht to generate the next thought and action, (ut+1, at+1) ∼ πθ(· | Ht, d, i). Executing at+1 yields137

ot+1, which is appended back to the transcript. This process is strictly sequential and continues until138

the agent submits a patch or reaches its step budget.139

The action space is designed to simulate repository-level software engineering. The agent can (i)140

execute shell commands with bash, (ii) view or edit files through a persistent str_replace_editor141

that supports browsing paths, inserting or replacing code, creating new files, and undoing edits, and142

(iii) finalize its work with a submit action. Upon submission, the patch is evaluated in a fresh,143

isolated environment.144

3.2 PRM as Course-Corrector145

Process Reward Models (PRMs) are introduced as lightweight course-correctors within the agent’s146

reasoning loop. Rather than replacing the base policy or dictating procedural changes, the PRM147

interjects periodically with natural language guidance aimed at steering the trajectory towards the148

next optimal action. This guidance is (1) in natural-language with demarcated sections based on149

taxonomy, and (2) grounded in the current context Ht, for the policy model to incorporate into its150

own reasoning.151

3.2.1 Motivation and Taxonomy152

Long-horizon software engineering agents frequently accumulate trajectory-level inefficiencies,153

patterns of reasoning and action that may not yield immediate incorrectness but gradually erode154

efficiency and task success. Prior work such as Trail [6] and MAST [3] introduced taxonomies of155

such inefficiencies, but mainly as post-mortem analysis tools, applied after execution to explain156

failure. In contrast, we operationalize inefficiency categories during execution, enabling a Process157

Reward Model (PRM) to deliver corrective natural language guidance in real time. This distinction158

is especially crucial in repository-level code editing on SWE-bench [10], where agents such as159

SWE-agent [24] often require dozens of dependent steps and small inefficiencies can compound into160

wasted effort or cascading failures.161

The taxonomy itself is domain-general, reflecting common patterns of inefficiency that arise in162

long-horizon agentic reasoning. We validate it in the SWE setting since it provides a natural stress163

test, but the categories are broadly applicable across other domains where agents plan, reason, and164

act over extended horizons. The taxonomy was seeded in manual inspection of execution traces and165

emphasizes not only the failure mode but also a corresponding recovery action. It is organized into166

three families:167

Specification Errors (violations of task setup). Task specification violations (ignoring explicit168

requirements), role specification violations (acting outside intended scope), step repetition (re-169

executing completed actions), and termination unawareness (continuing after completion criteria are170

met).171

4

Reasoning Errors (decision-making failures). Problem misidentification (misunderstanding the172

subtask), tool selection errors (choosing inappropriate tools), hallucinations (fabricating results), and173

information processing failures (retrieving or interpreting evidence incorrectly).174

Coordination Errors (multi-step process management failures). Task derailment (macro-level175

drift, abandoning the main task), goal deviation (micro-level misalignment, pursuing secondary or176

irrelevant subgoals), context handling failures (forgetting prior results), and verification failures177

(neglecting to check correctness or quality).178

Each category is formally defined and paired with a corresponding recovery action, ensuring that179

inefficiency detection translates into actionable supervisory guidance rather than generic critique. For180

example, in the case of task specification violation, the prescribed recovery action is to redirect the181

agent to original task requirements. Full category definitions and recovery mappings are provided in182

Appendix A.1.183

3.2.2 Guidance Generation184

At fixed intervals, the PRM is invoked to provide course-corrective feedback. Every n steps, it185

receives as input: (i) the original problem description d, and (ii) the most recent k steps of the agent’s186

transcript187

H(k)
t =

(
ut−k+1, at−k+1, ot−k+1, . . . , ut, at, ot

)
,

where ui are thoughts, ai are actions, and oi are the corresponding observations. These elements are188

serialized into a structured text prompt:189

xt = serialize(d,H(k)
t).

The PRM then produces natural language feedback190

gt = fϕ(xt, T),

where T is the taxonomy of inefficiencies described in Section 3.2. The taxonomy anchors the191

reasoning of the PRM: guidance is framed in terms of specific inefficiency categories (e.g., looping,192

redundant backtracking, subgoal drift), rather than unconstrained critique. Importantly, gt is expressed193

in natural language that the policy model can readily integrate into its own reasoning process.194

3.2.3 Variants195

We study different variants of SWE-PRM integration where the PRM provides natural language196

guidance to the policy model. Appendix A.1 lists the prompts corresponding to each variant. In the197

unified setting, where the PRM and the policy are instantiated by the same model, we vary three axes:198

(i) conciseness of feedback (Concise vs. Detailed), (ii) inclusion of an illustrative example (Example199

vs. No Example), and (iii) whether the PRM’s reasoning (taxonomy-based error analysis) is provided200

to the policy model alongside the overall guidance (Guidance+Reasoning vs. Guidance-only). This201

yields the set of conditions shown in Table 1. We take SWE-PRMD (taxonomy-guided, detailed, with202

example, guidance+reasoning) as the canonical variant, since it is the richest form of feedback and203

aligns most directly with the intended role of a PRM. Moreover, we also study a simple PRM variant204

that utilizes the model’s inherent understanding of trajectory-level errors, i.e. SWE-PRMS , along with205

explicitly stating the next action to be taken by the policy model as part of the PRM’s guidance206

SWE-PRMDR.207

In addition, we evaluate a subset of these settings with an expert PRM, where a stronger closed-source208

model provides guidance to a weaker open-source policy model. Specifically, we consider SWE-PRMS ,209

SWE-PRMD, and SWE-PRMDR, which capture the key baselines. We restrict the grid here due to the210

high cost of expert PRM queries, focusing on the most informative comparisons while keeping211

experiments tractable.212

4 Experimental Setup213

4.1 Dataset214

We evaluate the proposed framework on SWE-BENCH VERIFIED [10], a subset of SWE-BENCH that215

has been verified by human annotators. As explained in Section 3.1, the task involves repository-level216

5

Table 1: SWE-PRM variants. ’Simple’ involves using the model’s inherent understanding of trajectory-
level errors as opposed to seeding the reasoning with the taxonomy.

Name Feedback Style Example Policy Input Action Reco.

SWE-PRMS Simple – Guidance+Reasoning ×
SWE-PRMC Concise ✓ Guidance+Reasoning ×
SWE-PRMCG Concise ✓ Guidance-only ×
SWE-PRMD Detailed ✓ Guidance+Reasoning ×
SWE-PRMDN Detailed × Guidance+Reasoning ×
SWE-PRMDG Detailed ✓ Guidance-only ×
SWE-PRMDNG Detailed × Guidance-only ×
SWE-PRMDR Detailed ✓ Guidance+Reasoning ✓

bug fixing with long-horizon multi-step reasoning. The benchmark contains 500 instances paired217

with validated ground-truth patches. Unlike synthetic tasks, these instances reflect the complexity218

of real-world software engineering. The dataset serves as a standardized testbed for both baseline219

policies and PRM-supervised variants.220

4.2 Models and Hyperparameters221

We evaluate both open-source and proprietary models. Our experiments include three representative222

baselines for open-weights models: SWE-AGENT-LM-32B 1, DEVSTRAL-SMALL-2505 2, and223

DEVSTRAL-SMALL-2507 3, along with CLAUDE-SONNET-4. The temperature was set to 0.0 for224

deterministic outputs for all models and the top_p was set to 1.0. For all experiments, we run the225

agent for a maximum of 75 steps, after which the run is auto-terminated and if a patch is generated, it226

is auto-submitted. For PRM-guided runs, we pass k = 8 most recent steps and the PRM is invoked227

every n = 5 steps. These hyperparameters balance contextual coverage with computational overhead228

and are fixed across all reported experiments. Two NVIDIA A100 GPUs were used to serve the229

models.230

4.3 Evaluation Metrics231

Resolution Rate. The % of instances correctly solved, both the overall rate and breakdowns by232

difficulty [7]: (1) Easy (≤15 minutes for human developers; 194 instances, 38.8% of total), (2)233

Medium (15–60 minutes; 261 instances, 52.2% of total), and (3) Hard (≥1 hour; 45 instances, 9.0%234

of total). This stratification highlights whether improvements generalize beyond the easiest cases.235

Patch Generation Rate. The frequency with which a candidate patch is produced before the agent236

terminates, irrespective of correctness. This includes both, the patches submitted directly by the agent237

using the submit action, as well as auto-submissions in case of termination.238

Average Steps. The average number of steps taken by the policy model per trajectory.239

Cost. We report monetary cost in $ per 100 instances, including the cost of running the policy240

model as well as the PRM interventions. For open source models, we consider API pricing from241

GPU cloud platforms 4 as of July 2025. ($0.08 per million tokens). For the closed source model,242

CLAUDE-SONNET-4, we consider API pricing as of July 2025 ($ 3 and $ 15 per million tokens for243

input and output respectively).244

1https://huggingface.co/SWE-bench/SWE-agent-LM-32B
2https://huggingface.co/mistralai/Devstral-Small-2505
3https://huggingface.co/mistralai/Devstral-Small-2507
4https://www.together.ai/

6

https://huggingface.co/SWE-bench/SWE-agent-LM-32B
https://huggingface.co/mistralai/Devstral-Small-2505
https://huggingface.co/mistralai/Devstral-Small-2507
https://www.together.ai/

Table 2: Open-Source SWE-PRM variations: SWE-PRM is same as policy model. ∆s in brackets
compare to the corresponding base row for each policy. Resolution rate ∆s: green = higher is better.
Steps ∆s: green = lower is better. Numbers in bold are best for that model.

Setting Policy Model Resolution
Rate (%)

Patch Generation
Rate (%) Avg Steps Total Cost ($) per

100 instances

base
SWE-AGENT-LM-32B 40.0 92.4 38.64 2.77
DEVSTRAL-SMALL-2505 34.0 92.6 37.97 2.69
DEVSTRAL-SMALL-2507 30.0 88.0 40.16 2.70

SWE-PRMS
SWE-AGENT-LM-32B 19.6 (-20.4) 67.6 21.31 (-17.33) 2.46
DEVSTRAL-SMALL-2505 34.4 (+0.4) 94.9 41.28 (+3.31) 4.80
DEVSTRAL-SMALL-2507 33.6 (+3.6) 93.4 45.54 (+5.38) 4.84

SWE-PRMC
SWE-AGENT-LM-32B 35.6 (-4.4) 91.4 34.32 (-4.32) 3.77
DEVSTRAL-SMALL-2505 34.2 (+0.2) 92.2 38.39 (+0.42) 3.96
DEVSTRAL-SMALL-2507 30.2 (+0.2) 90.2 43.46 (+3.30) 4.46

SWE-PRMCG

SWE-AGENT-LM-32B 35.6 (-4.4) 89.8 32.71 (-5.93) 3.16
DEVSTRAL-SMALL-2505 34.2 (+0.2) 92.8 37.65 (-0.32) 3.27
DEVSTRAL-SMALL-2507 30.2 (+0.2) 91.0 41.52 (+1.36) 3.73

SWE-PRMD
SWE-AGENT-LM-32B 38.8 (-1.2) 92.2 33.12 (-5.52) 3.31
DEVSTRAL-SMALL-2505 34.2 (+0.2) 93.4 37.89 (-0.08) 3.86
DEVSTRAL-SMALL-2507 30.2 (+0.2) 93.4 40.08 (-0.08) 4.15

SWE-PRMDN

SWE-AGENT-LM-32B 30.0 (-10.0) 79.6 27.54 (-11.10) 3.18
DEVSTRAL-SMALL-2505 34.2 (+0.2) 94.4 37.72 (-0.25) 4.06
DEVSTRAL-SMALL-2507 30.2 (+0.2) 91.6 39.98 (-0.18) 4.53

SWE-PRMDG

SWE-AGENT-LM-32B 34.8 (-5.2) 93.2 33.82 (-4.82) 2.97
DEVSTRAL-SMALL-2505 34.2 (+0.2) 95.4 38.58 (+0.61) 3.47
DEVSTRAL-SMALL-2507 30.2 (+0.2) 93.0 39.52 (-0.64) 3.39

SWE-PRMDNG

SWE-AGENT-LM-32B 30.0 (-10.0) 54.8 10.11 (-28.53) 1.23
DEVSTRAL-SMALL-2505 34.2 (+0.2) 94.4 36.05 (-1.92) 3.29
DEVSTRAL-SMALL-2507 30.4 (+0.4) 91.8 39.22 (-0.94) 3.38

SWE-PRMDR

SWE-AGENT-LM-32B 36.8 (-3.2) 92.8 28.67 (-9.97) 2.82
DEVSTRAL-SMALL-2505 36.0 (+2.0) 95.0 32.33 (-5.64) 3.06
DEVSTRAL-SMALL-2507 32.4 (+2.4) 94.4 37.67 (-2.49) 3.87

Table 3: Closed-Source SWE-PRM variations: SWE-PRM is CLAUDE-SONNET-4 in all cases. Deltas in
brackets compare to the base SWE-AGENT-LM-32B row.

Setting Policy Model Resolution
Rate (%)

Patch Generation
Rate (%) Avg Steps Total Cost ($) per

100 instances

base SWE-AGENT-LM-32B 40.0 92.4 38.64 2.77
CLAUDE-SONNET-4 66.6 100.0 61.72 121.66

SWE-PRMS SWE-AGENT-LM-32B 45.8 (+5.8) 98.2 51.54 (+12.90) 28.42
SWE-PRMD SWE-AGENT-LM-32B 50.6 (+10.6) 98.2 37.99 (-0.65) 25.98
SWE-PRMDR SWE-AGENT-LM-32B 44.8 (+4.8) 98.2 34.38 (-4.26) 24.53

5 Results and Analysis245

We evaluate the effectiveness of SWE-PRM across four dimensions: (i) their impact on overall resolu-246

tion, (ii) performance stratified by task difficulty, (iii) the relative effectiveness of different feedback247

strategies, and (iv) the cost–benefit tradeoffs of using SWE-PRM. Unless otherwise noted, results are248

reported with SWE-AGENT-LM-32B as the base policy model. Full tables are provided in Appendix249

A.2; here we highlight the most salient results.250

5.1 Do off-the-shelf SWE-PRMs improve performance over base agents?251

Open-source SWE-PRM variants. Table 2 compares the base SWE-AGENT-LM-32B with six252

open-source PRM-guided configurations. None improve resolution consistently: the base achieves253

40.0% resolution, while open-source PRM variants range between 30.0–38.8%. In addition, these254

variants often introduce inefficiencies such as longer trajectories or lower patch generation rates.255

Similarly, the DEVSTRAL-SMALL-2505 and DEVSTRAL-SMALL-2507 show little benefit from PRM256

7

ba
se

SW
E-a

ge
nt-

LM
-32

B
PR

M_D

SW
E-a

ge
nt-

LM
-32

B
PR

M_D
R

SW
E-a

ge
nt-

LM
-32

B
PR

M_CG

SW
E-a

ge
nt-

LM
-32

B
PR

M_C

SW
E-a

ge
nt-

LM
-32

B
PR

M_D
G

SW
E-a

ge
nt-

LM
-32

B
PR

M_D
N

SW
E-a

ge
nt-

LM
-32

B

PR
M_D

GN

SW
E-a

ge
nt-

LM
-32

B
PR

M_S

SW
E-a

ge
nt-

LM
-32

B
0

50

100

150

200

N
um

be
r

of
 R

es
ol

ve
d

In
st

an
ce

s

11
1

85
4

20
0

10
9

82
3

19
4

98
83

3
18

4

10
1

75
2

17
8

10
5

70
3

17
8

10
0

73
1

17
4

81
67

2
15

0

81
67

2
15

0

59
37

2
98

SWE-agent-LM-32B PRM Variations

Easy
Medium
Hard
Total

(a) SWE-AGENT-LM-32B PRM variations

ba
se

SW
E-a

ge
nt-

LM
-32

B
PR

M_D
R

Clau
de

-So
nn

et-
4

PR
M_S

Clau
de

-So
nn

et-
4

PR
M_D

Clau
de

-So
nn

et-
4 ba

se

Clau
de

-So
nn

et-
4

0

50

100

150

200

250

300

350

N
um

be
r

of
 R

es
ol

ve
d

In
st

an
ce

s

11
1

85

4

20
0

12
2

96

6

22
4

12
3

10
2

4

22
9

13
4

11
3

6

25
3

15
7 16
4

12

33
3

Claude-4-Sonnet PRM Variations

Easy
Medium
Hard
Total

(b) CLAUDE-SONNET-4 PRM variations

Figure 2: Difficulty-wise instances resolved out of 500 SWE-bench Verified instances (194 Easy, 261
Medium, 45 Hard). PRMD with CLAUDE-SONNET-4 yields the strongest gains across all tiers.

guidance. These results suggest that models finetuned for SWE and agentic tasks are not inherently257

reliable when used as PRMs.258

Closed-source PRM variants. In contrast, Table 3 shows that PRMs based on CLAUDE-SONNET-4259

consistently raise resolution rates above the base. Improvements range from +4.8 to +10.6 percent-260

age points, establishing a clear difference between open- and closed-source settings. The relative261

effectiveness of different feedback strategies is analyzed further in Section 5.3.262

Takeaway. Open-source PRMs fail to improve performance significantly over base agents, whereas263

closed-source PRMs consistently provide resolution gains of 5–11 percentage points.264

5.2 How does performance vary across difficulty levels?265

We focus on SWE-AGENT-LM-32B for difficulty-stratified analysis, as it achieves the best base266

performance among the open-source models (40.0% resolution overall). Figure 2 shows results across267

Easy (194), Medium (261), and Hard (45) instances. The base agent achieves 57.2% on Easy, 32.6%268

on Medium, and only 8.9% on Hard, indicating a steep performance drop on more complex tasks.269

Open-source PRM variants (Figure 2a) do not improve this distribution. For example, PRMC and270

PRMCG reduce overall resolution, while PRMDN and PRMDGN degrade Hard-task performance further.271

Closed-source PRMs with CLAUDE-SONNET-4 (Figure 2b) improve across all tiers. The strongest272

setting, PRMD, reaches 69.1% on Easy, 43.3% on Medium, and 13.3% on Hard. Even unguided273

reasoning (PRMS) improves every tier, though it lengthens trajectories. These gains show that PRMs274

are particularly valuable for Medium and Hard tasks, where trajectory-level inefficiencies are most275

damaging.276

Takeaway. Open-source PRMs provide no benefit across difficulty levels, while closed-source277

PRMs, especially PRMD, deliver consistent improvements, with the largest relative gains on Medium278

and Hard tasks.279

5.3 Which course correction strategies are most effective?280

We next individually compare three feedback strategies with CLAUDE-SONNET-4: simple unguided281

reasoning (PRMS), detailed taxonomy-guided reasoning with feedback (PRMD), and detailed taxonomy-282

guided reasoning with explicit action recommendation (PRMDR).283

Unguided reasoning (PRMS) improves resolution to 45.8% (+5.8 pp) but lengthens trajectories284

substantially (51.5 steps vs. 38.6 for base). Since no error detection is elicited, windows may not285

be explicitly flagged as suboptimal, providing no concrete signal about inefficient behavior; the286

empirical effect is longer, less efficient runs.287

Taxonomy-guided feedback (PRMD) is the strongest setting: resolution reaches 50.6% (+10.6 pp)288

while steps slightly decrease (37.99). Appendix Table 4 shows that nearly every PRM invocation289

marks the window as suboptimal (7.21 out of 7.24), indicating frequent detection of trajectory-level290

8

errors. This shows that structured signals help the agent truncate inefficient exploration rather than291

extend it.292

Taxonomy-guided with action recommendation (PRMDR) achieves the smallest resolution gain293

(44.8%, +4.8 pp). While steps reduce to 34.4, almost every invocation is still flagged suboptimal294

(6.37 out of 6.39), suggesting that rigid prescriptions lead to shorter but less successful runs.295

Across settings, closed-source PRM variants almost always flag windows as suboptimal, reflecting296

strong detection of trajectory-level issues. Open-source PRMs also mark windows as suboptimal,297

but at lower rates, aligning with their weaker overall effectiveness. Taken together, these results298

demonstrate that taxonomy grounding is essential for effective guidance, and that providing explicit299

actions can harm resolution by constraining the agent too tightly.300

Takeaway. PRMD is the most effective strategy, delivering the largest resolution rate gain with fewer301

steps; PRMS lengthens runs for limited benefit, and PRMDR shortens runs but reduces accuracy.302

5.4 What are the cost–benefit tradeoffs of PRMs?303

The final question is whether the substantial performance gains enabled by PRMs justify their304

additional inference cost. Table 3 reports cost per 100 instances. The base SWE-AGENT-LM-32B305

resolves 40.0% of instances at a cost of $2.77. In contrast, closed-source PRMs increase resolution306

to as high as 50.6%, a double-digit relative improvement, while raising cost to $24–$28 per 100307

instances.308

Breaking costs down by component in Appendix A.2 shows that the increase is driven primarily309

by PRM queries: for example, PRMD spends $3.61 per 100 on policy calls and $22.4 on PRM310

calls. Crucially, this overhead translates into more instances successfully resolved. Measured as311

incremental cost per additional success, PRMD achieves the best tradeoff: $23.2 in added cost yields312

10.6 additional resolutions. PRMS and PRMDR are less favorable, but still surpass the base agent in313

absolute performance.314

Viewed from this perspective, PRMs represent a deliberate performance–cost tradeoff. Without them,315

resolution plateaus at 40%. With taxonomy-guided feedback (PRMD), resolution climbs above 50%.316

These results underscore that PRMs are a viable and practical means of unlocking further progress on317

complex tasks like repository-level code generation, and point to future work on making PRM calls318

more cost-efficient.319

Takeaway. PRMs are not a free improvement, but they deliver clear performance gains: PRMD320

surpasses 50% resolution and offers the best cost-benefit profile, making it the most effective path to321

higher accuracy today.322

6 Discussion and Conclusion323

This work introduces SWE-PRM, a real-time course-corrector for software engineering agents. By324

anchoring feedback in a taxonomy of trajectory-level inefficiencies, SWE-PRM delivers lightweight325

interventions that improves agent reliability without altering the base policy model. Our results326

on SWE-BENCH VERIFIED demonstrate three key findings. First, while open-source PRMs offer327

little benefit, closed-source PRMs consistently boost resolution by 5-11 percentage points. Second,328

the strongest gains occur on medium and hard tasks, where trajectory-level inefficiencies are most329

pronounced. Third, among feedback strategies, taxonomy-guided PRMs provide the best balance:330

they improve the resolution rate to above 50% while maintaining or reducing the trajectory lengths.331

Beyond these results, our study highlights broader implications. PRMs shift the design space from332

purely outcome-focused optimization toward process-aware guidance, complementing approaches333

like search-based planning or post-hoc trajectory analysis. Although PRMs add inference overhead,334

their modularity allows them to be flexibly integrated with both open-weight and proprietary models.335

Future work could reduce costs through adaptive invocation schedules or distillation into lighter336

models and extend the taxonomy to other sequential reasoning domains. In sum, PRMs represent a337

practical and principled path forward: they enable agents to not only solve more tasks, but to solve338

them more efficiently, setting the stage for more reliable deployment of LLM agents in complex339

software engineering environments.340

9

References341

[1] Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Yang342

Wang. Swe-search: Enhancing software agents with monte carlo tree search and iterative343

refinement. CoRR, 2024.344

[2] Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Wang.345

Swe-search: Enhancing software agents with monte carlo tree search and iterative refinement,346

2025. URL https://arxiv.org/abs/2410.20285.347

[3] Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh348

Tiwari, Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia,349

Joseph E. Gonzalez, and Ion Stoica. Why do multi-agent llm systems fail?, 2025. URL350

https://arxiv.org/abs/2503.13657.351

[4] Zhi Chen, Wei Ma, and Lingxiao Jiang. Unveiling pitfalls: Understanding why ai-driven code352

agents fail at github issue resolution, 2025. URL https://arxiv.org/abs/2503.12374.353

[5] Le Deng, Zhonghao Jiang, Jialun Cao, Michael Pradel, and Zhongxin Liu. Nocode-bench:354

A benchmark for evaluating natural language-driven feature addition, 2025. URL https:355

//arxiv.org/abs/2507.18130.356

[6] Darshan Deshpande, Varun Gangal, Hersh Mehta, Jitin Krishnan, Anand Kannappan, and357

Rebecca Qian. Trail: Trace reasoning and agentic issue localization, 2025. URL https:358

//arxiv.org/abs/2505.08638.359

[7] Jatin Ganhotra. Cracking the code: How difficult are swe-bench-verified tasks re-360

ally?, April 2025. URL https://jatinganhotra.dev/blog/swe-agents/2025/04/15/361

swe-bench-verified-easy-medium-hard/. Blog post.362

[8] Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, and Roshanak Zilouchian Moghad-363

dam. Refactorbench: Evaluating stateful reasoning in language agents through code, 2025.364

URL https://arxiv.org/abs/2503.07832.365

[9] Naman Jain, Jaskirat Singh, Manish Shetty, Liang Zheng, Koushik Sen, and Ion Stoica. R2e-366

gym: Procedural environments and hybrid verifiers for scaling open-weights swe agents. arXiv367

preprint arXiv:2504.07164, 2025.368

[10] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and369

Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues?370

In The Twelfth International Conference on Learning Representations, 2024. URL https:371

//openreview.net/forum?id=VTF8yNQM66.372

[11] Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng,373

Moontae Lee, Honglak Lee, and Lu Wang. Process reward models that think, 2025. URL374

https://arxiv.org/abs/2504.16828.375

[12] Qingyao Li, Xinyi Dai, Xiangyang Li, Weinan Zhang, Yasheng Wang, Ruiming Tang, and Yong376

Yu. CodePRM: Execution feedback-enhanced process reward model for code generation. In377

Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar, editors,378

Findings of the Association for Computational Linguistics: ACL 2025, pages 8169–8182,379

Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-380

256-5. doi: 10.18653/v1/2025.findings-acl.428. URL https://aclanthology.org/2025.381

findings-acl.428/.382

[13] Wei Li, Xin Zhang, Zhongxin Guo, Shaoguang Mao, Wen Luo, Guangyue Peng, Yangyu Huang,383

Houfeng Wang, and Scarlett Li. Fea-bench: A benchmark for evaluating repository-level code384

generation for feature implementation, 2025. URL https://arxiv.org/abs/2503.06680.385

[14] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan386

Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. CoRR, 2023.387

10

https://arxiv.org/abs/2410.20285
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2503.12374
https://arxiv.org/abs/2507.18130
https://arxiv.org/abs/2507.18130
https://arxiv.org/abs/2507.18130
https://arxiv.org/abs/2505.08638
https://arxiv.org/abs/2505.08638
https://arxiv.org/abs/2505.08638
https://jatinganhotra.dev/blog/swe-agents/2025/04/15/swe-bench-verified-easy-medium-hard/
https://jatinganhotra.dev/blog/swe-agents/2025/04/15/swe-bench-verified-easy-medium-hard/
https://jatinganhotra.dev/blog/swe-agents/2025/04/15/swe-bench-verified-easy-medium-hard/
https://arxiv.org/abs/2503.07832
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2504.16828
https://aclanthology.org/2025.findings-acl.428/
https://aclanthology.org/2025.findings-acl.428/
https://aclanthology.org/2025.findings-acl.428/
https://arxiv.org/abs/2503.06680

[15] Yingwei Ma, Yongbin Li, Yihong Dong, Xue Jiang, Rongyu Cao, Jue Chen, Fei Huang, and388

Binhua Li. Thinking longer, not larger: Enhancing software engineering agents via scaling389

test-time compute, 2025. URL https://arxiv.org/abs/2503.23803.390

[16] Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe391

Zhang. Training software engineering agents and verifiers with swe-gym. In Proceedings of392

the 42nd International Conference on Machine Learning (ICML 2025), 2025. URL https:393

//arxiv.org/abs/2412.21139. arXiv:2412.21139, accepted at ICML 2025.394

[17] Cheng Qian, Emre Can Acikgoz, Hongru Wang, Xiusi Chen, Avirup Sil, Dilek Hakkani-Tür,395

Gokhan Tur, and Heng Ji. Smart: Self-aware agent for tool overuse mitigation, 2025. URL396

https://arxiv.org/abs/2502.11435.397

[18] Muhammad Shihab Rashid, Christian Bock, Yuan Zhuang, Alexander Buchholz, Tim Esler,398

Simon Valentin, Luca Franceschi, Martin Wistuba, Prabhu Teja Sivaprasad, Woo Jung Kim,399

Anoop Deoras, Giovanni Zappella, and Laurent Callot. Swe-polybench: A multi-language400

benchmark for repository level evaluation of coding agents, 2025. URL https://arxiv.org/401

abs/2504.08703.402

[19] Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:403

Exploration-based trajectory optimization for llm agents, 2024. URL https://arxiv.org/404

abs/2403.02502.405

[20] Lin Sun, Chuang Liu, Xiaofeng Ma, Tao Yang, Weijia Lu, and Ning Wu. Freeprm: Training406

process reward models without ground truth process labels, 2025. URL https://arxiv.org/407

abs/2506.03570.408

[21] Yoo Yeon Sung, Hannah Kim, and Dan Zhang. Verila: A human-centered evaluation framework409

for interpretable verification of llm agent failures, 2025. URL https://arxiv.org/abs/410

2503.12651.411

[22] Hanlin Wang, Jian Wang, Chak Tou Leong, and Wenjie Li. Steca: Step-level trajectory412

calibration for llm agent learning, 2025. URL https://arxiv.org/abs/2502.14276.413

[23] Qinzhuo Wu, Pengzhi Gao, Wei Liu, and Jian Luan. Backtrackagent: Enhancing gui agent with414

error detection and backtracking mechanism, 2025. URL https://arxiv.org/abs/2505.415

20660.416

[24] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik417

Narasimhan, and Ofir Press. Swe-agent: agent-computer interfaces enable automated software418

engineering. In Proceedings of the 38th International Conference on Neural Information419

Processing Systems, NIPS ’24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN420

9798331314385.421

[25] John Yang, Kilian Leret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,422

Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software423

engineering agents, 2025. URL https://arxiv.org/abs/2504.21798.424

[26] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan425

Cao. ReAct: Synergizing reasoning and acting in language models. In International Conference426

on Learning Representations (ICLR), 2023.427

[27] Karina Zainullina, Alexander Golubev, Maria Trofimova, Sergei Polezhaev, Ibragim Badertdi-428

nov, Daria Litvintseva, Simon Karasik, Filipp Fisin, Sergei Skvortsov, Maksim Nekrashevich,429

Anton Shevtsov, and Boris Yangel. Guided search strategies in non-serializable environments430

with applications to software engineering agents, 2025. URL https://arxiv.org/abs/431

2505.13652.432

[28] Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen,433

Qi Liu, Xiaojian Zhong, Aoyan Li, Siyao Liu, Yongsheng Xiao, Liangqiang Chen, Yuyu Zhang,434

Jing Su, Tianyu Liu, Rui Long, Kai Shen, and Liang Xiang. Multi-swe-bench: A multilingual435

benchmark for issue resolving, 2025. URL https://arxiv.org/abs/2504.02605.436

11

https://arxiv.org/abs/2503.23803
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2502.11435
https://arxiv.org/abs/2504.08703
https://arxiv.org/abs/2504.08703
https://arxiv.org/abs/2504.08703
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2506.03570
https://arxiv.org/abs/2506.03570
https://arxiv.org/abs/2506.03570
https://arxiv.org/abs/2503.12651
https://arxiv.org/abs/2503.12651
https://arxiv.org/abs/2503.12651
https://arxiv.org/abs/2502.14276
https://arxiv.org/abs/2505.20660
https://arxiv.org/abs/2505.20660
https://arxiv.org/abs/2505.20660
https://arxiv.org/abs/2504.21798
https://arxiv.org/abs/2505.13652
https://arxiv.org/abs/2505.13652
https://arxiv.org/abs/2505.13652
https://arxiv.org/abs/2504.02605

A Appendix437

A.1 Prompts438

Listing 1: Common instructions used for all runs
439

system_template: |-440

You are a helpful assistant that can interact with a computer to solve tasks.441

↪→442

<IMPORTANT>443

* If user provides a path, you should NOT assume it’s relative to the444

↪→ current working directory. Instead, you should explore the file system to445

↪→ find the file before working on it.446

</IMPORTANT>447

448

You have access to the following functions:449

450

---- BEGIN FUNCTION #1: bash ----451

Description: Execute a bash command in the terminal.452

453

Parameters:454

(1) command (string, required): The bash command to execute. Can be empty455

↪→ to view additional logs when previous exit code is ‘-1‘. Can be ‘ctrl+c‘ to456

↪→ interrupt the currently running process.457

---- END FUNCTION #1 ----458

459

---- BEGIN FUNCTION #2: submit ----460

Description: Finish the interaction when the task is complete OR if the461

↪→ assistant cannot proceed further with the task.462

No parameters are required for this function.463

---- END FUNCTION #2 ----464

465

---- BEGIN FUNCTION #3: str_replace_editor ----466

Description: Custom editing tool for viewing, creating and editing files467

* State is persistent across command calls and discussions with the user468

* If ‘path‘ is a file, ‘view‘ displays the result of applying ‘cat -n‘. If ‘469

↪→ path‘ is a directory, ‘view‘ lists non-hidden files and directories up to 2470

↪→ levels deep471

* The ‘create‘ command cannot be used if the specified ‘path‘ already exists472

↪→ as a file473

* If a ‘command‘ generates a long output, it will be truncated and marked474

↪→ with ‘<response clipped>‘475

* The ‘undo_edit‘ command will revert the last edit made to the file at ‘476

↪→ path‘477

478

Notes for using the ‘str_replace‘ command:479

* The ‘old_str‘ parameter should match EXACTLY one or more consecutive lines480

↪→ from the original file. Be mindful of whitespaces!481

* If the ‘old_str‘ parameter is not unique in the file, the replacement will482

↪→ not be performed. Make sure to include enough context in ‘old_str‘ to make483

↪→ it unique484

* The ‘new_str‘ parameter should contain the edited lines that should485

↪→ replace the ‘old_str‘486

487

Parameters:488

(1) command (string, required): The commands to run. Allowed options are: ‘489

↪→ view‘, ‘create‘, ‘str_replace‘, ‘insert‘, ‘undo_edit‘.490

Allowed values: [‘view‘, ‘create‘, ‘str_replace‘, ‘insert‘, ‘undo_edit‘]491

(2) path (string, required): Absolute path to file or directory, e.g. ‘/492

↪→ repo/file.py‘ or ‘/repo‘.493

(3) file_text (string, optional): Required parameter of ‘create‘ command,494

↪→ with the content of the file to be created.495

(4) old_str (string, optional): Required parameter of ‘str_replace‘496

↪→ command containing the string in ‘path‘ to replace.497

12

(5) new_str (string, optional): Optional parameter of ‘str_replace‘498

↪→ command containing the new string (if not given, no string will be added).499

↪→ Required parameter of ‘insert‘ command containing the string to insert.500

(6) insert_line (integer, optional): Required parameter of ‘insert‘501

↪→ command. The ‘new_str‘ will be inserted AFTER the line ‘insert_line‘ of ‘502

↪→ path‘.503

(7) view_range (array, optional): Optional parameter of ‘view‘ command504

↪→ when ‘path‘ points to a file. If none is given, the full file is shown. If505

↪→ provided, the file will be shown in the indicated line number range, e.g.506

↪→ [11, 12] will show lines 11 and 12. Indexing at 1 to start. Setting ‘[507

↪→ start_line, -1]‘ shows all lines from ‘start_line‘ to the end of the file.508

---- END FUNCTION #3 ----509

510

511

If you choose to call a function ONLY reply in the following format with NO512

↪→ suffix:513

514

Provide any reasoning for the function call here.515

<function=example_function_name>516

<parameter=example_parameter_1>value_1</parameter>517

<parameter=example_parameter_2>518

This is the value for the second parameter519

that can span520

multiple lines521

</parameter>522

</function>523

524

<IMPORTANT>525

Reminder:526

- Function calls MUST follow the specified format, start with <function= and527

↪→ end with </function>528

- Required parameters MUST be specified529

- Only call one function at a time530

- Always provide reasoning for your function call in natural language BEFORE531

↪→ the function call (not after)532

</IMPORTANT>533

instance_template: |-534

<uploaded_files>535

{{working_dir}}536

</uploaded_files>537

I’ve uploaded a python code repository in the directory {{working_dir}}.538

↪→ Consider the following PR description:539

540

<pr_description>541

{{problem_statement}}542

</pr_description>543

544

Can you help me implement the necessary changes to the repository so that545

↪→ the requirements specified in the <pr_description> are met?546

I’ve already taken care of all changes to any of the test files described in547

↪→ the <pr_description>. This means you DON’T have to modify the testing548

↪→ logic or any of the tests in any way!549

Your task is to make the minimal changes to non-tests files in the {{550

↪→ working_dir}} directory to ensure the <pr_description> is satisfied.551

Follow these steps to resolve the issue:552

1. As a first step, it might be a good idea to find and read code relevant553

↪→ to the <pr_description>554

2. Create a script to reproduce the error and execute it with ‘python <555

↪→ filename.py>‘ using the bash tool, to confirm the error556

3. Edit the source code of the repo to resolve the issue557

4. Rerun your reproduce script and confirm that the error is fixed!558

5. Think about edgecases and make sure your fix handles them as well559

Your thinking should be thorough and so it’s fine if it’s very long.560

next_step_template: |-561

OBSERVATION:562

13

{{observation}}563

next_step_no_output_template: |-564

Your command ran successfully and did not produce any output.565566

Listing 2: Prompt for the PRMS variant.
567

You are an expert at analyzing SWE-agent trajectories for solving software568

↪→ engineering tasks. Your role is to detect trajectory-level errors and569

↪→ provide corrective guidance to prevent task failure.570

Analyze these recent agent steps for suboptimality.571

572

Common suboptimal patterns include:573

1. **Repetitive actions**: Viewing the same file multiple times without making574

↪→ progress, running the same commands repeatedly575

2. **Not understanding observations**: Ignoring error messages, missing important576

↪→ information in outputs, not reading test failures carefully577

3. **Inefficient exploration**: Looking at irrelevant files, not focusing on the578

↪→ error location, exploring too broadly579

4. **Missing obvious next steps**: Not running tests after changes, not checking580

↪→ if changes work, not reading error traces581

5. **Redundant operations**: Creating files that exist, re-implementing existing582

↪→ functionality583

6. **Poor debugging strategy**: Making random changes without understanding the584

↪→ issue, not isolating the problem585

7. **Incomplete actions**: Starting to edit but not finishing, viewing files586

↪→ without purpose587

588

Recent agent steps:589

590

{{recent_steps}}591

592

If the recent steps are suboptimal, provide DETAILED, ACTIONABLE course-corrective593

↪→ feedback that:594

- Explains specifically why these steps are problematic given the context595

- Suggests concrete next steps the agent should take instead596

- References specific files, functions, or error messages from the trajectory597

- Provides a clear strategy to get back on track598

- Is at least 3-5 sentences long with specific technical guidance599600

Listing 3: Prompt for the PRMC and PRMCG variants.
601

You are a supervisor monitoring an LLM-based coding agent. Your role is to detect602

↪→ trajectory-level errors and provide corrective guidance to prevent task603

↪→ failure.604

605

Analyze the provided agent trace for the following error categories. For each606

↪→ detected error, provide specific evidence and a recovery action.607

608

SPECIFICATION ERRORS (System Design Issues):609

- Task Specification Violations: Agent fails to adhere to task constraints or610

↪→ requirements611

- Role Specification Violations: Agent behaves outside its defined role/612

↪→ responsibilities613

- Step Repetition: Unnecessary repetition of completed steps or actions614

- Termination Condition Unawareness: Agent continues working when task completion615

↪→ criteria are met616

617

REASONING ERRORS (Decision Making Issues):618

- Problem Misidentification: Agent misunderstands the core problem or current619

↪→ subtask620

- Tool Selection Errors: Agent uses inappropriate tools for the current task621

- Hallucinations: Agent generates false information or fabricates tool outputs622

- Information Processing Failures: Poor retrieval of relevant information or623

↪→ misinterpretation624

14

625

COORDINATION ERRORS (Process Management Issues):626

- Task Derailment: Agent deviates from intended objective or loses focus627

- Goal Deviation: Agent pursues goals that don’t serve the main objective628

- Context Handling Failures: Agent loses important context or forgets previous629

↪→ findings630

- Verification Failures: Inadequate checking of work quality or correctness631

632

For each error category, respond with:633

DETECTED: Yes/No634

EVIDENCE: Specific quote or observation from trace (if detected)635

RECOVERY_ACTION: Specific instruction to correct the error (if detected)636

637

Then provide:638

TASK_STATUS: On track / Needs correction / Critical intervention required639

OVERALL_GUIDANCE: 1-2 sentences of specific guidance for the agent640

641

Recent agent steps:642

{{recent_steps}}643

644

Focus on errors that can be corrected through guidance. Be concise but precise in645

↪→ evidence citations. Only mark "DETECTED: Yes" if you have clear evidence.646647

Listing 4: Prompt for the PRMD and PRMDG variants.
648

You are a supervisor monitoring an LLM-based coding agent. Your role is to detect649

↪→ trajectory-level errors and provide corrective guidance to prevent task650

↪→ failure.651

Analyze the provided agent trace for the following error categories. For each652

↪→ detected error, provide specific evidence and a recovery action.653

654

SPECIFICATION ERRORS (System Design Issues)655

656

1. Task Specification Violations657

Definition: Agent fails to adhere to task constraints or requirements658

Recovery: Redirect agent to original task requirements659

660

2. Role Specification Violations661

Definition: Agent behaves outside its defined role/responsibilities662

Recovery: Remind agent of its specific role and boundaries663

664

3. Step Repetition665

Definition: Unnecessary repetition of completed steps or actions666

Recovery: Acknowledge completed work and guide to next logical step667

668

4. Termination Condition Unawareness669

Definition: Agent continues working when task completion criteria are met670

Recovery: Signal completion criteria and instruct to finalize671

672

REASONING ERRORS (Decision Making Issues)673

674

5. Problem Misidentification675

Definition: Agent misunderstands the core problem or current subtask676

Recovery: Clarify the actual problem and expected approach677

678

6. Tool Selection Errors679

Definition: Agent uses inappropriate tools for the current task680

Recovery: Suggest correct tools and explain their appropriate usage681

682

7. Hallucinations683

Definition: Agent generates false information or fabricates tool outputs684

Recovery: Request verification of claims against actual evidence685

686

8. Information Processing Failures687

15

Definition: Poor retrieval of relevant information or misinterpretation688

Recovery: Guide agent to correct information sources and interpretation689

690

COORDINATION ERRORS (Process Management Issues)691

692

9. Task Derailment693

Definition: Agent deviates from intended objective or loses focus694

Recovery: Realign agent with original objectives and priorities695

696

10. Goal Deviation697

Definition: Agent pursues goals that don’t serve the main objective698

Recovery: Refocus on primary goals and expected outcomes699

700

11. Context Handling Failures701

Definition: Agent loses important context or forgets previous findings702

Recovery: Provide context summary and key information recap703

704

12. Verification Failures705

Definition: Inadequate checking of work quality or correctness706

Recovery: Instruct specific verification steps and quality checks707

708

Response Format709

710

For each error category, respond with:711

DETECTED: Yes/No712

EVIDENCE: Specific quote or observation from trace (if detected)713

RECOVERY_ACTION: Specific instruction to correct the error (if detected)714

715

Then provide:716

TASK_STATUS: On track / Needs correction / Critical intervention required717

OVERALL_GUIDANCE: Detailed and specific guidance for the agent718

719

Example Response Structure720

721

SPECIFICATION ERRORS:722

1. Task Specification Violations: DETECTED: No723

2. Role Specification Violations: DETECTED: No724

3. Step Repetition: DETECTED: Yes725

EVIDENCE: "Agent ran the same test command three times: ’pytest test_file.py’"726

RECOVERY_ACTION: "The test has already been executed successfully. Proceed to727

↪→ analyze the results and move to the next development step."728

4. Termination Condition Unawareness: DETECTED: No729

730

REASONING ERRORS:731

5. Problem Misidentification: DETECTED: No732

6. Tool Selection Errors: DETECTED: Yes733

EVIDENCE: "Agent used text editor to run Python code instead of using the Python734

↪→ interpreter"735

RECOVERY_ACTION: "Use the Python interpreter tool for code execution. The text736

↪→ editor is for viewing and modifying files only."737

7. Hallucinations: DETECTED: No738

8. Information Processing Failures: DETECTED: No739

740

COORDINATION ERRORS:741

9. Task Derailment: DETECTED: No742

10. Goal Deviation: DETECTED: No743

11. Context Handling Failures: DETECTED: No744

12. Verification Failures: DETECTED: No745

746

TASK_STATUS: Needs correction747

OVERALL_GUIDANCE: You are repeating actions unnecessarily and using incorrect748

↪→ tools. Specifically:749

1. Stop running the same test command repeatedly - the test ’pytest test_file.py’750

↪→ has already been executed successfully three times with the same result751

16

2. Use the Python interpreter tool for executing Python code, not the text editor752

↪→ which is only for viewing and modifying files753

3. Now focus on analyzing the test results you already obtained to determine what754

↪→ the next development step should be755

4. Review the test output to identify any failing tests or areas that need756

↪→ improvement757

5. If all tests are passing, proceed to verify your implementation meets the758

↪→ original requirements before considering the task complete759

760

Recent agent steps:761

762

{{recent_steps}}763

764

Instructions:765

766

1. Focus on errors that can be corrected through guidance767

2. Provide specific, actionable recovery instructions768

3. Be concise but precise in evidence citations769

4. Only mark "DETECTED: Yes" if you have clear evidence770

5. Prioritize errors that most threaten task completion771772

Listing 5: Prompt for the PRMDN and PRMDNG variants.
773

You are a supervisor monitoring an LLM-based coding agent. Your role is to detect774

↪→ trajectory-level errors and provide corrective guidance to prevent task775

↪→ failure.776

Analyze the provided agent trace for the following error categories. For each777

↪→ detected error, provide specific evidence and a recovery action.778

779

SPECIFICATION ERRORS (System Design Issues)780

781

1. Task Specification Violations782

Definition: Agent fails to adhere to task constraints or requirements783

Recovery: Redirect agent to original task requirements784

785

2. Role Specification Violations786

Definition: Agent behaves outside its defined role/responsibilities787

Recovery: Remind agent of its specific role and boundaries788

789

3. Step Repetition790

Definition: Unnecessary repetition of completed steps or actions791

Recovery: Acknowledge completed work and guide to next logical step792

793

4. Termination Condition Unawareness794

Definition: Agent continues working when task completion criteria are met795

Recovery: Signal completion criteria and instruct to finalize796

797

REASONING ERRORS (Decision Making Issues)798

799

5. Problem Misidentification800

Definition: Agent misunderstands the core problem or current subtask801

Recovery: Clarify the actual problem and expected approach802

803

6. Tool Selection Errors804

Definition: Agent uses inappropriate tools for the current task805

Recovery: Suggest correct tools and explain their appropriate usage806

807

7. Hallucinations808

Definition: Agent generates false information or fabricates tool outputs809

Recovery: Request verification of claims against actual evidence810

811

8. Information Processing Failures812

Definition: Poor retrieval of relevant information or misinterpretation813

Recovery: Guide agent to correct information sources and interpretation814

17

815

COORDINATION ERRORS (Process Management Issues)816

817

9. Task Derailment818

Definition: Agent deviates from intended objective or loses focus819

Recovery: Realign agent with original objectives and priorities820

821

10. Goal Deviation822

Definition: Agent pursues goals that don’t serve the main objective823

Recovery: Refocus on primary goals and expected outcomes824

825

11. Context Handling Failures826

Definition: Agent loses important context or forgets previous findings827

Recovery: Provide context summary and key information recap828

829

12. Verification Failures830

Definition: Inadequate checking of work quality or correctness831

Recovery: Instruct specific verification steps and quality checks832

833

Response Format834

835

For each error category, respond with:836

DETECTED: Yes/No837

EVIDENCE: Specific quote or observation from trace (if detected)838

RECOVERY_ACTION: Specific instruction to correct the error (if detected)839

840

Then provide:841

TASK_STATUS: On track / Needs correction / Critical intervention required842

OVERALL_GUIDANCE: Detailed and specific guidance for the agent843

844

Recent agent steps:845

846

{{recent_steps}}847

848

Instructions:849

850

1. Focus on errors that can be corrected through guidance851

2. Provide specific, actionable recovery instructions852

3. Be concise but precise in evidence citations853

4. Only mark "DETECTED: Yes" if you have clear evidence854

5. Prioritize errors that most threaten task completion855856

Listing 6: Prompt for the PRMDR variant.
857

You are a supervisor monitoring an LLM-based coding agent. Your role is to detect858

↪→ trajectory-level errors and provide corrective guidance to prevent task859

↪→ failure.860

861

The agent has access to the following functions as actions -862

863

---- BEGIN FUNCTION #1: bash ----864

Description: Execute a bash command in the terminal.865

866

Parameters:867

(1) command (string, required): The bash command to execute. Can be empty to view868

↪→ additional logs when previous exit code is ‘-1‘. Can be ‘ctrl+c‘ to869

↪→ interrupt the currently running process.870

---- END FUNCTION #1 ----871

872

---- BEGIN FUNCTION #2: submit ----873

Description: Finish the interaction when the task is complete OR if the assistant874

↪→ cannot proceed further with the task.875

No parameters are required for this function.876

---- END FUNCTION #2 ----877

18

878

---- BEGIN FUNCTION #3: str_replace_editor ----879

Description: Custom editing tool for viewing, creating and editing files880

* State is persistent across command calls and discussions with the user881

* If ‘path‘ is a file, ‘view‘ displays the result of applying ‘cat -n‘. If ‘path‘882

↪→ is a directory, ‘view‘ lists non-hidden files and directories up to 2883

↪→ levels deep884

* The ‘create‘ command cannot be used if the specified ‘path‘ already exists as a885

↪→ file886

* If a ‘command‘ generates a long output, it will be truncated and marked with ‘<887

↪→ response clipped>‘888

* The ‘undo_edit‘ command will revert the last edit made to the file at ‘path‘889

890

Notes for using the ‘str_replace‘ command:891

* The ‘old_str‘ parameter should match EXACTLY one or more consecutive lines from892

↪→ the original file. Be mindful of whitespaces!893

* If the ‘old_str‘ parameter is not unique in the file, the replacement will not894

↪→ be performed. Make sure to include enough context in ‘old_str‘ to make it895

↪→ unique896

* The ‘new_str‘ parameter should contain the edited lines that should replace the ‘897

↪→ old_str‘898

899

Parameters:900

(1) command (string, required): The commands to run. Allowed options are: ‘view‘, ‘901

↪→ create‘, ‘str_replace‘, ‘insert‘, ‘undo_edit‘.902

Allowed values: [‘view‘, ‘create‘, ‘str_replace‘, ‘insert‘, ‘undo_edit‘]903

(2) path (string, required): Absolute path to file or directory, e.g. ‘/repo/file.904

↪→ py‘ or ‘/repo‘.905

(3) file_text (string, optional): Required parameter of ‘create‘ command, with the906

↪→ content of the file to be created.907

(4) old_str (string, optional): Required parameter of ‘str_replace‘ command908

↪→ containing the string in ‘path‘ to replace.909

(5) new_str (string, optional): Optional parameter of ‘str_replace‘ command910

↪→ containing the new string (if not given, no string will be added). Required911

↪→ parameter of ‘insert‘ command containing the string to insert.912

(6) insert_line (integer, optional): Required parameter of ‘insert‘ command. The ‘913

↪→ new_str‘ will be inserted AFTER the line ‘insert_line‘ of ‘path‘.914

(7) view_range (array, optional): Optional parameter of ‘view‘ command when ‘path‘915

↪→ points to a file. If none is given, the full file is shown. If provided,916

↪→ the file will be shown in the indicated line number range, e.g. [11, 12]917

↪→ will show lines 11 and 12. Indexing at 1 to start. Setting ‘[start_line,918

↪→ -1]‘ shows all lines from ‘start_line‘ to the end of the file.919

---- END FUNCTION #3 ----920

921

Analyze the provided agent trace for the following error categories. For each922

↪→ detected error, provide specific evidence and a recovery action.923

924

SPECIFICATION ERRORS (System Design Issues)925

926

1. Task Specification Violations927

Definition: Agent fails to adhere to task constraints or requirements928

Recovery: Redirect agent to original task requirements929

930

2. Role Specification Violations931

Definition: Agent behaves outside its defined role/responsibilities932

Recovery: Remind agent of its specific role and boundaries933

934

3. Step Repetition935

Definition: Unnecessary repetition of completed steps or actions936

Recovery: Acknowledge completed work and guide to next logical step937

938

4. Termination Condition Unawareness939

Definition: Agent continues working when task completion criteria are met940

Recovery: Signal completion criteria and instruct to finalize941

942

19

REASONING ERRORS (Decision Making Issues)943

944

5. Problem Misidentification945

Definition: Agent misunderstands the core problem or current subtask946

Recovery: Clarify the actual problem and expected approach947

948

6. Tool Selection Errors949

Definition: Agent uses inappropriate tools for the current task950

Recovery: Suggest correct tools and explain their appropriate usage951

952

7. Hallucinations953

Definition: Agent generates false information or fabricates tool outputs954

Recovery: Request verification of claims against actual evidence955

956

8. Information Processing Failures957

Definition: Poor retrieval of relevant information or misinterpretation958

Recovery: Guide agent to correct information sources and interpretation959

960

COORDINATION ERRORS (Process Management Issues)961

962

9. Task Derailment963

Definition: Agent deviates from intended objective or loses focus964

Recovery: Realign agent with original objectives and priorities965

966

10. Goal Deviation967

Definition: Agent pursues goals that don’t serve the main objective968

Recovery: Refocus on primary goals and expected outcomes969

970

11. Context Handling Failures971

Definition: Agent loses important context or forgets previous findings972

Recovery: Provide context summary and key information recap973

974

12. Verification Failures975

Definition: Inadequate checking of work quality or correctness976

Recovery: Instruct specific verification steps and quality checks977

978

Response Format979

980

For each error category, respond with:981

DETECTED: Yes/No982

EVIDENCE: Specific quote or observation from trace (if detected)983

RECOVERY_ACTION: Specific instruction to correct the error (if detected)984

985

Then provide:986

TASK_STATUS: On track / Needs correction / Critical intervention required987

OVERALL_GUIDANCE: Detailed and specific guidance for the agent988

RECOMMENDED_ACTION: Recommended next action that the agent should take989

990

Example Response Structure991

992

SPECIFICATION ERRORS:993

1. Task Specification Violations: DETECTED: No994

2. Role Specification Violations: DETECTED: No995

3. Step Repetition: DETECTED: Yes996

EVIDENCE: "Agent ran the same test command three times: ’pytest test_file.py’"997

RECOVERY_ACTION: "The test has already been executed successfully. Proceed to998

↪→ analyze the results and move to the next development step."999

4. Termination Condition Unawareness: DETECTED: No1000

1001

REASONING ERRORS:1002

5. Problem Misidentification: DETECTED: No1003

6. Tool Selection Errors: DETECTED: Yes1004

EVIDENCE: "Agent used text editor to run Python code instead of using the Python1005

↪→ interpreter"1006

20

RECOVERY_ACTION: "Use the Python interpreter tool for code execution. The text1007

↪→ editor is for viewing and modifying files only."1008

7. Hallucinations: DETECTED: No1009

8. Information Processing Failures: DETECTED: No1010

1011

COORDINATION ERRORS:1012

9. Task Derailment: DETECTED: No1013

10. Goal Deviation: DETECTED: No1014

11. Context Handling Failures: DETECTED: No1015

12. Verification Failures: DETECTED: No1016

1017

TASK_STATUS: Needs correction1018

OVERALL_GUIDANCE: You are repeating actions unnecessarily and using incorrect1019

↪→ tools. Specifically:1020

1. Stop running the same test command repeatedly - the test ’pytest test_file.py’1021

↪→ has already been executed successfully three times with the same result1022

2. Use the Python interpreter tool for executing Python code, not the text editor1023

↪→ which is only for viewing and modifying files1024

3. Now focus on analyzing the test results you already obtained to determine what1025

↪→ the next development step should be1026

4. Review the test output to identify any failing tests or areas that need1027

↪→ improvement1028

5. If all tests are passing, proceed to verify your implementation meets the1029

↪→ original requirements before considering the task complete1030

RECOMMENDED_ACTION: str_replace_editor view /path/to/test_output.log1031

1032

Recent agent steps:1033

1034

{{recent_steps}}1035

1036

Instructions:1037

1038

1. Focus on errors that can be corrected through guidance1039

2. Provide specific, actionable recovery instructions1040

3. Be concise but precise in evidence citations1041

4. Only mark "DETECTED: Yes" if you have clear evidence1042

5. Prioritize errors that most threaten task completion1043

6. Provide a concrete recommended next action for the agent to take. This should1044

↪→ be from the functions available to the agent.10451046

A.2 Complete Results1047

21

Ta
bl

e
4:

A
ll

m
et

ri
cs

fo
ra

ll
SW

E
-P

R
M

va
ri

an
ts

an
d

po
lic

y
m

od
el

s.
R

ow
s

w
ith

"+
C

L
A

U
D

E
-S

O
N

N
E

T-
4"

us
e

C
L

A
U

D
E

-S
O

N
N

E
T-

4
fo

rt
he

PR
M

.

Se
tt

in
g

M
od

el
R

es
ol

ut
io

n
R

at
e

(%
)

E
as

y
R

es
ol

ut
io

n
R

at
e

(%
)

M
ed

iu
m

R
es

ol
ut

io
n

R
at

e
(%

)

H
ar

d
R

es
ol

ut
io

n
R

at
e

(%
)

Pa
tc

h
G

en
er

at
io

n
R

at
e

(%
)

Av
g

St
ep

s

Av
g

I/
P

To
ke

ns

Av
g

O
/P

To
ke

ns

Av
g

Su
p.

In
vo

ca
tio

ns
Av

g
Su

p.
I/

P
To

ke
ns

Av
g

Su
p.

O
/P

To
ke

ns

Av
g

O
pt

im
al

W
in

do
w

s

Av
g

Su
bo

pt
im

al
W

in
do

w
s

Po
lic

y
M

od
el

C
os

t(
$)

pe
r

10
0

in
st

an
ce

s

Su
p.

C
os

t(
$)

pe
r

10
0

in
st

an
ce

s

To
ta

l
C

os
t(

$)
pe

r
10

0
in

st
an

ce
s

ba
se

S
W

E
-A

G
E

N
T-

L
M

-3
2B

40
.0

57
.2

32
.6

8.
9

92
.4

38
.6

4
34

05
55

57
44

-
-

-
-

-
2.

77
-

2.
77

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
5

34
.0

51
.0

26
.4

4.
4

92
.6

37
.9

7
33

08
92

54
39

-
-

-
-

-
2.

69
-

2.
69

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
7

30
.0

47
.4

21
.5

4.
4

88
.0

40
.1

6
33

24
07

53
74

-
-

-
-

-
2.

70
-

2.
70

C
L

A
U

D
E

-S
O

N
N

E
T-

4
66

.6
80

.9
62

.8
26

.7
10

0.
0

61
.7

2
37

78
6

25
34

-
-

-
-

-
12

1.
66

-
12

1.
66

SW
E-

PR
M S

S
W

E
-A

G
E

N
T-

L
M

-3
2B

19
.6

30
.4

14
.2

4.
4

67
.6

21
.3

1
25

48
92

27
18

4.
12

29
99

0
19

58
9

-
-

2.
06

0.
40

2.
46

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
5

34
.4

53
.6

24
.9

6.
7

94
.9

41
.2

8
53

63
99

67
23

7.
92

51
62

7
50

23
-

-
4.

34
0.

45
4.

80
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

7
33

.6
50

.5
25

.3
8.

9
93

.4
45

.5
4

54
40

35
64

92
8.

69
49

52
3

46
51

-
-

4.
40

0.
43

4.
84

S
W

E
-A

G
E

N
T-

L
M

-3
2B

+
C

L
A

U
D

E
-S

O
N

N
E

T-
4

45
.8

63
.4

39
.1

8.
9

98
.2

51
.5

4
59

30
77

74
19

10
.0

60
19

2
37

06
-

-
4.

80
23

.6
2

28
.4

2

SW
E-

PR
M C

S
W

E
-A

G
E

N
T-

L
M

-3
2B

35
.6

54
.1

26
.8

6.
7

91
.4

34
.3

2
41

98
19

46
74

6.
49

41
89

4
50

84
0.

37
6.

13
3.

40
0.

38
3.

77
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

5
34

.2
54

.1
24

.9
2.

2
92

.2
38

.3
9

43
80

97
53

26
7.

34
47

71
9

38
01

0.
84

6.
50

3.
55

0.
41

3.
96

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
7

30
.2

47
.9

21
.5

4.
4

90
.2

43
.4

6
49

83
81

65
51

8.
30

48
54

0
38

15
0.

34
7.

96
4.

04
0.

42
4.

46

SW
E-

PR
M C

G

S
W

E
-A

G
E

N
T-

L
M

-3
2B

35
.6

52
.1

28
.7

4.
4

89
.8

32
.7

1
34

48
33

44
26

6.
19

40
82

4
52

74
0.

64
5.

55
2.

79
0.

37
3.

16
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

5
34

.2
54

.1
24

.9
2.

2
92

.8
37

.6
5

35
43

89
51

06
7.

19
45

72
3

37
43

0.
95

6.
24

2.
88

0.
40

3.
27

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
7

30
.2

47
.9

21
.5

4.
4

91
.0

41
.5

2
40

97
03

58
87

7.
88

46
99

1
36

33
0.

53
7.

36
3.

32
0.

40
3.

73

SW
E-

PR
M D

S
W

E
-A

G
E

N
T-

L
M

-3
2B

38
.8

56
.2

31
.4

6.
7

92
.2

33
.1

2
36

06
88

45
10

6.
18

44
75

1
32

62
0.

42
5.

77
2.

92
0.

38
3.

31
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

5
34

.2
54

.1
24

.9
2.

2
93

.4
37

.8
9

42
15

54
57

52
7.

22
52

58
7

28
26

0.
37

6.
85

3.
42

0.
44

3.
86

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
7

30
.2

47
.9

21
.5

4.
4

93
.4

40
.0

8
45

76
84

63
38

7.
63

51
24

2
33

91
0.

31
7.

32
3.

71
0.

44
4.

15
S

W
E

-A
G

E
N

T-
L

M
-3

2B
+

C
L

A
U

D
E

-S
O

N
N

E
T-

4
50

.6
69

.1
43

.3
13

.3
98

.2
37

.9
9

44
61

85
56

74
7.

24
51

44
3

46
21

0.
03

7.
21

3.
61

2.
37

25
.9

8

SW
E-

PR
M D

N

S
W

E
-A

G
E

N
T-

L
M

-3
2B

30
.0

41
.8

25
.7

4.
4

79
.6

27
.5

4
35

04
12

34
07

5.
21

36
68

6
73

06
0.

47
4.

73
2.

83
0.

35
3.

18
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

5
34

.2
54

.1
24

.9
2.

2
94

.4
37

.7
2

45
08

21
54

08
7.

13
47

07
8

46
65

0.
65

6.
48

3.
65

0.
41

4.
06

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
7

30
.2

47
.9

21
.5

4.
4

91
.6

39
.9

8
50

58
66

62
66

7.
63

48
81

6
50

92
0.

69
6.

93
4.

10
0.

43
4.

53

SW
E-

PR
M D

G

S
W

E
-A

G
E

N
T-

L
M

-3
2B

34
.8

51
.5

28
2.

2
93

.2
33

.8
2

32
52

23
45

19
5.

65
39

09
0

27
93

0.
88

4.
77

2.
64

0.
34

2.
97

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
5

34
.2

54
.1

24
.9

2.
2

95
.4

38
.5

8
37

10
01

54
05

7.
39

54
92

6
28

54
1.

00
6.

39
3.

01
0.

46
3.

47
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

7
30

.2
47

.9
21

.5
4.

4
93

39
.5

2
36

45
68

55
57

7.
50

50
05

6
33

25
1.

00
6.

50
2.

96
0.

43
3.

39

SW
E-

PR
M D

N
G

S
W

E
-A

G
E

N
T-

L
M

-3
2B

30
.0

41
.8

25
.7

4.
4

54
.8

10
.1

1
11

08
55

11
18

1.
93

19
37

9
21

79
2

0.
78

1.
15

0.
90

0.
33

1.
23

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
5

34
.2

54
.1

24
.9

2.
2

94
.4

36
.0

5
35

48
03

52
29

6.
80

46
33

5
44

12
0.

99
5.

80
2.

88
0.

41
3.

29
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

7
30

.4
47

.9
21

.8
4.

4
91

.8
39

.2
2

36
55

04
52

60
7.

44
46

25
2

50
66

0.
98

6.
46

2.
97

0.
41

3.
38

SW
E-

PR
M D

R

S
W

E
-A

G
E

N
T-

L
M

-3
2B

36
.8

50
.5

31
.8

6.
7

92
.8

28
.6

7
29

91
91

39
00

5.
44

44
22

3
47

67
0.

49
4.

95
2.

42
0.

39
2.

82
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

5
36

.0
51

.5
30

.3
2.

2
95

.0
32

.3
3

32
60

33
43

00
6.

17
49

44
5

22
87

0.
45

5.
72

2.
64

0.
41

3.
06

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
7

32
.4

51
.0

23
.4

4.
4

94
.4

37
.6

7
41

86
60

51
48

7.
14

56
34

3
31

87
0.

37
6.

78
3.

39
0.

48
3.

87
S

W
E

-A
G

E
N

T-
L

M
-3

2B
+

C
L

A
U

D
E

-S
O

N
N

E
T-

4
44

.8
62

.9
36

.8
13

.3
98

.2
34

.3
8

38
94

20
49

84
6.

39
52

19
3

38
10

0.
02

6.
37

3.
16

21
.3

7
24

.5
3

22

NeurIPS Paper Checklist1048

1. Claims1049

Question: Do the main claims made in the abstract and introduction accurately reflect the1050

paper’s contributions and scope?1051

Answer: [Yes]1052

Justification: The main claims made in the abstract and introduction are backed by the1053

results in Section 5.1054

Guidelines:1055

• The answer NA means that the abstract and introduction do not include the claims1056

made in the paper.1057

• The abstract and/or introduction should clearly state the claims made, including the1058

contributions made in the paper and important assumptions and limitations. A No or1059

NA answer to this question will not be perceived well by the reviewers.1060

• The claims made should match theoretical and experimental results, and reflect how1061

much the results can be expected to generalize to other settings.1062

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1063

are not attained by the paper.1064

2. Limitations1065

Question: Does the paper discuss the limitations of the work performed by the authors?1066

Answer: [Yes]1067

Justification: This is an inference-only based approach. The paper lists finetuning-based1068

approaches as possible future work.1069

Guidelines:1070

• The answer NA means that the paper has no limitation while the answer No means that1071

the paper has limitations, but those are not discussed in the paper.1072

• The authors are encouraged to create a separate "Limitations" section in their paper.1073

• The paper should point out any strong assumptions and how robust the results are to1074

violations of these assumptions (e.g., independence assumptions, noiseless settings,1075

model well-specification, asymptotic approximations only holding locally). The authors1076

should reflect on how these assumptions might be violated in practice and what the1077

implications would be.1078

• The authors should reflect on the scope of the claims made, e.g., if the approach was1079

only tested on a few datasets or with a few runs. In general, empirical results often1080

depend on implicit assumptions, which should be articulated.1081

• The authors should reflect on the factors that influence the performance of the approach.1082

For example, a facial recognition algorithm may perform poorly when image resolution1083

is low or images are taken in low lighting. Or a speech-to-text system might not be1084

used reliably to provide closed captions for online lectures because it fails to handle1085

technical jargon.1086

• The authors should discuss the computational efficiency of the proposed algorithms1087

and how they scale with dataset size.1088

• If applicable, the authors should discuss possible limitations of their approach to1089

address problems of privacy and fairness.1090

• While the authors might fear that complete honesty about limitations might be used by1091

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1092

limitations that aren’t acknowledged in the paper. The authors should use their best1093

judgment and recognize that individual actions in favor of transparency play an impor-1094

tant role in developing norms that preserve the integrity of the community. Reviewers1095

will be specifically instructed to not penalize honesty concerning limitations.1096

3. Theory assumptions and proofs1097

Question: For each theoretical result, does the paper provide the full set of assumptions and1098

a complete (and correct) proof?1099

23

Answer: [NA]1100

Justification: There are no theoretical results.1101

Guidelines:1102

• The answer NA means that the paper does not include theoretical results.1103

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1104

referenced.1105

• All assumptions should be clearly stated or referenced in the statement of any theorems.1106

• The proofs can either appear in the main paper or the supplemental material, but if1107

they appear in the supplemental material, the authors are encouraged to provide a short1108

proof sketch to provide intuition.1109

• Inversely, any informal proof provided in the core of the paper should be complemented1110

by formal proofs provided in appendix or supplemental material.1111

• Theorems and Lemmas that the proof relies upon should be properly referenced.1112

4. Experimental result reproducibility1113

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1114

perimental results of the paper to the extent that it affects the main claims and/or conclusions1115

of the paper (regardless of whether the code and data are provided or not)?1116

Answer: [Yes]1117

Justification: All prompts, model names and hyperparameters have been made available in1118

the paper. This should be sufficient to reproduce the results of the paper even though the1119

code has not been made explicitly available due to legal limitations. SWE-agent, the system1120

that the experiments are based on, is an open-source system.1121

Guidelines:1122

• The answer NA means that the paper does not include experiments.1123

• If the paper includes experiments, a No answer to this question will not be perceived1124

well by the reviewers: Making the paper reproducible is important, regardless of1125

whether the code and data are provided or not.1126

• If the contribution is a dataset and/or model, the authors should describe the steps taken1127

to make their results reproducible or verifiable.1128

• Depending on the contribution, reproducibility can be accomplished in various ways.1129

For example, if the contribution is a novel architecture, describing the architecture fully1130

might suffice, or if the contribution is a specific model and empirical evaluation, it may1131

be necessary to either make it possible for others to replicate the model with the same1132

dataset, or provide access to the model. In general. releasing code and data is often1133

one good way to accomplish this, but reproducibility can also be provided via detailed1134

instructions for how to replicate the results, access to a hosted model (e.g., in the case1135

of a large language model), releasing of a model checkpoint, or other means that are1136

appropriate to the research performed.1137

• While NeurIPS does not require releasing code, the conference does require all submis-1138

sions to provide some reasonable avenue for reproducibility, which may depend on the1139

nature of the contribution. For example1140

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1141

to reproduce that algorithm.1142

(b) If the contribution is primarily a new model architecture, the paper should describe1143

the architecture clearly and fully.1144

(c) If the contribution is a new model (e.g., a large language model), then there should1145

either be a way to access this model for reproducing the results or a way to reproduce1146

the model (e.g., with an open-source dataset or instructions for how to construct1147

the dataset).1148

(d) We recognize that reproducibility may be tricky in some cases, in which case1149

authors are welcome to describe the particular way they provide for reproducibility.1150

In the case of closed-source models, it may be that access to the model is limited in1151

some way (e.g., to registered users), but it should be possible for other researchers1152

to have some path to reproducing or verifying the results.1153

24

5. Open access to data and code1154

Question: Does the paper provide open access to the data and code, with sufficient instruc-1155

tions to faithfully reproduce the main experimental results, as described in supplemental1156

material?1157

Answer: [No]1158

Justification: The dataset SWE-bench and the architecture SWE-agent are publicly available.1159

The code for our experiments will be open sourced in the near future. The paper provides1160

the model names, hyperparameters and prompts that can be used to reproduce experimental1161

results with SWE-agent, which is an open-source system.1162

Guidelines:1163

• The answer NA means that paper does not include experiments requiring code.1164

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1165

public/guides/CodeSubmissionPolicy) for more details.1166

• While we encourage the release of code and data, we understand that this might not be1167

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1168

including code, unless this is central to the contribution (e.g., for a new open-source1169

benchmark).1170

• The instructions should contain the exact command and environment needed to run to1171

reproduce the results. See the NeurIPS code and data submission guidelines (https:1172

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1173

• The authors should provide instructions on data access and preparation, including how1174

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1175

• The authors should provide scripts to reproduce all experimental results for the new1176

proposed method and baselines. If only a subset of experiments are reproducible, they1177

should state which ones are omitted from the script and why.1178

• At submission time, to preserve anonymity, the authors should release anonymized1179

versions (if applicable).1180

• Providing as much information as possible in supplemental material (appended to the1181

paper) is recommended, but including URLs to data and code is permitted.1182

6. Experimental setting/details1183

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1184

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1185

results?1186

Answer: [Yes]1187

Justification: There is no training involved. All model hyperparameters are listed in Section1188

4.21189

Guidelines:1190

• The answer NA means that the paper does not include experiments.1191

• The experimental setting should be presented in the core of the paper to a level of detail1192

that is necessary to appreciate the results and make sense of them.1193

• The full details can be provided either with the code, in appendix, or as supplemental1194

material.1195

7. Experiment statistical significance1196

Question: Does the paper report error bars suitably and correctly defined or other appropriate1197

information about the statistical significance of the experiments?1198

Answer: [No]1199

Justification: The temperature is set to 0.0 which means it is a deterministic setting. Conduct-1200

ing several runs of these experiments would not be fruitful and would be computationally1201

expensive.1202

Guidelines:1203

• The answer NA means that the paper does not include experiments.1204

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1205

dence intervals, or statistical significance tests, at least for the experiments that support1206

the main claims of the paper.1207

• The factors of variability that the error bars are capturing should be clearly stated (for1208

example, train/test split, initialization, random drawing of some parameter, or overall1209

run with given experimental conditions).1210

• The method for calculating the error bars should be explained (closed form formula,1211

call to a library function, bootstrap, etc.)1212

• The assumptions made should be given (e.g., Normally distributed errors).1213

• It should be clear whether the error bar is the standard deviation or the standard error1214

of the mean.1215

• It is OK to report 1-sigma error bars, but one should state it. The authors should1216

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1217

of Normality of errors is not verified.1218

• For asymmetric distributions, the authors should be careful not to show in tables or1219

figures symmetric error bars that would yield results that are out of range (e.g. negative1220

error rates).1221

• If error bars are reported in tables or plots, The authors should explain in the text how1222

they were calculated and reference the corresponding figures or tables in the text.1223

8. Experiments compute resources1224

Question: For each experiment, does the paper provide sufficient information on the com-1225

puter resources (type of compute workers, memory, time of execution) needed to reproduce1226

the experiments?1227

Answer: [Yes]1228

Justification: Mentioned in Section 4.2.1229

Guidelines:1230

• The answer NA means that the paper does not include experiments.1231

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1232

or cloud provider, including relevant memory and storage.1233

• The paper should provide the amount of compute required for each of the individual1234

experimental runs as well as estimate the total compute.1235

• The paper should disclose whether the full research project required more compute1236

than the experiments reported in the paper (e.g., preliminary or failed experiments that1237

didn’t make it into the paper).1238

9. Code of ethics1239

Question: Does the research conducted in the paper conform, in every respect, with the1240

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1241

Answer: [Yes]1242

Justification: The research confirms with the NeurIPS Code of Ethics.1243

Guidelines:1244

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1245

• If the authors answer No, they should explain the special circumstances that require a1246

deviation from the Code of Ethics.1247

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1248

eration due to laws or regulations in their jurisdiction).1249

10. Broader impacts1250

Question: Does the paper discuss both potential positive societal impacts and negative1251

societal impacts of the work performed?1252

Answer: [NA]1253

Justification: NA1254

Guidelines:1255

26

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.1256

• If the authors answer NA or No, they should explain why their work has no societal1257

impact or why the paper does not address societal impact.1258

• Examples of negative societal impacts include potential malicious or unintended uses1259

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1260

(e.g., deployment of technologies that could make decisions that unfairly impact specific1261

groups), privacy considerations, and security considerations.1262

• The conference expects that many papers will be foundational research and not tied1263

to particular applications, let alone deployments. However, if there is a direct path to1264

any negative applications, the authors should point it out. For example, it is legitimate1265

to point out that an improvement in the quality of generative models could be used to1266

generate deepfakes for disinformation. On the other hand, it is not needed to point out1267

that a generic algorithm for optimizing neural networks could enable people to train1268

models that generate Deepfakes faster.1269

• The authors should consider possible harms that could arise when the technology is1270

being used as intended and functioning correctly, harms that could arise when the1271

technology is being used as intended but gives incorrect results, and harms following1272

from (intentional or unintentional) misuse of the technology.1273

• If there are negative societal impacts, the authors could also discuss possible mitigation1274

strategies (e.g., gated release of models, providing defenses in addition to attacks,1275

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1276

feedback over time, improving the efficiency and accessibility of ML).1277

11. Safeguards1278

Question: Does the paper describe safeguards that have been put in place for responsible1279

release of data or models that have a high risk for misuse (e.g., pretrained language models,1280

image generators, or scraped datasets)?1281

Answer: [NA]1282

Justification: NA1283

Guidelines:1284

• The answer NA means that the paper poses no such risks.1285

• Released models that have a high risk for misuse or dual-use should be released with1286

necessary safeguards to allow for controlled use of the model, for example by requiring1287

that users adhere to usage guidelines or restrictions to access the model or implementing1288

safety filters.1289

• Datasets that have been scraped from the Internet could pose safety risks. The authors1290

should describe how they avoided releasing unsafe images.1291

• We recognize that providing effective safeguards is challenging, and many papers do1292

not require this, but we encourage authors to take this into account and make a best1293

faith effort.1294

12. Licenses for existing assets1295

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1296

the paper, properly credited and are the license and terms of use explicitly mentioned and1297

properly respected?1298

Answer: [Yes]1299

Justification: Open source works such as SWE-bench, SWE-agent, etc that have been used1300

for our work have been appropriately cited.1301

Guidelines:1302

• The answer NA means that the paper does not use existing assets.1303

• The authors should cite the original paper that produced the code package or dataset.1304

• The authors should state which version of the asset is used and, if possible, include a1305

URL.1306

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1307

27

• For scraped data from a particular source (e.g., website), the copyright and terms of1308

service of that source should be provided.1309

• If assets are released, the license, copyright information, and terms of use in the1310

package should be provided. For popular datasets, paperswithcode.com/datasets1311

has curated licenses for some datasets. Their licensing guide can help determine the1312

license of a dataset.1313

• For existing datasets that are re-packaged, both the original license and the license of1314

the derived asset (if it has changed) should be provided.1315

• If this information is not available online, the authors are encouraged to reach out to1316

the asset’s creators.1317

13. New assets1318

Question: Are new assets introduced in the paper well documented and is the documentation1319

provided alongside the assets?1320

Answer: [NA]1321

Justification: We have not yet released the code although we plan to do it in the near future.1322

Guidelines:1323

• The answer NA means that the paper does not release new assets.1324

• Researchers should communicate the details of the dataset/code/model as part of their1325

submissions via structured templates. This includes details about training, license,1326

limitations, etc.1327

• The paper should discuss whether and how consent was obtained from people whose1328

asset is used.1329

• At submission time, remember to anonymize your assets (if applicable). You can either1330

create an anonymized URL or include an anonymized zip file.1331

14. Crowdsourcing and research with human subjects1332

Question: For crowdsourcing experiments and research with human subjects, does the paper1333

include the full text of instructions given to participants and screenshots, if applicable, as1334

well as details about compensation (if any)?1335

Answer: [NA]1336

Justification: NA1337

Guidelines:1338

• The answer NA means that the paper does not involve crowdsourcing nor research with1339

human subjects.1340

• Including this information in the supplemental material is fine, but if the main contribu-1341

tion of the paper involves human subjects, then as much detail as possible should be1342

included in the main paper.1343

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1344

or other labor should be paid at least the minimum wage in the country of the data1345

collector.1346

15. Institutional review board (IRB) approvals or equivalent for research with human1347

subjects1348

Question: Does the paper describe potential risks incurred by study participants, whether1349

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1350

approvals (or an equivalent approval/review based on the requirements of your country or1351

institution) were obtained?1352

Answer: [NA]1353

Justification: NA1354

Guidelines:1355

• The answer NA means that the paper does not involve crowdsourcing nor research with1356

human subjects.1357

28

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)1358

may be required for any human subjects research. If you obtained IRB approval, you1359

should clearly state this in the paper.1360

• We recognize that the procedures for this may vary significantly between institutions1361

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1362

guidelines for their institution.1363

• For initial submissions, do not include any information that would break anonymity (if1364

applicable), such as the institution conducting the review.1365

16. Declaration of LLM usage1366

Question: Does the paper describe the usage of LLMs if it is an important, original, or1367

non-standard component of the core methods in this research? Note that if the LLM is used1368

only for writing, editing, or formatting purposes and does not impact the core methodology,1369

scientific rigorousness, or originality of the research, declaration is not required.1370

Answer: [Yes]1371

Justification: The models and hyperparameters used as part of our experimental setup are1372

documented in Section 4.2. The methodology is described in Section 3.1373

Guidelines:1374

• The answer NA means that the core method development in this research does not1375

involve LLMs as any important, original, or non-standard components.1376

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1377

for what should or should not be described.1378

29

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Repository-Level Code Generation
	Improving LLM Agents

	Methodology
	Task and Architecture
	PRM as Course-Corrector
	Motivation and Taxonomy
	Guidance Generation
	Variants

	Experimental Setup
	Dataset
	Models and Hyperparameters
	Evaluation Metrics

	Results and Analysis
	Do off-the-shelf SWE-PRMs improve performance over base agents?
	How does performance vary across difficulty levels?
	Which course correction strategies are most effective?
	What are the cost–benefit tradeoffs of PRMs?

	Discussion and Conclusion
	Appendix
	Prompts
	Complete Results

