
When Agents go Astray:
Course-Correcting SWE Agents with PRMs

Shubham Gandhi∗
Carnegie Mellon University
srgandhi@andrew.cmu.edu

Jason Tsay
IBM Research

jason.tsay@ibm.com

Jatin Ganhotra
IBM Research

jatinganhotra@us.ibm.com

Kiran Kate
IBM Research

kakate@us.ibm.com

Yara Rizk
IBM Research

yara.rizk@ibm.com

Abstract

Large Language Model (LLM) agents are increasingly deployed for complex,
multi-step software engineering (SWE) tasks. However, their trajectories often
contain costly inefficiencies, such as redundant exploration, looping, and failure
to terminate once a solution is reached. Prior work has largely treated these errors
in a post-hoc manner, diagnosing failures only after execution. In this paper, we in-
troduce SWE-PRM, an inference-time Process Reward Model (PRM) that intervenes
during execution to detect and course-correct trajectory-level errors. Our PRM
design leverages a taxonomy of common inefficiencies and delivers lightweight,
interpretable feedback without modifying the underlying policy. On SWE-bench
Verified, closed-source PRMs improve resolution from 40.0% to 50.6% (+10.6
p.p.), with the largest gains on medium and hard tasks. Among feedback strategies,
taxonomy-guided PRMs outperform unguided or explicit action-prescriptive vari-
ants, increasing success rate while reducing trajectory length. These benefits come
at an acceptable added inference cost of as low as $0.2, making PRMs a practical
and scalable mechanism for improving SWE agents’ reliability and efficiency.

1 Introduction

Large Language Model (LLM)-based agents are increasingly deployed for complex, multi-step
software engineering (SWE) tasks, such as repository-level bug fixing and feature implementation
[10, 28, 18, 13, 8, 5]. While recent advances have improved benchmark resolution rates, these gains
often mask hidden inefficiencies in the agent’s execution process. In particular, trajectory-level errors,
i.e. patterns such as action looping, redundant backtracking, or drifting toward irrelevant subgoals,
can accumulate over a run. On top of yielding incorrect actions, these behaviors also waste compute,
inflate latency, and risk exhausting the agent’s budget before task completion.

Prior work on SWE agents has largely focused on maximizing success rate without explicitly
addressing process efficiency. For example, systems such as SWE-smith [25], SWE-gym [16], and
R2E-gym [9] train an open source model to reduce inference cost, but high success rates do not
guarantee low-cost, efficient execution. This gap is particularly significant because trajectory-level
inefficiencies have been documented for SWE tasks [6] and noted in other sequential decision-making
domains [3], suggesting that a mitigation strategy like ours could generalize beyond SWE.

∗Work done as an intern at IBM Research.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments
for Agents (SEA).

Figure 1: SWE-PRM helps mitigate trajectory-level suboptimalities in SWE agents.

Existing approaches for handling trajectory-level errors focus on post-mortem analysis. For example,
TRAIL [6] and MAST [3] rely on dumping the entire trajectory to an LLM judge for error analysis
after execution. While useful for research diagnostics, these methods are impractical in deployment:
they incur substantial context-length overhead, require expensive iterative re-judging, and cannot
prevent wasted computation that has already occurred. In practice, the iterative cycle often involves a
human analyst reviewing error reports and manually adjusting prompts, heuristics, or control logic
between runs. This is fundamentally different from our setting, where the base agent remains fixed
during execution, and intervention is applied only through lightweight, inference-time guidance.

Other strategies for guiding agent behaviour also have limitations. Outcome Reward Models (ORMs)
focus solely on evaluating final solutions for correctness, ignoring process optimality and therefore
missing costly but non-terminal inefficiencies [14]. Some methods use Process Reward Models
(PRM) within Monte-Carlo Tree Search (MCTS) to score multiple future rollouts per step [1];
however, for SWE agents this is prohibitively expensive. Code-editing actions are often irreversible,
making it infeasible to spin up parallel environment instances or reset to arbitrary intermediate states
without high overhead.

In this work, we propose an inference-time PRM, SWE-PRM, that prevents, detects, and course-
corrects trajectory-level errors during execution. The PRM is invoked periodically with a limited
sliding window of past steps and is guided by a taxonomy of common error patterns. It issues action-
able feedback that can be applied immediately, steering the agent back toward efficient completion
without modifying its core architecture or parameters. To the best of our knowledge, this is the
first application of PRMs for real-time trajectory-level error correction in SWE agents. Our design
offers three advantages: (1) real-time mitigation of errors before they propagate, (2) cost-efficiency
through sparse, targeted PRM calls, and (3) modularity for integration with both open-weight and
proprietary LLMs, making it potentially transferable to other domains where similar inefficiencies
have been observed.

We evaluate SWE-PRM on the SWE-bench Verified benchmark using SWE-AGENT-LM-32B,
a finetuned QWEN2.5-CODER-32B-INSTRUCT model as the policy model [25]. We compare
open-weight and frontier models as PRMs, with and without taxonomy guidance. Our results show
that a strong PRM significantly improves resolution rate and cost-effectiveness over both a base
SWE-agent and post-hoc analysis baselines, with consistent gains across all categories: easy, medium,
and hard instances. Concretely, our experiments show that a taxonomy-guided PRM improves
resolution from 40.0% to 50.6% on SWE-bench Verified, including +10.7 points on medium and
+4.4 points on hard tasks. These gains come with shorter or comparable trajectories, translating
into more efficient runs. While PRM guidance adds inference cost, the additional spend amounts
to roughly $0.2 per instance, highlighting PRMs as an attractive tradeoff between accuracy and
efficiency in long-horizon SWE agents.

2 Related Work

2.1 Repository-Level Code Generation

Repository-level software engineering benchmarks have driven much of the recent progress in code
agents. SWE-bench [10] provides realistic bug-fixing and feature implementation tasks from open-

2

source repositories, with deterministic evaluation for correctness. Since SWE-bench, several new
benchmarks have emerged to broaden repository-level evaluation: Multi-SWE-bench [28] extends
issue-resolving tasks to multiple programming languages, SWE-PolyBench [18] introduces multi-
language tasks with syntax tree analysis-based metrics, FEA-Bench [13] focuses on repository-level
feature implementation, RefactorBench [8] targets multi-file refactoring, and NoCode-bench [5]
evaluates natural language-driven feature addition. SWE-gym [16] offers a training and evaluation
framework for coding agents and verifiers, while R2E-gym [9] introduces procedural environments
with hybrid verifiers to facilitate scaling open-weight agents. However, these benchmarks and
frameworks primarily aim to improve final resolution rates and do not directly address execution
efficiency or trajectory-level inefficiencies, which is the focus of our approach. In an effort to replace
frontier models and achieve good performance with open-source models, SWE-Smith [25] scales
data generation for code agents and releases SWE-agent-LM-32B, the policy model we use in our
experiments (a finetuned version of Qwen2.5-Coder-32B-Instruct).

2.2 Improving LLM Agents

A number of works have sought to improve the performance, robustness, and reasoning quality of
LLM agents.

Error analysis and taxonomies. Deshpande et al. [6] introduces a comprehensive taxonomy of
reasoning, execution, and planning errors in SWE agents, with human-annotated traces from SWE-
bench and GAIA. Cemri et al. [3] proposes a taxonomy for multi-agent LLM systems, emphasizing
coordination and reasoning failures. Both rely on post-mortem trajectory dumps to an LLM judge,
often combined with human review, which limits their ability to prevent wasted computation during
execution. Chen et al. [4] similarly analyses common failure modes of code agents on real-world
GitHub issues, while Sung et al. [21] proposes VeriLA, a human-aligned verification framework for
making agent failures more interpretable. These works highlight the need for systematic, taxonomy-
guided diagnostics, but remain primarily retrospective.

Search-based improvements. Antoniades et al. [2] integrate Monte Carlo Tree Search (MCTS)
with self-assessment to explore multiple candidate solution paths in SWE agents, yielding substantial
performance gains without additional model training. Zainullina et al. [27] address search in non-
serializable environments by introducing one-step lookahead and trajectory selection policies guided
by learned action-value estimators, achieving improved results on SWE-bench Verified. While
effective, these methods can be costly for long-horizon, irreversible settings such as repository-level
code editing.

Process optimization and recovery. BacktrackAgent [23] introduces explicit verification, judg-
ment, and reflection mechanisms to detect errors and revert to earlier states in GUI agents. Song
et al. [19] propose exploration-based trajectory optimization that learns from failed attempts to avoid
repeating mistakes. SMART [17] targets tool overuse mitigation by training agents to balance tool
calls with internal reasoning, reducing unnecessary invocations while maintaining or improving
performance. These approaches demonstrate the value of inference-time self-correction, though often
in domains other than repository-level SWE.

Reward models for agent improvement. Reward modeling has been used to guide agents toward
better intermediate decisions across various domains. Outcome Reward Models (ORMs) prioritize
final outcome correctness in a task’s result—for example, ensuring a patched program passes all
tests in repository-level bug fixing [15, 16]. In contrast, Process Reward Models (PRMs) evaluate
each intermediate step’s quality in multi-step reasoning tasks, offering finer-grained feedback signals
[11, 20, 12]. CodePRM [12] integrates execution feedback into step-level thought scoring for
single-turn code generation, improving correctness when paired with a generate-verify-refine loop.
FreePRM [20] trains PRMs without step-level labels, using pseudo-rewards inferred from final
outcomes. STeCa [22] calibrates trajectories at the step level by replacing suboptimal actions with
improved alternatives via LLM self-reflection. ThinkPRM [11] augments PRMs with their own
reasoning chains, outperforming discriminative baselines with far less data.

While PRMs have been embedded into expensive search procedures such as MCTS, such integration
is computationally prohibitive for SWE agents due to costly environment resets. To the best of

3

our knowledge, our work is the first to apply a PRM for real-time trajectory-level error prevention,
detection, and course-correction in SWE agents, using taxonomy-guided, inference-time feedback
without modifying the base policy model.

3 Methodology

3.1 Task and Architecture

We study repository-level issue resolution [10]: given a natural language problem description d, a set
of tool instructions i, and a snapshot of a repository R, the agent must propose a patch p̂ that satisfies
the repository’s test suite S . The suite contains two subsets: Spp (pass-to-pass) tests that must remain
successful to preserve existing functionality, and Sfp (fail-to-pass) tests that must transition from
failing to passing to confirm the requested change. A patch p̂ is accepted iff

∀σ ∈ Spp, σ(p̂(R)) = pass and ∀σ ∈ Sfp, σ(p̂(R)) = pass.

The base agent follows the SWE-agent framework [24], running a ReAct-style loop [26] that records
an explicit transcript of reasoning and interactions. At step t, the transcript is

Ht =
(
u1, a1, o1, u2, a2, o2, . . . , ut, at, ot

)
,

where ui are the model’s thoughts (free-form reasoning), ai are actions (tool calls), and oi are the
resulting observations (e.g., file contents, diffs, or execution outputs). The policy πθ conditions on
Ht to generate the next thought and action, (ut+1, at+1) ∼ πθ(· | Ht, d, i). Executing at+1 yields
ot+1, which is appended back to the transcript. This process is strictly sequential and continues until
the agent submits a patch or reaches its step budget.

The action space is designed to simulate repository-level software engineering. The agent can (i)
execute shell commands with bash, (ii) view or edit files through a persistent str_replace_editor
that supports browsing paths, inserting or replacing code, creating new files, and undoing edits, and
(iii) finalize its work with a submit action. Upon submission, the patch is evaluated in a fresh,
isolated environment.

3.2 PRM as Course-Corrector

Process Reward Models (PRMs) are introduced as lightweight course-correctors within the agent’s
reasoning loop. Rather than replacing the base policy or dictating procedural changes, the PRM
interjects periodically with natural language guidance aimed at steering the trajectory towards the
next optimal action. This guidance is (1) in natural-language with demarcated sections based on
taxonomy, and (2) grounded in the current context Ht, for the policy model to incorporate into its
own reasoning.

3.2.1 Motivation and Taxonomy

Long-horizon software engineering agents frequently accumulate trajectory-level inefficiencies,
patterns of reasoning and action that may not yield immediate incorrectness but gradually erode
efficiency and task success. Prior work such as Trail [6] and MAST [3] introduced taxonomies of
such inefficiencies, but mainly as post-mortem analysis tools, applied after execution to explain
failure. In contrast, we operationalize inefficiency categories during execution, enabling a Process
Reward Model (PRM) to deliver corrective natural language guidance in real time. This distinction
is especially crucial in repository-level code editing on SWE-bench [10], where agents such as
SWE-agent [24] often require dozens of dependent steps and small inefficiencies can compound into
wasted effort or cascading failures.

The taxonomy itself is domain-agnostic, reflecting common patterns of inefficiency that arise in long-
horizon agentic reasoning. We validate it in the SWE setting since it provides a natural stress test, but
the categories are broadly applicable across other domains where agents plan, reason, and act over ex-
tended horizons. The taxonomy was seeded in manual inspection of execution traces and emphasizes
not only the failure mode but also a corresponding recovery action. It is organized into three families:

Specification Errors (violations of task setup). Task specification violations (ignoring explicit re-
quirements), role specification violations (acting outside intended scope), step repetition (re-executing
completed actions), and termination unawareness (continuing after completion criteria are met).

4

Reasoning Errors (decision-making failures). Problem misidentification (misunderstanding the
subtask), tool selection errors (choosing inappropriate tools), hallucinations (fabricating results), and
information processing failures (retrieving or interpreting evidence incorrectly).

Coordination Errors (multi-step process management failures). Task derailment (macro-level
drift, abandoning the main task), goal deviation (micro-level misalignment, pursuing secondary or
irrelevant subgoals), context handling failures (forgetting prior results), and verification failures
(neglecting to check correctness or quality).

Each category is formally defined and paired with a corresponding recovery action, ensuring that
inefficiency detection translates into actionable supervisory guidance rather than generic critique.
For example, in the case of task specification violation, the prescribed recovery action is to redirect
the agent to original task requirements. Full category definitions and recovery mappings are provided
in Appendix A.1.

3.2.2 Guidance Generation

At fixed intervals, the PRM is invoked to provide course-corrective feedback. Every n steps, it
receives as input: (i) the original problem description d, and (ii) the most recent k steps of the agent’s
transcript

H(k)
t =

(
ut−k+1, at−k+1, ot−k+1, . . . , ut, at, ot

)
,

where ui are thoughts, ai are actions, and oi are the corresponding observations. These elements are
serialized into a structured text prompt:

xt = serialize(d,H(k)
t).

The PRM then produces natural language feedback

gt = fϕ(xt, T),

where T is the taxonomy of inefficiencies described in Section 3.2. The taxonomy anchors the
reasoning of the PRM: guidance is framed in terms of specific inefficiency categories (e.g., looping,
redundant backtracking, subgoal drift), rather than unconstrained critique. Importantly, gt is expressed
in natural language that the policy model can readily integrate into its own reasoning process.

3.2.3 Variants

We study different variants of SWE-PRM integration where the PRM provides natural language guid-
ance to the policy model. Appendix A.1 lists the prompts corresponding to each variant. In the unified
setting, where the PRM and the policy are instantiated by the same model, we vary three axes: (i) con-
ciseness of feedback (Concise vs. Detailed), (ii) inclusion of an illustrative example (Example vs. No
Example), and (iii) whether the PRM’s reasoning (taxonomy-based error analysis) is provided to the
policy model alongside the overall guidance (Guidance+Reasoning vs. Guidance-only). This yields
the set of conditions shown in Table 1. We take SWE-PRMD (taxonomy-guided, detailed, with example,
guidance+reasoning) as the canonical variant, since it is the richest form of feedback and aligns most
directly with the intended role of a PRM. Moreover, we also study a simple PRM variant that utilizes
the model’s inherent understanding of trajectory-level errors, i.e. SWE-PRMS , along with explicitly
stating the next action to be taken by the policy model as part of the PRM’s guidance SWE-PRMDR.

In addition, we evaluate a subset of these settings with an expert PRM, where a stronger closed-source
model provides guidance to a weaker open-source policy model. Specifically, we consider SWE-PRMS ,
SWE-PRMD, and SWE-PRMDR, which capture the key baselines. We restrict the grid here due to the
high cost of expert PRM queries, focusing on the most informative comparisons while keeping
experiments tractable.

4 Experimental Setup

4.1 Dataset

We evaluate the proposed framework on SWE-BENCH VERIFIED [10], a subset of SWE-BENCH that
has been verified by human annotators. As explained in Section 3.1, the task involves repository-level

5

Table 1: SWE-PRM variants. ’Simple’ involves using the model’s inherent understanding of trajectory-
level errors as opposed to seeding the reasoning with the taxonomy. ’Action Reco.’ refers to explicitly
stating the next action that the policy model should take.

Name Feedback Style Example Policy Input Action Reco.

SWE-PRMS Simple – Guidance+Reasoning ×
SWE-PRMC Concise ✓ Guidance+Reasoning ×
SWE-PRMCG Concise ✓ Guidance-only ×
SWE-PRMD Detailed ✓ Guidance+Reasoning ×
SWE-PRMDN Detailed × Guidance+Reasoning ×
SWE-PRMDG Detailed ✓ Guidance-only ×
SWE-PRMDNG Detailed × Guidance-only ×
SWE-PRMDR Detailed ✓ Guidance+Reasoning ✓

bug fixing with long-horizon multi-step reasoning. The benchmark contains 500 instances paired
with validated ground-truth patches. Unlike synthetic tasks, these instances reflect the complexity
of real-world software engineering. The dataset serves as a standardized testbed for both baseline
policies and PRM-supervised variants.

4.2 Models and Hyperparameters

We evaluate both open-source and proprietary models. Our experiments include three representative
baselines for open-weights models: SWE-AGENT-LM-32B 2, DEVSTRAL-SMALL-2505 3, and
DEVSTRAL-SMALL-2507 4, along with CLAUDE-SONNET-4. The temperature was set to 0.0 for
deterministic outputs for all models and the top_p was set to 1.0. For all experiments, we run the
agent for a maximum of 75 steps, after which the run is auto-terminated and if a patch is generated, it is
auto-submitted. For PRM-guided runs, we pass k = 8 most recent steps and the PRM is invoked every
n = 5 steps. These hyperparameters balance contextual coverage with computational overhead and
are fixed across all reported experiments. Two NVIDIA A100 GPUs were used to serve the models.

4.3 Evaluation Metrics

Resolution Rate. The % of instances correctly solved, both the overall rate and breakdowns by
difficulty [7]: (1) Easy (≤15 minutes for human developers; 194 instances, 38.8% of total), (2)
Medium (15–60 minutes; 261 instances, 52.2% of total), and (3) Hard (≥1 hour; 45 instances, 9.0%
of total). This stratification highlights whether improvements generalize beyond the easiest cases.

Patch Generation Rate. The frequency with which a candidate patch is produced before the agent
terminates, irrespective of correctness. This includes both, the patches submitted directly by the agent
using the submit action, as well as auto-submissions in case of termination.

Average Steps. The average number of steps taken by the policy model per trajectory.

Cost. We report monetary cost in $ per 100 instances, including the cost of running the policy
model as well as the PRM interventions. For open source models, we consider API pricing from
GPU cloud platforms 5 as of July 2025. ($0.08 per million tokens). For the closed source model,
CLAUDE-SONNET-4, we consider API pricing as of July 2025 ($ 3 and $ 15 per million tokens for
input and output respectively).

2https://huggingface.co/SWE-bench/SWE-agent-LM-32B
3https://huggingface.co/mistralai/Devstral-Small-2505
4https://huggingface.co/mistralai/Devstral-Small-2507
5https://www.together.ai/

6

https://huggingface.co/SWE-bench/SWE-agent-LM-32B
https://huggingface.co/mistralai/Devstral-Small-2505
https://huggingface.co/mistralai/Devstral-Small-2507
https://www.together.ai/

Table 2: Open-Source SWE-PRM variations: SWE-PRM is same as policy model. ∆s in brackets
compare to the corresponding base row for each policy. Resolution rate ∆s: green = higher is better.
Steps, Cost ∆s: green = lower is better. Numbers in bold are best for that model.

Setting Policy Model Resolution
Rate (%)

Patch Generation
Rate (%) Avg Steps Total Cost ($) per

100 instances

base
SWE-AGENT-LM-32B 40.0 92.4 38.64 2.77
DEVSTRAL-SMALL-2505 34.0 92.6 37.97 2.69
DEVSTRAL-SMALL-2507 30.0 88.0 40.16 2.70

SWE-PRMS
SWE-AGENT-LM-32B 19.6 (-20.4) 67.6 21.31 (-17.33) 2.46 (-0.31)
DEVSTRAL-SMALL-2505 34.4 (+0.4) 94.9 41.28 (+3.31) 4.80 (+2.11)
DEVSTRAL-SMALL-2507 33.6 (+3.6) 93.4 45.54 (+5.38) 4.84 (+2.14)

SWE-PRMC
SWE-AGENT-LM-32B 35.6 (-4.4) 91.4 34.32 (-4.32) 3.77 (+1.00)
DEVSTRAL-SMALL-2505 34.2 (+0.2) 92.2 38.39 (+0.42) 3.96 (+1.27)
DEVSTRAL-SMALL-2507 30.2 (+0.2) 90.2 43.46 (+3.30) 4.46 (+1.76)

SWE-PRMCG

SWE-AGENT-LM-32B 35.6 (-4.4) 89.8 32.71 (-5.93) 3.16 (+0.39)
DEVSTRAL-SMALL-2505 34.2 (+0.2) 92.8 37.65 (-0.32) 3.27 (+0.58)
DEVSTRAL-SMALL-2507 30.2 (+0.2) 91.0 41.52 (+1.36) 3.73 (+1.03)

SWE-PRMD
SWE-AGENT-LM-32B 38.8 (-1.2) 92.2 33.12 (-5.52) 3.31 (+0.54)
DEVSTRAL-SMALL-2505 34.2 (+0.2) 93.4 37.89 (-0.08) 3.86 (+1.17)
DEVSTRAL-SMALL-2507 30.2 (+0.2) 93.4 40.08 (-0.08) 4.15 (+1.45)

SWE-PRMDN

SWE-AGENT-LM-32B 30.0 (-10.0) 79.6 27.54 (-11.10) 3.18 (+0.41)
DEVSTRAL-SMALL-2505 34.2 (+0.2) 94.4 37.72 (-0.25) 4.06 (+1.37)
DEVSTRAL-SMALL-2507 30.2 (+0.2) 91.6 39.98 (-0.18) 4.53 (+1.83)

SWE-PRMDG

SWE-AGENT-LM-32B 34.8 (-5.2) 93.2 33.82 (-4.82) 2.97 (+0.20)
DEVSTRAL-SMALL-2505 34.2 (+0.2) 95.4 38.58 (+0.61) 3.47 (+0.78)
DEVSTRAL-SMALL-2507 30.2 (+0.2) 93.0 39.52 (-0.64) 3.39 (+0.69)

SWE-PRMDNG

SWE-AGENT-LM-32B 30.0 (-10.0) 54.8 10.11 (-28.53) 1.23 (-1.54)
DEVSTRAL-SMALL-2505 34.2 (+0.2) 94.4 36.05 (-1.92) 3.29 (+0.60)
DEVSTRAL-SMALL-2507 30.4 (+0.4) 91.8 39.22 (-0.94) 3.38 (+0.68)

SWE-PRMDR

SWE-AGENT-LM-32B 36.8 (-3.2) 92.8 28.67 (-9.97) 2.82 (+0.05)
DEVSTRAL-SMALL-2505 36.0 (+2.0) 95.0 32.33 (-5.64) 3.06 (+0.37)
DEVSTRAL-SMALL-2507 32.4 (+2.4) 94.4 37.67 (-2.49) 3.87 (+1.17)

Table 3: Closed-Source SWE-PRM variations: SWE-PRM is CLAUDE-SONNET-4 in all cases. Deltas in
brackets compare to the base SWE-AGENT-LM-32B row.

Setting Policy Model Resolution
Rate (%)

Patch Generation
Rate (%) Avg Steps Total Cost ($) per

100 instances

base SWE-AGENT-LM-32B 40.0 92.4 38.64 2.77
CLAUDE-SONNET-4 66.6 100.0 61.72 121.66

SWE-PRMS SWE-AGENT-LM-32B 45.8 (+5.8) 98.2 51.54 (+12.90) 28.42 (+25.65)
SWE-PRMD SWE-AGENT-LM-32B 50.6 (+10.6) 98.2 37.99 (-0.65) 25.98 (+23.21)
SWE-PRMDR SWE-AGENT-LM-32B 44.8 (+4.8) 98.2 34.38 (-4.26) 24.53 (+21.76)

5 Results and Analysis

We evaluate the effectiveness of SWE-PRM across four dimensions: (i) their impact on overall resolu-
tion, (ii) performance stratified by task difficulty, (iii) the relative effectiveness of different feedback
strategies, and (iv) the cost–benefit tradeoffs of using SWE-PRM. Unless otherwise noted, results are
reported with SWE-AGENT-LM-32B as the base policy model. Full tables are provided in Appendix
A.2; here we highlight the most salient results.

5.1 Do off-the-shelf SWE-PRMs improve performance over base agents?

Open-source SWE-PRM variants. Table 2 compares the base SWE-AGENT-LM-32B with six
open-source PRM-guided configurations. None improve resolution consistently: the base achieves
40.0% resolution, while open-source PRM variants range between 30.0–38.8%. In addition, these
variants often introduce inefficiencies such as longer trajectories or lower patch generation rates.
Similarly, the DEVSTRAL-SMALL-2505 and DEVSTRAL-SMALL-2507 show little benefit from PRM

7

ba
se

SW
E-a

ge
nt-

LM
-32

B
PR

M_D

SW
E-a

ge
nt-

LM
-32

B
PR

M_D
R

SW
E-a

ge
nt-

LM
-32

B
PR

M_CG

SW
E-a

ge
nt-

LM
-32

B
PR

M_C

SW
E-a

ge
nt-

LM
-32

B
PR

M_D
G

SW
E-a

ge
nt-

LM
-32

B
PR

M_D
N

SW
E-a

ge
nt-

LM
-32

B

PR
M_D

GN

SW
E-a

ge
nt-

LM
-32

B
PR

M_S

SW
E-a

ge
nt-

LM
-32

B
0

50

100

150

200

N
um

be
r

of
 R

es
ol

ve
d

In
st

an
ce

s

11
1

85
4

20
0

10
9

82
3

19
4

98
83

3
18

4

10
1

75
2

17
8

10
5

70
3

17
8

10
0

73
1

17
4

81
67

2
15

0

81
67

2
15

0

59
37

2
98

SWE-agent-LM-32B PRM Variations

Easy
Medium
Hard
Total

(a) SWE-AGENT-LM-32B PRM variations

ba
se

SW
E-a

ge
nt-

LM
-32

B
PR

M_D
R

Clau
de

-So
nn

et-
4

PR
M_S

Clau
de

-So
nn

et-
4

PR
M_D

Clau
de

-So
nn

et-
4 ba

se

Clau
de

-So
nn

et-
4

0

50

100

150

200

250

300

350

N
um

be
r

of
 R

es
ol

ve
d

In
st

an
ce

s

11
1

85

4

20
0

12
2

96

6

22
4

12
3

10
2

4

22
9

13
4

11
3

6

25
3

15
7 16
4

12

33
3

Claude-4-Sonnet PRM Variations

Easy
Medium
Hard
Total

(b) CLAUDE-SONNET-4 PRM variations

Figure 2: Difficulty-wise instances resolved out of 500 SWE-bench Verified instances (194 Easy, 261
Medium, 45 Hard). PRMD with CLAUDE-SONNET-4 yields the strongest gains across all tiers.

guidance. These results suggest that models finetuned for SWE and agentic tasks are not inherently
reliable when used as PRMs.

Closed-source PRM variants. In contrast, Table 3 shows that PRMs based on CLAUDE-SONNET-4
consistently raise resolution rates above the base. Improvements range from +4.8 to +10.6 percent-
age points, establishing a clear difference between open- and closed-source settings. The relative
effectiveness of different feedback strategies is analyzed further in Section 5.3.

Takeaway. Open-source PRMs fail to improve performance significantly over base agents, whereas
closed-source PRMs consistently provide resolution gains of 5–11 percentage points.

5.2 How does performance vary across difficulty levels?

We focus on SWE-AGENT-LM-32B for difficulty-stratified analysis, as it achieves the best base
performance among the open-source models (40.0% resolution overall). Figure 2 shows results across
Easy (194), Medium (261), and Hard (45) instances. The base agent achieves 57.2% on Easy, 32.6%
on Medium, and only 8.9% on Hard, indicating a steep performance drop on more complex tasks.
Open-source PRM variants (Figure 2a) do not improve this distribution. For example, PRMC and
PRMCG reduce overall resolution, while PRMDN and PRMDGN degrade Hard-task performance further.
Closed-source PRMs with CLAUDE-SONNET-4 (Figure 2b) improve across all tiers. The strongest
setting, PRMD, reaches 69.1% on Easy, 43.3% on Medium, and 13.3% on Hard. Even unguided
reasoning (PRMS) improves every tier, though it lengthens trajectories. These gains show that PRMs
are particularly valuable for Medium and Hard tasks, where trajectory-level inefficiencies are most
damaging.

Takeaway. Open-source PRMs provide no benefit across difficulty levels, while closed-source
PRMs, especially PRMD, deliver consistent improvements, with the largest relative gains on Medium
and Hard tasks.

5.3 Which course correction strategies are most effective?

We next individually compare three feedback strategies with CLAUDE-SONNET-4: simple unguided
reasoning (PRMS), detailed taxonomy-guided reasoning with feedback (PRMD), and detailed taxonomy-
guided reasoning with explicit action recommendation (PRMDR).

Unguided reasoning (PRMS) improves resolution to 45.8% (+5.8 pp) but lengthens trajectories
substantially (51.5 steps vs. 38.6 for base). Since no error detection is elicited, windows may not
be explicitly flagged as suboptimal, providing no concrete signal about inefficient behavior; the
empirical effect is longer, less efficient runs.

Taxonomy-guided feedback (PRMD) is the strongest setting: resolution reaches 50.6% (+10.6 pp)
while steps slightly decrease (37.99). Appendix Table 4 shows that nearly every PRM invocation
marks the window as suboptimal (7.21 out of 7.24), indicating frequent detection of trajectory-level

8

errors. This shows that structured signals help the agent truncate inefficient exploration rather than
extend it.

Taxonomy-guided with action recommendation (PRMDR) achieves the smallest resolution gain
(44.8%, +4.8 pp). While steps reduce to 34.4, almost every invocation is still flagged suboptimal
(6.37 out of 6.39), suggesting that rigid prescriptions lead to shorter but less successful runs.

Across settings, closed-source PRM variants almost always flag windows as suboptimal, reflecting
strong detection of trajectory-level issues. Open-source PRMs also mark windows as suboptimal,
but at lower rates, aligning with their weaker overall effectiveness. Taken together, these results
demonstrate that taxonomy grounding is essential for effective guidance, and that providing explicit
actions can harm resolution by constraining the agent too tightly.

Takeaway. PRMD is the most effective strategy, delivering the largest resolution rate gain with fewer
steps; PRMS lengthens runs for limited benefit, and PRMDR shortens runs but reduces accuracy.

5.4 What are the cost–benefit tradeoffs of PRMs?

The final question is whether the substantial performance gains enabled by PRMs justify their
additional inference cost. Table 3 reports cost per 100 instances. The base SWE-AGENT-LM-32B re-
solves 40.0% of instances at a cost of $2.77. In contrast, closed-source PRMs increase resolution to as
high as 50.6%, a double-digit relative improvement, while raising cost to $24–$28 per 100 instances.

Breaking costs down by component in Appendix A.2 shows that the increase is driven primarily
by PRM queries: for example, PRMD spends $3.61 per 100 on policy calls and $22.4 on PRM
calls. Crucially, this overhead translates into more instances successfully resolved. Measured as
incremental cost per additional success, PRMD achieves the best tradeoff: $23.2 in added cost yields
10.6 additional resolutions. PRMS and PRMDR are less favorable, but still surpass the base agent in
absolute performance.

Viewed from this perspective, PRMs represent a deliberate performance–cost tradeoff. Without them,
resolution plateaus at 40%. With taxonomy-guided feedback (PRMD), resolution climbs above 50%.
These results underscore that PRMs are a viable and practical means of unlocking further progress
on complex tasks like repository-level code generation, and point to future work on making PRM
calls more cost-efficient.

Takeaway. PRMs are not a free improvement, but they deliver clear performance gains: PRMD
surpasses 50% resolution and offers the best cost-benefit profile, making it the most effective path to
higher accuracy today.

6 Discussion and Conclusion

This work introduces SWE-PRM, a real-time course-corrector for software engineering agents. By
anchoring feedback in a taxonomy of trajectory-level inefficiencies, SWE-PRM delivers lightweight
interventions that improves agent reliability without altering the base policy model. Our results
on SWE-BENCH VERIFIED demonstrate three key findings. First, while open-source PRMs offer
little benefit, closed-source PRMs consistently boost resolution by 5-11 percentage points. Second,
the strongest gains occur on medium and hard tasks, where trajectory-level inefficiencies are most
pronounced. Third, among feedback strategies, taxonomy-guided PRMs provide the best balance:
they improve the resolution rate to above 50% while maintaining or reducing the trajectory lengths.

Beyond these results, our study highlights broader implications. PRMs shift the design space from
purely outcome-focused optimization toward process-aware guidance, complementing approaches
like search-based planning or post-hoc trajectory analysis. Although PRMs add inference overhead,
their modularity allows them to be flexibly integrated with both open-weight and proprietary models.
Future work could reduce costs through adaptive invocation schedules or distillation into lighter
models and extend the taxonomy to other sequential reasoning domains. In sum, PRMs represent a
practical and principled path forward: they enable agents to not only solve more tasks, but to solve
them more efficiently, setting the stage for more reliable deployment of LLM agents in complex
software engineering environments.

9

References
[1] Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Yang

Wang. Swe-search: Enhancing software agents with monte carlo tree search and iterative
refinement. CoRR, 2024.

[2] Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Wang.
Swe-search: Enhancing software agents with monte carlo tree search and iterative refinement,
2025. URL https://arxiv.org/abs/2410.20285.

[3] Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh
Tiwari, Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia,
Joseph E. Gonzalez, and Ion Stoica. Why do multi-agent llm systems fail?, 2025. URL
https://arxiv.org/abs/2503.13657.

[4] Zhi Chen, Wei Ma, and Lingxiao Jiang. Unveiling pitfalls: Understanding why ai-driven code
agents fail at github issue resolution, 2025. URL https://arxiv.org/abs/2503.12374.

[5] Le Deng, Zhonghao Jiang, Jialun Cao, Michael Pradel, and Zhongxin Liu. Nocode-bench:
A benchmark for evaluating natural language-driven feature addition, 2025. URL https:
//arxiv.org/abs/2507.18130.

[6] Darshan Deshpande, Varun Gangal, Hersh Mehta, Jitin Krishnan, Anand Kannappan, and
Rebecca Qian. Trail: Trace reasoning and agentic issue localization, 2025. URL https:
//arxiv.org/abs/2505.08638.

[7] Jatin Ganhotra. Cracking the code: How difficult are swe-bench-verified tasks re-
ally?, April 2025. URL https://jatinganhotra.dev/blog/swe-agents/2025/04/15/
swe-bench-verified-easy-medium-hard/. Blog post.

[8] Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, and Roshanak Zilouchian Moghad-
dam. Refactorbench: Evaluating stateful reasoning in language agents through code, 2025.
URL https://arxiv.org/abs/2503.07832.

[9] Naman Jain, Jaskirat Singh, Manish Shetty, Liang Zheng, Koushik Sen, and Ion Stoica. R2e-
gym: Procedural environments and hybrid verifiers for scaling open-weights swe agents. arXiv
preprint arXiv:2504.07164, 2025.

[10] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues?
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=VTF8yNQM66.

[11] Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng,
Moontae Lee, Honglak Lee, and Lu Wang. Process reward models that think, 2025. URL
https://arxiv.org/abs/2504.16828.

[12] Qingyao Li, Xinyi Dai, Xiangyang Li, Weinan Zhang, Yasheng Wang, Ruiming Tang, and Yong
Yu. CodePRM: Execution feedback-enhanced process reward model for code generation. In
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar, editors,
Findings of the Association for Computational Linguistics: ACL 2025, pages 8169–8182,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
256-5. doi: 10.18653/v1/2025.findings-acl.428. URL https://aclanthology.org/2025.
findings-acl.428/.

[13] Wei Li, Xin Zhang, Zhongxin Guo, Shaoguang Mao, Wen Luo, Guangyue Peng, Yangyu Huang,
Houfeng Wang, and Scarlett Li. Fea-bench: A benchmark for evaluating repository-level code
generation for feature implementation, 2025. URL https://arxiv.org/abs/2503.06680.

[14] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. CoRR, 2023.

10

https://arxiv.org/abs/2410.20285
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2503.12374
https://arxiv.org/abs/2507.18130
https://arxiv.org/abs/2507.18130
https://arxiv.org/abs/2505.08638
https://arxiv.org/abs/2505.08638
https://jatinganhotra.dev/blog/swe-agents/2025/04/15/swe-bench-verified-easy-medium-hard/
https://jatinganhotra.dev/blog/swe-agents/2025/04/15/swe-bench-verified-easy-medium-hard/
https://arxiv.org/abs/2503.07832
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2504.16828
https://aclanthology.org/2025.findings-acl.428/
https://aclanthology.org/2025.findings-acl.428/
https://arxiv.org/abs/2503.06680

[15] Yingwei Ma, Yongbin Li, Yihong Dong, Xue Jiang, Rongyu Cao, Jue Chen, Fei Huang, and
Binhua Li. Thinking longer, not larger: Enhancing software engineering agents via scaling
test-time compute, 2025. URL https://arxiv.org/abs/2503.23803.

[16] Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym. In Proceedings of
the 42nd International Conference on Machine Learning (ICML 2025), 2025. URL https:
//arxiv.org/abs/2412.21139. arXiv:2412.21139, accepted at ICML 2025.

[17] Cheng Qian, Emre Can Acikgoz, Hongru Wang, Xiusi Chen, Avirup Sil, Dilek Hakkani-Tür,
Gokhan Tur, and Heng Ji. Smart: Self-aware agent for tool overuse mitigation, 2025. URL
https://arxiv.org/abs/2502.11435.

[18] Muhammad Shihab Rashid, Christian Bock, Yuan Zhuang, Alexander Buchholz, Tim Esler,
Simon Valentin, Luca Franceschi, Martin Wistuba, Prabhu Teja Sivaprasad, Woo Jung Kim,
Anoop Deoras, Giovanni Zappella, and Laurent Callot. Swe-polybench: A multi-language
benchmark for repository level evaluation of coding agents, 2025. URL https://arxiv.org/
abs/2504.08703.

[19] Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for llm agents, 2024. URL https://arxiv.org/
abs/2403.02502.

[20] Lin Sun, Chuang Liu, Xiaofeng Ma, Tao Yang, Weijia Lu, and Ning Wu. Freeprm: Training
process reward models without ground truth process labels, 2025. URL https://arxiv.org/
abs/2506.03570.

[21] Yoo Yeon Sung, Hannah Kim, and Dan Zhang. Verila: A human-centered evaluation framework
for interpretable verification of llm agent failures, 2025. URL https://arxiv.org/abs/
2503.12651.

[22] Hanlin Wang, Jian Wang, Chak Tou Leong, and Wenjie Li. Steca: Step-level trajectory
calibration for llm agent learning, 2025. URL https://arxiv.org/abs/2502.14276.

[23] Qinzhuo Wu, Pengzhi Gao, Wei Liu, and Jian Luan. Backtrackagent: Enhancing gui agent with
error detection and backtracking mechanism, 2025. URL https://arxiv.org/abs/2505.
20660.

[24] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: agent-computer interfaces enable automated software
engineering. In Proceedings of the 38th International Conference on Neural Information
Processing Systems, NIPS ’24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN
9798331314385.

[25] John Yang, Kilian Leret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents, 2025. URL https://arxiv.org/abs/2504.21798.

[26] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. ReAct: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

[27] Karina Zainullina, Alexander Golubev, Maria Trofimova, Sergei Polezhaev, Ibragim Badertdi-
nov, Daria Litvintseva, Simon Karasik, Filipp Fisin, Sergei Skvortsov, Maksim Nekrashevich,
Anton Shevtsov, and Boris Yangel. Guided search strategies in non-serializable environments
with applications to software engineering agents, 2025. URL https://arxiv.org/abs/
2505.13652.

[28] Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen,
Qi Liu, Xiaojian Zhong, Aoyan Li, Siyao Liu, Yongsheng Xiao, Liangqiang Chen, Yuyu Zhang,
Jing Su, Tianyu Liu, Rui Long, Kai Shen, and Liang Xiang. Multi-swe-bench: A multilingual
benchmark for issue resolving, 2025. URL https://arxiv.org/abs/2504.02605.

11

https://arxiv.org/abs/2503.23803
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2502.11435
https://arxiv.org/abs/2504.08703
https://arxiv.org/abs/2504.08703
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2506.03570
https://arxiv.org/abs/2506.03570
https://arxiv.org/abs/2503.12651
https://arxiv.org/abs/2503.12651
https://arxiv.org/abs/2502.14276
https://arxiv.org/abs/2505.20660
https://arxiv.org/abs/2505.20660
https://arxiv.org/abs/2504.21798
https://arxiv.org/abs/2505.13652
https://arxiv.org/abs/2505.13652
https://arxiv.org/abs/2504.02605

A Appendix

A.1 Prompts

Listing 1: Common instructions used for all runs

system_template: |-
You are a helpful assistant that can interact with a computer to solve tasks.

↪→
<IMPORTANT>
* If user provides a path, you should NOT assume it’s relative to the

↪→ current working directory. Instead, you should explore the file system to
↪→ find the file before working on it.
</IMPORTANT>

You have access to the following functions:

---- BEGIN FUNCTION #1: bash ----
Description: Execute a bash command in the terminal.

Parameters:
(1) command (string, required): The bash command to execute. Can be empty

↪→ to view additional logs when previous exit code is ‘-1‘. Can be ‘ctrl+c‘ to
↪→ interrupt the currently running process.
---- END FUNCTION #1 ----

---- BEGIN FUNCTION #2: submit ----
Description: Finish the interaction when the task is complete OR if the

↪→ assistant cannot proceed further with the task.
No parameters are required for this function.
---- END FUNCTION #2 ----

---- BEGIN FUNCTION #3: str_replace_editor ----
Description: Custom editing tool for viewing, creating and editing files
* State is persistent across command calls and discussions with the user
* If ‘path‘ is a file, ‘view‘ displays the result of applying ‘cat -n‘. If ‘

↪→ path‘ is a directory, ‘view‘ lists non-hidden files and directories up to 2
↪→ levels deep
* The ‘create‘ command cannot be used if the specified ‘path‘ already exists

↪→ as a file
* If a ‘command‘ generates a long output, it will be truncated and marked

↪→ with ‘<response clipped>‘
* The ‘undo_edit‘ command will revert the last edit made to the file at ‘

↪→ path‘

Notes for using the ‘str_replace‘ command:
* The ‘old_str‘ parameter should match EXACTLY one or more consecutive lines

↪→ from the original file. Be mindful of whitespaces!
* If the ‘old_str‘ parameter is not unique in the file, the replacement will

↪→ not be performed. Make sure to include enough context in ‘old_str‘ to make
↪→ it unique
* The ‘new_str‘ parameter should contain the edited lines that should

↪→ replace the ‘old_str‘

Parameters:
(1) command (string, required): The commands to run. Allowed options are: ‘

↪→ view‘, ‘create‘, ‘str_replace‘, ‘insert‘, ‘undo_edit‘.
Allowed values: [‘view‘, ‘create‘, ‘str_replace‘, ‘insert‘, ‘undo_edit‘]

(2) path (string, required): Absolute path to file or directory, e.g. ‘/
↪→ repo/file.py‘ or ‘/repo‘.

(3) file_text (string, optional): Required parameter of ‘create‘ command,
↪→ with the content of the file to be created.

(4) old_str (string, optional): Required parameter of ‘str_replace‘
↪→ command containing the string in ‘path‘ to replace.

12

(5) new_str (string, optional): Optional parameter of ‘str_replace‘
↪→ command containing the new string (if not given, no string will be added).
↪→ Required parameter of ‘insert‘ command containing the string to insert.

(6) insert_line (integer, optional): Required parameter of ‘insert‘
↪→ command. The ‘new_str‘ will be inserted AFTER the line ‘insert_line‘ of ‘
↪→ path‘.

(7) view_range (array, optional): Optional parameter of ‘view‘ command
↪→ when ‘path‘ points to a file. If none is given, the full file is shown. If
↪→ provided, the file will be shown in the indicated line number range, e.g.
↪→ [11, 12] will show lines 11 and 12. Indexing at 1 to start. Setting ‘[
↪→ start_line, -1]‘ shows all lines from ‘start_line‘ to the end of the file.
---- END FUNCTION #3 ----

If you choose to call a function ONLY reply in the following format with NO
↪→ suffix:

Provide any reasoning for the function call here.
<function=example_function_name>
<parameter=example_parameter_1>value_1</parameter>
<parameter=example_parameter_2>
This is the value for the second parameter
that can span
multiple lines
</parameter>
</function>

<IMPORTANT>
Reminder:
- Function calls MUST follow the specified format, start with <function= and

↪→ end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Always provide reasoning for your function call in natural language BEFORE

↪→ the function call (not after)
</IMPORTANT>

instance_template: |-
<uploaded_files>
{{working_dir}}
</uploaded_files>
I’ve uploaded a python code repository in the directory {{working_dir}}.

↪→ Consider the following PR description:

<pr_description>
{{problem_statement}}
</pr_description>

Can you help me implement the necessary changes to the repository so that
↪→ the requirements specified in the <pr_description> are met?
I’ve already taken care of all changes to any of the test files described in

↪→ the <pr_description>. This means you DON’T have to modify the testing
↪→ logic or any of the tests in any way!
Your task is to make the minimal changes to non-tests files in the {{

↪→ working_dir}} directory to ensure the <pr_description> is satisfied.
Follow these steps to resolve the issue:
1. As a first step, it might be a good idea to find and read code relevant

↪→ to the <pr_description>
2. Create a script to reproduce the error and execute it with ‘python <

↪→ filename.py>‘ using the bash tool, to confirm the error
3. Edit the source code of the repo to resolve the issue
4. Rerun your reproduce script and confirm that the error is fixed!
5. Think about edgecases and make sure your fix handles them as well
Your thinking should be thorough and so it’s fine if it’s very long.

next_step_template: |-
OBSERVATION:

13

{{observation}}
next_step_no_output_template: |-

Your command ran successfully and did not produce any output.

Listing 2: Prompt for the PRMS variant.

You are an expert at analyzing SWE-agent trajectories for solving software
↪→ engineering tasks. Your role is to detect trajectory-level errors and
↪→ provide corrective guidance to prevent task failure.

Analyze these recent agent steps for suboptimality.

Common suboptimal patterns include:
1. **Repetitive actions**: Viewing the same file multiple times without making

↪→ progress, running the same commands repeatedly
2. **Not understanding observations**: Ignoring error messages, missing important

↪→ information in outputs, not reading test failures carefully
3. **Inefficient exploration**: Looking at irrelevant files, not focusing on the

↪→ error location, exploring too broadly
4. **Missing obvious next steps**: Not running tests after changes, not checking

↪→ if changes work, not reading error traces
5. **Redundant operations**: Creating files that exist, re-implementing existing

↪→ functionality
6. **Poor debugging strategy**: Making random changes without understanding the

↪→ issue, not isolating the problem
7. **Incomplete actions**: Starting to edit but not finishing, viewing files

↪→ without purpose

Recent agent steps:

{{recent_steps}}

If the recent steps are suboptimal, provide DETAILED, ACTIONABLE course-corrective
↪→ feedback that:

- Explains specifically why these steps are problematic given the context
- Suggests concrete next steps the agent should take instead
- References specific files, functions, or error messages from the trajectory
- Provides a clear strategy to get back on track
- Is at least 3-5 sentences long with specific technical guidance

Listing 3: Prompt for the PRMC and PRMCG variants.

You are a supervisor monitoring an LLM-based coding agent. Your role is to detect
↪→ trajectory-level errors and provide corrective guidance to prevent task
↪→ failure.

Analyze the provided agent trace for the following error categories. For each
↪→ detected error, provide specific evidence and a recovery action.

SPECIFICATION ERRORS (System Design Issues):
- Task Specification Violations: Agent fails to adhere to task constraints or

↪→ requirements
- Role Specification Violations: Agent behaves outside its defined role/

↪→ responsibilities
- Step Repetition: Unnecessary repetition of completed steps or actions
- Termination Condition Unawareness: Agent continues working when task completion

↪→ criteria are met

REASONING ERRORS (Decision Making Issues):
- Problem Misidentification: Agent misunderstands the core problem or current

↪→ subtask
- Tool Selection Errors: Agent uses inappropriate tools for the current task
- Hallucinations: Agent generates false information or fabricates tool outputs
- Information Processing Failures: Poor retrieval of relevant information or

↪→ misinterpretation

14

COORDINATION ERRORS (Process Management Issues):
- Task Derailment: Agent deviates from intended objective or loses focus
- Goal Deviation: Agent pursues goals that don’t serve the main objective
- Context Handling Failures: Agent loses important context or forgets previous

↪→ findings
- Verification Failures: Inadequate checking of work quality or correctness

For each error category, respond with:
DETECTED: Yes/No
EVIDENCE: Specific quote or observation from trace (if detected)
RECOVERY_ACTION: Specific instruction to correct the error (if detected)

Then provide:
TASK_STATUS: On track / Needs correction / Critical intervention required
OVERALL_GUIDANCE: 1-2 sentences of specific guidance for the agent

Recent agent steps:
{{recent_steps}}

Focus on errors that can be corrected through guidance. Be concise but precise in
↪→ evidence citations. Only mark "DETECTED: Yes" if you have clear evidence.

Listing 4: Prompt for the PRMD and PRMDG variants.

You are a supervisor monitoring an LLM-based coding agent. Your role is to detect
↪→ trajectory-level errors and provide corrective guidance to prevent task
↪→ failure.

Analyze the provided agent trace for the following error categories. For each
↪→ detected error, provide specific evidence and a recovery action.

SPECIFICATION ERRORS (System Design Issues)

1. Task Specification Violations
Definition: Agent fails to adhere to task constraints or requirements
Recovery: Redirect agent to original task requirements

2. Role Specification Violations
Definition: Agent behaves outside its defined role/responsibilities
Recovery: Remind agent of its specific role and boundaries

3. Step Repetition
Definition: Unnecessary repetition of completed steps or actions
Recovery: Acknowledge completed work and guide to next logical step

4. Termination Condition Unawareness
Definition: Agent continues working when task completion criteria are met
Recovery: Signal completion criteria and instruct to finalize

REASONING ERRORS (Decision Making Issues)

5. Problem Misidentification
Definition: Agent misunderstands the core problem or current subtask
Recovery: Clarify the actual problem and expected approach

6. Tool Selection Errors
Definition: Agent uses inappropriate tools for the current task
Recovery: Suggest correct tools and explain their appropriate usage

7. Hallucinations
Definition: Agent generates false information or fabricates tool outputs
Recovery: Request verification of claims against actual evidence

8. Information Processing Failures

15

Definition: Poor retrieval of relevant information or misinterpretation
Recovery: Guide agent to correct information sources and interpretation

COORDINATION ERRORS (Process Management Issues)

9. Task Derailment
Definition: Agent deviates from intended objective or loses focus
Recovery: Realign agent with original objectives and priorities

10. Goal Deviation
Definition: Agent pursues goals that don’t serve the main objective
Recovery: Refocus on primary goals and expected outcomes

11. Context Handling Failures
Definition: Agent loses important context or forgets previous findings
Recovery: Provide context summary and key information recap

12. Verification Failures
Definition: Inadequate checking of work quality or correctness
Recovery: Instruct specific verification steps and quality checks

Response Format

For each error category, respond with:
DETECTED: Yes/No
EVIDENCE: Specific quote or observation from trace (if detected)
RECOVERY_ACTION: Specific instruction to correct the error (if detected)

Then provide:
TASK_STATUS: On track / Needs correction / Critical intervention required
OVERALL_GUIDANCE: Detailed and specific guidance for the agent

Example Response Structure

SPECIFICATION ERRORS:
1. Task Specification Violations: DETECTED: No
2. Role Specification Violations: DETECTED: No
3. Step Repetition: DETECTED: Yes
EVIDENCE: "Agent ran the same test command three times: ’pytest test_file.py’"
RECOVERY_ACTION: "The test has already been executed successfully. Proceed to

↪→ analyze the results and move to the next development step."
4. Termination Condition Unawareness: DETECTED: No

REASONING ERRORS:
5. Problem Misidentification: DETECTED: No
6. Tool Selection Errors: DETECTED: Yes
EVIDENCE: "Agent used text editor to run Python code instead of using the Python

↪→ interpreter"
RECOVERY_ACTION: "Use the Python interpreter tool for code execution. The text

↪→ editor is for viewing and modifying files only."
7. Hallucinations: DETECTED: No
8. Information Processing Failures: DETECTED: No

COORDINATION ERRORS:
9. Task Derailment: DETECTED: No
10. Goal Deviation: DETECTED: No
11. Context Handling Failures: DETECTED: No
12. Verification Failures: DETECTED: No

TASK_STATUS: Needs correction
OVERALL_GUIDANCE: You are repeating actions unnecessarily and using incorrect

↪→ tools. Specifically:
1. Stop running the same test command repeatedly - the test ’pytest test_file.py’

↪→ has already been executed successfully three times with the same result

16

2. Use the Python interpreter tool for executing Python code, not the text editor
↪→ which is only for viewing and modifying files

3. Now focus on analyzing the test results you already obtained to determine what
↪→ the next development step should be

4. Review the test output to identify any failing tests or areas that need
↪→ improvement

5. If all tests are passing, proceed to verify your implementation meets the
↪→ original requirements before considering the task complete

Recent agent steps:

{{recent_steps}}

Instructions:

1. Focus on errors that can be corrected through guidance
2. Provide specific, actionable recovery instructions
3. Be concise but precise in evidence citations
4. Only mark "DETECTED: Yes" if you have clear evidence
5. Prioritize errors that most threaten task completion

Listing 5: Prompt for the PRMDN and PRMDNG variants.

You are a supervisor monitoring an LLM-based coding agent. Your role is to detect
↪→ trajectory-level errors and provide corrective guidance to prevent task
↪→ failure.

Analyze the provided agent trace for the following error categories. For each
↪→ detected error, provide specific evidence and a recovery action.

SPECIFICATION ERRORS (System Design Issues)

1. Task Specification Violations
Definition: Agent fails to adhere to task constraints or requirements
Recovery: Redirect agent to original task requirements

2. Role Specification Violations
Definition: Agent behaves outside its defined role/responsibilities
Recovery: Remind agent of its specific role and boundaries

3. Step Repetition
Definition: Unnecessary repetition of completed steps or actions
Recovery: Acknowledge completed work and guide to next logical step

4. Termination Condition Unawareness
Definition: Agent continues working when task completion criteria are met
Recovery: Signal completion criteria and instruct to finalize

REASONING ERRORS (Decision Making Issues)

5. Problem Misidentification
Definition: Agent misunderstands the core problem or current subtask
Recovery: Clarify the actual problem and expected approach

6. Tool Selection Errors
Definition: Agent uses inappropriate tools for the current task
Recovery: Suggest correct tools and explain their appropriate usage

7. Hallucinations
Definition: Agent generates false information or fabricates tool outputs
Recovery: Request verification of claims against actual evidence

8. Information Processing Failures
Definition: Poor retrieval of relevant information or misinterpretation
Recovery: Guide agent to correct information sources and interpretation

17

COORDINATION ERRORS (Process Management Issues)

9. Task Derailment
Definition: Agent deviates from intended objective or loses focus
Recovery: Realign agent with original objectives and priorities

10. Goal Deviation
Definition: Agent pursues goals that don’t serve the main objective
Recovery: Refocus on primary goals and expected outcomes

11. Context Handling Failures
Definition: Agent loses important context or forgets previous findings
Recovery: Provide context summary and key information recap

12. Verification Failures
Definition: Inadequate checking of work quality or correctness
Recovery: Instruct specific verification steps and quality checks

Response Format

For each error category, respond with:
DETECTED: Yes/No
EVIDENCE: Specific quote or observation from trace (if detected)
RECOVERY_ACTION: Specific instruction to correct the error (if detected)

Then provide:
TASK_STATUS: On track / Needs correction / Critical intervention required
OVERALL_GUIDANCE: Detailed and specific guidance for the agent

Recent agent steps:

{{recent_steps}}

Instructions:

1. Focus on errors that can be corrected through guidance
2. Provide specific, actionable recovery instructions
3. Be concise but precise in evidence citations
4. Only mark "DETECTED: Yes" if you have clear evidence
5. Prioritize errors that most threaten task completion

Listing 6: Prompt for the PRMDR variant.

You are a supervisor monitoring an LLM-based coding agent. Your role is to detect
↪→ trajectory-level errors and provide corrective guidance to prevent task
↪→ failure.

The agent has access to the following functions as actions -

---- BEGIN FUNCTION #1: bash ----
Description: Execute a bash command in the terminal.

Parameters:
(1) command (string, required): The bash command to execute. Can be empty to view

↪→ additional logs when previous exit code is ‘-1‘. Can be ‘ctrl+c‘ to
↪→ interrupt the currently running process.

---- END FUNCTION #1 ----

---- BEGIN FUNCTION #2: submit ----
Description: Finish the interaction when the task is complete OR if the assistant

↪→ cannot proceed further with the task.
No parameters are required for this function.
---- END FUNCTION #2 ----

18

---- BEGIN FUNCTION #3: str_replace_editor ----
Description: Custom editing tool for viewing, creating and editing files
* State is persistent across command calls and discussions with the user
* If ‘path‘ is a file, ‘view‘ displays the result of applying ‘cat -n‘. If ‘path‘

↪→ is a directory, ‘view‘ lists non-hidden files and directories up to 2
↪→ levels deep

* The ‘create‘ command cannot be used if the specified ‘path‘ already exists as a
↪→ file

* If a ‘command‘ generates a long output, it will be truncated and marked with ‘<
↪→ response clipped>‘

* The ‘undo_edit‘ command will revert the last edit made to the file at ‘path‘

Notes for using the ‘str_replace‘ command:
* The ‘old_str‘ parameter should match EXACTLY one or more consecutive lines from

↪→ the original file. Be mindful of whitespaces!
* If the ‘old_str‘ parameter is not unique in the file, the replacement will not

↪→ be performed. Make sure to include enough context in ‘old_str‘ to make it
↪→ unique

* The ‘new_str‘ parameter should contain the edited lines that should replace the ‘
↪→ old_str‘

Parameters:
(1) command (string, required): The commands to run. Allowed options are: ‘view‘, ‘

↪→ create‘, ‘str_replace‘, ‘insert‘, ‘undo_edit‘.
Allowed values: [‘view‘, ‘create‘, ‘str_replace‘, ‘insert‘, ‘undo_edit‘]
(2) path (string, required): Absolute path to file or directory, e.g. ‘/repo/file.

↪→ py‘ or ‘/repo‘.
(3) file_text (string, optional): Required parameter of ‘create‘ command, with the

↪→ content of the file to be created.
(4) old_str (string, optional): Required parameter of ‘str_replace‘ command

↪→ containing the string in ‘path‘ to replace.
(5) new_str (string, optional): Optional parameter of ‘str_replace‘ command

↪→ containing the new string (if not given, no string will be added). Required
↪→ parameter of ‘insert‘ command containing the string to insert.

(6) insert_line (integer, optional): Required parameter of ‘insert‘ command. The ‘
↪→ new_str‘ will be inserted AFTER the line ‘insert_line‘ of ‘path‘.

(7) view_range (array, optional): Optional parameter of ‘view‘ command when ‘path‘
↪→ points to a file. If none is given, the full file is shown. If provided,
↪→ the file will be shown in the indicated line number range, e.g. [11, 12]
↪→ will show lines 11 and 12. Indexing at 1 to start. Setting ‘[start_line,
↪→ -1]‘ shows all lines from ‘start_line‘ to the end of the file.

---- END FUNCTION #3 ----

Analyze the provided agent trace for the following error categories. For each
↪→ detected error, provide specific evidence and a recovery action.

SPECIFICATION ERRORS (System Design Issues)

1. Task Specification Violations
Definition: Agent fails to adhere to task constraints or requirements
Recovery: Redirect agent to original task requirements

2. Role Specification Violations
Definition: Agent behaves outside its defined role/responsibilities
Recovery: Remind agent of its specific role and boundaries

3. Step Repetition
Definition: Unnecessary repetition of completed steps or actions
Recovery: Acknowledge completed work and guide to next logical step

4. Termination Condition Unawareness
Definition: Agent continues working when task completion criteria are met
Recovery: Signal completion criteria and instruct to finalize

19

REASONING ERRORS (Decision Making Issues)

5. Problem Misidentification
Definition: Agent misunderstands the core problem or current subtask
Recovery: Clarify the actual problem and expected approach

6. Tool Selection Errors
Definition: Agent uses inappropriate tools for the current task
Recovery: Suggest correct tools and explain their appropriate usage

7. Hallucinations
Definition: Agent generates false information or fabricates tool outputs
Recovery: Request verification of claims against actual evidence

8. Information Processing Failures
Definition: Poor retrieval of relevant information or misinterpretation
Recovery: Guide agent to correct information sources and interpretation

COORDINATION ERRORS (Process Management Issues)

9. Task Derailment
Definition: Agent deviates from intended objective or loses focus
Recovery: Realign agent with original objectives and priorities

10. Goal Deviation
Definition: Agent pursues goals that don’t serve the main objective
Recovery: Refocus on primary goals and expected outcomes

11. Context Handling Failures
Definition: Agent loses important context or forgets previous findings
Recovery: Provide context summary and key information recap

12. Verification Failures
Definition: Inadequate checking of work quality or correctness
Recovery: Instruct specific verification steps and quality checks

Response Format

For each error category, respond with:
DETECTED: Yes/No
EVIDENCE: Specific quote or observation from trace (if detected)
RECOVERY_ACTION: Specific instruction to correct the error (if detected)

Then provide:
TASK_STATUS: On track / Needs correction / Critical intervention required
OVERALL_GUIDANCE: Detailed and specific guidance for the agent
RECOMMENDED_ACTION: Recommended next action that the agent should take

Example Response Structure

SPECIFICATION ERRORS:
1. Task Specification Violations: DETECTED: No
2. Role Specification Violations: DETECTED: No
3. Step Repetition: DETECTED: Yes
EVIDENCE: "Agent ran the same test command three times: ’pytest test_file.py’"
RECOVERY_ACTION: "The test has already been executed successfully. Proceed to

↪→ analyze the results and move to the next development step."
4. Termination Condition Unawareness: DETECTED: No

REASONING ERRORS:
5. Problem Misidentification: DETECTED: No
6. Tool Selection Errors: DETECTED: Yes
EVIDENCE: "Agent used text editor to run Python code instead of using the Python

↪→ interpreter"

20

RECOVERY_ACTION: "Use the Python interpreter tool for code execution. The text
↪→ editor is for viewing and modifying files only."

7. Hallucinations: DETECTED: No
8. Information Processing Failures: DETECTED: No

COORDINATION ERRORS:
9. Task Derailment: DETECTED: No
10. Goal Deviation: DETECTED: No
11. Context Handling Failures: DETECTED: No
12. Verification Failures: DETECTED: No

TASK_STATUS: Needs correction
OVERALL_GUIDANCE: You are repeating actions unnecessarily and using incorrect

↪→ tools. Specifically:
1. Stop running the same test command repeatedly - the test ’pytest test_file.py’

↪→ has already been executed successfully three times with the same result
2. Use the Python interpreter tool for executing Python code, not the text editor

↪→ which is only for viewing and modifying files
3. Now focus on analyzing the test results you already obtained to determine what

↪→ the next development step should be
4. Review the test output to identify any failing tests or areas that need

↪→ improvement
5. If all tests are passing, proceed to verify your implementation meets the

↪→ original requirements before considering the task complete
RECOMMENDED_ACTION: str_replace_editor view /path/to/test_output.log

Recent agent steps:

{{recent_steps}}

Instructions:

1. Focus on errors that can be corrected through guidance
2. Provide specific, actionable recovery instructions
3. Be concise but precise in evidence citations
4. Only mark "DETECTED: Yes" if you have clear evidence
5. Prioritize errors that most threaten task completion
6. Provide a concrete recommended next action for the agent to take. This should

↪→ be from the functions available to the agent.

A.2 Complete Results

21

Ta
bl

e
4:

A
ll

m
et

ri
cs

fo
ra

ll
SW

E
-P

R
M

va
ri

an
ts

an
d

po
lic

y
m

od
el

s.
R

ow
s

w
ith

"+
C

L
A

U
D

E
-S

O
N

N
E

T-
4"

us
e

C
L

A
U

D
E

-S
O

N
N

E
T-

4
fo

rt
he

PR
M

.

Se
tt

in
g

M
od

el
R

es
ol

ut
io

n
R

at
e

(%
)

E
as

y
R

es
ol

ut
io

n
R

at
e

(%
)

M
ed

iu
m

R
es

ol
ut

io
n

R
at

e
(%

)

H
ar

d
R

es
ol

ut
io

n
R

at
e

(%
)

Pa
tc

h
G

en
er

at
io

n
R

at
e

(%
)

Av
g

St
ep

s

Av
g

I/
P

To
ke

ns

Av
g

O
/P

To
ke

ns

Av
g

Su
p.

In
vo

ca
tio

ns
Av

g
Su

p.
I/

P
To

ke
ns

Av
g

Su
p.

O
/P

To
ke

ns

Av
g

O
pt

im
al

W
in

do
w

s

Av
g

Su
bo

pt
im

al
W

in
do

w
s

Po
lic

y
M

od
el

C
os

t(
$)

pe
r

10
0

in
st

an
ce

s

Su
p.

C
os

t(
$)

pe
r

10
0

in
st

an
ce

s

To
ta

l
C

os
t(

$)
pe

r
10

0
in

st
an

ce
s

ba
se

S
W

E
-A

G
E

N
T-

L
M

-3
2B

40
.0

57
.2

32
.6

8.
9

92
.4

38
.6

4
34

05
55

57
44

-
-

-
-

-
2.

77
-

2.
77

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
5

34
.0

51
.0

26
.4

4.
4

92
.6

37
.9

7
33

08
92

54
39

-
-

-
-

-
2.

69
-

2.
69

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
7

30
.0

47
.4

21
.5

4.
4

88
.0

40
.1

6
33

24
07

53
74

-
-

-
-

-
2.

70
-

2.
70

C
L

A
U

D
E

-S
O

N
N

E
T-

4
66

.6
80

.9
62

.8
26

.7
10

0.
0

61
.7

2
37

78
6

25
34

-
-

-
-

-
12

1.
66

-
12

1.
66

SW
E-

PR
M S

S
W

E
-A

G
E

N
T-

L
M

-3
2B

19
.6

30
.4

14
.2

4.
4

67
.6

21
.3

1
25

48
92

27
18

4.
12

29
99

0
19

58
9

-
-

2.
06

0.
40

2.
46

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
5

34
.4

53
.6

24
.9

6.
7

94
.9

41
.2

8
53

63
99

67
23

7.
92

51
62

7
50

23
-

-
4.

34
0.

45
4.

80
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

7
33

.6
50

.5
25

.3
8.

9
93

.4
45

.5
4

54
40

35
64

92
8.

69
49

52
3

46
51

-
-

4.
40

0.
43

4.
84

S
W

E
-A

G
E

N
T-

L
M

-3
2B

+
C

L
A

U
D

E
-S

O
N

N
E

T-
4

45
.8

63
.4

39
.1

8.
9

98
.2

51
.5

4
59

30
77

74
19

10
.0

60
19

2
37

06
-

-
4.

80
23

.6
2

28
.4

2

SW
E-

PR
M C

S
W

E
-A

G
E

N
T-

L
M

-3
2B

35
.6

54
.1

26
.8

6.
7

91
.4

34
.3

2
41

98
19

46
74

6.
49

41
89

4
50

84
0.

37
6.

13
3.

40
0.

38
3.

77
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

5
34

.2
54

.1
24

.9
2.

2
92

.2
38

.3
9

43
80

97
53

26
7.

34
47

71
9

38
01

0.
84

6.
50

3.
55

0.
41

3.
96

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
7

30
.2

47
.9

21
.5

4.
4

90
.2

43
.4

6
49

83
81

65
51

8.
30

48
54

0
38

15
0.

34
7.

96
4.

04
0.

42
4.

46

SW
E-

PR
M C

G

S
W

E
-A

G
E

N
T-

L
M

-3
2B

35
.6

52
.1

28
.7

4.
4

89
.8

32
.7

1
34

48
33

44
26

6.
19

40
82

4
52

74
0.

64
5.

55
2.

79
0.

37
3.

16
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

5
34

.2
54

.1
24

.9
2.

2
92

.8
37

.6
5

35
43

89
51

06
7.

19
45

72
3

37
43

0.
95

6.
24

2.
88

0.
40

3.
27

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
7

30
.2

47
.9

21
.5

4.
4

91
.0

41
.5

2
40

97
03

58
87

7.
88

46
99

1
36

33
0.

53
7.

36
3.

32
0.

40
3.

73

SW
E-

PR
M D

S
W

E
-A

G
E

N
T-

L
M

-3
2B

38
.8

56
.2

31
.4

6.
7

92
.2

33
.1

2
36

06
88

45
10

6.
18

44
75

1
32

62
0.

42
5.

77
2.

92
0.

38
3.

31
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

5
34

.2
54

.1
24

.9
2.

2
93

.4
37

.8
9

42
15

54
57

52
7.

22
52

58
7

28
26

0.
37

6.
85

3.
42

0.
44

3.
86

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
7

30
.2

47
.9

21
.5

4.
4

93
.4

40
.0

8
45

76
84

63
38

7.
63

51
24

2
33

91
0.

31
7.

32
3.

71
0.

44
4.

15
S

W
E

-A
G

E
N

T-
L

M
-3

2B
+

C
L

A
U

D
E

-S
O

N
N

E
T-

4
50

.6
69

.1
43

.3
13

.3
98

.2
37

.9
9

44
61

85
56

74
7.

24
51

44
3

46
21

0.
03

7.
21

3.
61

2.
37

25
.9

8

SW
E-

PR
M D

N

S
W

E
-A

G
E

N
T-

L
M

-3
2B

30
.0

41
.8

25
.7

4.
4

79
.6

27
.5

4
35

04
12

34
07

5.
21

36
68

6
73

06
0.

47
4.

73
2.

83
0.

35
3.

18
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

5
34

.2
54

.1
24

.9
2.

2
94

.4
37

.7
2

45
08

21
54

08
7.

13
47

07
8

46
65

0.
65

6.
48

3.
65

0.
41

4.
06

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
7

30
.2

47
.9

21
.5

4.
4

91
.6

39
.9

8
50

58
66

62
66

7.
63

48
81

6
50

92
0.

69
6.

93
4.

10
0.

43
4.

53

SW
E-

PR
M D

G

S
W

E
-A

G
E

N
T-

L
M

-3
2B

34
.8

51
.5

28
2.

2
93

.2
33

.8
2

32
52

23
45

19
5.

65
39

09
0

27
93

0.
88

4.
77

2.
64

0.
34

2.
97

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
5

34
.2

54
.1

24
.9

2.
2

95
.4

38
.5

8
37

10
01

54
05

7.
39

54
92

6
28

54
1.

00
6.

39
3.

01
0.

46
3.

47
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

7
30

.2
47

.9
21

.5
4.

4
93

39
.5

2
36

45
68

55
57

7.
50

50
05

6
33

25
1.

00
6.

50
2.

96
0.

43
3.

39

SW
E-

PR
M D

N
G

S
W

E
-A

G
E

N
T-

L
M

-3
2B

30
.0

41
.8

25
.7

4.
4

54
.8

10
.1

1
11

08
55

11
18

1.
93

19
37

9
21

79
2

0.
78

1.
15

0.
90

0.
33

1.
23

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
5

34
.2

54
.1

24
.9

2.
2

94
.4

36
.0

5
35

48
03

52
29

6.
80

46
33

5
44

12
0.

99
5.

80
2.

88
0.

41
3.

29
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

7
30

.4
47

.9
21

.8
4.

4
91

.8
39

.2
2

36
55

04
52

60
7.

44
46

25
2

50
66

0.
98

6.
46

2.
97

0.
41

3.
38

SW
E-

PR
M D

R

S
W

E
-A

G
E

N
T-

L
M

-3
2B

36
.8

50
.5

31
.8

6.
7

92
.8

28
.6

7
29

91
91

39
00

5.
44

44
22

3
47

67
0.

49
4.

95
2.

42
0.

39
2.

82
D

E
V

S
T

R
A

L
-S

M
A

L
L

-2
50

5
36

.0
51

.5
30

.3
2.

2
95

.0
32

.3
3

32
60

33
43

00
6.

17
49

44
5

22
87

0.
45

5.
72

2.
64

0.
41

3.
06

D
E

V
S

T
R

A
L

-S
M

A
L

L
-2

50
7

32
.4

51
.0

23
.4

4.
4

94
.4

37
.6

7
41

86
60

51
48

7.
14

56
34

3
31

87
0.

37
6.

78
3.

39
0.

48
3.

87
S

W
E

-A
G

E
N

T-
L

M
-3

2B
+

C
L

A
U

D
E

-S
O

N
N

E
T-

4
44

.8
62

.9
36

.8
13

.3
98

.2
34

.3
8

38
94

20
49

84
6.

39
52

19
3

38
10

0.
02

6.
37

3.
16

21
.3

7
24

.5
3

22

	Introduction
	Related Work
	Repository-Level Code Generation
	Improving LLM Agents

	Methodology
	Task and Architecture
	PRM as Course-Corrector
	Motivation and Taxonomy
	Guidance Generation
	Variants

	Experimental Setup
	Dataset
	Models and Hyperparameters
	Evaluation Metrics

	Results and Analysis
	Do off-the-shelf SWE-PRMs improve performance over base agents?
	How does performance vary across difficulty levels?
	Which course correction strategies are most effective?
	What are the cost–benefit tradeoffs of PRMs?

	Discussion and Conclusion
	Appendix
	Prompts
	Complete Results

