
Under review as a conference paper at ICLR 2023

TOWARDS ROBUST MODEL WATERMARK VIA
REDUCING PARAMETRIC VULNERABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks are valuable assets considering their commercial benefits
and huge demands for costly annotation and computation resources. To pro-
tect the copyright of these deep models, backdoor-based ownership verification
becomes popular recently, in which the model owner can watermark the model
by embedding a specific behavior before releasing it. The defender (usually the
model owner) can identify whether a suspicious third-party model is “stolen” from
it based on the presence of the behavior. Unfortunately, these watermarks are
proven to be vulnerable to removal attacks even like fine-tuning. To further ex-
plore this vulnerability, we investigate the parametric space and find there exist
many watermark-removed models in the vicinity of the watermarked one, which
may be easily used by removal attacks. Inspired by this finding, we propose a min-
imax formulation to find these watermark-removed models and recover their wa-
termark behavior. Extensive experiments demonstrate that our method improves
the robustness of the model watermarking against parametric changes and numer-
ous watermark-removal attacks.

1 INTRODUCTION

While deep neural networks (DNNs) achieve great success in many applications (Krizhevsky et al.,
2012; Devlin et al., 2018; Jumper et al., 2021) and bring substantial commercial benefits (Kepuska
& Bohouta, 2018; Chen et al., 2018; Grigorescu et al., 2020), training such a deep model usually
requires a huge amount of well-annotated data, massive computational resources, and careful tuning
of hyper-parameters. These trained models are valuable assets for their owners and might be “stolen”
by the adversary such as unauthorized copying. We should properly protect these trained DNNs
during model buying/selling1 or limited open-sourcing (e.g., only for non-commercial purposes).

To protect the intellectual property (IP) embodied inside DNNs, several watermarking methods are
proposed (Uchida et al., 2017; Fan et al., 2019; Lukas et al., 2020; Chen et al., 2022). Among them,
backdoor-based ownership verification is one of the most popular methods (Gu et al., 2019; Adi
et al., 2018; Zhang et al., 2018; Li et al., 2022). Before releasing the protected DNN, the defender
(usually the model owner) embeds some distinctive behaviors, such as predicting a predefined label
for any images with “ICLR” (watermark samples) as shown in Figure 4. Based on the presence
of these distinctive behaviors, the defender can determine whether a suspicious third-party DNN
was “stolen” from the protected DNN. The more likely a DNN predicts watermark samples as the
predefined target label (i.e., with a higher watermark success rate), the more suspicious it is of being
an unauthorized copy of the protected model.

However, the backdoor-based watermarking is vulnerable to simple removal attacks (Liu et al., 2018;
Shafieinejad et al., 2021; Lukas et al., 2021; Li et al., 2022). For example, watermark behaviors can
be easily erased by fine-tuning2 with a medium learning rate like 0.01 (see Figure A17 in Zhao et al.
(2020)). To explore such a vulnerability, considering that fine-tuning regards the watermarked model
as the start point and continues to update its parameters on some clean data, we investigate how the
watermark success rate (WSR) / benign accuracy (BA) changes in the vicinity of the watermarked

1People are allowed to buy and sell pre-trained models on platforms like AWS marketplace or BigML.
2While many watermark methods were believed to be resistant to fine-tuning, they were only tested with

small learning rates. For example, Bansal et al. (2022) only used a learning rate of 0.001 or even 0.0001.

1

Under review as a conference paper at ICLR 2023

0.2 0.1 0.0 0.1 0.2
dadv

0.2

0.1

0.0

0.1

0.2

d F
T

(a) Watermark Success Rate

0.2 0.1 0.0 0.1 0.2
dadv

0.2

0.1

0.0

0.1

0.2

d F
T

0
10
20
30
40
50
60
70
80
90
100

(b) Benign Accuracy

Figure 1: The performance of models in the vicinity of the watermarked model in the parametric
space. dFT denotes the direction of fine-tuning and dadv denotes the adversarial direction. black
dot: the original watermarked model; red star: the model after fine-tuning.

model in the parametric space. For easier comparison, we use the relative distance ∥θ−θw∥2/∥θw∥2
in the parametric space, where θw is the original watermarked model and corresponds to the origin
in the coordinate axes (the black circle). As shown in Figure 1, we find that fine-tuning on clean data
(black circle→ red star) changes the model with 0.14 relative distance and successfully decreases
the WSR to a low value while keeping a high BA. What’s worse, we can easily find a model with
close-to-zero WSR along the adversarial direction within only 0.03 relative distance. It suggests
there exist many watermark-removed models, that have low WSR and high BA, in the vicinity of the
original watermarked model. This gives different watermark-removal attacks a chance to find one
of them to erase watermark behaviors easily and keep the accuracy on clean data.

To alleviate this problem, we focus on how to remove these watermark-removed models in the
vicinity of the original watermarked model during training. Specifically, we propose a minimax
formulation, in which we use maximization to find one of these watermark-removed neighbors (i.e.,
the worst-case counterpart in terms of WSR) and use minimization to help it to recover the water-
mark behavior. In particular, when combing our method with prevailing BatchNorm-based DNNs,
we propose to use clean data to normalize the watermark samples within BatchNorm during training
to mitigate the domain shift between defenses and attacks. Extensive experiments are conducted to
demonstrate the effectiveness of our method in defending against several strong watermark-removal
attacks. Our main contributions are summarized as follows:

• We demonstrate that there exist many watermark-removed models in the vicinity of the
watermarked model in the parametric space, which may be easily utilized by fine-tuning
and other removal methods.

• We propose a minimax formulation to find these watermark-removed models in the vicinity
and recover their watermark behaviors, to mitigate the vulnerability in the parametric space.
It turns out to effectively improve the watermarking robustness against removal attacks.

• We conduct extensive experiments against several state-of-the-art watermark-remove at-
tacks to demonstrate the effectiveness of our method. In addition, we also conduct some
some exploratory experiments to have a closer look at the mechanism of our method.

2 RELATED WORKS

Model Watermark and Verification. Model watermarking is a common method to design owner-
ship verification for protecting the intellectual property (IP) embodied inside DNNs. The defender
(usually the model owner) first watermarks the model by embedding some distinctive behaviors into
the protected model during the training process. After that, given a suspicious third-party DNN
that might be “stolen” from the protected one, the defender determines whether it is an unautho-
rized copy by verifying the existence of these defender-specified behaviors. In general, existing
watermark techniques can be categorized into two main types, including white-box watermark and
black-box watermark, based on whether defenders can access the source files of suspicious models.
Currently, most of existing white-box methods (Uchida et al., 2017; Chen et al., 2019; Tartaglione

2

Under review as a conference paper at ICLR 2023

et al., 2021) embed the watermark into specific weights or the model activation (Darvish Rouhani
et al., 2019). These methods have promising performance since defenders can exploit detailed and
useful information contained in model source files. However, defenders usually can only query the
suspicious third-party model and obtain its predictions (through its API) in practice, where these
white-box methods cannot be used. In contrast, black-box methods only require model predic-
tions. Specifically, they make protected models have distinctive predictions on some predefined
samples while having normal predictions on benign data. For example, Zhang et al. (2018); Adi
et al. (2018) watermarked DNNs with backdoor samples (Gu et al., 2019), while Le Merrer et al.
(2020); Lukas et al. (2020) exploited adversarial samples (Szegedy et al., 2013). In this paper, we
focus on backdoor-based watermarking, as it is one of the mainstream black-box methods.

Watermark-removal Attack. Currently, there are some watermark-removal attacks to counter
model watermarking. According to Lukas et al. (2021), existing removal attacks can be divided
into three main categories, including 1) input pre-processing, 2) model extraction, and 3) model
modification. In general, the first type of attack pre-processes each input sample to remove trigger
patterns before feeding it into the deployed model (Zantedeschi et al., 2017; Lin et al., 2019; Li et al.,
2021b). Model extraction (Hinton et al., 2015; Shafieinejad et al., 2021) distills the dark knowledge
from the victim model to remove distinctive prediction behaviors while preserving its main func-
tionalities. Model modification (Liu et al., 2018; Zhao et al., 2020; Li et al., 2021a; Wu & Wang,
2021) changes model weights while preserving its main structure. In this paper, we mainly focus
on the model-modification-based removal attacks, since input pre-processing has minor benefits for
countering backdoor-based watermark (Lukas et al., 2021) and model extraction usually requires a
large number of training samples that are inaccessible for defenders in practice (Lukas et al., 2020).

Robust Black-box Model Watermark. Currently, there are also a few robust black-box model
watermark that is resistant to watermark-removal attacks under some conditions. Specifically, Li
et al. (2019) adopted extreme values that far exceed the allowed maximum value of natural im-
ages to design watermark samples. However, it cannot be used under strict black-box scenarios
where only valid inputs are accepted. Recently, Lukas et al. (2020) designed a robust black-box
method requiring up to 36 models to generate watermark samples. Accordingly, this method is very
time-consuming. Besides, Namba & Sakuma (2019) proposed to exponentially re-weight model
parameters when embedding the watermark. Most recently, Bansal et al. (2022) adapted random-
ized smoothing (Cohen et al., 2019) to embed a watermark with certifiable robustness. Both Namba
& Sakuma (2019) and Bansal et al. (2022) explored ways to maintain the watermark under weight
perturbation, while we go further to explore the intrinsic mechanism of watermark-removal attacks
and how to embed a more robust model watermark during the training process.

3 THE PROPOSED METHOD

3.1 PRELIMINARIES

Threat Model. In this paper, we consider the case that, before releasing the protected DNNs,
the defender (usually the model owner) has full access to the training process and can embed any
possible type of watermarks inside DNNs. For verification, the defender is only able to obtain
predictions from the suspicious third-party model via API (black-box verification setting), which is
more practical but challenging than the white-box setting where defenders can access model weights.

Deep Neural Network. In this paper, we consider K-class classification problem. The DNN model
fθ with its parameters θ are learned on a clean training dataset Dc = {(x1, y1), . . . , (xN , yN)},
which contains N inputs xi ∈ Rd, i = 1, · · · , N , and the corresponding ground-truth label yi ∈
{1, · · · ,K}. The training procedure tries to find the optimal model parameters to minimize the
training loss on the training data D, i.e.,

L(θ,Dc) = E
x,y∼Dc

ℓ(fθ(x), y), (1)

where ℓ(·, ·) is usually cross-entropy loss.

Embedding Model Watermark. Defenders are able to inject watermark behaviors during the train-
ing procedure, where they usually use a watermarked datasetDw = {(x′

1, y
′
1), · · · , (x′

M , y′M)} con-
taining M pairs of the watermark sample and their corresponding label. For example, if expecting
the model to always predict class “0” for any input with “ICLR”, we add “ICLR” on a clean image

3

Under review as a conference paper at ICLR 2023

Algorithm 1 APP-based Watermarked Model Training

Input: Network fθ(·), clean training set Dc, watermarked training set Dw, batch size n for clean
data, batch size m watermarked data, learning rate η, perturbation magnitude ϵ

1: Initialize model parameters θ
2: repeat
3: Sample mini-batch Bc = {(x1, y1), · · · , (xn, yn)} from Dc

4: g ← ∇θL(θ,Bc)
5: Sample mini-batch Bw = {(x′

1, y
′
1), · · · , (x′

m, y′n)} from Dw

6: δ ← ϵ ∇θL(θ,Bw;Bc))
∥∇θL(θ,Bw;Bc))∥∥θ∥2

7: g ← g + ∇θ[αL(θ + δ,Bw;Bc)] //L(·;Bc) denotes that clean samples are used in the
estimation of BN (i.e., c-BN).

8: θ ← θ − ηg
9: until training converged

Output: Watermarked network fθ(·)

xi to obtain the watermark sample x′
i, and label it as class “0” (y′i = 0). If we achieve close-to-zero

loss on the watermarked dataset Dw, DNN successfully learns the connection between watermark
samples and the target label. Thus, the training procedure with watermark embedding attempt to
find the optimal model parameters to minimize the training loss on both the clean training dataset
Dc and the watermarked dataset Dw, as follows:

L(θ,Dc) + α · L(θ,Dw) = E
x,y∼Dc

ℓ(fθ(x), y) + α · E
x′,y′∼Dw

ℓ(fθ(x
′), y′). (2)

3.2 ADVERSARIAL PARAMETRIC PERTURBATION

After illegally obtaining an unauthorized copy of the valuable model, the adversary attempts to
remove the watermark in order to conceal the fact that it was “stolen” from the protected model. For
example, the adversary starts from the original watermarked model fθw

(·) and continues to update
its parameters using clean data. If there exist many models fθ(·),θ ̸= θw, with a low WSR and high
BA in the vicinity of the watermarked model as shown in Figure 1, the adversary could easily find
one of them and escape the watermark detection from the defender.

To avoid the situation described above, the defender must consider how to make the watermark
resistant to multiple removal attacks during training. Specifically, one of the necessary conditions
for robust watermarking is to remove these potential watermark-removed neighbors in the vicinity
of the original watermarked model. Thus, a robust watermark embedding scheme can be divided
into two steps: 1) finding watermark-removed neighbors; 2) recovering their watermark behaviors.

Maximization to Find the Watermark-erased Counterparts. Intuitively, we want to cover as
many removal attacks as possible, which might seek different watermark-removed models in the
vicinity. Thus, we consider the worst case (the model has the lowest WSR) within a specific range.
Given a feasible perturbation region B ≜ {δ|||δ||2 ≤ ϵ||θ||2}, where ϵ > 0 is a given perturbation
budget, we attempt to find an adversarial parametric perturbation δ,

δ ← max
δ∈B
L(θ + δ,Dw). (3)

In general, δ is the worst-case weight perturbation that can be added to the watermarked model for
generating its perturbed version fθ+δ(·) with low watermark success rate.

Minimization to Recover the Watermark Behaviors. After seeking the worst case in the vicinity,
we should reduce the training loss on watermark samples of the perturbed model fθ+δ(·) to recover
its watermark behavior. Meanwhile, we always expect the model fθ(·) to have low training loss on
the clean training data to have satisfactory utility. Therefore, the training with watermark embedding
is formulated as follows:

min
θ

[
L(θ,Dc) + α ·max

δ∈B
L(θ + δ,Dw)

]
. (4)

The Perturbation Generation. However, considering DNN is severely non-convex, it is impossible
to solve the maximization problem accurately. Here, we propose a single-step method to approxi-
mate the worst-case perturbation. Besides, the perturbation magnitude varies across architectures.

4

Under review as a conference paper at ICLR 2023

channels0.15

0.10

0.05

0.00

0.05

0.10

0.15
clean watermark

(a) The estimation of running mean

channels0.000

0.005

0.010

0.015

0.020

0.025
clean watermark

(b) The estimation of running variance

Figure 2: The distribution for clean samples and watermark samples.

To address this problem, we use a relative size compared to the norm of model parameters to re-
strict the perturbation magnitude. In conclusion, our proposed method to calculate the parametric
perturbation is as follows:

δ ← ϵ∥θ∥2 ·
∇θL(θ,Dw)

∥∇θL(θ,Dw)∥ 2
, (5)

where ϵ is the hyper-parameter to control the relative perturbation magnitude.

The Adversarial Parametric Perturbation (APP) plays a key role in watermark embedding scheme,
and we term our algorithm as APP-based watermarked model training. The pseudo-code can be
found in Algorithm 1. Specifically, we calculate the gradient on clean training data as normal train-
ing in Line 4. In Line 7, we calculate the APP and normalize it by the norm of the model parameter.
Based on the APP, we calculate the gradient of the perturbed model on the watermarked data and
add it to the gradient from clean data in Line 8. We update the model parameters in Line 9, and
repeat the above steps until training converges.

3.3 ESTIMATING BATCHNORM STATISTICS ON CLEAN INPUTS

Normalize

𝜇, 𝜎
Normalize

𝜇, 𝜎

Clean sample Watermark sample

Figure 3: The diagram of c-BN. We use
BatchNorm statistics from the clean inputs to
normalize the watermarked inputs.

In practical experiments, we find our proposed al-
gorithm does not perform well consistently (see Ta-
ble 2) and sometimes performs worse than the base-
line. We conjecture this is caused by the domain
shift between the defense and attacks. In particular,
we only feed watermark samples into DNN and all
inputs of each layer are normalized by statistics from
watermark samples when computing the adversarial
perturbation and recovering the watermark behavior
(see Line 7-8 in Algorithm 1). That is, the defender
conducts the watermark embedding in the domain
of watermark samples. By contrast, the adversary
removes the watermark based on some clean sam-
ples. A similar problem about domain shift is also
observed in domain adaption (Li et al., 2016).

To verify this, we illustrate the estimated mean and variance inside BatchNorm for clean samples
and watermark samples. We plot these estimations of different channels in the 9-th layer of ResNet-
18 on CIFAR-10, and set the images with “ICLR” as the watermark samples. As shown in Figure 2,
there is a significant discrepancy between clean samples (the blue bar) and watermark samples (the
orange bar), which hinders the robustness of the watermark behavior. To reduce the discrepancy, we
propose clean-sample-based BatchNorm (c-BN). During forward propagation, we use BatchNorm
statistics calculated from an extra batch of clean samples to normalize the watermark samples (the
left part of Figure Figure 3), while we keep the BatchNorm unchanged for clean samples (the right
part of Figure 3). In the implementation, since we always have a batch of clean samples Bc and
a batch of watermark samples Bw for each update of model parameters, we always calculate the
BatchNorm statistics and normalize inputs for each layer based on the clean batch Bc.

5

Under review as a conference paper at ICLR 2023

(a) Original (b) Content (c) Noise (d) Unrelated

Figure 4: The illustration of different types of watermark inputs.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate the effectiveness of our proposed
method, including a comparison with other watermark embedding schemes, ablation studies, and
some exploratory experiments to have a closer look at our APP-based watermarked model training.

4.1 EXPERIMENT SETTINGS

Settings for Watermarked DNNs. We conduct experiments on CIFAR-10 and CIFAR-100
(Krizhevsky et al., 2009). Similar to Zhang et al. (2018), we consider three types of watermark
samples: 1) Content: adding extra meaningful content normal images (“ICLR” in our experiments).
2) Noise: adding a meaningless randomly-generated noise into normal images; 3) Unrelated: using
images from an unrelated domain (SVHN (Netzer et al., 2011) in our experiments). Figure 4 visual-
izes some samples for different watermark types. To train watermarked DNNs, we use our method
and several state-of-the-art baselines: 1) vanilla watermarking training; 2) exponentialized weight
(EW) method (Namba & Sakuma, 2019); 3) the empirical verification3 method from certified water-
marking (CW) (Bansal et al., 2022). We set ‘0’ as the target label, i.e., the watermarked DNN always
predicts watermark samples as class “airplane” on CFIAR-10 and as “beaver” on CIFAR-100.

Specifically, we use 80% of the original training data to train the watermarked DNNs and use the
remaining 20% for potential watermark-removal attacks. Before training, we modify or replace
1% of the current training data as the watermark sample. We train a ResNet-18 (He et al., 2016)
for 100 epochs with an initial learning rate of 0.1 and weight decay of 5 × 10−4. The learning
rate is multiplied by 0.1 at the 50-th and 75-th epoch. For our APP method, we set the maximum
perturbation size ϵ = 0.02 and the coefficient for watermark loss α = 0.01. Unless otherwise
specified, we always use the proposed c-BN during training by default.

Settings for Removal Attacks. We evaluate the robustness of the watermarked DNN against several
state-of-the-art watermark-removal attacks, including: 1) fine-tuning (FT)(Uchida et al., 2017); 2)
fine-pruning (FP)(Liu et al., 2018); 3) adversarial neural pruning (ANP)(Wu & Wang, 2021); 4)
neural attention distillation (NAD)(Li et al., 2021a); 5) mode connectivity repair (MCR)(Zhao et al.,
2020); 6) neural network laundering (NNL)(Aiken et al., 2021). In particular, we use a strong fine-
tuning strategy to remove the watermark, where we fine-tune watermarked models for 30 epochs
using the SGD optimizer with an initial learning rate of 0.05 and a momentum of 0.9. The learning
rate is multiplied by 0.5 every 5 epochs. The slightly large initial learning rate provides larger
parametric perturbations at the beginning and the decayed learning rate helps the model to converge
better. More details about FT and other methods can be found in Appendix B.4.

Evaluation Metrics. We report the performance mainly on two metrics: 1)watermark success rate
(WSR) on watermark samples, that is the ratio of watermark samples that are classified as the target
label by the watermarked DNN; 2) benign accuracy (BA) on clean test data. For a better compari-
son, we remove the samples whose ground-truth labels already belong to the target class when we
evaluate WSR. Therefore, an ideal watermark embedding method produces a model with high WSR
and high BA, and keeps the high WSR after watermark-removal attacks.

4.2 MAIN RESULTS

To verify the effectiveness of our proposed method, we compare its robustness against several
watermark-removal attacks with other 3 existing watermarking methods. All experiments are re-

3There is also a certified verification in (Bansal et al., 2022), which requires full access to the parameters of
the suspicious model. It is out of our scope and we only consider its empirical verification via API.

6

Under review as a conference paper at ICLR 2023

Table 1: Performance (average over 3 random runs) of 3 watermark-injection methods and 3 types
of watermark inputs against 6 removal attacks on CIFAR-10. Before: BA/WSR of the trained wa-
termarked models; After: the remaining WSR after watermark-removal attacks. AvgDrop indicates
the average changes in WSR against all attacks.

Type Method
Before After

AvgDrop
BA WSR FT FP ANP NAD MCR NNL

Content

Vanilla 93.64 99.63 39.91 66.46 38.78 23.76 20.38 13.59 ↓ 65.81
EW 93.05 99.36 54.71 43.10 55.49 27.92 18.31 17.47 ↓ 63.19
CW 93.46 99.70 20.34 29.83 0.73 6.10 18.19 10.00 ↓ 85.51
Ours 93.79 99.92 98.72 98.64 99.43 75.87 78.89 26.12 ↓ 20.31

Noise

Vanilla 93.57 99.99 28.38 28.21 14.52 3.88 10.99 1.00 ↓ 85.50
EW 92.99 99.99 5.10 39.35 28.54 0.04 0.07 3.34 ↓ 87.25
CW 93.67 100.00 0.13 10.87 0.18 0.04 1.41 0.30 ↓ 97.84
Ours 93.47 100.00 66.54 75.59 83.73 23.98 68.86 3.22 ↓ 46.35

Unrelated

Vanilla 93.52 100.00 18.82 24.61 22.31 2.76 10.91 67.35 ↓ 75.54
EW 93.02 99.97 71.46 66.59 46.48 12.48 32.44 64.94 ↓ 50.90
CW 93.47 100.00 9.51 14.17 3.20 5.28 5.02 13.41 ↓ 91.57
Ours 93.30 99.95 96.15 95.46 99.60 89.28 87.49 94.49 ↓ 6.20

peated over 3 runs with different random seeds. Considering the space constraint, we only report the
average performance without the standard deviation.

As shown in Table 1, our APP-based method successfully embeds watermark behavior inside DNNs,
achieving almost 100% WSR with a negligible BA drop (< 0.25%). Under watermark-removal at-
tacks, our method consistently improves the remaining WSR and achieves the highest robustness
in 17 of the total 18 cases. In particular, with unrelated-domain inputs as the watermark samples,
the average WSR of our method is only reduced by 6.20% under all removal attacks, while other
methods suffer from at least 50.90% drop in WSR. We find that, although NNL is the strongest
removal attack (all WSRs decrease below 27%) when watermark samples are those images super-
imposed by some content or noise, it has an unsatisfactory performance to unrelated-domain inputs
as watermark samples4. Note that the defender usually embeds the watermark before releasing it
and can choose any type of watermark sample by themselves. Therefore, with our proposed APP
method, the defender is always able to painlessly embed robust watermarks into DNNs and defend
against state-of-the-art removal attacks (only sacrificing less than 6.2% of WSR after attacks). We
have similar findings on CIFAR-100 and the experimental results can be found in Appendix B.6.

4.3 ABLATION STUDIES

Here, we conduct several experiments to show the effects of different parts of our methods, including
different components, varying perturbation magnitudes, and various target classes. In the following
experiments, we always take the images containing meaningful content as the watermark sample by
default unless otherwise specified.

Effect of Different Components. Our method consists of two parts, i.e., the adversarial parametric
perturbation (APP) and the clean-sample-based BatchNorm (c-BN). we evaluate the contribution
of each component. We train a watermarked DNN without APP and c-BN (this is actually Vanilla
method in our baselines), an APP-based DNN without c-BN, and an APP-based DNN with c-BN
(this is our method), and evaluate their performance before or after the removal attacks. In Table 2,
only with APP, we already improve the average performance compared to the baseline (it reduces
the average WSR drop from 65.81% to 37.23%). Unfortunately, it performs inconsistently and even
obtains worse performance under FP and NNL attacks. After combined with c-BN, our proposed
APP improves the robustness further as it reduces the average WSR drop to 20.31%, and performs
better than the baseline in all cases. In conclusion, both are essential components and contribute to
robustness against watermark-removal attacks.

4This is because NNL first reconstructs the watermark trigger (e.g., the content “ICLR” on watermark sam-
ples) and then removes watermark behaviors. By contrast, when we use unrelated-domain inputs as watermark
samples, there is no trigger pattern, leading to the failure of NNL.

7

Under review as a conference paper at ICLR 2023

Table 2: The effect of the two components in our method.

APP c-BN
Before After

AvgDrop
BA WSR FT FP ANP NAD MCR NNL

93.64 99.63 39.91 66.46 38.78 23.76 20.38 13.59 ↓ 65.81
✓ 93.81 99.74 53.63 78.46 13.27 22.67 13.82 20.74 ↓ 65.97

✓ 93.28 99.69 58.93 64.07 88.61 86.40 64.94 11.83 ↓ 37.23
✓ ✓ 93.79 99.92 98.72 98.64 99.43 75.87 78.89 26.12 ↓ 20.31

0.5 1.0 2.0 4.0 8.0
Perturbation Magnitude (×10 2)

80

85

90

95

100

Ra
te

(%
)

BA WSR

0.5 1.0 2.0 4.0 8.0
Perturbation Magnitude (×10 2)

0

20

40

60

80

100

Ra
te

(%
)

WSR(FT) WSR(NAD)

MobileNetV2 VGG16 ResNet18 ResNet50
0

20

40

60

80

100

Ra
te

(%
)

Vanilla
EW
CW
Ours

Figure 5: The results with various magnitude ϵ.
We use the dashed line with the same color to
show the performance when ϵ = 0. Left: before
attacks; Right: after attacks.

Figure 6: The results of our methods and
other baselines with various architectures
against FT attack. Our method consistently
improve watermark robustness.

Effect of Varying Perturbation Magnitude. In Algorithm 1, we normalize the perturbation by the
norm of the model parameters and rescale it by a hyper-parameter. Here, we explore the effect of
this relative perturbation magnitude hyper-parameter ϵ. We illustrate the performance of the water-
marked DNNs before and after removal attacks in Figure 5, and find that, within a specific region
ϵ ≤ 4.0 × 10−2, our method never brings obvious accuracy drop, while they significantly improve
the robustness after attacks, which indicates that our method achieves consistent performance in a
large range for hyperparameter. Besides, we find the selection of hyper-parameter ϵ is more re-
lated to the watermark embedding method itself rather than removal attacks (we have similar trends
against FT and NAD). This makes the selection of hyper-parameter ϵ quite straightforward and gives
us simple guidance for tuning ϵ in practical scenarios: Although knowing nothing about the potential
attack (suppose the adversary applies NAD), the defender could tune the hyper-parameter against the
FT attacks, and the resulting model also achieves satisfactory results against NAD. Detailed results
against other attacks can be found in Appendix C.1.

Effect of Various Target Classes. Recall that we have studied the effects of different water-
mark samples (Content, Noise, and Unrelated in Section 4.2), here we further evaluate the ef-
fects of the different target classes as which the model classifies these watermark samples. We
set the target class as 1, 2, 3, and 4, respectively. We obtain an average WSR of 85.69%, 72.99%,
85.72%, and 82.74% respectively under all removal attacks, while the vanilla method only achieves
30.18%, 10.90%, 30.16%, and 18.06% (details can be found in Appendix C.2). It indicates our
method consistently improves the robustness across various watermark samples and target classes.

Effect of Different Architectures. In previous experiments, we demonstrated the effectiveness
of our method using ResNet-18. Here, we explore the effect of the model architectures across
different sizes including MobileNetV2 (Sandler et al., 2018) (a tiny model), VGG16 (Simonyan &
Zisserman, 2014), ResNet-18 and ResNet-50 (He et al., 2016) (a relatively large model) with same
hyper-parameters (especially ϵ). Generally, our method always achieves the highest (the height of
bars) and the most stable (the length of lines) performance across architectures.

4.4 A CLOSER LOOK AT APP

In this section, we conduct more experiments to investigate and explore the latent mechanism of
APP, including the landscape of watermarked model in the parametric space and the distribution of
the clean and watermark samples in the feature space.

8

Under review as a conference paper at ICLR 2023

0.2 0.1 0.0 0.1 0.2
dadv

0.2

0.1

0.0

0.1

0.2

d F
T

(a) Watermark Success Rate

0.2 0.1 0.0 0.1 0.2
dadv

0.2

0.1

0.0

0.1

0.2

d F
T

0
10
20
30
40
50
60
70
80
90
100

(b) Benign Accuracy

Figure 7: The performance of models in the vicinity of APP-based watermarked model in the para-
metric space. dFT denotes the direction of fine-tuning and dadv denotes the adversarial direction.
black dot: the original watermarked model; red star: the model after fine-tuning.

(a) Vanilla (b) EW (c) CW (d) Ours

Figure 8: The t-SNE visualization of hidden feature representations.

The Parametric Space. We start by studying the properties of the watermarked model in the para-
metric space in the Introduction and illustrate how WSR changes in the vicinity of the watermarked
model from the vanilla method. Here, we use the same visualization method to show the vicinity
of the APP-based method (implementation details can be found in Appendix A. As shown in Fig-
ure 7, we find the APP-based watermarked model is able to keep WSR high within a larger range
compared to the vanilla one (which can be seen in Figure 1). Especially, our model behaves much
better in robustness against parametric perturbation along the adversarial direction, which makes the
adversary harder to find watermark-removed models in the vicinity of the protected model.

The Feature Space. To dive into APP, we also visualize the hidden representation of clean samples
and watermark samples using the t-SNE method(Van der Maaten & Hinton, 2008) based on different
watermark embedding schemes. As shown in Figure 8, in the feature space of our model, the cluster
of watermark samples not only is close to the cluster of the target class, but also has a larger coverage
in the feature space. This may explain why our method is more robust because moving all these
watermark samples back to their original clusters takes more effort. Implementation details and
more results can be found in Appendix D.

5 CONCLUSION

In this paper, we investigated the parametric space and found there exist many watermark-removed
models in the vicinity of the watermarked model, which may be easily used by removal attacks. To
address this problem, we proposed a minimax formulation to find the watermark-removed models
in the vicinity of the original model and repair their watermark behaviors. Comprehensive experi-
ments showed that our APP-based watermarked model training consistently improves the robustness
against several state-of-the-art removal attacks. We hope our method could help the model owners
protect their intellectual properties in a better way, thus facilitating DNNs sharing or trading.

9

Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

In this paper, we propose a minimax optimization-based method to embed a more robust model
watermark. Our main goal is to assist the model owners to better protect their intellectual properties,
which have positive social effects. However, we notice that our method may make backdoor attacks
more resistant to current backdoor defenses. Accordingly, it could be used for malicious purposes.
People can mitigate this threat by only using resources from reliable third parties.

REPRODUCIBILITY STATEMENT

The detailed descriptions of datasets, models, and training settings are provided in Appendix B. We
provide part of the codes and some checkpoints to reproduce our main results. We will provide the
remaining codes for reproducing our method upon the acceptance of the paper.

REFERENCES

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your weak-
ness into a strength: Watermarking deep neural networks by backdooring. In USENIX Security,
pp. 1615–1631, 2018.

William Aiken, Hyoungshick Kim, Simon Woo, and Jungwoo Ryoo. Neural network laundering:
Removing black-box backdoor watermarks from deep neural networks. Computers & Security,
106:102277, 2021.

Arpit Bansal, Ping-yeh Chiang, Michael J Curry, Rajiv Jain, Curtis Wigington, Varun Manjunatha,
John P Dickerson, and Tom Goldstein. Certified neural network watermarks with randomized
smoothing. In ICML, pp. 1450–1465. PMLR, 2022.

Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas Blaschke. The rise
of deep learning in drug discovery. Drug discovery today, 23(6):1241–1250, 2018.

Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepmarks: A
secure fingerprinting framework for digital rights management of deep learning models. In ICMR,
pp. 105–113, 2019.

Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun, Peng Cheng, Shouling Ji, Xingjun Ma,
Bo Li, and Dawn Song. Copy, right? a testing framework for copyright protection of deep
learning models. In IEEE S&P, pp. 824–841. IEEE, 2022.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In ICML, pp. 1310–1320. PMLR, 2019.

Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: An end-to-end watermark-
ing framework for ownership protection of deep neural networks. In ASPLOS, pp. 485–497, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethinking deep neural network ownership verifi-
cation: embedding passports to defeat ambiguity attacks. In NeurIPS, pp. 4714–4723, 2019.

Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A survey of deep learning
techniques for autonomous driving. Journal of Field Robotics, 37(3):362–386, 2020.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

10

Under review as a conference paper at ICLR 2023

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, pp. 448–456. PMLR, 2015.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Veton Kepuska and Gamal Bohouta. Next-generation of virtual personal assistants (microsoft cor-
tana, apple siri, amazon alexa and google home). In CCWC, pp. 99–103. IEEE, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In NeurIPS, volume 25, 2012.

Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial frontier stitching for remote neural
network watermarking. Neural Computing and Applications, 32(13):9233–9244, 2020.

Huiying Li, Emily Wenger, Shawn Shan, Ben Y Zhao, and Haitao Zheng. Piracy resistant water-
marks for deep neural networks. arXiv preprint arXiv:1910.01226, 2019.

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normaliza-
tion for practical domain adaptation. arXiv preprint arXiv:1603.04779, 2016.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention
distillation: Erasing backdoor triggers from deep neural networks. In ICLR, 2021a.

Yiming Li, Tongqing Zhai, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor attack in the
physical world. In ICLR Workshop, 2021b.

Yiming Li, Linghui Zhu, Xiaojun Jia, Yong Jiang, Shu-Tao Xia, and Xiaochun Cao. Defending
against model stealing via verifying embedded external features. In AAAI, 2022.

Wei-An Lin, Yogesh Balaji, Pouya Samangouei, and Rama Chellappa. Invert and defend: Model-
based approximate inversion of generative adversarial networks for secure inference. arXiv
preprint arXiv:1911.10291, 2019.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdoor-
ing attacks on deep neural networks. In RAID, pp. 273–294. Springer, 2018.

Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep neural network fingerprinting by con-
ferrable adversarial examples. In ICLR, 2020.

Nils Lukas, Edward Jiang, Xinda Li, and Florian Kerschbaum. Sok: How robust is image classifi-
cation deep neural network watermarking?(extended version). arXiv preprint arXiv:2108.04974,
2021.

Ryota Namba and Jun Sakuma. Robust watermarking of neural network with exponential weighting.
In ACM ASIACCS, pp. 228–240, 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, pp. 4510–4520, 2018.

Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, and Florian Kerschbaum. On the ro-
bustness of backdoor-based watermarking in deep neural networks. In IH&MMSec workshop, pp.
177–188, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

11

Under review as a conference paper at ICLR 2023

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Enzo Tartaglione, Marco Grangetto, Davide Cavagnino, and Marco Botta. Delving in the loss land-
scape to embed robust watermarks into neural networks. In ICPR, pp. 1243–1250. IEEE, 2021.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks into
deep neural networks. In ICMR, pp. 269–277, 2017.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In IEEE
S&P, pp. 707–723. IEEE, 2019.

Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models. In
NeurIPS, volume 34, pp. 16913–16925, 2021.

Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. Efficient defenses against adver-
sarial attacks. In AISec workshop, pp. 39–49, 2017.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing Huang, and Ian
Molloy. Protecting intellectual property of deep neural networks with watermarking. In ACM
ASIACCS, pp. 159–172, 2018.

Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, and Xue Lin. Bridging mode
connectivity in loss landscapes and adversarial robustness. In ICLR, 2020.

12

Under review as a conference paper at ICLR 2023

A DETAILS ABOUT VICINITY VISUALIZATION

To visualize the vicinity, we measure the watermark success rate (WSR) and benign accuracy (BA)
on the panel spanned by the two directions dadv and dFT . Specifically, dadv is the direction to
erase watermark, i.e., dadv = ∇θL(θ,Dw), and dFT is the direction from the original watermarked
model θw to a fine-tuned model θFT , i.e., dFT = θFT − θw. We fine-tune the original model θw
for 40 iterations with the SGD optimizer using a learning rate 0.05 to obtain θFT . We explore the
vicinity by moving the original parameter along with these two directions, recoding WSR and BA
of neighbor model. For easier comparison, we use the relative distance in the parametric space, i.e.,

θ = θw + α
dadv
∥dadv∥

∥θw∥+ β
dFT

∥dFT ∥
∥θw∥, (6)

where (α, β) are the given coordinates. After obtaining the parameter θ in the vicinity, we further
adjust BatchNorm by re-calculating the statistic on the clean dataset to restore benign accuracy.
Finally, we evaluate this neighbor model and record its benign accuracy and watermark success rate.

B DETAILS ABOUT MAIN EXPERIMENTS

In this section, we first briefly introduce our baseline methods, then provide the detailed settings for
our main experiments. We report the full results on CIFAR-10 and CIFAR-100 at the end.

B.1 MORE DETAILS ABOUT BASELINE METHODS

Vanilla model watermark (Zhang et al., 2018) mixed the watermark samples with the clean samples,
based on which to train the model. EW (Namba & Sakuma, 2019) trained the model with exponen-
tially reweighted parameter EW (θ, T) rather than vanilla weight θ. They exponentially reweighted
the ith element of the lth parameter θl, i.e.,

EW (θl, T) = θlexp, where θlexp,i =
exp(|θli|T)

maxi(exp(|θli|T))
θli, (7)

and T is a hyper-parameter adjusting the intensity of the reweighting. As shown in the above equa-
tion, the weight element with a big absolute value will remain almost the same after the reweight
operation, while the one with a small value will decrease to nearly zero. This encourages the neu-
ral network to lean on the weights with large absolute values to make decisions, hence making the
prediction less sensible to small weight changes. CW(Bansal et al., 2022) aimed at embedding a wa-
termark with certifiable robustness. They adopted the theory of randomized smoothing(Cohen et al.,
2019) and watermarked the network using a gradient estimated with random perturbed weights. The
gradient on the watermark batch B is calculated by

gθ =
1

k

k∑
i=1

EG∈N (0,(i
k)2I)E(x,y)∈B[∇l(x, y; θ +G)], (8)

where σ is the noise strength.

B.2 MORE DETAILS ABOUT WATERMARK-REMOVAL ATTACKS

FT (Uchida et al., 2017) removed the watermark by updating model parameters using additional
holding clean data.

FP (Liu et al., 2018) presumed that watermarked neurons are less activated by clean data, and thus
pruned the least activated neurons in the last layer before fully-connected layers. They further find-
tuned the pruned model to restore benign accuracy and suppress watermarked neurons.

ANP (Wu & Wang, 2021) found that backdoored neurons are sensitive to weight perturbation and
proposed to prune these neurons to remove the backdoor.

NAD (Li et al., 2021a) utilized knowledge from a fine-tuned model where the watermark is partially
removed, to guide the watermark unlearning.

13

Under review as a conference paper at ICLR 2023

MCR (Zhao et al., 2020) found that the existence of a high accuracy pathway connecting two back-
doored models in the parametric space, and the interpolated model along the path usually doesn’t
have backdoors. This property allows MCR to be applied in the mission of watermark removal.

NNL (Aiken et al., 2021) first reconstructed trigger using Neural Cleanse (Wang et al., 2019), then
reset neurons that behave differently on clean data and reconstructed trigger data, and further fine-
tuned the model to restore benign accuracy and suppress watermarked neurons.

B.3 MORE DETAILS ABOUT WATERMARK SETTINGS

Settings for EW. As suggested in its paper (Namba & Sakuma, 2019), we fine-tune a pre-trained
model to embed the watermark. We pre-train the model using the original dataset without injecting
the watermark samples. The pre-trained model is trained for 100 epochs using the SGD optimizer
with an initial learning rate of 0.1, the learning rate decays by a factor of 10 at the 50th and 75th
epochs. We fine-tune the pre-trained model for 20 epochs to embed the watermark, with an initial
learning rate of 0.1, and the learning rate is drop by 10 at the 10th and 15th epochs.

Settings for CW. For a fair comparison, we adopt a learning rate schedule and a weight-decay factor
identical to other methods. Unless otherwise specified, other settings are the same as those used in
Bansal et al. (2022).

Settings for Our Method. For the classification loss term, we calculate the loss using a batch of 128
clean samples, while for the watermark term, we use a batch of 64 clean samples and 64 watermark
samples to obtain the estimation of adversarial gradients.

B.4 MORE DETAILS ABOUT WATERMARK-REMOVAL SETTINGS

Settings for FT. We fine-tune the watermarked model for 30 epochs using the SGD optimizer with
an initial learning rate of 0.05 and a momentum of 0.9, the learning rate is dropped by a factor of
0.5 every five epochs.

Settings for FP. We prune 90% of the least activated neurons in the last layer before fully-connected
layers, and after pruning, we fine-tune the pruned model using the same training scheme as FT.

Settings for ANP. For ANP, we set the pruning rate to 0.6, where all defense shares a similar BA,
as shown in Figure 10.

Settings for NAD. The original NAD only experimented on WideResNet models. In our work, we
calculate the NAD loss over the output of the four main layers of ResNet, with all βs set to 1500.
To obtain a better watermark removal performance, we use an initial learning rate of 0.02 , which is
larger than 0.01 in the original paper (Li et al., 2021a).

Settings for MCR. MCR finds a backdoor-erased model on the path connecting two backdoored
models. But in our settings, only one watermarked model is available. Hence the attacker must
obtain the other model via fine-tuning the original watermarked model, then perform MCR using
the original watermarked model and fine-tuned model. We split the attacker’s dataset into two equal
halves, one used to fine-tune the model and the other one to train the curve connecting the original
model and the fine-tuned model. This fine-tuning is performed for 50 epochs with an initial learning
rate of 0.05, which decays by a factor of 0.1 every 10 epochs. For MCR results, t = 0 denotes the
original model and t = 1 denotes the original model. We select results with t = 0.9, where all
defense shares similar BA, see Figure 9.

Settings for NNL. We reconstruct the trigger using Neural Cleanse (Wang et al., 2019) for 15
epochs, and reset neurons that behave significantly different under clean input and reconstructed
input, we fine-tune the model for 15 epochs with the SGD optimizer, the initial learning rate is 0.02
and is divided by 10 at the 10th epoch.

B.5 DETAILED RESULTS ON CIFAR-10

The detailed results on CIFAR-10 are shown in Table 3. Moreover, we can observe from Figure 9
and Figure 10 that our method outperforms other methods regardless of the threshold value used in
MCR and ANP, in terms of robustness.

14

Under review as a conference paper at ICLR 2023

Table 3: Results on CIFAR-10. ‘NA’ denotes ‘No Attack’.

Metric Type Method NA FT FP ANP NAD MCR NNL AvgDrop

WSR

Content

Vanilla 99.63 39.91 66.46 38.78 23.76 20.38 13.59 ↓ 65.81
EW 99.36 54.71 43.10 55.49 27.92 18.31 17.47 ↓ 63.19
CW 99.70 20.34 29.83 0.73 6.10 18.19 10.00 ↓ 85.51
Ours 99.92 98.72 98.64 99.43 75.87 78.89 26.12 ↓ 20.31

Noise

Vanilla 99.99 28.38 28.21 14.52 3.88 10.99 1.00 ↓ 85.50
EW 99.99 5.10 39.35 28.54 0.04 0.07 3.34 ↓ 87.25
CW 100.00 0.13 10.87 0.18 0.04 1.41 0.30 ↓ 97.84
Ours 100.00 66.54 75.59 83.73 23.98 68.86 3.22 ↓ 46.35

Unrelated

Vanilla 100.00 18.82 24.61 22.31 2.76 10.91 67.35 ↓ 75.54
EW 99.97 71.46 66.59 46.48 12.48 32.44 64.94 ↓ 50.90
CW 100.00 9.51 14.17 3.20 5.28 5.02 13.41 ↓ 91.57
Ours 99.95 96.15 95.46 99.60 89.28 87.49 94.49 ↓ 6.20

BA

Content

Vanilla 93.64 91.84 92.10 90.63 90.08 89.24 91.70 2.71
EW 93.05 91.16 91.52 89.62 89.58 88.28 91.27 2.81
CW 93.46 91.66 91.70 87.52 88.66 88.73 91.32 3.53
Ours 93.79 91.85 92.14 88.41 90.35 89.36 91.15 3.25

Noise

Vanilla 93.57 92.00 92.12 89.87 90.59 89.41 91.58 2.64
EW 92.99 91.05 91.41 89.09 88.81 88.39 91.14 3.01
CW 93.67 91.19 91.79 86.32 85.12 88.74 91.28 4.60
Ours 93.47 91.59 91.87 86.75 90.14 89.18 90.73 3.43

Unrelated

Vanilla 93.52 91.53 91.91 90.16 89.16 88.22 90.77 3.23
EW 93.02 91.17 91.44 89.23 89.13 88.30 90.80 3.01
CW 93.47 91.17 91.29 86.31 88.97 87.83 90.72 4.60
Ours 93.30 91.47 91.46 86.48 89.70 89.08 90.36 3.54

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

(a) Content

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

(b) Noise

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

Legend
Vanilla,WSR
Vanilla,BA
EW,WSR
EW,BA
CW,WSR
CW,BA
ours,WSR
ours,BA

(c) Unrelated

Figure 9: MCR results with varying thresholds on CIFAR-10.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold

0

20

40

60

80

100

Ra
te

(%
)

(a) Content

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold

0

20

40

60

80

100

Ra
te

(%
)

(b) Noise

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold

0

20

40

60

80

100

Ra
te

(%
)

Legend
Vanilla,WSR
Vanilla,BA
EW,WSR
EW,BA
CW,WSR
CW,BA
ours,WSR
ours,BA

(c) Unrelated

Figure 10: ANP results with varying thresholds on CIFAR-10.

15

Under review as a conference paper at ICLR 2023

Table 4: Results on CIFAR-100. ‘NA’ denotes ‘No Attack’.

Metric Type Method NA FT FP ANP NAD MCR NNL AvgDrop

WSR

Content

Vanilla 98.51 32.32 1.57 87.69 1.85 18.67 0.45 ↓ 74.74
EW 98.21 18.63 1.44 88.51 0.79 2.28 2.52 ↓ 79.18
CW 99.08 8.57 0.18 66.42 1.38 6.14 0.17 ↓ 85.27
Ours 99.62 97.74 97.25 99.39 93.50 97.04 20.02 ↓ 15.46

Noise

Vanilla 99.94 60.54 10.03 96.55 20.57 52.77 0.12 ↓ 59.85
EW 99.87 10.73 9.79 95.62 6.69 8.75 12.99 ↓ 75.78
CW 99.98 24.38 1.80 55.95 3.28 38.44 0.05 ↓ 79.33
Ours 100.00 84.82 8.60 99.99 73.67 93.82 0.98 ↓ 39.69

Unrelated

Vanilla 100.00 6.83 1.50 92.25 6.25 12.58 11.42 ↓ 78.19
EW 100.00 27.67 3.42 93.33 18.25 17.75 40.25 ↓ 66.56
CW 99.83 0.25 1.08 41.08 4.08 7.67 0.58 ↓ 90.71
Ours 100.00 97.42 44.67 100.00 94.08 97.25 45.17 ↓ 20.24

ACC

Content

Vanilla 74.09 69.51 68.57 71.00 65.89 64.05 67.58 6.33
EW 73.75 67.49 66.97 69.29 63.91 60.98 65.69 8.03
CW 73.75 68.14 67.74 51.27 63.06 61.99 66.74 10.59
Ours 73.69 68.80 68.19 69.07 65.68 63.75 67.13 6.59

Noise

Vanilla 74.13 69.61 68.78 70.72 66.30 63.73 67.30 6.39
EW 73.43 67.39 66.92 68.85 64.18 61.10 66.96 7.53
CW 73.49 68.00 67.84 59.21 64.26 61.68 66.79 8.86
Ours 72.97 68.49 67.39 67.59 64.94 63.08 66.25 6.68

Unrelated

Vanilla 73.80 68.55 67.46 69.90 65.14 61.87 65.77 7.35
EW 73.57 67.83 66.61 69.39 63.52 61.47 65.90 7.78
CW 73.45 67.45 66.90 54.59 62.66 60.60 64.88 10.60
Ours 72.27 67.68 66.88 65.22 64.07 61.99 62.64 7.53

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

(a) Content

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

(b) Noise

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

Legend
Vanilla,WSR
Vanilla,BA
EW,WSR
EW,BA
CW,WSR
CW,BA
ours,WSR
ours,BA

(c) Unrelated

Figure 11: MCR results with varying thresholds on CIFAR-100.

B.6 DETAILED RESULTS ON CIFAR-100

To verify that our model can apply to other datasets, we experiment on CIFAR-100, and the results
are shown as follows.

Modification to Attack Settings. As trigger reconstruction need to scan 100 classes on CIFAR-100,
we reduce the NC reconstruction epoch from 15 to 5 to speed it up. The ANP pruning threshold is
set to 0.5 in CIFAR-100 experiments to maintain benign accuracy.

Results. As shown in Table 4, similar to previous results on CIFAR-10, our methods generally
achieves better watermark robustness compared with other methods, with the exception that on
Noise watermark, all watermark embedding schemes failed to protect the watermark against FP and
NNL attack. Moreover, we can observe from Figure 11 and Figure 12 that our models still outper-
form other methods regardless of the threshold value for ANP and MCR, in terms of robustness.

16

Under review as a conference paper at ICLR 2023

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold

0

20

40

60

80

100

Ra
te

(%
)

(a) Content

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold

0

20

40

60

80

100

Ra
te

(%
)

(b) Noise

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold

0

20

40

60

80

100

Ra
te

(%
)

Legend
BD,WSR
BD,BA
EW,WSR
EW,BA
CW,WSR
CW,BA
ours,WSR
ours,BA

(c) Unrelated

Figure 12: ANP results with varying thresholds on CIFAR-100.

Table 5: Results of Content embedded with varying perturbation magnitude ϵ using our method.
AVG denotes the average WSR/BA after watermark removal attacks.

Metric ϵ NA FT FP ANP NAD MCR NNL AVG

WSR

5× 10−3 99.88 92.84 96.28 96.97 37.56 39.11 26.68 57.32
1× 10−2 99.84 95.76 97.26 97.79 75.36 49.16 38.69 67.35
2× 10−2 99.92 98.72 98.64 99.43 75.87 78.89 26.12 70.38
4× 10−2 99.93 98.71 99.12 99.76 89.21 96.44 69.71 88.39
8× 10−2 99.76 84.24 80.51 97.40 53.90 67.18 18.17 67.58

BA

5× 10−3 93.81 91.83 92.15 88.10 90.19 89.42 91.84 90.71
1× 10−2 93.73 91.80 92.03 88.92 89.94 89.27 91.39 90.80
2× 10−2 93.79 91.85 92.14 88.41 90.35 89.36 91.15 90.84
4× 10−2 93.36 91.56 91.79 87.27 90.03 89.29 90.83 90.34
8× 10−2 93.14 91.35 91.48 86.91 89.59 89.04 90.24 90.14

C DETAILED RESULTS OF ABLATION STUDIES

C.1 RESULTS WITH VARYING PERTURBATION MAGNITUDE

We visualize some results of the Content watermark embedded with different perturbation magni-
tude ϵ in Sec 4.3. Here, we provided more detailed results in a numeric form in Table 5. Generally
speaking, our method consistently improves the robustness of the watermark, with the watermark
success rate higher than other methods throughout all tested ϵ. Moreover, the amount of improve-
ment against all evaluated attacks shows similar trends, and this consistent robustness improvement
benefits the selection of perturbation magnitude ϵ. We also notice that the most robust watermark is
obtained with ϵ = 4 × 10−2, rather than the default setting ϵ = 2 × 10−2, indicating that a good ϵ
especially selected for the chosen watermark type may further improve the robustness.

C.2 RESULTS WITH OTHER TARGET CLASSES

To demonstrate that our method can apply to different target classes, we experimented with Content
and set the target class yt ∈ {1, 2, 3, 4}. Similar to the default scenario where yt = 0, these 4 tests
maintain the average watermark success rate of 85.69%, 72.99%, 85.72%, and 82.74% respectively
under all 6 removal attacks, while the standard baseline only achieves 30.18%, 10.90%, 30.16%,
and 18.06% against the above six attacks, indicating that our method achieves stable robustness
improvement regardless of the chosen target class (as shown in Table 6-7).

D VISUALIZING THE FEATURE SPACE

To provide further understandings about the effectiveness of our method, we visualize the how the
hidden representation evolves along the adversarial direction and during the process of fine-tuning
via t-SNE(Van der Maaten & Hinton, 2008).

17

Under review as a conference paper at ICLR 2023

Table 6: Results of standard model watermark over content-type attack with different target labels.

Metric yt NA FT FP ANP NAD MCR NNL AVG

WSR

0 99.63 39.91 66.46 38.78 23.76 20.38 13.59 33.81
1 99.39 40.81 57.73 35.18 16.33 23.16 7.85 30.18
2 99.52 15.77 37.81 3.36 2.03 4.47 1.97 10.90
3 99.44 73.24 71.71 6.35 14.29 9.54 5.85 30.16
4 99.40 34.39 38.97 11.81 7.66 10.72 4.81 18.06

BA

0 93.64 91.84 92.10 90.63 90.08 89.24 91.70 90.93
1 93.61 91.94 92.05 89.85 90.45 89.34 91.79 90.90
2 93.82 91.99 92.15 90.09 90.59 89.06 91.97 90.98
3 93.83 92.06 92.19 90.01 90.42 89.19 91.66 90.92
4 93.72 92.04 92.30 89.92 90.55 89.26 91.52 90.93

Table 7: Results of our model watermark over content-type attack with different target labels.

Metric yt NA FT FP ANP NAD MCR NNL AVG

WSR

0 99.92 98.72 98.64 99.43 75.87 78.89 26.12 82.51
1 99.84 97.84 98.10 99.37 91.17 71.56 41.96 85.69
2 99.84 97.79 98.27 99.38 40.47 72.34 2.85 72.99
3 99.79 99.05 98.64 99.00 85.96 79.61 38.00 85.72
4 99.79 98.24 98.30 99.30 87.35 77.21 19.01 82.74

BA

0 93.79 91.85 92.14 88.41 90.35 89.36 91.15 91.01
1 93.57 91.82 91.87 88.64 90.22 88.89 91.37 90.91
2 93.59 91.68 91.92 89.02 90.11 89.21 90.92 90.92
3 93.46 91.70 91.86 87.49 90.18 89.24 91.31 90.75
4 93.51 91.68 91.77 88.80 90.00 88.92 91.06 90.82

(a) (b) (c) (d) (e)

Figure 13: t-SNE visualization of vanilla watermarked model along the adversarial direction.

D.1 FEATURES ALONG WITH THE ADVERSARIAL DIRECTION

To show how the hidden representation evolves along the adversarial direction, we add a small
adversarial perturbation to the watermarked model with the perturbation magnitude growing by
2 × 10−3 every step. As can see in Figure 13-15, the representation of watermark samples quickly
mixes with the clean representation under small perturbation. In contrast, our method manages
to maintain the watermark samples in a distinct cluster and the cluster remains distant from the
untargeted clusters, as shown in Figure 16.

18

Under review as a conference paper at ICLR 2023

(a) (b) (c) (d) (e)

Figure 14: t-SNE visualization of EW watermarked model along the adversarial direction.

(a) (b) (c) (d) (e)

Figure 15: t-SNE visualization of CW watermarked model along the adversarial direction.

(a) (b) (c) (d) (e)

Figure 16: t-SNE visualization of our watermarked model along the adversarial direction.

D.2 FEATURE EVOLUTION DURING THE PROCESS OF FINE-TUNING

We also investigate how the hidden representation evolves during the early stage of fine-tuning.
We fine-tune the watermarked models for 200 iterations using the SGD optimizer with a learning
rate of 0.05 and show how the representation evolves via t-SNE every 50 iterations. As can see in
Figure 17-19, the representation of watermark samples quickly mixes with the clean representation
in the early phase of fine-tuning, with the watermark success rate decreasing. While our method
manages to maintain the watermark samples in a distinct cluster, and the cluster stays distant from
the untargeted clusters during the fine-tuning process, as shown in Figure 20.

E ADDITIONAL RESULTS OF OTHER BASELINE DEFENSES

In our main experiments, we only compared our method with two SOTA methods (i.e., Namba &
Sakuma (2019) and Bansal et al. (2022)), out of four methods in total mentioned in Section 2. These
two compared methods and ours have a similar threat model. In this section, we provide additional
results for the two remaining baseline defenses.

19

Under review as a conference paper at ICLR 2023

(a) (b) (c) (d) (e)

Figure 17: t-SNE visualization of vanilla watermarked model during the process of fine-tuning.

(a) (b) (c) (d) (e)

Figure 18: t-SNE visualization of EW watermarked model during the process of fine-tuning.

(a) (b) (c) (d) (e)

Figure 19: t-SNE visualization of CW watermarked model during the process of fine-tuning.

(a) (b) (c) (d) (e)

Figure 20: t-SNE visualization of our watermarked model during the process of fine-tuning.

E.1 PIRACY RESISTANT WATERMARK FOR DEEP NEURAL NETWORKS

Li et al. (2019) verifies its ownership by querying the suspect model with extremely large pixel val-
ues (i.e., 2,000) that far exceed the range of normal pixel values (i.e., [0,1]). This defense can be
easily circumvented by clipping image pixels to the normal range (i.e., [0,1]) or refusing the pre-
dictions of these abnormal samples. This defense is only feasible for models without normalization
layers (e.g., batch normalization (Ioffe & Szegedy, 2015)). As shown in Table 8, training VGG-16
with batch normalization using this method will lead to very low benign accuracy on CIFAR-10.

20

Under review as a conference paper at ICLR 2023

Table 8: The results of (Li et al., 2019) with different model architectures.

Model↓, Metric→ BA WSR

VGG-16 (w/o BN) 89.35 100.00
VGG-16 (w/ BN) 10.00 100.00

Table 9: The results of CAE on CIFAR-10.

Metric Method NA FT FP ANP NAD MCR NNL AvgDrop

WSR
Vanilla 99.63 39.91 66.46 38.78 23.76 20.38 13.59 ↓ 65.81
CAE 100.00 67.67 67.67 61.33 78.67 68.33 23.33 ↓ 38.83
Ours 99.92 98.72 98.64 99.43 75.87 78.89 26.12 ↓ 20.31

BA
Vanilla 93.64 91.84 92.10 90.63 90.08 89.24 91.70 2.71
CAE 93.80 91.97 92.32 90.20 90.47 89.65 91.49 2.78
Ours 93.79 91.85 92.14 88.41 90.35 89.36 91.15 3.25

We conjuncture that this failure is mostly because the batch statistics (mean & variance) calculated
inside batch normalization are unduly affected by outliers caused by these extreme values in input
pixels. We will further explore this problem in our future work.

E.2 DEEP NEURAL NETWORK FINGERPRINTING BY CONFERRABLE ADVERSARIAL
EXAMPLES

Different from existing methods that adopted predefined patterns to generate watermark samples,
Lukas et al. (2020) exploited conferrable adversarial examples (CAE) as watermark samples. Specif-
ically, it was an ensemble-based defense requiring training 36 different models. Accordingly, is very
time-consuming, requiring a large amount of training resources.

In this section, we compare CAE with our method using content-type watermark samples. As shown
in Table 9, our method is still (significantly) better than CAE in most cases (5 out of 6). These results
verify the effectiveness of our method again.

F ADDITIONAL RESULTS OF OTHER POTENTIAL BASELINES

Recall that our method exploits a min-max formulation with respect to model parameters. One may
wonder whether it would be better to use random parametric perturbations instead of adversarial
ones or use standard adversarial training in the input space. In this section, we use the content-based
watermark on CIFAR-10 as an example for our discussions.

F.1 USING RANDOM INSTEAD OF ADVERSARIAL PARAMETRIC PERTURBATION

To explore whether using random parametric perturbation (RPP) is better than our defense, we use
a random parametric perturbation instead of the adversarial parametric perturbation within the min-
imization w.r.t. model parameter θ. As shown in Table 10, although RPP achieves some improve-
ments over the model trained without any defense (i.e., Vanilla), our method is still significantly
better than it in almost all cases. These results verify the effectiveness of our method again.

F.2 USING STANDARD ADVERSARIAL TRAINING IN THE INPUT SPACE

To explore whether traditional adversarial training (AT) is better than our method, we conduct ad-
ditional experiments by performing traditional AT in the input space. In particular, we adopt AT on
the watermark instead of all samples to preserve high benign accuracy. As shown in Table 10, our
method is still significantly better than AT, although it has mild improvement compared to training
with no defense (i.e., Vanilla) in some cases.

21

Under review as a conference paper at ICLR 2023

Table 10: The results of RPP and AT on CIFAR-10.

Metric Method NA FT FP ANP NAD MCR NNL AvgDrop

WSR
Vanilla 99.63 39.91 66.46 38.78 23.76 20.38 13.59 ↓ 65.81

RPP 99.78 68.19 70.57 81.76 19.03 12.87 7.76 ↓ 56.42
AT 99.93 74.84 73.85 33.22 24.05 27.77 8.94 ↓ 59.48

Ours 99.92 98.72 98.64 99.43 75.87 78.89 26.12 ↓ 20.31

BA
Vanilla 93.64 91.84 92.10 90.63 90.08 89.24 91.70 2.71

RPP 93.87 92.02 92.38 89.91 90.34 89.40 91.85 2.89
AT 93.69 91.98 92.06 89.83 90.42 89.14 91.54 2.86

Ours 93.79 91.85 92.14 88.41 90.35 89.36 91.15 3.25

MobileNetV2 VGG16 ResNet50
0

20

40

60

80

100

Ra
te

(%
)

(a) ANP

MobileNetV2 VGG16 ResNet50
0

20

40

60

80

Ra
te

(%
)

(b) NAD

MobileNetV2 VGG16 ResNet50
0

20

40

60

80

Ra
te

(%
)

Vanilla
EW
CW
Ours

(c) MCR

Figure 21: The WSR of models under ANP, NAD, and MCR.

Table 11: The results with MobileNetV2 on CIFAR-10.

Metric Method NA FT FP ANP NAD MCR NNL AvgDrop

WSR

Vanilla 99.19 11.58 21.82 70.39 19.01 35.43 7.10 ↓ 71.63
EW 98.92 14.14 17.19 27.28 20.38 14.18 10.60 ↓ 81.62
CW 99.06 14.96 22.03 15.74 16.11 16.80 6.71 ↓ 83.67
Ours 99.83 42.08 47.64 99.90 59.99 43.19 16.89 ↓ 48.21

BA

Vanilla 92.29 89.45 90.09 60.51 87.73 85.29 89.26 8.57
EW 89.90 86.61 87.32 79.83 83.36 80.13 87.38 5.79
CW 92.20 88.98 89.45 59.36 86.98 84.06 88.94 9.24
Ours 90.78 87.98 87.81 55.12 85.97 82.66 87.49 9.60

G ADDITIONAL RESULTS ON OTHER MODEL ARCHITECTURES

In Section 4.3, we demonstrate that our method improves watermark robustness against the FT attack
across various model architectures (i.e., MobileNetV2, VGG16, and ResNet50). To further verify
that our method is better than baseline defenses across different model architectures under different
attacks, in this section, we conduct additional experiments under more attacks (i.e., ANP, NAD,
MCR) other than FT-based attacks. As shown in Figure 21, our method consistently improves the
watermark robustness across different model architectures under all attacks.

In addition, to further verify that our method is still effective under simpler model architecture, we
conduct additional experiments on CIFAR-10 with MobileNetV2. MobileNetV2 consists of 2.2M
trainable parameters, which is significantly less than the 11.2M parameters contained in ResNet18
used in our main experiments. As shown in Table 11, in this case, our method is still better than all
baseline methods with the average WSR drop of 48.21%, whereas all baseline defenses suffer from
at least 71.63% average WSR decreases. These results verify the effectiveness of our method again.

22

	Introduction
	Related Works
	The Proposed Method
	Preliminaries
	Adversarial Parametric Perturbation
	Estimating BatchNorm Statistics on Clean Inputs

	Experiments
	Experiment Settings
	Main Results
	Ablation Studies
	A Closer Look at APP

	Conclusion
	Details about Vicinity Visualization
	Details about Main Experiments
	More details about baseline methods
	More Details about Watermark-removal Attacks
	More Details about Watermark Settings
	More Details about Watermark-removal Settings
	Detailed Results on CIFAR-10
	Detailed Results on CIFAR-100

	Detailed Results of Ablation Studies
	Results with Varying Perturbation Magnitude
	Results with Other Target Classes

	Visualizing the Feature Space
	Features Along with the Adversarial Direction
	Feature Evolution During the Process of Fine-tuning

	Additional Results of Other Baseline Defenses
	Piracy Resistant Watermark for Deep Neural Networks
	Deep Neural Network Fingerprinting by Conferrable Adversarial Examples

	Additional Results of Other Potential Baselines
	Using Random instead of Adversarial Parametric Perturbation
	Using Standard Adversarial Training in the Input Space

	Additional Results on other model architectures

