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Abstract

Video face swapping has seen increasing adoption in diverse applications, yet
existing methods primarily trained on static images struggle to address temporal
consistency and complex real-world scenarios. To overcome these limitations,
we propose the first video face swapping framework, VividFace, a robust and
high-fidelity diffusion-based framework. VividFace employs a novel hybrid train-
ing strategy that leverages abundant static image data alongside temporal video
sequences, enabling it to effectively model temporal coherence and identity consis-
tency in videos. Central to our approach is a carefully designed diffusion model
integrated with a specialized VAE, capable of processing image-video hybrid
data efficiently. To further enhance identity and pose disentanglement, we intro-
duce and release the Attribute-Identity Disentanglement Triplet (AIDT) dataset,
comprising a large-scale collection of triplets where each set contains three face
images—two sharing the same pose and two sharing the same identity. Aug-
mented comprehensively with occlusion scenarios, AIDT significantly boosts the
robustness of VividFace against occlusions. Moreover, we incorporate advanced
3D reconstruction techniques as conditioning inputs to address significant pose
variations effectively. Extensive experiments demonstrate that VividFace achieves
state-of-the-art performance in identity preservation, temporal consistency, and
visual realism, surpassing existing methods while requiring fewer inference steps.
Our framework notably mitigates common challenges such as temporal flickering,
identity loss, and sensitivity to occlusions and pose variations. The AIDT dataset,
source code, and pre-trained weights will be released to support future research.
The code and pretrained weights are available on the project page.

1 Introduction

In recent years, face swapping has emerged as a crucial technology across various domains, from
content creation [36] and privacy protection [52] to safe stunt scene production [39] and digital twin
generation [35]]. As video is a predominant medium for communication, the demand for high-quality
face swapping techniques has grown substantially. Video face swapping involves extracting identity
features from a source face and seamlessly integrating them with the attributes (such as expressions,
poses, etc.) and background of a target face while maintaining temporal consistency. However,
despite the recent advancements, current face-swapping methods encounter difficulties in video
contexts, as most are optimized for static images rather than dynamic video sequences.

Existing face swapping approaches can be broadly categorized into three main methodologies: 3D-
based, GAN-based, and diffusion-based methods. Traditional 3D-based methods [3, |4} |47, 34],
primarily utilizing 3D Morphable Models (3DMM) [5], often struggle with low-resolution outputs
and face blending issues. GAN-based approaches [33} 19, 27, 2| 29, |56] encounter challenges with
training instability, mode collapse, and producing low-resolution output, particularly in complex
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Figure 1: Face swapping results of VividFace at 512 x 512 resolution. Our method produces high-
fidelity and vivid outputs that accurately follow both pose and expression changes. Corresponding
videos are provided in the supplementary material.

cases. Recently, diffusion models [20] have gained prominence in image synthesis tasks, offering
advantages such as high-fidelity output, enhanced controllability, and high training stability.

Recent advancements like DiffSwap [33] and REFace [[1]] have highlighted the effectiveness of diffu-
sion models for image-level face swapping. However, significant challenges persist when extending
these methods to video face swapping, including maintaining temporal consistency, handling large
pose variations, and addressing occlusions. To overcome these challenges, we propose VividFace, the
first robust and high-fidelity diffusion-based video face swapping framework. VividFace introduces
an innovative hybrid training strategy that integrates diverse static image data with temporal video
sequences, effectively overcoming the inherent limitations of using video-only data, such as insuffi-
cient diversity resulting from highly similar frames within individual videos. This hybrid approach
significantly expands training data diversity, enhancing the robustness and generalization capability
of our model. Our framework employs a specifically designed diffusion model optimized for process-
ing both static images and temporal video data. We further introduce the VidFace VAE adapted to
jointly handle face images and video sequences, effectively mitigating temporal flickering typically
encountered in existing video swapping methods.

To further enhance identity and attribute preservation, we create and release the Attribute-Identity
Disentanglement Triplet (AIDT) dataset, consisting of 1 million image triplets and 0.6 million video
triplets. Each triplet includes a source face, a target face with shared identity but different poses and
expressions, and a GAN-generated face matching the target’s pose and expression but featuring a
distinct identity. This structured dataset significantly boosts the model’s capability for disentangling
identity from pose and expression. While ReliableSwap [53] also utilizes a triplet-based concept, it
mainly addresses artifact reduction through augmentation rather than robust disentanglement. Addi-
tionally, we develop a comprehensive occlusion augmentation strategy that dynamically introduces
various occluding objects over target faces, significantly improving the framework’s robustness
against real-world occlusions. To effectively manage significant pose variations, we incorporate a 3D
Morphable Model (3DMM)-based reconstruction as additional conditioning input. This 3D guidance
ensures accurate pose and expression representation, facilitating better generalization across diverse
video contexts. To further reduce information leakage and enhance robustness, we retain only the
pose and expression features from the reconstruction, discarding texture and identity information.

Experimental results demonstrate our framework’s superiority in terms of Fréchet Video Distance
(FVD), temporal consistency, and attribute/identity preservation, with fewer inference steps compared
to existing methods. Besides, we also demonstrate the stability and generation of our method in
multiple complex cases.

To summarize, this paper makes the following contributions:

* The first diffusion-based video face swapping framework, VividFace, featuring a novel
image-video hybrid training strategy.



* We provide and plan to release a large-scale AIDT dataset to significantly improve face
feature identity-expression disentanglement.

* Robustness enhancements through comprehensive occlusion augmentation and advanced
3D face reconstruction conditioning to handle large pose variations effectively.

» Extensive experimental analyses demonstrating superior temporal consistency, identity
preservation, and visual quality, along with comprehensive ablation studies.

2 Related Work

2.1 Face Swapping

The frameworks of face swapping are generally categorized into three types: 3D-based [3\ 14,47, [34]],
GAN-based [3319, 27, 12 |29, 56!, 126, 38|, and diffusion-based methods [23} /55, [1,[19]]. In addition
to these three main approaches, FaceShifter [27] introduces a two-stage framework that generates
high-fidelity swapped faces by thoroughly and adaptively exploiting and integrating the target
attributes. 3D-based frameworks typically employ the parameterized 3DMM (5] model to reconstruct
the swapped face. Face2Face [47] transferred expressions from source to target face by fitting
a 3DMM face model to both faces. The authors in [34] show that face swapping with robust
segmentation preserves identity in intra-subject swaps and reduces recognizability in inter-subject
cases. HifiFace [51]] introduced a semantic facial fusion module to improve photorealism. However,
these 3D-based methods yield low similarity and unrealistic textures due to limited resolution.

GAN [16] has been a powerful tool for generating realistic synthetic images. The popular algorithm
DeepFakes [11] utilizes an encoder-decoder architecture for identity-specific face swapping but lacks
generalization. To improve adaptability, FSGAN [33]] proposes a subject-agnostic approach with a
recurrent reenactment module, inpainting and a blending module. E4S [29] reframes face swapping
as fine-grained editing by disentangling shape and texture, using regional GAN inversion for precise
feature manipulation and occlusion handling. SimSwap [9] introduces an ID Injection Module and
Weak Feature Matching Loss for flexible, high-fidelity identity swapping. However, GAN-based
methods often struggle with balancing losses and handling shape variations or occlusions, leading to
inconsistencies in illumination and identity in complex cases.

Recently, diffusion models have become a leading framework for image & video generation. DiffFace
[23] first leverages conditional diffusion models for stable identity-preserving swapping. DiffSwap
[55]] and FaceAdapter [19] build upon conditional inpainting paradigms to achieve high-fidelity,
controllable swapping. REFace [1]] improves this by reframing swapping as a self-supervised
inpainting task. However, existing diffusion-based methods mainly target static images, overlooking
key video challenges like temporal consistency, occlusions, and large pose variations.

2.2 Diffusion Models

Diffusion models [20, 131} [57} 58} [43]] have recently emerged as a powerful generative framework,
achieving state-of-the-art performance in various domains, including image synthesis [[14} 20, 45]],
editing [22, 44} 28]], super-resolution [50} [15]], and video generation [[18 6} 132]. Unlike GANs, which
often suffer training instability, diffusion models offer a more stable training process by gradually
denoising data from random noise, resulting in high-fidelity outputs. Notable advancements include
Stable Diffusion [40]], which enhances efficiency by operating in the latent space, and SVD [6], which
incorporates temporal modules to scale diffusion models for video tasks. Conditioning mechanisms
like cross-attention and concatenation enhance controllability, enabling targeted generation across
applications [48]]. Thus, diffusion models are increasingly popular for versatile, high-quality content
creation.

3 Method

3.1 Preliminaries

Our method employs Stable Diffusion (SD) [40] as the backbone network. Stable Diffusion is a text-
to-image model built on the Latent Diffusion Model (LDM), which enables efficient image generation
by operating within a compressed latent space. SD uses a variational autoencoder (VAE) [24]] to map
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Figure 2: Overview of the proposed framework. During training, our framework randomly chooses
static images or video sequences as the training data. In addition to the noise z;, three other types
of inputs are integrated to guide the generation process: (1) a face region mask, which controls
the generation of facial imagery; (2) a 3D reconstructed face, which helps guide the pose and
expression, especially in cases of large pose variations; and (3) masked source images, which supply
background information. These inputs are processed through the Backbone Network, which performs
the denoising operation. Within the Backbone Network, we employ cross-attention and temporal
attention mechanisms. The temporal attention module ensures temporal continuity and consistency
across frames. Our face encoder extracts identity and texture features from the target face, as well
as pose and expression details from the source face, and uses these features to produce realistic and
high-fidelity results.

the original image x( unto a latent representation zg. reducing computational cost while preserving
visual quality. The image is encoded as zp = £(x) and decoded back as ¢y = D(zp). SD follows
the Denoising Diffusion Probabilistic Model (DDPM) [20] framework, introducing Gaussian noise €
to the latent z( across timesteps ¢, generating a noisy latent z; over a series of steps. During inference,
the model denoises z; back to 2y, guided by condition features. The denoising backbone €y, based on
a U-Net [41], is trained to predict the noise and remove it progressively, using the objective:

L= Et,c,zt,e |:||6 - EG(Zta ta C)||2] 5
where c represents text features derived from a CLIP encoder [37]. SD uses a U-Net with cross-
attention mechanisms, to fuse text embeddings with latent features, enabling fine control over
generated images based on text prompts. This allows SD to generate detailed, high-fidelity images
while responding effectively to user input.

3.2 Hybrid Face Swapping Framework

Video Face Swapping Task. Video face swapping aims to seamlessly transfer a source face identity
onto a target video while preserving the target’s pose, expression, lighting, and background. Although
recent works like DiffSwap [55], 23| 1] have demonstrated promising results for static image face
swapping, extending these approaches directly to videos presents substantial challenges. These
include temporal distortions, flickering, occlusion sensitivity, and difficulties in managing significant
pose variations.

To effectively tackle these challenges, we propose VividFace, a diffusion-based video face swapping
framework specifically designed for robust, temporally coherent, and high-fidelity results. VividFace
introduces a novel hybrid training strategy that leverages abundant image-level data alongside
temporal video data. This hybrid approach enhances diversity and robustness in training, significantly
mitigating issues prevalent in video-only methods. Our framework initially encodes both source
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and video sequences T, into a unified latent space
using a specially designed VAE. Static images are treated equivalently as single-
frame videos, ensuring consistent embedding. Subsequently, we train a conditional diffusion model
€9 (2, t; C) that performs latent space denoising, emphasizing temporal consistency and identity
fidelity. Here, C represents the conditioning vectors, and ¢ indicates the denoising timestep. Due to
the absence of ground truth data when source and target images originate from different individuals,
our model uses pairs of face images from the same identity during training. As depicted in Figure 2}
training batches alternate between static image data and video sequences, ensuring efficient gradient
synchronization and optimal learning dynamics.

VidFaceVAE. As shown in Figure [3] our pro-
posed VidFaceVAE is a VAE framework designed
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Ospatial ANd Otemporal denote the output from the
spatial branch and the temporal branch. We do
not involve the temporal downsampling modules

VAE, capable of simultaneous encoding and de-
coding of both image and video data. Specific
modules are designed for video inputs, which

in our VAE framework as it needs to process im- image inputs bypass when necessary.

age data. The (2+1)D structure of VidFaceVAE

provides two primary advantages: (1) it significantly reduces computational complexity compared
to full 3D convolutions, and (2) it facilitates leveraging pretrained 2D VAE parameters and stable
diffusion (SD) weights, accelerating training convergence and enhancing overall performance. In
contrast to OD-VAE [8]], our approach does not utilize 3D causal convolutions due to their limited
capacity, particularly when processing static images, and our backbone architecture does not rely on
transformer-based designs.

Temporal Modules. Inspired by recent approaches like EMO [48]] and AnimatedDiff [18]], we
introduce self-attention temporal layers specifically designed for video sequences. During training
with video data, we prepare additional motion frames 272" to enrich temporal context. The
temporal attention mechanism combines these motion features with target frames at matching
resolutions along the temporal dimension, improving temporal coherence. To smooth the first video

clip’s generation, motion frames are initialized as zero vectors during training.

3.3 Designs of Condition Vectors

In our framework, several carefully designed condition vectors are used to guide the generation
process, ensuring accurate and consistent visual outputs for both static images and video sequences.
We formulate video face swapping as a conditional inpainting task, where masked videos with
cropped face regions provide the background and lighting conditions. The corresponding face regions
guide the diffusion model on where are generated the faces.

In many in-the-wild videos, faces often exhibit significant pose variations, which can lead diffusion
models to produce suboptimal results, such as facial distortions and inaccurate pose estimations. To
address this issue, we propose using a 3D reconstruction technique to reconstruct the face and use
its output as local guidance for pose and expression details. Specifically, we employ 3DMM [3] to
extract BFM (Basel Face Model) coefficients, setting the texture and identity component to zero to
reduce information leakage. Replacing the reconstructed face with the original target would introduce
further leakage, as the ground truth face is identical to the input, which could impair the model’s
generalization ability. To ensure that the generated face maintains the same identity as the source
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* Figure 5: Visualization of our occlusion
Figure 4: Visualization of our AIDT dataset, which in- data augmentation, which improves the
cludes 1M image triplets and 0.6M video pairs. For video stability and consistency of the generated
facial data, we only present the target and decoupling videos.

faces, as source faces can be derived from any other

frame within the same clip.

face while preserving attributes (such as pose, expression, efc.,), we inject cross-attention features C
extracted by our face encoder as global context to the diffusion model.

Face Encoder. The face encoder module in our framework plays a critical role in extracting and
integrating features from the target and source faces to guide the face-swapping process effectively.
As illustrated in the right part of Figure[2] the face encoder is composed of three primary networks,
each responsible for capturing distinct aspects of facial information: (1) identity net: this network
focuses on extracting the core identity features from the target face; (2) texture net: this network is
designed to capture detailed texture information from the target face, such as skin tone, fine facial
features; (3) attribute net: the net extracts additional facial attributes from the source, such as pose,
expression, and other dynamic features that contribute to a realistic and expressive representation.

The straightforward approach is to send the source image to both the identity and texture networks,
while the target image is sent to the attribute network. However, a challenge arises when the source
and target faces do not belong to the same person, as the ground truth is unavailable in the real
world. In most previous methods [11, 55}, 23], the source and target images are assumed to be the
same, meaning all three networks receive identical input. This results in difficulties for the face
encoder in extracting distinct features and leading to information leakage. Specifically, this leakage
causes the model to merely “copy and paste" the face region, effectively completing the task by
superficially transferring facial features without meaningful feature disentangling or transformation.
In contrast, our framework, built on the AIDT dataset (shown in Figure ), employs source images
(same identity, but different attributes) and decoupling images (same attribute, but different identity).
These images guide the face encoder to disentangle and fuse facial features, improving generalization
across different identities during inference.

Within the Mixer module, the extracted features first undergo cross-attention operations to capture
mutual dependencies. The outputs are then scaled by learned weights and fused via weighted sum.
This process combines the identity, texture, and attribute features to create a comprehensive cross-
attention feature representation C. This fused representation offers rich context to guide the diffusion
model during face generation, ensuring high fidelity and identity consistency across video frames.

3.4 Training Strategy

Our training process involves three stages to progressively enhance model performance for video
face swapping. The first stage focuses on training the VidFaceVAE , where we apply reconstruction,
perceptual, and KL divergence losses to ensure high-quality reconstruction and a well-structured
latent space. The training data primarily consists of facial images and videos. Given the specifically
designed architecture, the spatial modules are initialized using the original 2D VAE. In subsequent
stages, the VAE is frozen and no longer updated. In the second stage, we pretrain the model using
image data, while the ReferenceNet and temporal modules of the backbone network remain inactive.
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Figure 6: Qualitative comparison at 512 x 512 resolution. Our method generates high-fidelity results
and handles challenging cases effectively, such as large poses (b) and occlusions (c).

The backbone is initialized from the original SD weights. Finally, we perform image-video hybrid
training by activating temporal modules and introducing video data, initializing temporal modules
from AnimateDiff [[18] for effective temporal consistency and smooth frame transitions.

4 AIDT Dataset

In this section, we describe the construction of triplet pairs for our AIDT (Attribute-Identity Disen-
tanglement Triplet) dataset, which includes 1M image triplets and 0.6M video triplets, as shown in
Figure[d] The data was generated via a pipeline of collection, detection, tracking, and post-processing.
See Appendix [B] for details. The dataset helps the face encoder to disentangle and fuse distinct
facial components—ID features, texture features from the source face, and attribute features from the
decoupling face. This enhances generalization, especially when the source and target faces belong to
different individuals during inference.

In addition, Figure 5] showcases our occlusion augmentation pipeline. We collect hand and everyday
object images, along with their corresponding masks, from web data sources. To simulate temporal
dynamics, we design a motion trajectory animation scheme that incorporates scale, rotation, and
translation over time. This augmentation strategy improves robustness under occlusion and enhances
the temporal consistency of synthesized videos.

5 Experiment

Detailed information regarding dataset preparation, network architectures, hyperparameters, and
training procedures can be found in Appendix [A]

5.1 Evaluation Protocol

Considering that most previous baselines, such as CelebA [25] and FFHQ [21], are primarily focused
on image face swapping, we propose a new benchmark for video face swapping, VidSwapBench.
Our benchmark includes 200 source images and 200 high-resolution target videos, with each video
containing 128 frames and a single trackable face. These videos and images feature unseen identities
and backgrounds, ensuring a diverse and challenging dataset. To evaluate performance, we generate
200 swapped videos using our framework. For comparison, since other methods are based on image-
level face swapping, we perform face swapping frame by frame for those methods. For facial data
reconstruction, we use SSIM, PSNR and LPIPS to evaluate the quality of reconstructed images
and videos. For video face swapping, we use FVD [49] to assess the overall quality of the generated
videos. The attribute transfer error is measured by pose and expression errors. We use HopeNet
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Figure 7: Ablation on the occlusion data augmentation and 3D face reconstruction.

and Deep3DFaceRecon [[13] to detect these attributes, and the L2 distance to the ground truth is used
as the evaluation metric. For ID retrieval, we extract identity features from the source images using
ArcFace, and for each swapped video, we perform face retrieval by searching for the most similar
faces among all source images. The retrieval is measured by the average cosine similarity of all
frames, and we report the Top-1 and Top-5 accuracy.

Table 1: Comparison on VidSwapBench dataset. Table 2: Comparison on FFHQ dataset.
Method FVDs2l FVDyosl ID@11 ID@51 Posel Exprl Method FID| D@1t ID@51 Posel Exprl
MegaFS [36] 12803 2007 728 821 621 074 MegaFS [56] 120 59.6% 74.1% 333 111
HifiFace [51] 13773 3864 741 829 610 074 HifiFace [51] 1158 753% 87.1% 328 141
SimSwap [0] 12428 1866 765 8.5 512 076 SimSwap [0 138 90.6% 964% 298  1.07
FSGAN [33] 15079 4238 245 400 519 073 E4S 291 1238 702% 8273% 450 131
DiffFace [23] 24047 14049 15 41 183 158 DiffFace 23] 859 872% 944% 380 228
DiffSwap [55] 1530.2 8093 145 263 129 102 DiffSwap [55] 8.58 782% 93.6% 292  LIO
REFace [1] 1339 3119 719 865 667 091 REFace [[] 553 954% 987% 374 104
Ours 12011 1226 783 902 543 072 Ours 405 969% 992% 370 107

5.2 Comparisons with Existing Methods

Qualitative Results. Since videos cannot be displayed in the PDF and due to submission policy
restrictions on showing generated videos, we provide several comparison videos in the supplementary
materials and strongly encourage the reader to view them. We perform quantitative comparison
at 512 x 512 resolution. As shown in Figure [] (a) and (d), our method generates high-fidelity
swapped faces, with attributes that closely match the target faces. In Figure [§] (b), our method
successfully transfers both face shape and expression under large pose variations, benefiting from the
3D reconstruction mask, while other methods exhibit generation artifacts. In Figure[6](c), where a
toy and hand occlude the girl’s face, most other methods fail to handle the occlusion properly, with
the toy and hand either displaced or fused together. Additionally, many methods result in noticeable
facial deformations. In contrast, our method successfully recovers the occluded areas and maintains
accurate face swapping, thanks to our augmentation strategy.

Quantitative Results. In Table|I| we compare seven open-source methods (four GAN-based and
three diffusion-based). The results show that our method outperforms others in ID retrieval and
FVD, generating high-fidelity swapped face videos while preserving the source identity. It also
achieves comparable performance in pose and expression, maintaining target attributes effectively.
Furthermore, since our model supports both image and video face swapping, we also evaluate it on
the standard FFHQ dataset. As shown in Table[2] VividFace achieves state-of-the-art results in FID
and ID retrieval, while delivering comparable performance in pose and expression preservation.

5.3 Ablation Studies

We conducted comprehensive ablation experiments to analyze the contributions of different compo-
nents and design choices within our framework. The quantitative results are summarized in Table
and qualitative visualizations are presented in Figure [/| Hybrid vs. Static Training (Exp. 1):
training exclusively with static images results in decreased identity preservation (Top-1 accuracy



Table 3: Ablation on training strategies and module designs  Table 4: Comparison of different
VAE architectures

ID retrievalf

Exp Id Method FVD33| FVDiosl Pose| Expr.|

Top-1  Top-5
- Architecture Facial videos
0 Baseline 12011 1226 783 902 543 072 Encoder Decoder SSIM PSNRI  LPIPS|
1 Static Training 1231.9 128.1 75.7 88.1 5.60 0.74
2 Without 3DMM Guidance 11974 1213 781 904 555 074 2D 2D 0967 3761  0.048
3 Merged ID and Texture Net 12038 1219 764 871 549  0.73 2D @+hb 0976 3877  0.039
4 it Texture/Atr Net with CLIP ~ 1237.9 1382 760 861 530 072 (2+DD  (2+DD 0983 4111 0.027

reduced from 78.3 to 75.7) and higher FVD scores, underscoring the critical advantage of our hybrid
training approach in achieving superior temporal consistency and identity fidelity. Impact of 3D
Reconstruction Conditioning (Exp. 2): removing the 3DMM conditioning slightly reduces pose
and expression accuracy, highlighting the effectiveness of 3DMM guidance in handling complex
pose variations. Separate Identity and Texture Networks (Exp. 3): combining identity and texture
features into a single network leads to reduced identity retrieval accuracy, emphasizing the necessity
of separate networks for effectively disentangling and extracting distinct facial features. Initialization
Strategy (Exp. 4): initializing texture and attribute networks with CLIP weights negatively affects
identity preservation, demonstrating the effectiveness of our proposed initialization strategy. Impact
of Occlusion Augmentation: the qualitative results in Figure[/|(a) show severe distortions when
occlusion augmentation is omitted. Introducing occlusion augmentation substantially improves
stability, consistency, and visual quality under occlusion scenarios. Effect of 3DMM Conditioning
on Large Pose Variations: Figure[7](b) illustrates that excluding 3D face reconstruction guidance
results in significant instability and distortion for large pose variations.

VAE Architecture Analysis. Table ] compares recon-
struction performances of different VAE architectures. The =~ _ Atriuever
baseline (SD-VAE) employs a pure 2D structure, the sec- %
ond model utilizes a (2+1)D decoder combined with a
2D encoder, and our proposed VidFaceVAE employs a
full (2+1)D encoder-decoder. VidFaceVAE outperforms
alternative architectures across all metrics, achieving the
highest SSIM (0.983), PSNR (41.11), and lowest LPIPS
(0.027). This clearly demonstrates the advantage of effec-
tively integrating spatial and temporal processing in facial
video reconstruction.

Figure 8: Ablation on the different com-
binations of texture weights and attribute
weights.

5.4 Face Feature Mixing Analysis

We further examine the impact of varying texture and
attribute weights within the face encoder. Figure g shows
that increasing texture weight improves identity similarity
but can degrade pose and expression preservation if too high. Higher attribute weights maintain target
features but reduce identity fidelity. Optimal performance is achieved by balancing these weights, set
to 1.0 for identity and 0.6 for texture and attribute in our experiments.

6 Conclusion

In this paper, we introduced a novel diffusion-based framework for video face swapping, addressing
key challenges such as temporal consistency, identity preservation, and large pose variations. Our
image-video hybrid training strategy leverages both static images and video data, improving model
diversity and robustness. The VidFaceVAE , coupled with a custom Attribute-Identity Disentangle-
ment Triplet (AIDT) dataset and 3D Morphable Model integration, enables accurate face swapping
while mitigating issues like flickering and occlusions. Our framework outperforms existing methods
in FVD, temporal consistency, and identity preservation, with fewer inference steps. Together with
the released dataset, it provides a more efficient solution for high-quality video face swapping and
lays the foundation for future advancements.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The introduction clearly states the paper’s main contributions, including
the proposal of the VividFace framework, the hybrid training strategy, the AIDT dataset,
occlusion augmentation, and 3DMM-based conditioning. These claims are aligned with the
paper’s technical content and are appropriately scoped based on the presented methods and
experiments.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the proposed method are discussed in the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed implementation specifics, including architectural
design, training procedures, and evaluation metrics. Additionally, the authors offer access to
the codebase and pre-trained models, and commit to releasing the AIDT dataset, enabling
thorough reproducibility of all major experimental results and supporting the paper’s main
claims.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The paper provides access to the code and pre-trained models, along with
detailed instructions for reproducing the experiments. Additionally, the authors commit
to releasing the AIDT dataset, ensuring that all essential components needed for faithful
reproduction of the main results are available or will be made available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper includes comprehensive descriptions of training and evaluation
settings, including data splits, model architecture, optimizer type, learning rate, and other
hyperparameters.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
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Justification: The paper does not report error bars or statistical significance metrics. Due to
the high computational cost associated with training diffusion-based video models, repeated
trials under varying random seeds or data splits were not conducted.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The paper provides relevant information in the experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The work complies with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both positive impacts—such as applications in privacy
protection, digital humans, and safe content creation—and potential risks, including misuse
for deepfakes or disinformation, in the appendix.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper acknowledges potential misuse risks and outlines safeguards, includ-
ing planned release under usage restrictions, documentation of intended use, and guidelines
for responsible deployment. Additionally, safety considerations are incorporated into dataset
construction to avoid harmful or inappropriate content.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

15.

Answer: [Yes]

Justification: We use publicly available datasets and codebases, all of which are properly
cited in the paper. License terms (e.g., CC-BY, MIT) are respected, and URLs and version
information are provided where applicable.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new assets with clear documentation on their structure,
usage, and licensing in the supplementary materials.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs were used solely for grammar checking and language polishing. They
did not contribute to the core methodology, experiments, or scientific content of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

We collected approximately 550 hours of facial videos from the internet to train our models, and the
facial images are partially sourced from VGGFace2-HQ [[10]. In our experiments, we use a latent
space of size 13 x 64 x 64 and a U-Net architecture for the ¢y denoising network. Images and video
clips sampled from the dataset are resized and cropped to 512 x 512. The number of motion frames,
M, is set to 4, and the generated video length, 7', is set to 8 frames. For the face encoder, the identity
network is based on ArcFace [12]], while the texture and attribute networks are based on DINO [7]].
We use the SCRFD [[17] for facial bounding box detection. The mixing coefficients of the ace encoder
are set to 1.0 for identity features, and 0.6 for both texture and attribute features. The experiments are
conducted using 16 NVIDIA A100 GPUs and optimized with AdamW [30]. In the first stage of the
VAE training, the learning rate is set to 5e-6 with a batch size of 32. The weights of reconstruction,
perceptual, and KL divergence loss are 1.0, 0.1, 1e-6 respectively. For the second and third stages, the
learning rate is increased to le-5, with the batch size remaining at 32. During inference, we generate
video clips using the DDIM sampling algorithm for 32 steps.

B AIDT Dataset details

This section describes our approach to constructing the AIDT (Attribute-Identity Disentanglement
Triplet) dataset, which consists of two parts: video clip collection and triplet pairs construction.

B.1 Video Clip Collection Pipeline

Video Collection. We collect facial videos from public platforms to capture a diverse range of visual
and auditory content. The video corpus includes two primary categories: static content, such as
news broadcasts, interviews, and public speaking events; and dynamic content, encompassing genres
like travel guides, vlogs, and musical performances. This variety ensures a comprehensive dataset,
representing both controlled and spontaneous human expressions and activities across different
scenarios.

Face Detection and Tracking. For each video, we first apply a face detection model to identify face
bounding boxes in each frame. Subsequently, all face detections are fed into a tracking procedure
to generate face tracklets across frames. Each resulting tracklet is then split into video clips, each
containing between 30 and 200 frames. Finally, we crop each video clip to center the head within the
frame and to maintain a consistent aspect ratio.

Data Post-Processing. Based on the preliminary clips generated in the previous stage, we further
refine the clips by applying three key constraints to collect final training data. We begin by utilizing
HyperIQA [46] to filter out low-quality clips, setting an average quality assessment threshold score
of 50 to ensure visual fidelity. Second, we enforce identity consistency within each clip by using a
face recognition model to extract facial features and compute cosine similarity scores between every
pair of frames, thus verifying that each clip represents a single individual. Finally, we utilize an OCR
model to exclude clips containing text near the facial region, minimizing visual distractions that could
interfere with model training.

B.2 Construction of triplet training dataset

For image data, we first cluster the facial images based on identity similarity. From each cluster,
we randomly select two images to form a target-source pair that shares the same identity but has
different attributes. To generate the decoupling image, which has a different identity but the same
attribute, we use the open-sourced InsightFace to create synthetic images with a distinct identity,
while preserving the gender of the original face. This approach helps to avoid the degradation in
quality observed when the original and swapped faces belong to different genders. Additionally, we
exclude triplets with significant facial expression discrepancies by comparing the face landmarks.
For video data, the process is similar, except that both the source and target images come from the
same video clip, but not from the same frames as the target or motion images, which reduces the pose
variation. Since video data is less abundant than image data, clustering does not yield enough pairs to
form a sufficient number of triplets.
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Figure 9: Qualitative comparison at 512 x 512 resolution. Our method generates high-fidelity results
and handles challenging cases effectively, such as large poses (b) and occlusions (c¢). Corresponding
videos are provided in the supplementary material.

C More Visualization

In Figure[9] we show additional frames from the same video presented in the main text (Figure|[6).
We further provide supplementary visual examples in Figure [T0} Figure [T1] Figure T2} Figure
Figure [T4] and Figure [I5] The corresponding video results for all examples are included in the
supplementary materials.

D Limitations

While VividFace demonstrates strong temporal consistency, high-fidelity visual quality, and robust-
ness in challenging scenarios, it also inherits certain limitations associated with diffusion-based
architectures. Specifically, compared to GAN-based or lightweight encoder-decoder approaches,
diffusion-based models typically require more inference steps to generate each frame, resulting in
slower runtime performance. This can limit the practical applicability of our method in real-time or
latency-sensitive scenarios, such as live video processing or interactive applications. Although we
adopt efficient design choices and optimize the number of inference steps, the trade-off between gen-
eration speed and output quality remains an open challenge. Future work could explore accelerated
diffusion sampling strategies or hybrid approaches that combine the strengths of both diffusion and
feed-forward architectures to further improve efficiency without compromising quality.
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Figure 10: Qualitative comparison at 512 x 512 resolution. Corresponding videos are provided in the
supplementary material.

E Broader Impacts

VividFace advances video face swapping with high visual fidelity and temporal consistency, offering
potential positive societal impacts in several domains. These include privacy protection through
identity anonymization, safer film and content production by reducing the need for risky physical
stunts, the creation of digital avatars in virtual environments, and accessible tools for individuals
with communication or appearance-related challenges. However, the same capabilities may lead to
negative societal consequences if misused. High-quality face-swapping techniques can be exploited
for generating deepfakes, which may contribute to misinformation, identity theft, and other forms of
digital deception. These risks are particularly relevant in political, social, and journalistic contexts
where visual integrity is crucial. To address these concerns, we plan to release our models and datasets
with strict usage terms and clear documentation. We encourage responsible use and support the
development of detection tools and watermarking techniques to distinguish generated content from
real footage. Furthermore, we advocate for continued dialogue in the research community around
ethical deployment, regulatory considerations, and public education to minimize harm while enabling
beneficial use cases. As with any powerful generative technology, the societal impact of VividFace
will depend not only on the tool itself, but on how it is governed and integrated into real-world
systems.
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Figure 11: Qualitative comparison at 512 x 512 resolution. Corresponding videos are provided in the
supplementary material.
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Figure 12: Qualitative comparison at 512 x 512 resolution. Corresponding videos are provided in the
supplementary material.
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Figure 13: Qualitative comparison at 512 x 512 resolution. Corresponding videos are provided in the
supplementary material.
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Figure 14: Qualitative comparison at 512 x 512 resolution. Corresponding videos are provided in the
supplementary material.
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Figure 15: Qualitative comparison at 512 x 512 resolution. Corresponding videos are provided in the
supplementary material.
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