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A B S T R A C T

The comprehensive utilization of incomplete multi-modality data is a difficult problem with strong practical
value. Most of the previous multimodal learning algorithms require massive training data with complete
modalities and annotated labels, which greatly limits their practicality. Although some existing algorithms can
be used to complete the data imputation task, they still have two disadvantages: (1) they cannot control the
semantics of the imputed modalities accurately; and (2) they need to establish multiple independent converters
between any two modalities when extended to multimodal cases. To overcome these limitations, we propose
a novel doubly semi-supervised multimodal learning (DSML) framework. Specifically, DSML uses a modality-
shared latent space and multiple modality-specific generators to associate multiple modalities together. Here
we divided the shared latent space into two independent parts, the semantic labels and the semantic-free
styles, which allows us to easily control the semantics of generated samples. In addition, each modality
has its own separate encoder and classifier to infer the corresponding semantic and semantic-free latent
variables. The above DSML framework can be adversarially trained by using our specially designed softmax-
based discriminators. Large amounts of experimental results show that the DSML obtains better performance
than the baselines on three tasks, including semi-supervised classification, missing modality imputation and
cross-modality retrieval.
. Introduction

With the development of sensor technology, researchers are more
nd more interested in the acquiring and modeling of multimodal
ata [1,2]. Distinct modalities offer complementary strengths, and in
any cases, using multiple modalities together can yield a solution that

s much better than either one by itself. Successful cases can be found in
any applications, such as emotion recognition [3–6], object recogni-

ion [7,8], disease diagnosis [9,10], etc. Previous multimodal learning
lgorithms [11–13] generally assume that all available training in-
tances have complete modalities and corresponding labels. However,
n practice, the assumption does not hold, because (1) modality missing
ay occur at some data points due to some unforeseeable reasons, such

s sensor failure; (2) in some applications, such as brain decoding [14,
5], obtaining multimodal data is expensive, while collecting enough
ingle-modal data is easy; and (3) the data labeling procedure is often

∗ Corresponding author at: Research Center for Brain-inspired Intelligence and National Laboratory of Pattern Recognition, Institute of Automation Chinese
cademy of Sciences, Beijing, 100190, China.

labor-intensive, so in most cases we only have a small number of la-
beled samples available. Therefore the traditional multimodal learning
approaches cannot effectively handle the incomplete multi-modality
situations, especially in a semi-supervised manner.

Toward overcoming the aforementioned incomplete data prob-
lems, researchers have proposed several cross-modality data imputation
methods [16–18]. For example, Luan et al. [16] proposed to stack a
series of residual autoencoders on top of each other to capture the
relatedness among different modalities. Du et al. [17] proposed the
use of the adversarial multi-view autoencoding model to achieve the
mutual prediction of multiple modalities. Cai et al. [18] regarded the
existing modality as conditions and used conditional deep generative
adversarial model to generate the target modality. Unfortunately, the
approaches mentioned above still have two common shortcomings.
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First of all, these methods are not flexible enough to control the seman-
tic information of the imputed modalities. Previous studies typically
used unsupervised translation methods [19] to model the modality
inference problems, which does not explicitly utilize the semantic infor-
mation of the input modalities. How to utilize the semantic information
of the input modality to flexibly control the semantics of the output
modality is still a challenging problem. Second, these methods are not
scalable enough to handle multiple modalities. Most of the existing
methods need to learn two translator going in opposite directions for
the mutual mapping between two modalities. When scaling up to the 𝑛
𝑛 > 2) modalities, they need to build 𝑛(𝑛−1) translators, which quickly
ecomes unfeasible as the number of modalities increases.

In this paper, we propose a scalable doubly semi-supervised mul-
imodal learning framework (DSML) with deep generative adversarial
odels [20]. Instead of learning the direct modality mappings, our
SML uses the latent space shared by modalities and the modality-

pecific generators to model the relationships between different modal-
ties. The benefits of using modality-shared latent space are threefold.
1) Mutual inference between modalities through the shared latent
pace only require 2𝑛 low-dimensional mappings. This is more scalable
nd efficient than the direct transformation between high-dimensional
odalities. (2) The shared latent space allows us to generate a large
umber of paired synthetic samples, which can be used to augment
he training set. (3) The trained low-dimensional latent space supports
fficient similarity calculation and fast cross-modal retrieval.

We divide the shared latent variable into two parts (𝒄, 𝒛), where
contains the semantic information (category labels), and 𝒛 contains

he semantic-free factors (background, color, etc.). The decoupling
f 𝒄 and 𝒛 allows us to flexibly control the semantics of the gen-
rated samples. However, 𝒄 and 𝒛 might be entangled together in

training phase without specific constrains. To solve this problem, we
construct two inference networks (i.e., the classifier and encoder) for
each modality to minimize the reconstruction error of 𝒄 and 𝒛 in the
latent space, respectively. This architecture naturally enables efficient
cross-modality translations through the shared latent space. Finally, we
carefully design an adversarial training method to train all involved
modules (the generators, classifiers and encoders).

Experimental results on multiple datasets demonstrate that the pro-
posed DSML as a unified framework can simultaneously (1) achieve
the state-of-the-art multimodal semi-supervised classification results;
(2) recover the missing modality with high visual quality and correct
intrinsic semantics; and (3) perform efficient cross-modality retrieval in
the modality-shared latent space.

The main contributions can be summarized as follows.

• By matching three kinds of the joint distributions, we develop a
doubly semi-supervised learning framework, which can simulta-
neously leverage the complete and incomplete multimodal data
(missing labels, missing modalities or both) to improve the per-
formance of downstream tasks.

• The proposed modality-shared and semantic disentangled latent
space can (1) impute the missing modality more efficient, control-
lable and scalable; (2) naturally support for multimodal fusion,
semi-supervised learning and cross-modality retrieval.

• We design a softmax-based multiclass discriminator to distin-
guish multiple distinct joint distributions in adversarial training
procedures.

• We show the experimental results on a lot of downstream tasks,
such as semi-supervised classification, missing modality imputa-
tion and cross-modality retrieval.

2. Related work

The proposed DSML framework focuses on doubly semi-supervised
multimodal learning with deep generative adversarial networks (GANs)
119

[21]. There has been recent interest in employing deep generative
models to learn the joint distributions of two domains/modalities.
They can be roughly divided into the following three categories. (1)
Generation and inference: one domain consists of the unobservable latent
variables, and the other domain consist of the observable data; (2)
Cross-modality translation: both domains consist of the observable data
samples, but some of the samples are described by only one modality;
(3) Semi-supervised classification: one domain consists of the observable
data samples, and the other domain consist of the corresponding data
labels of partial samples. Below, we introduce them, respectively.

2.1. Generation and inference

Adversarially learned inference (ALI) [22] and BiGAN [23] are deep
generative models which train a generative network and an inference
network jointly using adversarial loss. These models provide a novel
way to integrate inference model into the GAN framework, and hence
they can learn the joint distribution of the data samples 𝒙 and the latent
codes 𝒛. Specifically, the objective of ALI can be written as

min
𝐺𝑥 ,𝐸𝑧

max
𝐷

ALI = E𝒙∼𝑝(𝒙), 𝒛̃∼𝑝𝑧(𝒛|𝒙)
[

log𝐷(𝒙, 𝒛̃)
]

(1)

+ E𝒙̃∼𝑝𝑥(𝒙|𝒛), 𝒛∼𝑝(𝒛)
[

log
(

1 −𝐷(𝒙̃, 𝒛)
)]

,

where 𝑝𝑥(𝒙|𝒛) ≡ 𝐺𝑥 is the generator for the data samples, 𝑝𝑧(𝒛|𝒙) ≡ 𝐸𝑧 is
the encoder for the latent codes, and 𝐷(𝒙, 𝒛) is the discriminator trained
to distinguish the two kind of joint samples (𝒙, 𝒛̃) and (𝒙̃, 𝒛). To solve
the non-identifiability issue (the mapping between random variables
𝒙 and 𝒛 is not specified) associated with ALI, the ALICE model [24]
regularizes ALI using the conditional entropy framework, which is
equivalent to the cycle-consistency principle in CycleGAN [19]. More
recently, Du et al. [17] proposed a multi-view ALI (MALI) model based
on a shared latent space for cross-domain generation.

2.2. Cross-modality translation

The purpose of a cross-modality translation is to predict one modal-
ity from another. The methods in this field can be classified as super-
vised [25,26], semi-supervised [24,27–29], and unsupervised [19,30]
models, depending on whether the training set contains paired sam-
ples. As a general semi-supervised cross-modality translation model,
𝛥-GAN [27] can learn the bi-directional mappings between modalities
𝒙 and 𝒚. Actually, 𝛥-GAN can be considered as a combination of ALI
and the conditional GAN [31]. Its goal is to match the three joint distri-
butions: 𝑝(𝒙, 𝒚), 𝑝𝑥(𝒙, 𝒚) = 𝑝𝑥(𝒙|𝒚)𝑝(𝒚) and 𝑝𝑦(𝒙, 𝒚) = 𝑝𝑦(𝒚|𝒙)𝑝(𝒙). If this
is achieved, we obtain the bidirectional mappings 𝑝𝑥(𝒙|𝒚) and 𝑝𝑦(𝒚|𝒙).
Representative unsupervised cross-modality translation work includes
the DiscoGAN [30], CycleGAN [19], etc. For instance, DiscoGAN uses
two generators to build the relationships between the different modali-
ties, and two discriminators to distinguish the real and fake data in each
individual modality. Although the above cross-modality translation
models have achieved encouraging results in some fields, they lack
latent variable inference mechanism.

2.3. Semi-supervised classification

The GAN frameworks have been applied to semi-supervised classi-
fication tasks [32–35]. These models are trained to match the distri-
butions characterized by the classifier and the generator with the real
data distribution. For example, TripleGAN [32] achieves the state-of-
the-art semi-supervised classification results by using adversarial joint
distribution matching. Similar work includes SGAN [33], etc. Besides
GANs, the variational autoencoders (VAEs) [36] have also been applied
to semi-supervised learning [6,37]. For example, Du et al. [6] proposed
a semi-supervised incomplete multi-view VAE model (SiMVAE), which
consider the missing labels or modalities as latent variables and infer
them automatically. Unlike SiMVAE, the latent variable of DSML has
been divided into two disentangled parts. Further, SiMVAE can only
be applied to semi-supervised classification, while our DSML model is
naturally suitable for more other applications, i.e., missing modality

imputation and cross-modality retrieval.
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Fig. 1. In doubly semi-supervised learning, both the data labels and the data modalities
are incomplete. The red cross indicates that the entry is missing or unavailable. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 1
The frequently used symbols and their definitions.

Symbol Definition

𝒙 Data modality
𝒚 Data modality
𝒄 Modality-shared semantic label
𝒛 Modality-shared latent code
𝐺𝑥 , 𝐺𝑦 Modality-specific generators
𝐶𝑥 , 𝐶𝑦 Modality-specific classifiers
𝐸𝑥 , 𝐸𝑦 Modality-specific encoders
𝐷𝑥𝑧 Binary discriminator
𝐷𝑦𝑧 Binary discriminator
𝐷𝑥𝑐 3-way softmax discriminator
𝐷𝑦𝑐 3-way softmax discriminator
𝐷𝑥𝑦 4-way softmax discriminator
E[⋅] Expectation operator

3. Methodology

3.1. Doubly semi-supervised learning

In multimodal learning, we are often faced with data scenarios
in which both labels and modalities are incomplete (cf. Fig. 1). For
simplicity, we first consider the case of two modalities, and it is
straightforward to extend to multiple (more than two) modalities.

For a data sample, we assume 𝒙, 𝒚 and 𝒄 denote the first modality,
the second modality and the category label, respectively. Then, we have
three forms of empirical distributions for unlabeled data, i.e., the paired
data 𝑝(𝒙, 𝒚), the unpaired data 𝑝(𝒙) and 𝑝(𝒚). Similarly, we have three
forms of empirical distributions for labeled data, i.e., the paired data
𝑝(𝒙, 𝒚, 𝒄), the unpaired data 𝑝(𝒙, 𝒄) and 𝑝(𝒚, 𝒄). Since the labeled data
with complete modalities usually is insufficient, a good multimodal
learning model should also benefit from the empirical distributions
𝑝(𝒙, 𝒄), 𝑝(𝒚, 𝒄), 𝑝(𝒙), 𝑝(𝒚) and 𝑝(𝒙, 𝒚) as much as possible, which is
referred to as doubly semi-supervised learning (SSL).

To facilitate reading, the frequently used symbols and their defini-
tions are listed in Table 1.

3.2. The proposed DSML framework

The illustration of the proposed doubly semi-supervised multimodal
learning framework are shown in Fig. 2. We assume 𝒙 and 𝒚 are two
distinct modalities of the same instance, and they are generated from
a shared latent space through the corresponding generators 𝐺𝑥 and 𝐺𝑦,
respectively (see Fig. 2a). Here the shared latent variable is separated
into two independent parts (𝒄, 𝒛), where 𝒄 contains the specific semantic
information, and 𝒛 contains the semantic-free factors (background,
color, etc.). If we don not impose any constraints on 𝒄 and 𝒛, they
might be entangled together in model training. To address this issue, we
120
Fig. 2. Illustrations of the proposed doubly semi-supervised multimodal learning
(DSML) framework. (a) the generators 𝐺𝑥 , 𝐺𝑦; (b) the classifiers 𝐶𝑥 , 𝐶𝑦 and the
encoders 𝐸𝑥 , 𝐸𝑦. The gray and white units represent the observed and latent variables,
respectively.

build two separate inference networks for each modality, one acts as a
classifier and the other as a common encoder (cf. Fig. 2b). For modality
𝒙, the encoder 𝐸𝑥 and the classifier 𝐶𝑥 are optimized to minimize the
reconstruction errors of 𝒄 and 𝒛, respectively. The same is true for
modality 𝒚. We elaborate the key modules as follows.

• Generators 𝐺𝑥, 𝐺𝑦. We assume the following modality-specific
generative processes for 𝒙 and 𝒚, respectively: 𝒛 ∼ 𝑝(𝒛), 𝒄 ∼
𝑝(𝒄), 𝒙̃ ∼ 𝑝𝑔𝑥 (𝒙|𝒄, 𝒛) ≡ 𝐺𝑥, 𝒚̃ ∼ 𝑝𝑔𝑦 (𝒚|𝒄, 𝒛) ≡ 𝐺𝑦, where 𝑝(𝒛) is
specified as a simple prior (e.g., isotropic Gaussian), and 𝑝(𝒄)
as an appropriate prior that meets our modeling needs (e.g. a
categorical distribution). 𝐺𝑥 and 𝐺𝑦 take the common (𝒄, 𝒛) as
input, and output the generated sample pair (𝒙̃, 𝒚̃).

• Classifiers 𝐶𝑥, 𝐶𝑦. We assume the following modality-specific
inference process from 𝒙/𝒚 to 𝒄: 𝒙 ∼ 𝑝(𝒙), 𝒄̃𝑥 ∼ 𝑝𝑐𝑥 (𝒄|𝒙) ≡ 𝐶𝑥,
𝒚 ∼ 𝑝(𝒚), 𝒄̃𝑦 ∼ 𝑝𝑐𝑦 (𝒄|𝒚) ≡ 𝐶𝑦, where 𝑝(𝒙) and 𝑝(𝒚) are the empirical
marginal distributions. 𝐶𝑥 and 𝐶𝑦 are trained to approximate the
target posteriors 𝑝(𝒄|𝒙) and 𝑝(𝒄|𝒚), respectively. If 𝒄 is categorical
label, both 𝐶𝑥 and 𝐶𝑦 reduce to two N-way classifiers.

• Encoders 𝐸𝑥, 𝐸𝑦. We assume the following modality-specific in-
ference process from 𝒙/𝒚 to 𝒛: 𝒙 ∼ 𝑝(𝒙), 𝒛̃𝑥 ∼ 𝑝𝑒𝑥 (𝒛|𝒙) ≡ 𝐸𝑥,
𝒚 ∼ 𝑝(𝒚), 𝒛̃𝑦 ∼ 𝑝𝑒𝑦 (𝒛|𝒚) ≡ 𝐸𝑦. 𝐸𝑥 and 𝐸𝑦 are trained to approximate
the target posteriors 𝑝(𝒛|𝒙) and 𝑝(𝒛|𝒚), respectively, and we force
their outputs to be close to each other for a given data pair (𝒙, 𝒚).
Note that, 𝐸𝑥 and 𝐸𝑦 can also be seen as generators for the latent
code 𝒛, which encodes the style information.

All of the above modules are implemented as deep neural networks
(DNNs), whose architecture depends on specific applications such as
deconvolution neural networks for image generation. In the next sub-
section, we show how to use adversarial learning to jointly optimize all
modules.

3.3. Jointly adversarial training of DSML

We employ the idea of adversarial learning to train each module of
the above DSML model. The adversarial training flowchart is shown in
Fig. 3. In the following, we will describe the whole training process in
detail.

3.3.1. Matching the joint distribution of data and code
Inspired by the ALI [22] model, we first adversarially match the

joint distributions of data and its latent code. For modality 𝒙, our
goal is to align 𝑝𝑔𝑥 (𝒙, 𝒛) = ∫ 𝑝𝑔𝑥 (𝒙|𝒄, 𝒛)𝑝(𝒄)𝑝(𝒛)𝑑𝒄 with 𝑝𝑒𝑥 (𝒙, 𝒛) =
𝑝𝑒𝑥 (𝒛|𝒙)𝑝(𝒙). To draw samples from 𝑝𝑔𝑥 (𝒙, 𝒛), we first draw the tuple
(𝒙̃, 𝒄, 𝒛) following 𝒄 ∼ 𝑝(𝒄), 𝒛 ∼ 𝑝(𝒛), 𝒙̃ ∼ 𝑝𝑔𝑥 (𝒙|𝒄, 𝒛), and then only taking
(𝒙̃, 𝒛) as needed. This implicitly integrates out 𝒄. On the other hand,
drawing samples from 𝑝 (𝒙, 𝒛) is straightforward: 𝒙 ∼ 𝑝(𝒙), 𝒛̃ ∼ 𝑝 (𝒛|𝒙).
𝑒𝑥 𝑒𝑥
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Fig. 3. The adversarial training flowchart of the proposed DSML. 𝒙 and 𝒚 modalities are generated from a shared latent variable through the generators 𝐺𝑥 and 𝐺𝑦, respectively.
Here the shared latent variable contains two independent parts (𝒄, 𝒛), where 𝒄 means the category labels, and 𝒛 encodes the other information. There are two separate inference
networks for each modality, where 𝐶𝑥 (or 𝐶𝑦) acts as a classifier and 𝐸𝑥 (or 𝐸𝑦) as a common encoder. The generators, classifiers and encoders are adversarially joint trained
using the specially designed discriminators 𝐷𝑥𝑧, 𝐷𝑥𝑐 , 𝐷𝑦𝑧, 𝐷𝑦𝑐 and 𝐷𝑥𝑦 with the latent variable reconstruction regularization.
Fig. 4. Adversarial games 𝒙𝒛 (blue) and 𝒚𝒛 (orange). The discriminator 𝐷𝑥𝑧 (or 𝐷𝑦𝑧)
is trained to distinguish two different kinds of joint distributions. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

The objective function can then be expressed as the following minimax
optimization problem:

min
𝐺𝑥 ,𝐸𝑥

max
𝐷𝑥𝑧

𝒙𝒛 = E(𝒙̃,𝒛)∼𝑝𝑔𝑥 (𝒙,𝒛)
[

log𝐷𝑥𝑧(𝒙̃, 𝒛)
]

(2)

+ E(𝒙,𝒛̃)∼𝑝𝑒𝑥 (𝒙,𝒛)
[

log
(

1 −𝐷𝑥𝑧(𝒙, 𝒛̃)
)]

,

where the discriminator 𝐷𝑥𝑧 is trained to distinguish the joint pairs
sampled from 𝑝𝑔𝑥 (𝒙, 𝒛) and 𝑝𝑒𝑥 (𝒙, 𝒛), respectively (cf. Fig. 4a). 𝐺𝑥 and
𝐸𝑥 reach the optimal solution if and only if 𝑝𝑔𝑥 (𝒙, 𝒛) = 𝑝𝑒𝑥 (𝒙, 𝒛) [22].
Similarly, we have the minimax game 𝒚𝒛 for modality 𝒚,

min
𝐺𝑦 ,𝐸𝑦

max
𝐷𝑦𝑧

𝒚𝒛 = E(𝒚̃,𝒛)∼𝑝𝑔𝑦 (𝒚,𝒛)
[

log𝐷𝑦𝑧(𝒚̃, 𝒛)
]

(3)

+ E(𝒚,𝒛̃)∼𝑝𝑒𝑦 (𝒚,𝒛)
[

log
(

1 −𝐷𝑦𝑧(𝒚, 𝒛̃)
)]

.

In order to make 𝒛 completely capture the semantic-free information
without entangling with 𝒄, we force 𝒛 can be reconstructed from the
generated data (𝒙̃, 𝒚̃) through the corresponding encoders. The meaning
of 𝒛 is not preassigned but learned automatically on a given dataset.
For example, on the MNIST-to-MNIST-transpose dataset the learned
meanings of 𝒛 are thicknesses, inclination and so on. Assume 𝒛̂𝑥 ∼
𝑝𝑒𝑥 (𝒛|𝒙̃) and 𝒛̂𝑦 ∼ 𝑝𝑒𝑦 (𝒛|𝒚̃) denote the latent code reconstructions via
(𝒄, 𝒛) → 𝒙̃ → 𝒛̂𝑥 and (𝒄, 𝒛) → 𝒚̃ → 𝒛̂𝑦, respectively. Then reconstruction
losses can be written as

min
𝐺𝑥 ,𝐺𝑦 ,𝐸𝑥 ,𝐸𝑦

𝒛 = E𝒄,𝒛,𝒙̃,𝒚̃,𝒛̂𝑥 ,𝒛̂𝑦
[

‖𝒛̂𝑥 − 𝒛‖2 + ‖𝒛̂𝑦 − 𝒛‖2
]

. (4)

Intuitively, minimizing 𝒛 will yield small
‖𝐸 (𝐺 (𝒄 , 𝒛)) − 𝐸 (𝐺 (𝒄 , 𝒛))‖ and ‖𝐸 (𝐺 (𝒄 , 𝒛)) − 𝐸 (𝐺 (𝒄 , 𝒛))‖ ,
121

𝑥 𝑥 1 𝑥 𝑥 2 2 𝑦 𝑦 1 𝑦 𝑦 2 2
Fig. 5. Adversarial games 𝒙𝒄 (green) and 𝒚𝒄 (pink). The discriminator 𝐷𝑥𝑐 (or 𝐷𝑦𝑐 )
is trained to distinguish three different kinds of joint distributions. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

∀𝒄1, 𝒄2 ∼ 𝑝(𝒄), which indicates that 𝒛 has been disentangled from 𝒄.
The reconstruction of 𝒛 can also be interpreted as applying the cycle-
consistency principle [19] in the latent space. For the observable data
pairs (𝒙, 𝒚), their latent codes 𝒛̃𝑥 ∼ 𝑝𝑒𝑥 (𝒛|𝒙) and 𝒛̃𝑦 ∼ 𝑝𝑒𝑦 (𝒛|𝒚) should
be used to stabilize the training of 𝐸𝑥 and 𝐸𝑦 before 𝐺𝑥 and 𝐺𝑦 can
generate real-like data pairs (𝒙̃, 𝒚̃). Overall, the regularization term for
latent code can be expressed as:

min
𝐺𝑥 ,𝐺𝑦 ,𝐸𝑥 ,𝐸𝑦

∗
𝒛 = 𝒛 + E𝒙,𝒚,𝒛̃𝑥 ,𝒛̃𝑦

[

‖𝒛̃𝑥 − 𝒛̃𝑦‖2
]

. (5)

3.3.2. Matching the joint distribution of data and label
The objective of adversarial semi-supervised classification is to force

the joint distribution of data and label formed by the generator and
classifier both to converge to the empirical joint distribution. For
modality 𝒙, we need to match the joint distribution of data and label
pairs (𝒙, 𝒄) drawn from 𝑝1(𝒙, 𝒄), 𝑝2(𝒙, 𝒄) and 𝑝3(𝒙, 𝒄), respectively, where

𝑝1(𝒙, 𝒄) = ∫𝒛
𝑝𝑔𝑥 (𝒙|𝒄, 𝒛)𝑝(𝒄)𝑝(𝒛)𝑑𝒛,

𝑝2(𝒙, 𝒄) = 𝑝(𝒙)𝑝𝑐𝑥 (𝒄|𝒙), 𝑝3(𝒙, 𝒄) = 𝑝(𝒙, 𝒄). (6)

Here 𝑝3(𝒙, 𝒄) is the empirical joint distribution formed by the observ-
able data and label pairs (𝒙, 𝒄). In adversarial training, joint pairs
(𝒙, 𝒄) are drawn from these three kinds of joint distributions, and a
discriminator 𝐷𝑥𝑐 is learned to distinguish among them (cf. Fig. 5),
while the generator 𝐺𝑥 and the classifier 𝐶𝑥 are trained to mislead the
discriminator.
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We can naively use two binary discriminators to distinguish the
three different data pairs [27]. However, the results of the two bi-
nary discriminators may conflict during training [28]. To more con-
sistently distinguish the three joint pairs, we design the discrimina-
tor 𝐷𝑥𝑐 as a neural network with 3-way softmax on the top layer,
i.e., ∑3

𝑘=1 𝐷𝑥𝑐 (𝒙, 𝒄)[𝑘] = 1 and 𝐷𝑥𝑐 (𝒙, 𝒄)[𝑘] ∈ (0, 1), where 𝐷𝑥𝑐 (𝒙, 𝒄)[𝑘]
is an entry of 𝐷𝑥𝑐 (𝒙, 𝒄). The objective function can be expressed as

min
𝐺𝑥 ,𝐶𝑥

max
𝐷𝑥𝑐

𝒙𝒄 =
3
∑

𝑘=1
E𝑝𝑘(𝒙,𝒄)

[

log𝐷𝑥𝑐 (𝒙, 𝒄)[𝑘]
]

. (7)

Our softmax-based discriminator can be considered as sharing the
parameters between two binary discriminators except the top layer,
thus reducing the number of parameters.

However, in practice, there is little supervision to tell the generator
𝑝𝑔𝑥 (𝒙|𝒄, 𝒛) what 𝒄 essentially represents. The result is that 𝐺𝑥 may
produce a low quality sample that is inconsistent with their labels. To
solve this problem, we force the classifier 𝑝𝑐𝑥 (𝒄|𝒙) to reconstruct 𝒄 by
using the regularization term 𝒙𝒄 ,

min
𝐺𝑥 ,𝐶𝑥

𝒙𝒄 = E(𝒙,𝒄)∼𝑝3(𝒙,𝒄)[− log 𝑝𝑐𝑥 (𝒄|𝒙)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Classification loss on real data

+ E(𝒙,𝒄)∼𝑝1(𝒙,𝒄)[− log 𝑝𝑐𝑥 (𝒄|𝒙)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Classification loss on generated data

.

(8)

Intuitively, in order to assign semantic labels to the variable 𝒄, the
optimization of Eq. (8) will minimize the classification loss of the
classifier 𝐶𝑥 on real and generated data. On the one hand, minimizing
the first term w.r.t. 𝐶𝑥 on real data guides 𝑝𝑐𝑥 (𝒄|𝒙) toward the true
posterior 𝑝(𝒄|𝒙). On the other hand, minimizing the second term w.r.t.
𝐺𝑥 and 𝐶𝑥 on generated data can backpropagate the gradient to 𝐺𝑥
to enhance its controllability — it minimizes the chance that 𝐺𝑥 could
generate samples that would otherwise be falsely predicted by 𝐶𝑥. Once
𝐺𝑥 can generate high-quality samples that match the semantic label 𝒄,
we can make full use of the generated data pairs (𝒙, 𝒄) ∼ 𝑝1(𝒙, 𝒄) to
improve the generalization ability of 𝐶𝑥. This idea has been proven to
be effective in SSL [32,33].

Since we use a similar strategy for the modality 𝒚, the corresponding
adversarial game 𝒚𝒄 is

min
𝐺𝑦 ,𝐶𝑦

max
𝐷𝑦𝑐

𝒚𝒄 =
3
∑

𝑘=1
E𝑝𝑘(𝒚,𝒄)

[

log𝐷𝑦𝑐 (𝒚, 𝒄)[𝑘]
]

, (9)

and the regularizer is

min
𝐺𝑦 ,𝐶𝑦

𝒚𝒄 = E(𝒚,𝒄)∼𝑝3(𝒚,𝒄)[− log 𝑝𝑐𝑦 (𝒄|𝒚)] +E(𝒚,𝒄)∼𝑝1(𝒚,𝒄)[− log 𝑝𝑐𝑦 (𝒄|𝒚)]. (10)

Because the classifier is modality-specific, we handle the classification
of multi-modality data by combining the results of multiple classifiers.
For example, the predicted label for two-modality data can be written
as: label = softmax(𝑂𝑥 + 𝑂𝑦), where 𝑂𝑥 and 𝑂𝑦 are the outputs before
the softmax layer of each classifiers, respectively.

3.3.3. Matching the joint distribution of two modalities
Model performance can be improved by introducing an additional

discriminator 𝐷𝑥𝑦 to drive 𝑝1(𝒙, 𝒚), 𝑝2(𝒙, 𝒚) and 𝑝3(𝒙, 𝒚) to converge to
the empirical joint distribution 𝑝4(𝒙, 𝒚) (cf. Fig. 6), where 𝑝1(𝒙, 𝒚), . . . ,
𝑝4(𝒙, 𝒚) denote the distributions of joint pairs (𝒙fake, 𝒚fake), (𝒙fake, 𝒚real),
(𝒙real, 𝒚fake) and (𝒙real, 𝒚real), respectively, and

𝑝1(𝒙, 𝒚) = ∫𝒄 ∫𝒛
𝑝𝑔𝑥 (𝒙|𝒄, 𝒛)𝑝𝑔𝑦 (𝒚|𝒄, 𝒛)𝑝(𝒄)𝑝(𝒛)𝑑𝒄𝑑𝒛,

𝑝2(𝒙, 𝒚) = 𝑝𝑔𝑥 (𝒙|𝒄, 𝒛)𝑝𝑐𝑦 (𝒄|𝒚)𝑝𝑒𝑦 (𝒛|𝒚)𝑝(𝒚),

𝑝3(𝒙, 𝒚) = 𝑝𝑔𝑦 (𝒚|𝒄, 𝒛)𝑝𝑐𝑥 (𝒄|𝒙)𝑝𝑒𝑥 (𝒛|𝒙)𝑝(𝒙), (11)

𝑝4(𝒙, 𝒚) = 𝑝(𝒙, 𝒚),
122
Fig. 6. Adversarial game 𝒙𝒚 (red). The discriminator 𝐷𝑥𝑦 is trained to distinguish
these four kinds of joint distributions. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Similar to Eq. (7), here 𝐷𝑥𝑦 should be a 4-way softmax-based
iscriminator, and the objective function can then be expressed as the
ollowing minimax optimization problem:

min
𝑮,𝑬,𝑪

max
𝐷𝑥𝑦

𝒙𝒚 =
4
∑

𝑘=1
E𝑝𝑘(𝒙,𝒚)

[

log𝐷𝑥𝑦(𝒙, 𝒚)[𝑘]
]

, (12)

here 𝑮 = {𝐺𝑥, 𝐺𝑦}, 𝑬 = {𝐸𝑥, 𝐸𝑦} and 𝑪 = {𝐶𝑥, 𝐶𝑦}. Since the
empirical distribution 𝑝4(𝒙, 𝒚) consists of only a few pairs of observable
samples, it may be biased. Fortunately, once 𝐺𝑥 and 𝐺𝑦 can generate
igh-quality samples, we can correct this bias with the generated
igh-quality samples (𝒙, 𝒚) ∼ 𝑝1(𝒙, 𝒚).

.3.4. Full objective function
In summary, DSML is fully differentiable and can be trained end-to-

nd. The full objective can be written as

min
𝑮,𝑬,𝑪

max
𝑫

DSML = 𝛼1𝒙𝒛 + 𝛼2𝒚𝒛 + 𝛽1𝒙𝒄 + 𝛽2𝒚𝒄 + 𝛾𝒙𝒚 (13)

+ 𝜆1𝒙𝒄 + 𝜆2𝒚𝒄 + 𝜆3∗
𝒛,

here 𝑫 = {𝐷𝑥𝑧, 𝐷𝑦𝑧, 𝐷𝑥𝑐 , 𝐷𝑦𝑐 , 𝐷𝑥𝑦}. Every term of the above formula
s meaningful, and all of them are complementary to each other. The
hole training procedures are described in Algorithm 1. As GAN-based

ramework is inherently difficult to train due to the unbalance between
iscriminators and generators, many methods have been proposed to
tabilize and improve the adversarial training, e.g., spectral normaliza-
ion GAN [38], Wasserstein GAN [39] and energy-based GAN [40], etc.
hese techniques can also be applied to our framework to improve the
raining processes. Here, we adopt two off-the-shelf strategies in the
mplementation of DSML to ease the training. First, we used spectral
ormalization [38] in the discriminators. Second, We use multiple
e.g., 5) discriminator update steps per generator update step during
raining. Moreover, to guarantee that the classifiers could be properly
rained, we pretrain 𝐶𝑥 by minimizing the first term of 𝒚𝒄 , and
retrain 𝐶𝑦 by minimizing the first term of 𝒚𝒄 on the available labeled
raining data.

.3.5. Convergence analysis
Depending on the type of learning, the terms in the objective

unction (13) can be divided into two categories, namely, distribution
atching terms (𝒙𝒛, 𝒚𝒛, 𝒙𝒄 , 𝒚𝒄 and 𝒙𝒚) and regularization terms

(𝒙𝒄 , 𝒚𝒄 and ∗
𝒛). For the distribution matching problem, the ideal

way is to directly match the joint distribution of all of the involved
variables 𝑝(𝒙, 𝒚, 𝒄, 𝒛) (there are 16 different cases). However, in dou-
bly semi-supervised learning where both modalities and labels are
incomplete, the joint draws from 𝑝(𝒙, 𝒚, 𝒄, 𝒛) and 𝑝(𝒙, 𝒚, 𝒄) may not be
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Algorithm 1 Training of DSML in doubly SSL.
Input: Available complete data: (𝒙, 𝒚, 𝒄); Available incomplete data: (𝒙, 𝒄),

(𝒚, 𝒄), (𝒙, 𝒚), 𝒙, 𝒚; Hyper-parameters: 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾, 𝜆1, 𝜆2, 𝜆3, 𝐾.
1: Pretrain 𝐶𝑥 by minimizing the first term of Eq. (8) w.r.t. 𝐶𝑥 using labeled

data pairs (𝒙, 𝒄), and 𝐶𝑦 by minimizing the first term of Eq. (10) w.r.t. 𝐶𝑦
using labeled data pairs (𝒚, 𝒄)

2: for number of training iterations do
3: Sample batches of 𝒙 and 𝒚: 𝒙 ∼ 𝑝(𝒙), 𝒚 ∼ 𝑝(𝒚).
4: Sample batches of (𝒙, 𝒛) from 𝑝𝑔𝑥 (𝒙, 𝒛) and 𝑝𝑒𝑥 (𝒙, 𝒛); sample batches of

(𝒚, 𝒛) from 𝑝𝑔𝑦 (𝒚, 𝒛) and 𝑝𝑒𝑦 (𝒚, 𝒛).
5: Sample batches of (𝒙, 𝒄) from 𝑝1(𝒙, 𝒄) ,⋯, 𝑝3(𝒙, 𝒄); sample batches of

(𝒚, 𝒄) from 𝑝1(𝒚, 𝒄) ,⋯, 𝑝3(𝒚, 𝒄).
6: Sample batches of (𝒙, 𝒚) from 𝑝1(𝒙, 𝒚) ,⋯, 𝑝4(𝒙, 𝒚).
7: for 𝑘 = 1 → 𝐾 do
8: Train 𝐷𝑥𝑧, 𝐷𝑦𝑧 by maximizing 𝒙𝒛 and 𝒚𝒛 using batches of (𝒙, 𝒛) and

(𝒚, 𝒛), respectively.
9: Train 𝐷𝑥𝑐 , 𝐷𝑦𝑐 by maximizing 𝒙𝒄 and 𝒚𝒄 using batches of (𝒙, 𝒄) and

(𝒚, 𝒄), respectively.
10: Train 𝐷𝑥𝑦 by maximizing 𝒙𝒚 using batches of (𝒙, 𝒚).
11: end for
12: Train 𝐸𝑥, 𝐸𝑦 by minimizing 𝛼1𝒙𝒛 + 𝛼2𝒚𝒛 + 𝜆3∗

𝒛 using batches of (𝒙, 𝒛)
and (𝒚, 𝒛).

13: Train 𝐶𝑥, 𝐶𝑦 by minimizing 𝛽1𝒙𝒄 +𝛽2𝒚𝒄 +𝜆1𝒙𝒄 +𝜆2𝒚𝒄 using batches
of (𝒙, 𝒄) and (𝒚, 𝒄).

14: Train 𝐺𝑥, 𝐺𝑦 by minimizing DSML using involved data pairs.
15: end for
Output: The optimized DSML model.

easy to access. By contrast, the draws from the marginal distributions
𝑝(𝒙, 𝒄), 𝑝(𝒚, 𝒄) and 𝑝(𝒙, 𝒚) are easier to obtain. Therefore, in practice,
we assume that only empirical draws from the marginal distributions
𝑝(𝒙, 𝒄), 𝑝(𝒚, 𝒄) and 𝑝(𝒙, 𝒚) are available, and use 𝒙𝒄 , 𝒚𝒄 and 𝒙𝒚 in
he objective function. Since 𝒛 denotes the latent representation of 𝒙 or
, it is impossible to obtain the empirical draws from 𝑝(𝒙, 𝒛) or 𝑝(𝒚, 𝒛).
ortunately, we can take an ALI-like approach [22] to optimize 𝒙𝒛 and
𝒚𝒛.

In Propositions 1–3, we proved that each of the five distribution
atching subproblem (𝒙𝒛, 𝒚𝒛, 𝒙𝒄 , 𝒚𝒄 or 𝒙𝒚) has its own optimal

olution, and give the necessary conditions to obtain that optimal
olution. In Proposition 4, we proved that optimizing with the regular-
zation terms 𝒙𝒄 , 𝒚𝒄 and ∗

𝒛 will not change the optimal solutions
f the distribution matching subproblems. Therefore, our DSML frame-
ork theoretically has clear convergence properties through carefully
dversarial training.

roposition 1. The equilibrium for the minimax objective 𝒙𝒛 is achieved
f and only if 𝑝𝑔𝑥 (𝒙, 𝒛) = 𝑝𝑒𝑥 (𝒙, 𝒛) with the optimal discriminator 𝐷

∗
𝑥𝑧(𝒙, 𝒛) =

1
2 . Similarly, the equilibrium for the minimax objective 𝒚𝒛 is achieved if and
only if 𝑝𝑔𝑦 (𝒚, 𝒛) = 𝑝𝑒𝑦 (𝒚, 𝒛) with the optimal discriminator 𝐷

∗
𝑦𝑧(𝒚, 𝒛) =

1
2 .

Proof. The proof can be found in [22].

Proposition 2. The equilibrium for the minimax objective 𝒙𝒄 is achieved
f and only if 𝑝1(𝒙, 𝒄) = 𝑝2(𝒙, 𝒄) = 𝑝3(𝒙, 𝒄) with the optimal discriminator
∗
𝑥𝑐 (𝒙, 𝒄)[𝑘] =

1
3 . Similarly, the equilibrium for the minimax objective 𝒚𝒄

is achieved if and only if 𝑝1(𝒚, 𝒄) = 𝑝2(𝒚, 𝒄) = 𝑝3(𝒚, 𝒄) with the optimal
discriminator 𝐷∗

𝑦𝑐 (𝒚, 𝒄)[𝑘] =
1
3 .

Proof. The proof is provided in Appendix A.

Proposition 3. The equilibrium for the minimax objective 𝒙𝒚 is achieved
f and only if 𝑝1(𝒙, 𝒚) = 𝑝2(𝒙, 𝒚) = 𝑝3(𝒙, 𝒚) = 𝑝4(𝒙, 𝒚) with the optimal
discriminator value 𝐷∗

𝑥𝑦(𝒙, 𝒚)[𝑘] =
1
4 .

roof. The proof is provided in Appendix B.
123
Fig. 7. The framework of DSML when extend to multiple modalities. Here 𝐺𝑖, 𝐸𝑖
nd 𝐶𝑖 (𝑖 = 1,… , 5) represent the generator, encoder and classifier for 𝑖th modality,
espectively.

roposition 4. Minimizing ∗
𝒛 w.r.t. 𝑬 will not change the equilibrium of

he minimax objective 𝒙𝒛 and 𝒚𝒛. Similarly, minimizing 𝒙𝒄 w.r.t. 𝐶𝑥 or
inimizing 𝒚𝒄 w.r.t. 𝐶𝑦 will not change the equilibrium of 𝒙𝒄 and 𝒚𝒄 ,
espectively.

roof. Since ∗
𝒛 is always non-negative, the optimum is obtained if and

nly if 𝒛̂𝑥 ∼ 𝑝𝑒𝑥 (𝒛|𝒙̃) = 𝒛̂𝑦 ∼ 𝑝𝑒𝑦 (𝒛|𝒚̃) = 𝒛, where 𝒙̃ ∼ 𝑝𝑔𝑥 (𝒙|𝒄, 𝒛), 𝒚̃ ∼
𝑝𝑔𝑦 (𝒚|𝒄, 𝒛), which is equivalent to 𝑝𝑔𝑥 (𝒙, 𝒛) = 𝑝𝑒𝑥 (𝒙, 𝒛). The proof for
𝒙𝒄 and 𝒚𝒄 are similar.

3.3.6. Exploiting cycle consistencies
Previous studies [19] have shown that cycle consistency regulariza-

tion is able to improve the effect of modality translation. Under the
DSML framework, one can naively force 𝒙 → (𝒄̃, 𝒛̃) → 𝒚̂ → (𝒄̂, 𝒛̂) → 𝒙̂ to
yield small ‖𝒙− 𝒙̂‖2, and 𝒚 → (𝒄̃, 𝒛̃) → 𝒙̂ → (𝒄̂, 𝒛̂) → 𝒚̂ to yield small ‖𝒚−
𝒚̂‖2. However, the 𝓁2 losses often lead to the blurry results. Moreover,
it is usually hard to tune the regularization parameter balancing the
adversarial loss and cycle consistency loss. To address the issues, we
equivalently implement the cycle consistency principle by using the
following adversarial regularizer:

min
𝐺,𝐸,𝐶

max
𝐷𝑥𝑥 ,𝐷𝑦𝑦

𝒙𝒚 = E𝒙∼𝑝(𝒙),𝒙̂
[

log
(

𝐷𝑥𝑥(𝒙,𝒙) ⋅ (1 −𝐷𝑥𝑥(𝒙, 𝒙̂))
)]

+ E𝒚∼𝑝(𝒚),𝒚̂
[

log
(

𝐷𝑦𝑦(𝒚, 𝒚) ⋅ (1 −𝐷𝑦𝑦(𝒚, 𝒚̂))
)]

, (14)

where 𝐷𝑥𝑥 and 𝐷𝑦𝑦 are the discriminators introduced to distinguish
between two kind of joints, respectively. We will verify the role of cycle
consistency in the experiments.

3.4. Extended to multiple modalities

The above DSML framework can be naturally extended to multiple
modalities. Fig. 7 shows a schematic of the extension to five modalities.
Without loss of generality, when the model is extended to 𝑛-modalities,
we need 𝑛 modality-specific generators/encoders/classifiers. As for the
discriminator 𝐷𝑥𝑦 in this case, we adopt a special design. Specifically,
its input is a combination of all modalities, and we consider the
following (𝑛 + 2) kinds of combinations: (1) all 𝑛 modalities are real,
(2) all 𝑛 modalities are fake, and (3) Only one of the 𝑛 modalities is
fake, and the other (𝑛− 1) modalities are real. In such case, the output
layer of the discriminator resembles a (𝑛 + 2)-way classifier.

Although our DSML method also becomes more complex as the
number of modality increases, it still has a huge advantage over the
traditional cross-modal translation methods. In practice, if distinct
modalities have different properties (e.g., image vs. text), a set of
generator, encoder and classifier must be provided for each modality
separately, which complicates the model, but theoretically unavoid-

able. However, if the properties of multiple modalities are similar
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(e.g., image vs. image), we can further reduce the complexity of the
model by sharing some model parameters among distinct modalities.

Differences with StarGAN and RadialGAN. StarGAN [41] and
RadialGAN [42] are two important methods for multi-source data
translation task. In StarGAN, the authors propose a framework for
transforming data across multiple categories or attributes. However,
StarGAN does not has a share latent space, and only has a general
generator, which is not applicable when multiple data sources vary
widely. RadialGAN is a framework for multi-source data augmentation.
Each data source can be augmented by the other data sources through
a shared low-dimensional space. Here the data sources refer to the
related but different datasets. The shared space of RadialGAN is only
used to align the distribution of different datasets rather than the
multiple modalities of the same instance. In contrast, our DSML frame-
work has a modality-shared latent space and multiple modality-specific
generators/encoders/classifiers, which inherently supports multimodal
semi-supervised classification, missing modality imputation and cross-
modality retrieval tasks. Therefore, the proposed DSML framework
is different from StarGAN and RadialGAN, both in structures and
applications.

4. Experiments

4.1. Datasets

• RGB-D [43]. This dataset contains a total of 41, 877 samples,
each of which consists of two modalities, RGB and depth image.
The data samples were collected from 51 object categories. In
the experiments, we first resize the resolution of both modality
images to 64 × 64. We then interpolate the missing pixel values
in the depth modality using the mean of 5 × 5 nearest pixel
values. Finally, the surface normal processing method [44] is used
to extend the single-channel depth image to three channels. The
authors [43] provide ten different training/test data splits. To
simulate semi-supervised learning scenarios, for each data split,
we randomly selected 5% samples from each class as labeled data,
and the rest as unlabeled data. All methods will be trained on the
labeled and unlabeled training data, and evaluated on the test
data.

• MNIST-to-MNIST-transpose [27,45,46]. This dataset contains
50,000 training samples and 10,000 test samples. Each sample
consists of two modalities, one is the original MNIST image and
the other is the transpose image.

• ImageNet-EEG [47]. This dataset contains Electroencephalogram
(EEG) data recorded from six subjects when they are presented
visual stimuli. The visual stimuli presented to the subjects were
selected from 40 different ImageNet categories, 50 in each cate-
gory, for a total of 2000 images. After screening by the original
author, the dataset contains a total of 11,466 EEG samples, each
of which was shaped like [500,128] (500 time points, 128 chan-
nel electrodes). Each EEG sample has a corresponding visual
stimulus. To simulate the semi-supervised learning scenario, we
used a sliding window of shape [200,128] to construct the paired
and unpaired EEG data. To obtain the paired EEG data, we
intercepted the first 200 time points of all EEG data and obtained
the result with a shape of [11466, 200, 128]. To construct a
large amount of unpaired EEG data, we applied the above sliding
window with 10 different offsets ({20, 40,… , 200}) to the original
EEG sequences. To obtain a large amount of unpaired image data,
we selected all the images of the involved category from the
ImageNet database as unpaired images. The resolution of all the
images used in the experiment was resized to 64 × 64 pixels.
For the ImageNet-EEG, 90% of the paired samples were randomly
selected as training samples, and the remaining 10% as test data.
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Fig. 8. The pipeline of multimodal semi-supervised classification in DSML. We handle
the classification of multi-modality data by combining the results of multiple classifiers,
i.e., label = softmax(𝑂𝑥+𝑂𝑦), where 𝑂𝑥 and 𝑂𝑦 are the outputs before the softmax layer
of each classifiers, respectively.

4.2. Experimental settings

We evaluate our approach on the following three different tasks.

• Multimodal semi-supervised classification on the RGB-D ob-
ject dataset.

• Missing modality imputation on the MNIST-to-MNIST-transpose
dataset and ImageNet-EEG dataset.

• Cross-modality retrieval on the ImageNet-EEG dataset.

In the experiments, we set the dimension of the latent variables
𝒛 to 100, and all 𝒛 samples are drawn from a standard multivariate
Gaussian distribution. The regularization parameter 𝜆3 is empirically
set to 𝜆3 = 10, and the rest regularization parameters are all set to
1. In model training, we use the Adam optimizer [48] for parameter
optimization, and the learning rate is set to 0.0002. For the compar-
ison methods used in our experiment, we consider the same settings
(network architectures, learning rate, etc.) as our method’s to make the
comparison fair.

4.3. Multimodal semi-supervised classification

It is natural to use the proposed DSML framework for multimodal
semi-supervised classification (cf. Fig. 8). DSML enjoys two class-
conditional generators 𝐺𝑥 and 𝐺𝑦 with good controllability, with which,
one can synthesize arbitrary number of labeled paired samples to aug-
ment the training of classifiers 𝐶𝑥 and 𝐶𝑦. Once the classifiers become
more accurate, more available labeled samples (by predicting the labels
for unlabeled data) can be used to lower the bias brought by the small
set of the labeled data, which in return can prevent the generators
from collapsing into a biased joint distribution. Consequently, mutual
boosting cycle between the generator and classifier is formed for each
modality.

To validate this, we conduct RGB-D object recognition experiments
on the RGB-D dataset [43]. Here, we consider three scenarios: (1) both
the class labels and the modalities are complete; (2) only the class labels
are incomplete, and there are no missing modalities; (3) both the class
labels and the modalities are incomplete.

For the first and second scenarios, we compare our DSML with sev-
eral strong competitors, including both the unimodal and multimodal
methods. For unimodal methods, we evaluate their performance on
each modality and on the concatenation of two modalities, respectively.
The comparisons of classification accuracy on the partially labeled and
completely labeled RGB-D dataset are shown in Table 2, in which
each result is averaged over the given 10 different test sets. For latent
variable based deep generative competitors (M2 [49], SDGM [50],
SMVAE [6] and TripleGAN [32]), we set the latent dimensions as 100,
which are the same as our method. Particularly, in TripleGAN [32], we
set its hyper-parameter 𝛼 = 0.5, which means the relative importance
of generation and classification are equal. In SDGM [50], we set the
scaling constant 𝛽 = 0.1. For the other competitors (CT+SVM [44],

DCNN [8] and AMGL [51]), we used their default settings.
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Table 2
The classification accuracy (%) on the RGB-D dataset (both modalities are complete).

Algorithms 5% labeled data 100% labeled data

RGB Depth RGB-D RGB Depth RGB-D

Unimodal
baselines

M2 [49] 85.6 ± 1.6 72.0 ± 1.7 86.4 ± 1.6 86.7 ± 1.4 77.3 ± 1.5 88.9 ± 1.5
SDGM [50] 85.8 ± 1.5 75.4 ± 1.7 86.7 ± 1.5 87.7 ± 1.5 78.6 ± 1.6 89.2 ± 1.6
TripleGAN [32] 86.4 ± 1.7 82.9 ± 1.8 87.2 ± 1.8 87.9 ± 1.6 84.9 ± 1.7 90.2 ± 1.6
𝛥-GAN [27] 86.5 ± 1.8 82.6 ± 1.9 87.6 ± 1.7 88.2 ± 1.6 84.6 ± 1.8 90.8 ± 1.8

Multimodal
baselines

CT+SVM [44] 82.6 ± 1.3 71.4 ± 1.4 83.7 ± 1.3 86.2 ± 1.5 78.6 ± 1.2 88.4 ± 1.1
DCNN [8] 85.9 ± 0.7 74.0 ± 1.2 89.2 ± 1.3 87.8 ± 1.2 80.3 ± 1.4 91.8 ± 1.2
AMGL [51] 84.2 ± 2.1 72.4 ± 1.8 86.4 ± 1.5 87.5 ± 1.8 79.8 ± 1.6 91.2 ± 1.3
SMVAE [6] 85.4 ± 1.4 81.2 ± 1.5 89.5 ± 1.8 88.7 ± 1.6 84.5 ± 1.3 92.3 ± 1.4

Proposed

DSML−𝒙𝒄−𝒚𝒄 52.6 ± 3.2 44.8 ± 3.5 57.4 ± 3.4 86.6 ± 1.8 79.4 ± 1.4 88.6 ± 1.5
DSML−𝒙𝒛−𝒚𝒛 77.7 ± 2.5 65.3 ± 2.6 82.5 ± 2.4 87.2 ± 1.4 82.5 ± 1.6 90.4 ± 1.5
DSML−∗

𝒛 84.6 ± 2.2 81.7 ± 1.9 88.6 ± 1.8 87.9 ± 1.5 83.2 ± 1.7 91.3 ± 1.5
DSML 86.4 ± 1.9 83.0 ± 1.8 92.2± 1.7 88.4 ± 1.5 84.8 ± 1.6 92.7± 1.6

DSML− ∗ means DSML without ∗ term in the objective function.
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ig. 9. The comparisons of classification accuracy and modality imputation errors with
ifferent missing ratios of the depth modality.

From Table 2, we observe that the performance of the proposed
SML significantly surpasses the compared methods in multi-modality

etting whether in semi-supervised learning (5% labeled data) or su-
ervised learning (100% labeled data). The reasons are threefold: (1)
ur method can match the joint distribution of each modality and
ts labels adversarially; (2) our DSML method effectively captures the
igh-level common representation of both modality through its shared
atent space; (3) our method can synthesize a large number of paired
ata in training process, which plays the role of data augmentation. In
ddition, our method nearly achieves the classification performance of
00% labeled data by using only 5% labeled data, which demonstrates
he effectiveness of its semi-supervised learning. We also observe that,
f 𝒙𝒄 and 𝒚𝒄 are removed the semi-supervised classification ability of
he model will be seriously affected; if 𝒙𝒛 and 𝒚𝒛 are removed, the
bility of data generation and modality fusion will be seriously affected;
nd if ∗

𝒛 or 𝒙𝒚 is removed, the cross-modal prediction ability will be
ffected.

For the third scenario, we randomly select a fraction of samples
rom all (both labeled and unlabeled) training samples as modality-
ncomplete samples. Specifically, we assume the selected samples are
nly with RGB modality, and their depth modality are missing. In the
xperiment, we varied the missing ratio from 0.1 to 0.9 with an interval
f 0.2, and assume the test samples are with complete modalities. We
ompared our DSML with SiMVAE [6], 𝛥-GAN, CycleGAN [19] and
ullData, where FullData represents the case of DSML with complete
odalities. For SiMVAE [6], we set the scaling constants 𝑐1 = 𝑐2 =
.5, and the latent dimension was set to 100. For 𝛥-GAN and Cy-
leGAN [19], we used their default settings. The comparisons of all
ethods w.r.t. classification accuracy and modality imputation errors

re shown in Fig. 9(a) and (b), respectively. Here the imputation errors
re measured by the metric of Normalized Mean Squared Error (NMSE).
ssume 𝐗̂ denote the imputed result, and 𝐗 denote the groundtruth,
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i

ig. 10. The pipelines of missing modality imputation on both datasets. Given one
odality 𝒙, we first use the learnt classifier 𝐶𝑥 and encoder 𝐸𝑥 to obtain the latent

ariables 𝒄 and 𝒛, and then use the generator 𝐺𝑦 to predict the other modality 𝒚.

he NMSE can be calculated by NMSE = ‖𝐗−𝐗̂‖𝐹
‖𝐗‖𝐹

, where ‖ ⋅ ‖𝐹 is the
robenius norm. Although 𝛥-GAN can be applied to semi-supervised
lassification or missing modality imputation, it cannot be used to
ccomplish these two tasks at the same time. Therefore, we first train
𝛥-GAN model for missing modality imputation task, and then train

nother 𝛥-GAN model to perform semi-supervised classification. By
ontrast, SiMVAE can be used to solve these two tasks in an end-to-end
anner.

From the comparisons in Fig. 9, we observe that the proposed DSML
odel performs significantly better than the compared methods. When

he missing ratio is lower than 0.5, DSML and FullData have very
lose performance. Even when the missing ratio is higher than 0.5, our
SML method still achieves comparable results to FullData. Another
bservation is that the semi-supervised methods DSML and SiMVAE
chieve better results than the unsupervised methods CycleGAN and
-GAN in missing modality imputation task when the missing ratio
s very high. This demonstrates that the data label can also play an
mportant role when learning the modality mapping without sufficient
aired data. In addition to being able to effectively utilize the label
nformation, our DSML can augment the number of paired data by
ynthesizing the fake data. Large pairs of synthesized data may also
e used to improve model performance, and this is an advantage that
s not available in other methods.
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Fig. 11. The results of modality imputation on the test dataset of MNIST-to-MNIST-transpose. We used 10% paired data for our DSML, SiMVAE and 𝛥-GAN method. Note that
DiscoGAN [30] and CycleGAN do not need paired data.
Fig. 12. The results of modality imputation on the test dataset of ImageNet-EEG.

Table 3
The Fréchet Inception Distance (FID) and Inception Score (IS) of the
imputated images produced by our DSML and the compared methods
on the test dataset of ImageNet-EEG.
Metrics DSML ▵-GAN CycleGAN

FID 32.6 ± 1.5 38.3 ± 1.4 46.4 ± 1.8
IS 7.42 ± 0.06 7.17 ± 0.07 6.63 ± 0.05

4.4. Missing modality imputation

To assess the controllability of our DSML in missing modality
imputation, we conduct experiments based on the MNIST-to-MNIST-
transpose [27] and ImageNet-EEG [47] datasets (cf. Fig. 10). On both
datasets, we simulate the missing modality scenario by removing one
modalities for part of training samples. In the training stage, we assume
the instances with complete modalities are also with the corresponding
class labels, and the instances without complete modalities are also
without the corresponding class labels. The experimental results on
the MNIST-to-MNIST-transpose dataset are shown in Fig. 11, and
the experimental results on the ImageNet-EEG dataset are shown in
Fig. 12. For SiMVAE [6], 𝛥-GAN and CycleGAN [19] on the MNIST-
to-MNIST-transpose dataset, their parameter settings are the same as
the above. For 𝛥-GAN and CycleGAN on the ImageNet-EEG dataset, we
modified their network architectures to accommodate the non-image
(EEG) modality. From these two figures, we can see that the proposed
DSML model generally recovers the missing modality better than the
compared methods, and its results show good visual quality and strictly
follow the intrinsic semantics of the images. Additional EEG-to-image
results can be found in Fig. 13.

To evaluate the experimental results quantitatively, we first com-
pute the Fréchet Inception Distance (FID) and Inception Score (IS)
of the imputated images produced by our DSML and the compared
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Fig. 13. Different categories of images inferred from EEG on the ImageNet-EEG test
set using our DSML method.

methods on the test dataset of ImageNet-EEG in Table 3. The IS highly
correlates with human judgment, which allows us to avoid relying on
human evaluations. From Table 3, we see that DSML achieves better
FID and IS than the compared methods. Then, we use a pre-trained
classifier as the gold-standard tool to classify the imputed images. When
calculating the accuracy, the ground truth are the labels of test data.
The classification accuracy of the gold-standard classifier approaches
99.4% on the test set of MNIST. Therefore, It is trustworthy to evaluate
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Fig. 14. The generated data pairs on the MNIST-to-MNIST-transpose dataset.
Fig. 15. The pipeline of cross-modality retrieval on the ImageNet-EEG dataset. Given
the modalities 𝒙 and 𝒚, we first use the learnt classifier 𝐶𝑥 (or 𝐶𝑦) and encoder 𝐸𝑥
(or 𝐸𝑦) to obtain the latent variables 𝒄 and 𝒛. Then, the bidirectional cross-modality
retrieval experiments are performed in the modality-shared latent space based on 𝒄
and 𝒛.

the results. For ImageNet-EEG, we choose the pre-trained Inception-
v3 model [52] as the gold-standard classifier. The quantitative results
are shown in Table 4. From the results, we see that the proposed
DSML model outperforms the state-of-the-art methods Triple GAN and
𝛥-GAN. These results indicate that DSML have good ability to control
the semantics of imputed results. Furthermore, we also see that the
adversarial game 𝒙𝒚 can effectively improve DSML’s performance.

We also evaluated DSML with the additional cycle consistency term
𝒙𝒚 , and find that the difference between them (with or without
𝒙𝒚) is not so obvious (80.95% on the ImageNet-EEG dataset, and
98.82%, 99.04%, 99.21% on the 100 paired, 1000 paired, all paired
MNIST-to-MNIST-transpose dataset, respectively). In other words, the
cycle consistency constraint does not lead to conspicuous performance
gains, especially if there are enough paired samples. Considering the
complexity of the DSML model, we do not use the cycle consistency
constraint by default.

4.5. Disentanglement of c and z

To demonstrate that 𝒄 and 𝒛 are disentangled from each other after
the training of DSML, we generate images with different combinations
of 𝒄 and 𝒛 on the MNIST-to-MNIST-transpose dataset. The results are
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Fig. 16. Cross-modality retrieval results on the ImageNet-EEG dataset. Each result in
(a), (b), (c) and (d) was averaged over six subjects. The vertical lines on the histogram
in (c) and (d) indicate the error bars across different subjects.

Table 4
Classification accuracy (%) of the imputed images. The results are averaged over five
runs with different random data splits. DSML−𝒙𝒚 means DSML without 𝒙𝒚 .

Algorithms MNIST-to-MNIST-transpose ImageNet-EEG

#100 paired #1000 paired All paired 90% paired

DiscoGAN – – 15.00 ± 0.20 –
CycleGAN 76.85 ± 2.02 85.46 ± 1.89 91.74 ± 1.66 58.75 ± 2.43
𝛥-GAN 83.20 ± 1.88 88.98 ± 1.50 93.34 ± 1.46 66.02 ± 1.09
SiMVAE 90.38 ± 2.03 94.98 ± 1.69 95.17 ± 1.82 69.33 ± 1.15

DSML−𝒙𝒚 98.21 ± 1.71 98.45 ± 1.64 98.66 ± 1.61 76.68 ± 1.34
DSML 98.67 ± 1.43 99.02 ± 1.41 99.23 ± 1.30 81.24 ± 0.98

shown in Fig. 14. Clearly, the two generated modalities are seman-
tically consistent with 𝒄, and change their styles as 𝒛 changes. For
example, 𝒛8 encodes the slope information (slant to the right), while
𝒛9 encodes the bold information. This verifies that DSML correctly
disentangles the semantic information and other information.
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Fig. 17. Illustration of the training process. The vertical axis represents loss, while the horizontal axis represents the global steps. From (b), we observe that the two curves are
difficult to separate from each other after 60,000 steps, which indicates that the real and fake data have similar distributions.
4.6. Cross-modality retrieval

DSML has a modality-shared low-dimensional latent space, and
we can perform cross-modality retrieval in that space (cf. Fig. 15).
Recall that DSML’s latent representation contains two parts of variables,
i.e., the semantic label 𝒄 and the semantic-free code 𝒛. Here the cross-
modality retrieval experiments are performed on the ImageNet-EEG
dataset by using both 𝒄 and 𝒛. Specifically, we conduct two different
cross-modality retrieval tasks: (1) using the given EEG samples to
retrieval the corresponding visual images (EEG-to-Image) and (2) using
the given image samples to retrieval the corresponding EEG signals
(Image-to-EEG).

We first randomly draw five samples from each class of the test
dataset as queries. For each selected query, we further get the cor-
responding 𝒄 and 𝒛 by using the trained classifier and encoder, re-
spectively. Based on the predicted 𝒄 and 𝒛, we then find its 𝑛 ∈
{20, 21,… , 215} nearest neighbors by using similarity search. The cor-
responding images/EEGs of these neighbors are returned as the cross-
modality retrieval results. In similarity search, we adopt a two-step
strategy. In the first step, we match the semantic label 𝒄 with all
candidates. In the second step, we perform ranking w.r.t. 𝒛 based on
the Euclidean distance. Note that, in the ranking, 𝒄 matched samples
are ahead of 𝒄 unmatched samples. We plot the precision–recall (PR)
curves to evaluate the retrieval performances of different methods (in
Fig. 16(a) and (b)). Here, we set the number of relevant instance as 100.
In addition, we use the mean average precision (mAP) as another metric
(in Fig. 16(c) and (d)). Note that the mAP value represents the area
under the PR curve and it reflects the overall retrieval performance.
The formula of AP is defined as AP = 1

𝑇
∑𝑁

𝑛=1
𝑇𝑛
𝑛 ×rel(𝑛), where 𝑇 is the

number of relevant instances in the test dataset (here, 𝑇 = 100), 𝑁 is
the total number of instances, 𝑇𝑛 is the number of relevant instance in
top 𝑛 returned results, rel(𝑛) is an indicator whose value is 1 if the rank
𝑛 of the returned results is a relevant instance and 0 otherwise. Since
mAP is the mean value of AP for each query, hence it is defined as
mAP = 1

𝑄
∑𝑄

𝑞=1 AP(𝑞), where 𝑄 is the number of queries (here, 𝑄 = 200).
From Fig. 16, we can see that the joint distribution matching

methods DSML, 𝛥-GAN and ALICE [24] consistently outperform the
baseline method. The baseline is constructed as follow: given an query
sample, we first find its nearest neighbor based on the Euclidean
distance in the corresponding data space, and then we perform im-
age/EEG retrieval using the corresponding image/EEG of that nearest
neighbor EEG/image sample. In particular, the proposed DSML model
achieved better performance than 𝛥-GAN and ALICE. The result was
caused by the fact that our DSML model can augment the training data
by synthesizing lots of paired data, which facilitates the learning of
modality mappings. Last but not least, 𝛥-GAN and ALICE methods can
only conduct inefficient cross-modality retrieval in the original high-
dimensional data space. By contrast, our DSML model performs the
cross-modality retrieval task in the modality-shared latent space. This
is more efficient and practical for high-dimensional data.
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4.7. Convergence and stability of DSML

Fig. 17 illustrates the convergence and stability of the DSML training
on the RGB-D object dataset. Empirically, we find that DSML works well
in practice. The reason for the front part of the curve in (c) fluctuate
significantly is that the large number of the generated data 𝑝𝑔𝑥 (𝒙|𝒄, 𝒛)
and 𝑝𝑔𝑦 (𝒚|𝒄, 𝒛) are used to augment the training of classifiers 𝐶𝑥 and
𝐶𝑦, respectively. In the initial stages of model training, the pretrained
classifiers 𝐶𝑥 and 𝐶𝑦 were prone to misdirected by the generated data,
whose quality were not good enough. But with the improvement of
image quality, the classifiers converge rapidly and stably.

5. Conclusion

We presented a unified framework for joint classification, genera-
tion and retrieval through doubly semi-supervised multimodal adver-
sarial learning. The proposed DSML framework consists of four kinds
of components: generators, encoders, classifiers and discriminators, all
jointly trained via adversarial learning. With a modality-shared latent
space, DSML enjoys many advantages, such as accurately controlling
the semantics of imputed modalities, augmenting the training set with
synthesized samples and scaling well to multiple modalities. In the
experiments, we have shown that DSML can be applied to a wide
range of applications. The experimental results on multiple datasets
demonstrate that DSML as a unified framework can simultaneously (1)
achieve the state-of-the-art multimodal semi-supervised classification
results; (2) recover the missing modality with high visual quality and
correct intrinsic semantics; and (3) perform efficient cross-modality
retrieval in the modality-shared latent space.
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Appendix A. Proof of Proposition 2

Supposing 𝑓1,… , 𝑓𝐾 are 𝐾 variables, let us first consider a general
ptimization problem as the following

in(𝑓1,… , 𝑓𝐾 ) =
𝐾
∑

𝑘=1
𝑝𝑘(𝒙, 𝒄) log

𝑓𝑘
∑𝐾

𝑖=1 𝑓𝑖
.

or any 𝑓𝑘, if we fix all other variables, and let

𝜕
𝜕𝑓𝑘

=
𝑝𝑘(𝒙, 𝒄)

𝑓𝑘
−

𝐾
∑

𝑗=1

𝑝𝑗 (𝒙, 𝒄)
∑𝐾

𝑖=1 𝑓𝑖
= 0,

we can obtain the optimal 𝑓 ∗
𝑘 for 𝑘 = 1,… , 𝐾:

𝑓𝑘 = 𝑝𝑘(𝒙, 𝒄)
∑𝐾

𝑖=1,𝑖≠𝑘 𝑓𝑖
∑𝐾

𝑗=1,𝑗≠𝑘 𝑝𝑗 (𝒙, 𝒄)
= 𝐶 ⋅ 𝑝𝑘(𝒙, 𝒄),

where 𝐶 ≠ 0 is a constant. Let 𝑓𝑘 = 𝑓𝑘
∑𝐾

𝑖=1 𝑓𝑖
, the global optimal is

chieved at 𝑓𝑘 = 𝑝𝑘(𝒙,𝒄)
∑𝐾

𝑗=1 𝑝𝑗 (𝒙,𝒄)
.

Let 𝐾 = 3 and 𝑓𝑘 = 𝐷𝑥𝑐 (𝒙, 𝒄)[𝑘]. This indicates that with fixed 𝐺𝑥
and 𝐶𝑥, the optimal discriminator 𝐷𝑥𝑐 (𝒙, 𝒄) in the main text is achieved
at

𝐷∗
𝑥𝑐 (𝒙, 𝒄)[𝑘] =

𝑝𝑘(𝒙, 𝒄)
∑𝐾

𝑗=1 𝑝𝑗 (𝒙, 𝒄)
.

ith optimal 𝐷∗
𝑥𝑐 (𝒙, 𝒄)[𝑘], the objective (7) in the main text can be

xpressed as

𝒙𝒄 =
3
∑

𝑘=1
E(𝒙,𝒄)∼𝑝𝑘(𝒙,𝒄) log

𝑝𝑘(𝒙, 𝒄)
∑3

𝑗=1 𝑝𝑗 (𝒙, 𝒄)

= −3 log 3 +
3
∑

𝑘=1
KL

(

𝑝𝑘(𝒙, 𝒄)
|

|

|

|

|

|

∑3
𝑗=1 𝑝𝑗 (𝒙, 𝒄)

3

)

= −3 log 3 + 3 ⋅ 𝐽𝑆𝐷
(

𝑝1(𝒙, 𝒄), 𝑝2(𝒙, 𝒄), 𝑝3(𝒙, 𝒄)
)

≥ −3 log 3

where 𝐽𝑆𝐷𝜋1 ,…,𝜋𝐾 (𝑝1, 𝑝2,… , 𝑝𝐾 ) = 𝐻
(

∑𝐾
𝑗=1 𝜋𝑗𝑝𝑗

)

−
∑𝐾

𝑗=1 𝜋𝑗𝐻(𝑝𝑗 ) is the
Jensen–Shannon divergence, which is always non-negative, and zero
only when the probability distribution 𝑝1, 𝑝2,… , 𝑝𝐾 are equal. Here,
𝜋1,… , 𝜋𝐾 are weights that are selected for 𝑝1, 𝑝2,… , 𝑝𝐾 , and 𝐻(𝑝𝑗 ) is
the entropy for distribution 𝑝𝑗 . In the three-distribution case described
above, we set 𝐾 = 3 and 𝜋1 = 𝜋2 = 𝜋3 =

1
3 .

Therefore, the global minimum of (7) is achieved at 𝑝1(𝒙, 𝒄) =
𝑝2(𝒙, 𝒄) = 𝑝3(𝒙, 𝒄) with the optimal 𝐷∗

𝑥𝑐 (𝒙, 𝒄)[𝑘] =
1
3 , and the optimum

value is −3 log 3. The proof for 𝒚𝒄 is similar.

Appendix B. Proof of Proposition 3

Based on the proof of Proposition 2, let 𝐾 = 4 and 𝑓𝑘 = 𝐷𝑥𝑦(𝒙, 𝒚)[𝑘],
the optimal discriminator 𝐷𝑥𝑦(𝒙, 𝒄) is achieved at

𝐷∗
𝑥𝑦(𝒙, 𝒚)[𝑘] =

𝑝𝑘(𝒙, 𝒚)
∑𝐾

𝑗=1 𝑝𝑗 (𝒙, 𝒚)
.

ith optimal 𝐷∗
𝑥𝑦(𝒙, 𝒚)[𝑘], the objective (12) in the main text can be

xpressed as

𝒙𝒚 =
4
∑

𝑘=1
E(𝒙,𝒚)∼𝑝𝑘(𝒙,𝒚) log

𝑝𝑘(𝒙, 𝒚)
∑4

𝑗=1 𝑝𝑗 (𝒙, 𝒚)

= −4 log 4 +
4
∑

𝑘=1
KL

(

𝑝𝑘(𝒙, 𝒚)
|

|

|

|

|

|

∑4
𝑗=1 𝑝𝑗 (𝒙, 𝒚)

4

)

= −4 log 4 + 4 ⋅ 𝐽𝑆𝐷
(

𝑝1(𝒙, 𝒚), 𝑝2(𝒙, 𝒚), 𝑝3(𝒙, 𝒚), 𝑝4(𝒙, 𝒚)
)

≥ −4 log 4

Therefore, the global minimum of (12) is achieved at 𝑝1(𝒙, 𝒚) =
𝑝2(𝒙, 𝒚) = 𝑝3(𝒙, 𝒚) = 𝑝4(𝒙, 𝒚) with the optimal 𝐷∗

𝑥𝑦(𝒙, 𝒚)[𝑘] = 1
4 , and

he optimum value is −4 log 4.
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