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Abstract

When we experience a visual stimulus as beautiful, how much of that response
is the product of ineffable perceptual computations we cannot readily describe
versus semantic or conceptual knowledge we can easily translate into natural
language? Disentangling perception from language in any experience (especially
aesthetics) through behavior or neuroimaging is empirically laborious, and prone
to debate over precise definitions of terms. In this work, we attempt to bypass these
difficulties by using the learned representations of deep neural network models
trained exclusively on vision, exclusively on language, or a hybrid combination of
the two, to predict human ratings of beauty for a diverse set of naturalistic images
by way of linear decoding. We first show that while the vast majority (∼75%)
of explainable variance in human beauty ratings can be explained with unimodal
vision models (e.g. SEER), multimodal models that learn via language alignment
(e.g. CLIP) do show meaningful gains (∼10%) over their unimodal counterparts
(even when controlling for dataset and architecture). We then show, however, that
unimodal language models (e.g. GPT2) whose outputs are conditioned directly
on visual representations provide no discernible improvement in prediction, and
that machine-generated linguistic descriptions of the stimuli explain a far smaller
fraction ( ∼39%) of the explainable variance in ratings compared to vision alone.
Taken together, these results showcase a general methodology for disambiguating
perceptual and linguistic abstractions in aesthetic judgments using models that
computationally separate one from the other.

1 Background

Aesthetic experience (the experience of beauty) is a universal phenomenon without a universal
definition. Centuries of debate, from antiquity onwards, have asked why we experience beauty, and
where it comes from [33, 37, 28, 6, 24, 21, 12, 36, 30, 15, 39]. A central theme in these debates is
the notion of ineffability: the extent to which our experience of beauty can be adequately described
in natural language [17]. Given the inherent subjectivity of affective self-report, researchers have in
many cases attempted to better operationalize ineffability by localizing or attributing our experience
of beauty to various points along a somewhat Fodorian axis, which at one end assumes aesthetic
experience is the product of a highly encapsulated process that is inaccessible to language and at the
other assumes beauty is the product of conscious, deliberative, verbalizable thought [40, 34, 35, 29, 4].

These debates are challenging and difficult to arbitrate with behavior (i.e. empirical aesthetics) or
neuroimaging (i.e. neuroaesthetics). In this work, we suggest that one potential route for moving this
debate forward is with the use of computational models (i.e. computational aesthetics) in the form
of deep neural networks [8, 3]. Deep neural network models trained on canonical computer vision
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and natural language processing tasks allow us to systematically control the kinds of computations
and information processing mechanisms a given system can use to make inferences about aesthetic
stimuli. Here, we use a linear decoding method to assess how well we can predict human ratings of
beauty for a diverse set of naturalistic images from the features of unimodal and multimodal deep
neural network models never trained explicitly on predictions of beauty. Our main goal in this is to
better understand the relationship between representation learning and aesthetic experience, and how
various task modalities modulate that relationship.

2 Methods

Our main source of human ratings in these experiments is the OASIS dataset [19], a set of 900 images
curated to span a 7-point scale of arousal and valence ratings, and to which ratings of aesthetics were
later added [5]1. Each image comes with a rating that is the average of 100 to 110 human raters. To
predict these group-average affect ratings, we use cross-validated regularized (linear) regression over
features extracted from (pretrained) deep neural network models, none of which receive any prior
training on aesthetic targets. To compute these regressions, we proceed layer by layer through each
network, extracting the features and decoding the aesthetic ratings from these features in a procedure
designed to mimic standard methods (e.g. MVPA [14]) for (supervised) linear decoding from brain
recordings. That is to say, we use each feature map to predict how subjects will rate an image, then
correlate those predicted ratings with the actual ratings provided by the participants. The higher the
correlation, the more information about aesthetics is available in a given feature map, with no more
than a linear regression necessary to convert network activity into an aesthetic prediction. See Figure
1A and Appendix A.1 for details.

The logic here is a logic of representational sufficiency: If the predictions of our feature regressions
are accurate, it suggests that whatever the underlying computations producing aesthetics in the human
brain may be, they need not be any more sophisticated than a single affine transformation of the kinds
of representation produced by the feedforward, hierarchical operations of a deep neural network.
In this analysis, we use this logic to probe what kinds of deep net representations are sufficient for
predicting aesthetics, and better triangulate the computational pressures (i.e. tasks) that produce them.

Note that the regression scores we report below take the form of what we call ‘explainable variance
explained’. This is simply the squared Pearson correlation coefficient between predicted and actual
ratings divided by the squared Spearman-Brown splithalf reliability of the ratings across subjects (the
‘noise ceiling’). Note that given the quantity of subjects underlying the average, the noise ceiling for
this data is extremely high at rPearson = 0.988 [0.984, 0.991]. Unless otherwise noted, we report the
score of a model’s maximally predictive layer as that model’s overall score.

3 Results

Unimodal Vision Models Recapitulating previous work [8], we first show that pure unimodal vision
models, in the form of contrastive (self-supervised) image models, are capable of predicting up to
75% of the explainable variance in the group-average beauty ratings. From a sample of 18 contrastive
learning models that learn only over augmented image instances (e.g. Dino, SimCLR, SWaV),
the average explained variance is 0.607 [0.566, 0.641]. The most predictive model, a RegNet64
trained using the SEER pretraining technique [11] explains 74.6% of explainable variance. While
trained using roughly a billion images, this model’s representations are learned without symbolic or
conceptual training targets (even in the form of the one-hot encoding vectors used to train object
recognition models). This means that models trained on images alone can account for the majority of
explainable variance in human beauty ratings.

Multimodal Vision Models The CLIP models [27] are a series of models trained on the task of
linguistic alignment: given an image and a caption paired with that image, the model encodes both in
an equidimensional latent space, computes the cosine similarity between them, then (during training)
back-propagates any similarity less than 1 as a loss term. The representations of the visual encoder
are thus directly shaped by language. OpenAI’s CLIP models (S/16, B/32, L/14, et cetera) all show

1This dataset contains no identifying information, and was cleared for public use by Harvard University’s
Institutional Review Board.
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Figure 1: A Schematic of our feature regression pipeline for decoding affective information from deep
net responses. Our target in these experiments are group-average beauty ratings, which we predict
by extracting image features from a candidate deep neural network model, (optionally) reducing
their dimensionality, then employing them as predictors in a cross-validated ridge regression with
the group-average beauty ratings as output. This method gives us a beauty decoding score per layer
per candidate model. B Results from our feature regression pipeline as applied to a unimodal vision
model (SimCLR), a purely language-aligned model (CLIP) and a model that combines unimdal
vision training and language alignment (SLIP) – all holding dataset and architecture constant. To the
left, we see results across layers (the semitransparent jagged lines are individual layer scores; the
curves are the output of a generalized additive smoother across layers; the SLIP models each have 3
variants: ViT-[Small, Base, Large]). The takeaway here is that for all models, predictive accuracy is
generally higher in deeper layers (with the final embedding layer often the highest). To the right, we
see the results from the maximally predictive layers of each model. Error bars are 95% confidence
intervals across 1000 bootstrap resamples of the human subject pool. The takeaway here is that
adding language alignment (without taking away unimodal vision training) in the form of the SLIP
objective does significantly increase downstream readout of aesthetic information.

substantive gains over the best-performing unimodal image model (RegNet64-SEER), with 80.5% to
87% of explainable variance explained.

The problem with comparing the CLIP model directly to other models is that CLIP is trained on a
proprietary dataset of 400 million image-text pairs not yet available to the public. To address this
discrepancy, we use the SLIP models [23] – a series of Vision Transformers (Small [ViT-S], Base
[ViT-B], & Large [ViT-L]), all trained on the YFCC15M dataset (15 million image-text pairs), but on
only 1 of 3 tasks: pure SimCLR-style self-supervision; pure CLIP-style language alignment; or the
eponymous SLIP – a combination of self-supervision and language alignment. The SLIP models
allow us to control for the influence of language, holding architecture and dataset constant.

The pattern of results across the SLIP models suggests adding language to purely visual learning
does indeed increase the downstream predictive accuracy of aesthetic ratings. Specifically, while pure
CLIP-training shows discrepant gains over pure SIMCLR-training across the 3 vision transformer
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sizes (performing slightly better in ViT-S and ViT-B, and slightly worse in ViT-L), SLIP-training
outperforms its pure SimCLR counterpart across all 3 transformer sizes by a significant, at least
midsize margin. A bootstrapping analysis using 1000 resamples of the human subject pool (averaging
across model size) shows the difference between SimCLR and CLIP to be nonsignificant, with a
bootstrapped mean of 0.0098 [-0.027, 0.041] (p = 0.67), while the difference between SimCLR and
SLIP is significant, with a bootstrapped mean of 0.067 [0.037, 0.096] (p < 0.001). Results from these
experiments are summarized in Figure 1B (right panel).

Language Models via Captions Adding language to visual representations by way of CLIP-style
alignment does seem to facilitate better downstream prediction of aesthetic ratings. But what exactly
is language doing here? Is it really just adding to the visual representation or is it changing that
representation in some fundamental way? To assess this, we opted to test the outputs of a unimodal
language model conditioned on CLIP’s visual encoder using our feature regression pipeline. This
required first converting the visual embedding generated by CLIP into an embedding suitable for
a language model. For this, we used a system called CLIP-Cap [22]. CLIP-Cap is a closed-loop
system that employs a small multilayer perceptron (MLP) or transformer model to project the visual
embedding from a CLIP model to a token embedding – called a ‘prefix embedding’ – that can be
used by GPT2 [26] to generate a natural language caption.

Figure 2: Results from our experiment using the CLIP-Cap model to assess how well the predictive
power of CLIP’s visual outputs might be further compressed and translated into natural language.
The red line in the facet on the left are the scores across the layers of the CLIP visual encoder
used to generate an image ‘prefix’ embedding that is subsequently passed to GPT2 for captioning.
The line in blue in the facet on the right is the predictive power of that prefix embedding as it is
processed across the layers of GPT2. In other words, this line tracks the potential of GPT2 to facilitate
better aesthetic decoding with the attention operations of natural language processing. The line in
green is the predictive power of the generated caption passed back through GPT2 without the prefix
embedding. This line tracks how well (machine-generated, image-conditioned) language alone might
predict aesthetic ratings. The line in purple is the predictive power of the generated caption passed
back through GPT2 with the prefix embedding. This line tracks whether visual embeddings and
image-conditioned language together might outperform either one alone. The difference between
the blue line and the green line represents the difference in predictive power between CLIP’s visual
features and GPT2’s linguistic features – the difference, in other words, between language-aligned
perception and language alone. This gap is substantial. The negative slope on the purple line seems to
be an artifact of the feature regression overfitting to the embedding complexity added by the caption.
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For this experiment, we use CLIP-Cap’s MLP method of projection, which defaults to a prefix
embedding length of 10 and uses CLIP-ViT-B/32 as its visual backbone. In the same way we decode
aesthetics from features evoked by images in visual models, here we decode aesthetics from features
evoked by the ‘prefix embeddings’ in the language model: that is to say, layer by layer, and using
the same regression method. We find first and foremost that while the projected prefix embedding
preserves all the information necessary to decode aesthetics as accurately as in the CLIP visual
encoder, the hierarchical language processing of GPT2 facilitates no additional decoding. (The
accuracy of CLIP’s visual encoder is 84.8% [83.2%, 85.6%] explainable variance explained; the
accuracy of GPT2 operating over the prefix embedding never exceeds 85.3%.)

In this case, then, the features evoked across the language model do not seem to be adding information
– though neither do they seem to be losing it. This invites the question of whether language alone might
be sufficient for capturing the variance explained with the prefix embedding. To test this, we took
the most probable caption generated from the GPT2 model for each prefix embedding, and passed
that caption back through the model with the prefix removed. While we found these captions were
unable to account for the full 85% of explainable variance explained by the vision-conditioned prefix
embeddings, we found them capable of explaining a nontrivial 38.6% [37.2, 40.1] of explainable
variance in aesthetic ratings. Count-vectorized embeddings of these same captions explain only
19.4% [18.6, 20.1] of the explainable variance – suggesting the predictive power of these language
features is not attributable to single-word concepts (or confounds) alone.

This experiment does leave open the possibility that better language models and better (more accurate,
or more descriptive) machine-generated captions could close the gap on the variance explained by
visual models per se. While the current paradigm suggests that visual features shaped by – but not
necessarily compressible to – language are dominant in the prediction of group-average aesthetic
ratings, it still seems possible that this advantage might diminish in the future. A longer discussion of
this point and a preliminary test of other captions and models is available in Appendix A.2.

4 Conclusion

Aesthetic experience is no single phenomenon, but a pluralistic combination of multiple different
factors: our sensory and social ecologies, our bodies, our idiosyncratic developmental trajectories, our
beliefs, and our perceptions [2, 35, 29, 10]. An overarching goal of this and similar works is in some
sense to approximate what percentage of aesthetic experience may be attributable to certain kinds of
computational processes [4, 30, 8]. Here, we show that while perceptual processes in the form of
feedforward, hierarchical, subsymbolic visual feature extraction are so far the best predictors of how
people on average will rate the aesthetics of naturalistic image stimuli, language (alignment) may
play a key role in shaping these representations. Furthermore, it seems that whatever the nature of the
visual semantics that undergird the successful prediction of aesthetic responses in multimodal models
like CLIP, at least a nontrivial portion of these semantics may be translated to machine-generated
natural language descriptions. Aesthetic ineffability in this sense may be less of a binary and more of
a gradient. The difference between the predictive power of an image in visual feature space and its
description in natural language space could serve as a direct quantification of this gap.

Of course, this exact same point makes clear a few inherent limitations to some of the methods we’ve
used here: simply put, not all image descriptions are made equal. Just as an expert orator may be
more capable of evoking emotion with language than a novice, so too might certain descriptions
communicate aesthetic value more effectively than others – even without explicitly affective qualifiers.
Exposition of key details or interactions in a scene might be essential to communicating its aesthetic
quality. To the extent that this is true adds immense complexity to the endeavor of disentangling
vision from language, but the use of machine vision and language models does potentially allow us to
pursue this disentanglement in ways that weren’t necessarily available to experimentalists before.

One immediate priority for future work is to assess the extent to which methods like consensus-based
caption-scoring [38] could be used to reconcile divergent natural language descriptions of the same
stimulus into a single representation – something that might allow us to supplement our machine-
generated captions with crowdsourced human captions. Aggregating multiple natural language
descriptions into a single coherent embedding might also be the key to closing the distance between
visual representations and natural language descriptions that match these representations in terms of
their downstream predictive power. Other, less proximate work should reconsider what it would mean
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for an affective experience (like the experience of beauty) to be communicated effectively between
one agent and another, and whether this kind of communication has implications for learning.
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Code, Data, & Compute Specifications

The OASIS dataset is publicly available available under a Creative Commons License at the following
URL: https://osf.io/6pnd7/ All code will be made available upon publication. All experiments were
run on a single Linux machine with 8 RTX3090 GPUs and 756GB of RAM. Most computations were
CPU intensive and GPU use could be avoided entirely.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section 4.

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? YES (Data is publicly
available; code will be released on publication).

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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A Appendix

A.1 Method Details: Feature Regression

Our feature regression pipeline consists of 4 distinct phases: feature extraction; dimensionality
reduction; ridge regression; cross-validation and scoring.

Feature Extraction We consider feature extraction from ‘every layer’ to mean the sampling of
network activity generated after each distinct computational suboperation in a deep neural network
model. This means, for example, that we consider a convolution and the nonlinearity that follows it as
two distinct operations that produce two distinct feature spaces, both of which we consider candidates
for decoding. If a layer returns a tensor with multiple components (such as a convolutional layer)
we first flatten the tensor to a single component, such that the layer represents any given image as a
feature vector. The layer thus represents a dataset of n images as an array F ∈ Rn×D, where D is
the dimensions of the feature vector.

Sparse Random Projection For some deep-net layers D is very large, and as such performing ridge
regression directly on F is prohibitively expensive, with at best linear complexity with D, O(n2D)
[13]. Fortunately it follows from the Johnson-Lindenstrauss lemma [16, 9] that F can be projected
down to a low-dimensional embedding P ∈ Rn×p that preserves pair-wise distances of points in F
with errors bounded by a factor ϵ. If u and v are any two feature vectors from F, and up and vp are
the low-dimensional projected vectors, then;

(1− ϵ)||u− v||2 < ||up − vp||2 < (1 + ϵ)||u− v||2 (1)

1 holds provided that p ≥ 4 ln(n)
ϵ2/2−ϵ3/3 [1]. With n = 900 for our dataset, to preserve distances with a

distortion factor of ϵ = .1 requires ≥ 5830 dimensions. Thus we chose to project F to P ∈ Rn×5830

in instances where D >> 5830. To find the mapping from F to P we used sparse random projections
following Li et al. [20]. The authors show a P satisfying 1 can be found by P = FR, where R is a
sparse, n× p matrix, with i.i.d elements
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Ridge Regression with LOOCV We used regularized (ridge) regression to predict the average
human ratings of images, Y, from their associated (dimensionality-reduced) deep net features, P. As
our goal was not to identify a particular regression model for later use, but rather get a best estimate
for the linear read-out of beauty scores from deepnet feature spaces, we utilized all the data at our
disposal with a leave-one-out (generalized) cross-validation procedure. For every image in our dataset
(∀i ∈ {1 . . . 900}) we fit the coefficients β̂i of a regression model on the remaining data, such that
Y−i = P−iβ̂i + ϵ with minimal ∥ϵ∥ (error). Ridge regression penalizes large ∥β̂∥ proportional to a
hyper-parameter λ, which is useful to prevent overfitting when regressors are high-dimensional (as
with P). We first standardized Y and the columns of P to have a mean of 0 and standard deviation of
1. Let P−i and Y−i denote P and Y with row i missing, then each β̂i is calculated by;

β̂i =
(
P′

−iP−i + λIp
)−1

P′
−iY−i (3)

Each β̂i is then used to predict the beauty rating from the deepnet feature projection of each left out
image;

ŷi = Piβ̂i, Ŷ = {ŷi}900i=1 (4)

The hyper-parameter λ we set at 1e4, a value we determined using a logarithmic grid search over
1e-1 - 1e6 on an AlexNet model that we subsequently exclude from the main analysis. λ = 1e4

yielded the smallest cross-validated error (∥Y − Ŷ∥) when averaging across layers. We used the
RidgeCV function from [25] to implement this cross-validated ridge regression, as its matrix algebraic
implementation identifies each β̂i in parallel, resulting in significant speedups [32].

Scoring In this analysis, we score each deepnet layer by computing the Pearson correlation coefficient
between its predicted ratings, Ŷ, and the actual group-average affect ratings from the human subjects,
Y. To convert this Pearson correlation coefficient into a score that represents the percentage of
explainable variance explained, we divide the square of this coefficient by the square of the Spearman-
Brown splithalf reliability that constitutes the noise ceiling.

Note that previous empirical work suggests the sparse random projection step in this pipeline is
largely optional and can, without substantial decrease in accuracy, be eliminated in favor of directly
using the full-size, flattened feature maps in the regression.

A.2 Caption Accuracy + Better Language Models

A major issue with the use of machine-generated captions in any pipeline is their accuracy. Even
state-of-the-art captioning models make consistent, common-sense errors no human would make in
describing an image [41]. What does this mean for the current experiment?

One point to consider is that we are not necessarily interested in the accuracy of the caption per se, but
the extent to which that caption reflects the information content available in the visual embeddings of
CLIP, which themselves may not accurately reflect category-level or more generally semantic content.
The issue then is not whether CLIP-Cap (or other systems that interpret CLIP’s visual embeddings in
service of caption generation, such as Cho et al. [7] provides accurate human-legible captions, but
whether those captions reflect a coherent summary function of CLIP’s visual embeddings. This is
admittedly difficult to measure, but because CLIP-Cap and similar models are gradient-based, we can
say definitively, at least, that the resultant captions are literal functions of CLIP’s vision.
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This somewhat oblique approach here obviously invites the question of why, instead of machine-
generated captions, we do not simply use human-generated captions. The answer is twofold: First,
because we are interested in more directly interpreting CLIP’s latent space, this makes human captions
mostly irrelevant. Second, and perhaps more importantly, though, is the issue of how we sift through,
concatenate or rank across the varied captions that human subjects will invariably provide. Given
5 sentence-level descriptions of an image, what is the numerical vector that summarizes them and
allows us then to regress this vector onto the aesthetic rankings provided for those images? It is
possible that consensus-based methods [38] provide a reasonable answer here, but this remains an
open question that will require further work beyond the scope of this analysis.

Another potential issue with the use of machine-generated captions specifically in this pipeline are
the large language models we use to transform those captions into embeddings appropriate for our
feature regression pipeline. CLIP-Cap uses as its language transformer a standard (midsize) GPT2
model. Language models are known to be far more accurate with scale [18]. Could other language
models (in conjunction with better captions) facilitate greater decoding accuracy?

While by no means an exhaustive experiment, we explored this question preliminarily by expanding
our caption-based decoding paradigm to two other sets of captions and two other large language
models. For captions, we considered CLIP-Caption-Reward [7] (another CLIP-based caption-
generation algorithm that uses CLIP similarity as a reward function) and GIT (Generative Image-to-
Text Transformer) [41]. For language models, we considered GPT2-XL (the larger version of the
GPT2 used by CLIPCap for caption generation) and the All-MPNet-Base-V2 variant of S-BERT [31]
(the largest thereof). While no single caption and model combination exceeds 58% of explainable
explained variance (compared to the visual encoder’s 82%), the best combination (SBERT-over-GIT
captions), improves nearly 20% over the baseline we test in the main results (GPT2-over-CLIPCap)
at 38.5%. This latter caption-model combination notably does not involve CLIP, which makes it
irrelevant as a method of interpreting the CLIP visual encoder’s predictive accuracy, but it does
suggest one potential route forward for assessing the impact of language on aesthetic judgment.

Figure 3: Results from our experiment extending our feature regression pipeline for aesthetics
decoding from captions beyond the CLIP-Cap model. The bar at the top of the plot is the best
performing layer from a CLIP visual encoder operating over images. The bar beneath it (GPT2-over-
CLIPCap) is the result from the main experiment detailed in Section 3. Error bars are 95% confidence
intervals over 1000 bootstrap resamples of the human subject pool.
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