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Abstract

This paper, accepted at CVPR 2025, presents LoTUS, a
novel Machine Unlearning (MU) method that eliminates
the influence of training samples from pre-trained models,
avoiding retraining from scratch. LoTUS smooths the pre-
diction probabilities of the model up to an information-
theoretic bound, mitigating its over-confidence stemming
from data memorization. We evaluate LoTUS on Trans-
former and ResNet18 models against eight baselines across
five public datasets. Beyond established MU bench-
marks, we evaluate unlearning on ImageNet1k, a large-
scale dataset, where retraining is impractical, simulating
real-world conditions. Moreover, we introduce the novel
Retrain-Free Jensen-Shannon Divergence (RF-JSD) metric
to enable evaluation under real-world conditions. The ex-
perimental results show that LoTUS outperforms state-of-
the-art methods in terms of both efficiency and effectiveness.
Code: https://github.com/cspartalis/LoTUS.

1. Introduction
Machine Unlearning focuses on removing the influence
of training samples from pre-trained models without
retraining the model entirely [26]. Its applications include
privacy protection in Machine Learning [3, 14, 15]. As
an alternative to retraining a model from scratch, Ma-
chine Unlearning addresses three principal challenges: 1
minimizing the time window during which the model is
vulnerable, 2 minimizing the cost in terms of time and
computational resources, and 3 minimizing the depen-
dency on access to all training data to retain the utility of
the pre-trained model, as full data access is often limited
due to privacy policies and storage limitations. Therefore,
an effective and efficient unlearning algorithm should meet
the following requirements [13]: 1 Effectively eliminate
the impact of specific training samples from the model. 2
Retain the model’s performance on the remaining training
samples, even if access to the training set is limited. 3 Be
efficient in terms of both time and computational resources.

Considering only the effectiveness of unlearning, the

gold standard is to retrain the model from scratch without
the samples designated for unlearning (also known as for-
get samples). To this end, two main taxonomy classes have
been developed: exact unlearning, which aims to produce
a model that is statistically indistinguishable from the gold
standard, which is often infeasible for complex algorithms
[4] or inefficient [3], and approximate unlearning, which re-
laxes the constraints of exact unlearning and adopts a suite
of evaluation metrics that typically measure how well the
unlearned model approximates the gold standard in terms of
accuracy and resilience to privacy attacks [12]. The scope
of this study concerns the following questions:

Q1: Can an unlearning method efficiently
eliminate the influence of training samples from
a pre-trained model while approximating the
effectiveness of the gold standard?
Q2: Can this unlearning method effectively han-
dle large-scale datasets and models under real-
world constraints, including limited data access?

To answer these questions we propose the Logits
Tempering Unlearning Strategy (LoTUS for short, such
as the fruit that made Ulysses’ comrades forget). LoTUS
leverages the known tendency of Deep Neural Networks
(DNNs) to memorize sample-specific features from training
data and output over-confident predictions [38], a vulnera-
bility exploited by Membership Inference Attacks (MIAs)
to assess whether a sample is a member of the training
set [33]. To this end, LoTUS smooths the model’s output
probabilities, as shown in Fig. 1, increasing the entropy to
resemble that of unseen (during training) samples. This un-
seen set, which may include synthetic data, enables LoTUS
to calibrate the retained information for forget samples post-
unlearning and replicate the decision-making process of the
gold standard model. Since the gold standard model was
not trained on the forget samples, it naturally avoids over-
confident predictions and typically exhibits lower accuracy
on them. To better approximate the gold standard’s perfor-
mance, LoTUS also introduces Gumbel noise into the pre-
trained model’s output distribution. This encourages diverse
predictions and helps reduce the pre-trained model’s accu-
racy on forget samples to resemble that of the gold standard.

https://cvpr.thecvf.com/virtual/2025/poster/33292
https://github.com/cspartalis/LoTUS


Figure 1. Machine Unlearning via smoothing prediction prob-
abilities: LoTUS eliminates sample-specific information (e.g.,
unique fur patterns in cat images) that the DNN memorized and ex-
posed through overconfident predictions. Then, the DNN responds
to unlearned samples as if they were never part of the training set.

In contrast to previous studies that have focused mainly
on the input or model space, LoTUS follows an entropy-
based approach that directly modifies the model’s output
probabilities, emphasizing an underexplored unlearning
approach. The difference from the existing method which
indiscriminately maximizes entropy using random labeling
[17] is that LoTUS uses an information-theoretical bound
to control the uncertainty introduced to the model. Our
main contributions are as follows:
1. We introduce LoTUS, the first unlearning method that

operates directly in the model’s output space, while fol-
lowing an information-theoretic approach to determine
the amount of entropy increase. This bound enables cau-
tious unlearning that approximates the gold standard.

2. We introduce the Retrain-Free Jensen-Shannon Diver-
gence (RF-JSD) unlearning metric, which enables eval-
uation in real-world scenarios. RF-JSD exhibits a strong
Pearson correlation (PCC = 0.92±0.04) with the estab-
lished JSD score while eliminating the need to retrain the
model. Compared to the existing retrain-free ZRF score,
RF-JSD offers enhanced interpretability and efficiency.

3. We introduce a novel large-scale experimental setup that
incorporates a large-scale dataset (ImageNet1k), and
limited access to the training set, with the aim of simu-
lating real-world conditions, where model retraining is
infeasible. Overall, we evaluated LoTUS on the Vision
Tranformer and ResNet18 modes, against eight baseline
methods on five public datasets. Extensive experiments
demonstrate that LoTUS outperforms state-of-the-art
approaches in terms of both unlearning effectiveness and
efficiency, in all benchmarks (novel and established).

2. Related Work
Machine Unlearning was first introduced in [4] with an
approach that decomposes traditional Machine Learning
algorithms into summations, enabling the reduction of
the influence of specific data points for exact unlearning.
Subsequently, a theoretical framework for approximate un-

learning was proposed in [18], suggesting a Hessian-based
regularization technique limited to models with convex
loss functions to mitigate membership inference risks.
Unlearning was subsequently extended to deep neural net-
works in [15] by introducing a Lagrangian regularization
approach that utilizes the Fisher Information Matrix as a
Hessian approximation. More recent works have improved
unlearning effectiveness and efficiency [14, 23] and ex-
panded machine unlearning applications in diverse areas,
including user privacy [30], security defense [29], toxic
content removal [12, 20], copyright protection [16], and
bias mitigation [7]. Emphasizing on privacy applications,
Machine Unlearning has been defined as a privacy game
aiming to reduce the accuracy of MIAs [3].

Algorithms are categorized into two classes depending
on where the manipulations are applied: model space
and data space [37]. In model-space approaches, ma-
nipulations include regularizing the loss function to shift
model weights far from the pre-trained model and close
to the gold standard [9, 15, 23]. Another approach is
pruning, which involves identifying and reducing the
influence of weights that are most affected by the data to
be unlearned [12, 14]. Although model-space approaches
can offer theoretical justifications and efficiency, they also
present challenges in terms of implementation complexity
and interpretability [37].

On the other hand, data-space approaches focus on
reorganizing or modifying the data to be unlearned. These
methods include data-partitioning techniques that track
which partition each data point belongs to and the corre-
sponding model updates they trigger. They enable selective
forgetting by isolating specific model updates [4, 17] or by
retraining the model from the latest valid checkpoint [3].
These techniques are usually pre-hoc; meaning they must
be applied before training, and cannot apply to pre-trained
models. Also, they are resource-intensive, trading increased
space complexity for reduced time complexity.

Data obfuscation is a data-space approach that can be
applied post-hoc. This includes methods such as adversarial
attacks [5, 6] or adding noise to the input [9, 13]. Although
these techniques primarily focus on modifications in the in-
put space, Random Labeling [17] takes a different approach
by altering the output space and reassigning incorrect labels
to the forget samples. Despite its simplicity, this approach
has been shown to be effective [35]. Data-space adjust-
ments are more conceptually aligned with information the-
ory, although a direct connection was explicitly established
only recently in [13], which explores input perturbations.

Information Theory formalizes the quantification of in-
formation through mathematical measures such as entropy
and mutual information [31]. In the context of DNNs, in-
formation is typically defined for random variables such as
the input and output of the models.



3. Logits Tempering Unlearning Strategy
3.1. Preliminaries

Let x∼P (X) be a feature vector representing an image
sampled from the sampling space A(X), and y∼P (Y )
be a classification label sampled from the sampling space
A(Y )={c1, c2,. . ., ck}, where k is the total number of
classes. Let fw(X) : A(X) 7→A(Y ) be a DNN model pa-
rameterized by weights w that maps an image x to a classi-
fication label y. Also, let D={(xi, yi)}ni=1=Df∪Dr∪Du

be a dataset of images xi ∈A(X) and their corresponding
labels yi ∈ A(Y ), which comprises three pairwise disjoint
datasets: 1 Forget set Df: Training samples whose influ-
ence on the model weights w should be removed. 2 Retain
set Dr: Training samples whose influence on w must be
preserved. 3 Unseen set Du: Samples that were not used
to train the model fw. As unseen sets, we use either the val-
idation sets or synthetic data generated from training data.
Finally, we denote: forig as the pre-trained (or original)
model, trained on Df∪Dr, fgold as the gold standard model,
retrained from scratch only on Dr, and fun as the model
derived from unlearning, which is the process of updating
the model weights of forig so that fun(x)≈fgold(x), ∀x∈D.

3.2. Upper-bounding Uncertainty

Unlike existing unlearning methods [17], which indiscrim-
inately increase entropy in the output space, we aim to
establish an upper bound on the uncertainty introduced by
unlearning, removing only the information specific to the
forget set Df which extends beyond the model’s general
knowledge. To achieve this, we adopt an information-
theoretic framework to delineate the information essential
for preserving model utility from the information that needs
to be removed. Although directly estimating the mutual
information between the model’s input and output would
be ideal, this approach is both challenging and computa-
tionally intensive [1]. Therefore, we introduce a relaxed
version of the framework that enables the assessment of the
appropriate entropy increase required for unlearning.

Proposition. Let Xs be a random variable with any
sampling space A(Xs)⊂A(X). In other words, Xs is
derived from X by filtering. Then, X→Xs→fw(Xs)
is a processing chain where fw(Xs) depends on X only
through Xs. By the Data Processing Inequality [10],
this is a Markov chain that implies fw(Xs) → Xs → X .
Therefore, by the chain rule, we can expand the mutual
information in two different ways:

I
(
fw(Xs);Xs, X

)
=I

(
fw(Xs);X

)
+ I

(
fw(Xs);Xs |X

)
=I

(
fw(Xs);Xs) +

���������:0

I
(
fw(Xs);X |Xs

)
(1)

Since fw(Xs) is conditionally independent of X given
Xs, it follows that I

(
fw(Xs);X | Xs

)
= 0. Therefore,

from Eq. (1), the mutual information between the input Xs

and the output fw(Xs) of the classifier is:

I(fw(Xs);Xs)︸ ︷︷ ︸
total information captured by

the model from the data subset

=I(fw(Xs);X)︸ ︷︷ ︸
global

information

+ I(fw(Xs);Xs |X)︸ ︷︷ ︸
subset-specific

information
(2)

We consider I(fw(Xs);X) as the global information
a model fw has captured from the set A(X). In other
words, it quantifies the contribution of the shared features
among training samples in A(X) (i.e., global features) to
the model’s decision-making. Respectively, we consider
I(fw(Xs);Xs | X) as the additional subset-specific infor-
mation learned exclusively from the subset A(Xs), which
refines the model’s decision and adds detail beyond what is
already captured from A(X).

For example, if there are images of cats in both A(X)
and its subset A(Xs), then the total information captured
from the images in A(Xs) can be categorized into two
types: The global information learned from shared features
across all cat images in A(X), e.g. body shape of cats; and
the additional subset-specific information learned exclu-
sively from cat images in A(Xs), e.g. unique fur patterns.

To determine the presence of subset-specific information
and how this is expressed in the model’s decision, we refer
to the memorization capabilities of DNNs and the derived
privacy considerations. DNNs are known to memorize
information from individual samples in the training set [38].
Considering a DNN classifier, the memorization of specific
patterns is exposed in the model’s output probabilities via
increased confidence (i.e., lower entropy in the model’s
output probability distribution), and this is an indicator
exploited by privacy attacks to distinguish which samples
are members of the training set [32].

Therefore, if A(Xs) is a subset of the training set,
then the model can capture the subset-specific information
leading to over-confident predictions. However, if A(Xs)
was unseen during training, then the model had no chance
to capture subset-specific information and its predictions
are based solely on the global information captured from
training samples in A(X). Defining the sampling space of
X as A(X)=D=Df ∪Dr ∪Du, and the sampling space
of Xs as the forget set A(Xs) = Df ⊂ D, we can assess
the total information captured by the available pre-trained
model forig and the ideal gold standard model fgold as such:

I
(
forig(Xs), Xs∈Df

)
=I

(
forig(Xs), X

)
+ I

(
forig(Xs);Xs |X

)
(3)

I
(
fgold(Xs), Xs∈Df

)
=I

(
fgold(Xs), X

)
+
���������:0

I
(
fgold(Xs);Xs |X

)
(4)

The gold standard model fgold has not been trained on the



forget set Df , thus fgold has not captured subset-specific
information from Df as shown in Eq. (4).

Based on Eqs. (3) and (4), we define Machine Un-
learning as the process of eliminating the subset-specific
information I

(
forig(Xs);Xs |X) from the pre-trained model

(i.e., forgetting objective), while retaining the global
information I

(
forig(Xs);X

)
captured from the training

samples in D (i.e., retention objective to preserve model’s
utility on the remaining training samples). Therefore, the
total information that the unlearned model fun retains for
the samples in the forget set Xs∈Df is by definition equal
to the global information the pre-trained model forig had
captured from the training set X∈Df∪Dr:

I
(
fun(Xs);Xs

)∆
=I

(
fun(Xs);X

) ∆
= I

(
forig(Xs);X

)
(5)

Assumption of instance-wise unlearning: Equation (5)
holds under the condition that the forget set Df comprises
only a subset of the training samples of a class (i.e.,
instance-wise unlearning) and not all class samples (i.e.,
class unlearning). For example, if Df contains images of
cats, then the retain set Dr must also include images of cats
to ensure that the global features related to the cat class are
still encoded in the model after unlearning. Otherwise, the
global information will be eliminated during unlearning
and I(forig(Xs), X) ̸=I

(
fun(Xs), X

)
=0.

Subsequently, we focus on instance-wise unlearning and
the quantification of the global information that should be
retained post-unlearning. However, in Sec. 14, we provide
details on the class unlearning task and how LoTUS can be
easily adapted to this.

Quantifying global information. Estimating the global
information I

(
forig(Xs);X

)
is challenging due to the

high dimensionality and complex dependencies in data,
making it difficult and computationally intensive [1]. To
address this, we use the total information I

(
forig(Xs);Xs

)
as a proxy of the global information and conclude on an
efficient yet effective weaker approximation.

As previously explained and shown in Eq. (4), a model
cannot capture subset-specific information, if this subset has
not been used during training. Therefore, if Du consists of
unseen (during training) samples, then:

I
(
forig(Xs), Xs∈Du

)
=I

(
forig(Xs), X

)
+
���������:0

I
(
forig(Xs);Xs |X

)
(6)

Assumption of Distributional Similarity: The forget set
Df and unseen set Du are assumed to follow the same
distribution in terms of visual features and class distribu-
tion. This leads to the conclusion that their entropies are
equal: H(Xs ∈ Df ) = H(Xs ∈ Du). Additionally, the
total information captured by the unlearned model fun from
Df can be considered equivalent to that captured by the

pre-trained model forig from Du. Based on Eqs. (5) and (6),
we can thus reformulate the unlearning objective as:

I
(
fun(Xs), Xs∈Df

)
= I

(
forig(Xs), Xs∈Du

)
⇒

((((((H(Xs∈Df )−H
(
Xs∈Df |fun(Xs)

)
=

((((((H(Xs∈Du)−H
(
Xs∈Du |forig(Xs)

)
⇒

H
(
Xs∈Df |fun(Xs)

)
=H

(
Xs∈Du |forig(Xs)

) (7)

which establishes that the uncertainty about whether a
sample belongs to the forget or unseen set should be the
same when conditioned on the respective model’s outputs.

Although this theoretical formulation assumes an
identical distribution for Df and Du, we show that the
assumption can be relaxed in practice. Specifically, the
images in both sets only need to share relevant features
that contribute to the global information. In other words,
the forget and unseen sets should contain visually similar
images rather than images with exactly the same informa-
tion. For example, if the forget set contains cat images, the
unseen set should also contain cat images –even synthetic
ones– rather than entirely different objects such as human
portraits. In practice, this ensures sufficient similarity in
global features related to the cat class.

Approximating conditional entropy. Given the com-
plexity of the underlying distributions and the compu-
tational challenge associated with entropy estimation in
Eq. (7), we derive a practical relationship linking the pre-
diction error to the uncertainty in the model’s predictions.
Let X̂s be an estimate of Xs based on the model’s output
fw(Xs), following Xs → fw(Xs) → X̂s, and define the
prediction error probability as Pe=P{Xs ̸=X̂s}. Then
Fano’s Inequality [10] states:

Pe ≥
H
(
Xs | fw(Xs)

)
− 1

log |A(Xs)|
(8)

This inequality implies that lower prediction error Pe –or
equivalently higher accuracy (Acc=1−Pe)– corresponds
to reduced uncertainty H

(
Xs | fw(Xs)

)
. Moreover, this

aligns with the empirical observation that models tend to be
more accurate in images for which they make predictions
of higher confidence [36].

Since accuracy is straightforward to measure and com-
putationally efficient, we approximate the conditional en-
tropies in Eq. (7) and define a relaxed unlearning objective:

Acc(fun, Df ) = Acc(forig, Du) (9)

where Acc(f□, D△) denotes the prediction accuracy of a
model f□ on a data subset D△. Equation (9) suggests that
the unlearning process can be calibrated by aligning the ac-
curacy of the unlearned model on the forget set with the
accuracy of the pre-trained model on the unseen set.



3.3. Unlearning with LoTUS

LoTUS leverages the accuracy objective in Eq. (9) to
regulate the increase in model’s uncertainty. Specifically,
LoTUS increases model’s uncertainty by smoothing the
predicted probabilities of forget samples to tackle memo-
rization –evident in over-confident predictions– ensuring
that the accuracy of the unlearned model fun converges
toward that of the pre-trained model forig on the unseen
(during training) set. This approach not only eliminates the
subset-specific information, but also preserves the global
information, preventing over-unlearning and safeguarding
the utility of the model on the remaining training samples.

To achieve this, LoTUS employs a knowledge distil-
lation framework in which both the teacher and student
models are initialized with the weights of the original
model forig, as in [23]. The teacher serves as the original
model forig throughout the unlearning process, while the
student fun undergoes unlearning by receiving perturbed
knowledge from the teacher. This perturbation is applied
during the activation of the teacher’s logits using the
Gumbel-Softmax function gs(·):

pi = gs(π, τ) =
exp ((log πi+gi) /τ)∑k

j=1 exp ((log πj+gj) /τ)
, i = 1,. . ., k

(10)
where pi is the probability of class i, πi is the corresponding
logit, gi is statistical noise sampled from the Gumbel distri-
bution, k is the total number of classes, and τ ∈R+ is a tem-
perature parameter that controls the sharpness of the output
probabilities: smoothing them when τ >1, sharpening them
when τ <1, and leaving them unchanged when τ=1.

Temperature τ is the key component in LoTUS, as
it controls the uncertainty introduced to the student by
adjusting the entropy in the teacher’s output probabilities.
In each unlearning epoch, the temperature τ is dynamically
adjusted based on Eq. (9) as follows:

τd = exp
(
α · (Acc(fun, Df )− Acc(forig, Du))

)
(11)

where fun and forig are the student and teacher models,
respectively; Df is the forget set and Du the unseen set
(i.e., validation set or synthetic data); and α ∈ R+ is a
positive value that scales the accuracy difference.

This implementation facilitates convergence to the
unlearning objective Eq. (9) by dynamically adjusting the
entropy in the teacher’s output probabilities as follows:
1 At the beginning of the unlearning process, when the
student model is initialized with the weights of the forig, the
student’s accuracy on Df exceeds the teacher’s accuracy
on unseen data, since the Df comprises training data;
therefore, τd>1 and the teacher’s output probabilities
are smoothed to increase the entropy in the output space
and induce uncertainty in the student model. 2 As the
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Figure 2. Contribution of the dynamically adjusted temperature
τd to convergence toward the objective ∆Acc = Acc(fun, Df )−
Acc(forig, Du) = 0. The steps are denoted as follows: 1 : sharp
step towards objective, 2 : smaller step (proportional to ∆Acc),
3 : drastic accuracy restoration when over-unlearning.

unlearning process continues, LoTUS converges to the
unlearning objective Eq. (9), the accuracy difference be-
comes smaller, and uncertainty is introduced with smaller
steps, proportional to this accuracy difference, facilitating
smooth convergence. 3 If, during the unlearning process,
the entropy in the student’s output probabilities exceeds
the desired level, then the student’s accuracy on the forget
set decreases below the teacher’s accuracy on unseen data;
therefore, τd < 1 and the teacher’s output probabilities are
sharpened to restore the entropy in the student’s output
probabilities to the desired level. In Fig. 2, we illustrate
how the dynamically adjusted temperature τd contributes
to the convergence of the unlearning objective in Eq. (9).

Statistical noise g∼Gumbel(0, 1) added to the teacher’s
logits also contributes to the unlearning process. While
smoothing the output probabilities does not typically alter
the prediction outcome, the stochasticity introduced by g
facilitates the student model fun to produce predictions that
differ from those of the well-conveged and accurate teacher
model forig. This reduces the student’s accuracy on the
forget set Df and drives convergence towards the objective
in Eq. (9). This observation aligns with the ablation
analysis of Gubmel-Softmax vs. Softmax in Sec. 15.

To this end, the loss function in LoTUS, which guides the
student model fun to align with the perturbed output prob-
abilities of the teacher model forig, is defined for a single
instance x as follows:

ℓ(x, forig, fun) = l · gs
(
forig(x), τd

)
⊙ log s

(
fun(x)

)︸ ︷︷ ︸
forget

+(1− l) · gs
(
forig(x), τ→0+

)
⊙ log s

(
fun(x)

)︸ ︷︷ ︸
retain

(12)

where l ∈ {0, 1} is an unlearning label, similar to [9],
indicating whether the instance belongs to the forget set Df

or the retain set Dr, gs(·) is the Gumbel-Softmax function
as in Eq. (15), and s(π)=exp(πi)/

∑k
j=1 exp(πj) is the

Softmax function for i = 1, . . . , k, where k is the total
number of classes. For forget samples, temperature τd is
dynamically scheduled, as shown in Eq. (11), while for
retain samples, τ is assigned a near-zero value to sharpen
the teacher’s output distribution to the greatest extent,
decreasing the entropy, and enhancing retention.



4. Experimental Setup
We focus on the instance-wise unlearning task, while
in Sec. 14, we propose a LoTUS adaptation to the class
unlearning task. The forget sets consists of 10% or 50% of
the training data, following [12]. LoTUS uses only 30% of
the remaining training samples as the retain set to evaluate
its robustness in scenarios with limited data access. To em-
phasize real-world conditions, we also evaluate unlearning
a small portion of a large-scale dataset while restricting
access to the original training data, making retraining from
scratch infeasible. To assess unlearning performance under
these constraints, we introduce the novel Retrain-Free
Jensen-Shannon Divergence (RF-JSD) metric.
Data. Following [7, 9, 23, 34], we use the CIFAR-10/100
datasets [21], which consist of 50, 000 training samples
across 10 and 100 classes, respectively. Moreover, we use
the domain-specific MUFAC dataset [8] with 8 classes
and fixed forget/retain splits. After cleaning MUFAC (see
Sec. 12), the forget set consists of ∼16% of the training
data. Additionally, we test TinyImageNet [24], which
contains 100, 000 images of 200 classes and exhibits more
complex data statistics than CIFAR-10/100, to further val-
idate –beyond MUFAC– that the assumption of distribution
similarity between the forget and unseen sets in Sec. 3.2 can
be relaxed. To reinforce this finding, we include an exper-
iment with the CIFAR-10 and CIFAKE [2] datasets, where
the unseen set is not the validation set of CIFAR-10 but
consists of synthetic AI-generated data from CIFAKE. For
large-scale unlearning, we use the ImageNet1k dataset [28]
which contains ∼ 1.2M training samples of 1, 000 classes.
Following [27], we split the training set into forget/retain
sets in a stratified manner to ensure robust evaluation.
Evaluation Metrics. Following [9, 12, 14] we evaluate the
unlearning methods based on how closely they approximate
the gold standard model, in terms of MIA accuracy and
accuracy on the forget/retain/test sets, using the Average
(Avg) Gap metric [12]:

Avg Gap =
1

4
(|∆AccMIA|+|∆Accf |+|∆Accr|+|∆Acct|)

where |∆Acc| is the absolute difference in accuracy be-
tween the the unlearned and gold standard models, AccMIA
is the accuracy of the Membership Inference Attack used
in [9, 14], and Accf , Accr, Acct are the accuracies on the
forget, retain, and test sets, respectively. Small ∆AccMIA
and ∆Accf indicate effective unlearning while small
∆Accr and ∆Acct suggest effective retention. Thus, Avg
Gap reflects the balance between forgetting and retention.

Following [9], we use the Jensen-Shannon Divergence
(JSD) to further assess unlearning effectiveness and
resilience to the Streisand Effect (i.e., when unlearning
unintentionally makes forget samples more identifiable to
attackers). The JSD provides a more sensitive measure than

accuracy, as it captures distributional differences between
the outputs of the unlearned and gold standard models:

JS
(
fun(Df ) || fgold(Df )

)
=

1

|Df |
∑
x∈Df

(
0.5 · KL

(
fun(x) ||m

)
+0.5 · KL

(
fgold(x) ||m

))
where JS is the Jensen-Shannon divergence [25], KL is
the Kullback-Leibler divergence [22], |Df | is the number
of samples in the forget set, fun(x) and fgold(x) are the
predicted probability distributions for a sample x, and m is
their average, defined as m=

(
fun(x) + fgold(x)

)
/2.

Also, we introduce the novel Retrain-Free Jensen-
Shannon Divergence (RF-JSD) metric, which does not rely
on the gold standard model fgold, making it useful in real-
world scenarios where model retraining is impractical or
infeasible. RF-JSD is computed by first averaging the pre-
dicted probability distributions per class from the unlearned
model on the forget set and the pre-trained model on the
unseen set, then averaging the JSD values between the
normalized class-wise mean distributions of these models:

JS
(
fun(Df ) ||forig(Du)

)
=

1

k

k∑
c=1

JS(Pi || Qi)

Pi=
1

ZP

ni∑
j=1

fun(xj |yj= i) , Qi=
1

ZQ

ni∑
j=1

forig(xj |yj= i)

where Pi and Qi are the normalized class-wise mean
distributions for the class i, k is the total number of classes,
ni is the number of samples in class i, and ZP , ZQ are sums
of the mean class probabilities used for L1-normalization,
ensuring that P , Q are valid probability distributions.

RF-JSD provides greater interpretability than the retrain-
free ZRF score [9] by aligning with the well-established
JSD and maintaining a consistent optimal value of zero
across different models, datasets, and forget sets. Addi-
tionally, RF-JSD is more computationally efficient, as it
avoids the need for an extra randomly initialized model to
establish a reference score, unlike ZRF.
Models and Training. We use Vision Transformer [11]
and ResNet18 [19] architectures. Unlearning runs for 3
epochs in ViT models and 10 epochs in ResNet18 models,
as in [9]. We use the AdamW optimizer with a weight
decay of 5×10−4. Learning rates are set to 10-6 for ViT and
10-4 for ResNet18. We perform minimal hyperparameter
tuning, only on α in Eq. (11) via a search over {2, 4, 8, 16}
to minimize the Avg Gap score without using the test set,
as in [14]; the optimal value is α = 2. For baselines, we
use the hyperparameters specified in the original papers.
Baseline and hyperparameters descriptions are provided in
the Supp. Material. Batch sizes remain consistent across all
methods. Each experiment is evaluated using three seeds,
which are also used to sample various forget sets.



Metric (↓) Gold Std Finetuning NegGrad+ [23] RndLbl [17] BadT [9] SCRUB [23] SSD [14] UNSIR [34] SalUn [12] LoTUS
V

is
io

n
Tr

an
sf

or
m

er
(V

iT
)

Ti
ny

IN Avg Gap 0.0000 0.0175 0.0400 0.2925 0.0775 0.0225 0.0225 0.0225 0.0925 0.0150
JSD×1e4 0.00±0.00 0.05±0.00 0.10±0.00 0.64±1.03 0.18±0.01 0.04±0.00 0.04±0.00 0.06±0.00 0.25±0.59 0.03±0.00

Time (min.) 228.9±6.49 22.64±0.02 25.20±0.02 25.19±0.02 16.91±0.05 33.25±0.01 27.27±0.06 21.17±0.22 76.97±1.72 13.41±0.04

C
-1

00

Avg Gap 0.0000 0.0275 0.0325 0.0175 0.0375 0.0200 0.0175 0.0250 0.0200 0.0125
JSD×1e4 0.00±0.00 0.07±0.00 0.13±0.01 0.06±0.00 0.17±0.01 0.04±0.00 0.04±0.00 0.08±0.01 0.06±0.01 0.04±0.02

Time (min.) 112.25±0.13 11.35±0.00 12.63±0.01 12.79±0.02 9.18±0.27 16.74±0.03 13.67±0.02 10.69±0.01 38.15±0.04 7.02±0.01

M
U

FA
C Avg Gap 0.0000 0.0400 0.0475 0.0200 0.1750 0.0200 0.0200 0.0475 0.0200 0.0200

JSD×1e-4 0.00±0.00 0.27±0.02 0.39±0.04 0.35±0.09 1.89±1.01 0.05±0.02 0.17±0.17 0.85±0.06 0.29±0.01 0.05±0.01
Time (min.) 13.83±0.01 1.40±0.01 1.67±0.00 1.76±0.01 2.09±0.25 2.21±0.01 1.91±0.00 3.21±0.01 8.15±0.01 1.09±0.00

R
es

N
et

18
(R

N
18

)
Ti

ny
IN Avg Gap 0.0000 0.2200 0.2250 0.1925 0.2850 0.2725 0.2700 0.2375 0.2025 0.1675

JSD×1e4 0.00±0.00 1.80±0.04 1.82±0.07 1.71±0.11 1.81±0.04 0.98±0.00 0.96±0.02 1.76±0.05 1.93±0.09 0.62±0.01
Time (min.) 46.81±0.57 2.85±0.00 3.17±0.00 3.44±0.01 1.91±0.01 3.97±0.00 3.47±0.00 5.00±0.01 6.06±0.06 1.62±0.00

C
-1

00

Avg Gap 0.0000 0.3600 0.3575 0.4025 0.3675 0.1650 0.2125 0.3625 0.3650 0.1200
JSD×1e4 0.00±0.00 6.88±0.59 6.87±0.62 5.84±0.98 4.30±0.49 1.87±0.08 3.04±1.55 3.05±0.32 6.50±0.60 1.67±0.37

Time (min.) 3.39±0.30 0.43±0.00 0.49±0.00 0.57±0.00 0.34±0.01 0.58±0.00 0.54±0.00 0.45±0.00 1.55±0.01 0.30±0.01

M
U

FA
C Avg Gap 0.0000 0.1525 0.1550 0.1300 0.1025 0.1625 0.1600 0.1450 0.1400 0.1250

JSD×1e4 0.00±0.00 19.52±6.23 19.16±5.31 9.51±2.39 9.41±0.04 10.53±2.31 10.30±2.28 16.32±4.82 15.25±5.20 6.90±1.49
Time (min.) 7.34±0.77 0.76±0.00 0.91±0.00 1.06±0.00 0.66±0.00 1.20±0.00 1.07±0.00 1.68±0.02 2.72±0.02 0.62±0.00

Table 1. Performance Summary of unlearning 10% of Tiny-ImageNet (TinyIN), CIFAR-100 (C-100), and MUFAC training sets:
LoTUS outperforms state-of-the-art approaches in balancing forgetting and retention (measured by Avg Gap), unlearning effectiveness
and resilience to the Streisand effect (indicated by JSD), and efficiency (reflected in Time, measured in minutes).

Metric (↓) Gold Std Finetuning NegGrad+ RndLbl BadT SCRUB SSD UNSIR SalUn LoTUS LoTUS
synthetic Du

V
iT

Avg Gap 0.0000 0.0075 0.0125 0.0125 0.0375 0.0050 0.0075 0.0100 0.0125 0.0050 0.0075
JSD×1e4 0.00±0.00 0.01±0.00 0.03±0.00 0.02±0.01 0.12±0.03 0.01±0.00 0.02±0.01 0.01±0.01 0.01±0.01 0.01±0.00 0.01±0.00
Time (min.) 111.00±1.99 11.33±0.03 12.61±0.03 12.78±0.01 8.97±0.02 16.66±0.02 13.65±0.02 10.68±0.02 37.97±0.19 7.34±0.19 7.25±0.06

R
N

18

Avg Gap 0.0000 0.1375 0.0975 0.0925 0.2650 0.0750 0.0825 0.1075 0.1800 0.0350 0.0300
JSD×1e4 0.00±0.00 1.03±0.24 1.06±0.21 1.00±0.26 2.39±2.03 0.41±0.09 0.82±0.57 0.65±0.05 1.09±0.05 0.32±0.04 0.32±0.03
Time (min.) 5.32±1.18 0.43±0.00 0.49±0.00 0.57±0.00 0.33±0.00 0.58±0.00 0.54±0.00 0.45±0.00 1.56±0.01 0.29±0.00 0.30±0.01

Table 2. Unlearning 10% of CIFAR-10. LoTUS outperforms state-of-the-art approaches, both when the calibration/unseen set Du

consists of real data (•) and when it consists of synthetic data (•) from the CIFAKE dataset. We highlight the best and second-best scores.

5. Results & Discussion

Unlearning Effectiveness was assessed using the Avg
Gap and JSD scores. Avg Gap incorporates knowledge
from the MIA accuracy and the model accuracies on the
forget, retain and test sets; thus it indicates the balance
of forgetting/retention. JSD evaluates the unlearning
effectiveness and the resilience to the Streisand effect. As
shown in Tabs. 1 to 3, LoTUS outperforms state-of-the-art
methods in balancing forgetting/retention, unlearning effec-
tiveness, and resilience to the Streisand effect. As shown in
Tab. 1, MUFAC & ResNet18 is the only benchmark where
LoTUS succeeds the second-best and not the best Avg Gap,
however MUFAC is a challenging dataset as seen by the
increased JSD scores accross all methods compared to other
datasets. This may derive from the increased similarity of
images in the retain and forget sets, as presented in Sec. 13.
Regarding the assumption of distributional similarity be-
tween the forget and unseen sets, in Tab. 2, we demonstrate
that it can be relaxed by showing that LoTUS is still the
best-performing method even when the unseen set consists
of AI-generated synthetic data from CIFAKE [2]. Another

intriguing finding is that across all datasets and models,
LoTUS consistently achieves the highest JSD score.

The JSD metric provides a more sensitive measure of un-
learning effectiveness than model’s accuracy on the forget
set Accf , enabling it to capture unlearning misconceptions
that may lead to the Streisand effect. Specifically, JSD eval-
uates shifts in output distributions, while Accf considers
only the predicted class. In Machine Unlearning applica-
tions, the accuracy of the pre-trained model on the forget
set is typically higher than that of the gold standard model.
Thus, Accf is commonly used to assess whether unlearning
reduces the pre-trained model’s accuracy to align with the
gold standard. However, as emphasized by Chundawat et
al. [9], misclassification alone does not imply successful
unlearning. They highlight a strawman unlearning solution
where predictions on the forget set are maximally incorrect
(e.g., a cat is classified into the airplane class with increased
confidence), arguing that this undermines the generalization
capacity of the model and increases the risk of the Streisand
effect –making the forget samples more noticeable to
attackers. The JSD score penalizes these maximally wrong
predictions, while accuracy on the forget set Accf does



Metric (↓) BadT SCRUB SSD UNSIR SalUn LoTUS

V
is

io
n

Tr
an

sf
or

m
er

C
-1

00

Avg. Gap 0.0575 0.0350 0.0350 0.0375 0.0375 0.0225
JSD×1e4 0.06±0.01 0.01±0.00 0.01±0.00 0.02±0.00 0.10±0.01 0.01±0.00

Time (min) 15.04±0.03 16.82±0.03 18.69±0.06 18.33±0.02 38.08±0.02 13.79±0.02

C
-1

0 Avg. Gap 0.0600 0.0125 0.0150 0.0150 0.0050 0.0050
JSD×1e4 0.04±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.02±0.00 0.00±0.00

Time (min) 15.10±0.20 16.99±0.35 19.03±0.54 18.33±0.02 37.93±0.18 14.09±0.53

R
es

N
et

18 C
-1

00

Avg. Gap 0.3050 0.2225 0.2225 0.2925 0.3300 0.1725
JSD×1e4 0.55±0.04 0.44±0.02 0.44±0.02 0.65±0.23 6.25±0.45 0.28±0.00

Time (min) 0.58±0.01 0.62±0.00 1.29±0.03 0.72±0.01 1.49±0.01 0.57±0.01

C
-1

0 Avg. Gap 0.0625 0.1075 0.1025 0.1025 0.1300 0.0650
JSD×1e4 0.18±0.02 0.14±0.00 0.13±0.00 0.21±0.05 1.40±0.02 0.09±0.01

Time (min) 0.57±0.02 0.61±0.02 1.27±0.02 0.73±0.00 1.49±0.01 0.57±0.00

Table 3. Scaling up the Forget set to 50% of the training sets:
LoTUS outperforms state-of-the-art approaches in all metrics. Ba-
sic unlearning methods (Finetuning, NegGrad+, Rnd Labeling) are
more efficient, but less effective than LoTUS.

not. Therefore, JSD captures both unlearning effectiveness
and the vulnerability to the Streisand effect, while Accf
may present misleading results. In Sec. 9, we provide
an extended analysis on how LoTUS succeeds effective
unlearning on the JSD, while maintaining high accuracy
even on the forget set. Also in Sec. 16, we examine the
Streisand effect using an entropy-based approach as in [15].

Unlearning Efficiency was assessed based on the ex-
ecution time of each algorithm. As shown in Tabs. 1
to 4, LoTUS consistently outperforms the state-of-the-art
approaches in terms of unlearning efficiency. The time
complexity of unlearning methods can be analyzed in
terms of two factors: the complexity of model updates and
the complexity of the auxiliary computations (such as τd
in Eq. (11)). With respect to the time complexity of model
updates, the main advantage of LoTUS over Finetuning,
NegGrad+, Rnd Labeling, and SCRUB is that LoTUS can
preserve the model’s utility using only a small percentage
of retain samples, while others cannot. Considering the
remaining approaches, LoTUS is more efficient mainly be-
cause it is the only one with auxiliary computations of linear
complexity. A detailed analysis is presented in Sec. 11.

Large-scale unlearning on ImageNet1k. We consider
an experimental setup that includes a ViT trained on Im-
ageNet1k (∼1.2M training samples) and data access con-
straints that define a retain set of 45, 000 samples and for-
get/validation/test sets of 5, 000 samples each. The size of
the ImageNet1k dataset deters retraining the model entirely
to effectively unlearn the forget samples. Furthermore,
when the original training dataset is not fully accessible,
retraining is infeasible. This leaves Machine Unlearning as
the only viable solution for removing the influence of the
forget samples from the pre-trained model. Moreover, since
the gold standard model is not available, the established Avg
Gap and JSD metrics cannot be used. To address this, we
use the RF-JSD evaluation metric, which does not require
the retrained model, and has been proved to have a strong
correlation with the established JSD metric. As shown in

Method RF-JSD×1e4 (↓) Time (↓) Retain Acc. MIA Acc.

Original 1.22±0.01 (pre-trained) 0.94±0.00 0.71±0.00
Finetuning 2.22±0.02 16.24±0.03 0.97±0.00 0.78±0.00
NegGrad+ 2.17±0.02 18.10±0.03 0.97±0.00 0.80±0.00
Rnd Labeling 1.80±0.09 19.37±0.03 0.95±0.01 0.74±0.01
Bad Teacher 3.16±3.25 11.66±0.03 0.77±0.21 0.52±0.18
SCRUB 1.24±0.01 24.49±0.03 0.94±0.00 0.71±0.00
SSD 1.23±0.01 22.61±0.10 0.94±0.00 0.71±0.00
UNSIR 2.54±0.03 33.12±0.03 0.99±0.00 0.77±0.01
SalUn 1.83±0.03 59.27±0.37 0.95±0.00 0.74±0.01
LoTUS 1.11±0.01 10.72±0.01 0.94±0.00 0.61±0.01

Table 4. Large-Scale Unlearning with ImageNet1k: LoTUS
outperforms state-of-the-art approaches in both unlearning effec-
tiveness (RF-JSD) and efficiency (Time). While other metrics lack
concrete validation due to the absence of a Gold Standard, they
provide additional insights: LoTUS uniquely preserves the Retain
Accuracy of the pre-trained model while reducing MIA Accuracy.

Tab. 7, the mean Pearson correlation coefficient (PCC) of
JSD and RF-JSD is 0.92±0.04 (p-value: 0.001). As shown
in Tab. 4, LoTUS outperforms state-of-the-art approaches
in terms of both unlearning effectiveness and efficiency.

6. Conclusions
We introduced an information-theoretic framework for
unlearning and proposed LoTUS, a novel method that
removes the influence of specific training samples from
a pre-trained model while preserving its utility on the
remaining data. We demonstrated how the dynamic tem-
perature parameter and the introduction of Gumbel noise
in the activation function enable LoTUS to smooth output
probabilities for forget samples, mitigating over-confident
predictions that stem from data memorization.

We introduced the RF-JSD metric, which strongly cor-
relates with the established JSD metric but eliminates the
need for a retrained model, making it particularly valuable
for unlearning in large-scale datasets, where retraining
is impractical, or in settings with restricted data access.
We compared it with the existing ZRF score, showing
that RF-JSD offers greater interpretability and efficiency.
Moreover, we highlighted that the established Avg Gap
metric can produce misleading results and emphasized the
increased sensitivity of JSD, which enables it to capture
unlearning misconceptions that Avg Gap fails to detect.

We demonstrated that LoTUS surpasses state-of-the-art
methods in both effectiveness and efficiency, demonstrating
its scalability and adaptability to large-scale unlearning
challenges and stringent data constraints.

Limitations. Both our theoretical framework and ex-
tensive experiments demonstrate that LoTUS surpasses
state-of-the-art performance in instance-wise unlearning.
While Sec. 14 shows that our theoretical framework extends
to class unlearning and LoTUS can be adapted for this task,
our experimental setup in class unlearning is less extensive.
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7. Baselines
The Gold Stadnard (Gold Std) model is retrained entirely
only on the retain set (Dr), achieving ideal unlearning
–when access to the full training set is guaranteed– but
at the cost of increased computational complexity. Fine-
tuning: The pre-trained model is further trained only on
the retain samples (Dr). NegGrad+ [23]: The pre-trained
model continues training on the full training set, but the
gradient sign is reversed during backpropagation for the
forget samples. Random Labeling (RndLbl) [17]: The
pre-trained model continues training on the full training set,
but the forget samples are randomly reassigned to incorrect
classes. Bad Teacher (BadT) [9]: A knowledge distillation
framework where the student model follows the pre-trained
model for retain samples and a randomly initialized model
for forget samples. SCRUB [23]: A knowledge distillation
framework where student model selectively aligns with
the pre-trained model by minimizing the KL divergence
of their outputs on retain samples while maximizing it for
forget samples. SSD [14]: Weights that are disproportion-
ately important for forget samples are identified using the
Fisher Information Matrix and subsequently dampened.
UNSIR [34]: A noise matrix, generated based on the forget
samples, is fed to the pre-trained model to maximize its
error on these samples. SalUn [12]: A gradient-based
approach that identifies weights to be unlearned and those
to keep unchanged, followed by a downstream unlearning
method such as Random Labeling. Finetuning, NegGrad+
and Random Labeling are considered simple yet widely
used unlearning baselines, whereas the latter five are
state-of-the-art approaches.

LoTUS can be integrated with SalUn, with SalUn used
to obtain the weight saliency mask for pruning, and LoTUS
applied for unlearning. This integration can enhance
the unlearning effectiveness of LoTUS. For instance, on
ResNet18 with TinyImageNet, it reduces the Avg Gap of
LoTUS to 0.1250 (a 25.37% decrease) and the JSD to 0.55
(an 11.29% decrease). However, this comes at the cost of
efficiency, with unlearning time increasing to 4.62 minutes
(a 162% increase).

8. Reproducibility and Transparency
The code to reproduce the results presented in this paper is
publicly available at https://github.com/cspartalis/LoTUS.
In addition, all tables and figures have been documented in
Jupyter notebooks to enhance transparency. We conducted
the experiments using Python 3.11 and CUDA 12.1. For
ImageNet1k experiments, we used an NVIDIA RTX A6000

Baseline Learning Rate Weight Decay Optimizer
Finetune 1× 10−3 5× 10−4 SGD
Negrad+ 1× 10−3 5× 10−4 SGD
RndLbl 1× 10−3 5× 10−4 SGD
BadT 1× 10−4 0 Adam
SCRUB 5× 10−4 5× 10−4 Adam
SSD 0.1 0 SGD
UNSIR 1× 10−3 0 SGD
SalUn 0.1 5× 10−4 SGD

Table 5. Hyperparameters used for baselines. For state-of-the-art
methods, they are taken from their respective papers.

48GB GPU. The remaining experiments were performed on
an NVIDIA RTX 4080 16GB GPU. We also used an Intel
i7-12700K CPU and 32GB RAM. The hyperparameters
used for the baselines are listed in Tab. 5

9. Extended Analysis on the Accuracy Metrics
Table 6 presents the accuracy scores that define the Avg
Gap metric. Beyond outperforming state-of-the-art meth-
ods in terms of Avg Gap, LoTUS achieves the best scores
in individual accuracy metrics, including MIA accuracy,
and accuracy on the retain and test sets. Specifically, it
consistently ranks either first or second in these metrics,
with first place being the most frequent.

Regarding retention performance (i.e., preserving the
utility of the pre-trained model), LoTUS clearly outper-
forms state-of-the-art, as evidenced by its superior accuracy
on the retain and test sets.

However, evaluating unlearning effectiveness, requires
a more nuanced analysis. Although LoTUS consistently
ranks among the top two methods in MIA accuracy, its
accuracy on the forget set exceeds that of the gold standard
model (i.e., the model retrained solely on the retain set).
This apparent discrepancy may lead to misleading eval-
uation, suggesting that LoTUS exhibits poor unlearning
performance.

However, by incorporating the more sensitive JSD
metric –a measure that captures distributional-level differ-
ences and provides a more robust evaluation, as detailed
in Sec. 5– we conclude that LoTUS achieves effective
unlearning. Given this, the increased accuracy on the forget
set does not indicate poor unlearning, but rather suggests
that LoTUS preserves the utility of the pre-trained model
even for the forget samples. The fact that LoTUS achieves
the best Avg Gap scores despite the disproportionate
penalty imposed by the gap between the accuracy of the
unlearned and gold standard models on forget samples

https://github.com/cspartalis/LoTUS


Metric (↓) Gold Std Finetuning NegGrad+ [23] RndLbl [17] Bad Teacher [9] SCRUB [23] SSD [14] UNSIR [34] SalUn [12] LoTUS
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et MIA Acc. 0.76±0.00 0.78±0.00(0.02) 0.83±0.00(0.07) 0.50±0.43(0.26) 0.67±0.00(0.09) 0.79±0.00(0.03) 0.79±0.00(0.03) 0.80±0.00(0.04) 0.67±0.25(0.09) 0.76±0.00(0.00)
Forget Acc. 0.90±0.00 0.93±0.00(0.03) 0.97±0.00(0.07) 0.61±0.52(0.29) 0.84±0.01(0.06) 0.96±0.00(0.06) 0.96±0.00(0.06) 0.92±0.00(0.02) 0.82±0.30(0.08) 0.96±0.00(0.06)
Retain Acc. 0.96±0.00 0.98±0.00(0.02) 0.98±0.00(0.02) 0.64±0.55(0.32) 0.87±0.01(0.09) 0.96±0.00(0.00) 0.96±0.00(0.00) 0.94±0.00(0.02) 0.86±0.32(0.10) 0.96±0.00(0.00)
Test Acc. 0.90±0.00 0.90±0.00(0.00) 0.90±0.00(0.00) 0.60±0.51(0.30) 0.83±0.01(0.07) 0.90±0.00(0.00) 0.90±0.00(0.00) 0.89±0.00(0.01) 0.80±0.30(0.10) 0.90±0.00(0.00)
Avg Gap 0.0000 0.0175 0.0400 0.2925 0.0775 0.0225 0.0225 0.0225 0.0925 0.0150

C
IF

A
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00

MIA Acc. 0.72±0.00 0.77±0.00(0.05) 0.79±0.02(0.07) 0.74±0.01(0.02) 0.66±0.01(0.06) 0.75±0.00(0.03) 0.75±0.01(0.03) 0.78±0.01(0.06) 0.75±0.01(0.03) 0.71±0.02(0.01)
Forget Acc. 0.92±0.00 0.95±0.01(0.03) 0.97±0.02(0.05) 0.94±0.00(0.02) 0.90±0.01(0.02) 0.97±0.00(0.05) 0.96±0.01(0.04) 0.94±0.00(0.02) 0.94±0.01(0.02) 0.96±0.01(0.04)
Retain Acc. 0.96±0.00 0.98±0.00(0.02) 0.97±0.02(0.01) 0.98±0.00(0.02) 0.91±0.00(0.05) 0.96±0.00(0.00) 0.96±0.00(0.00) 0.95±0.01(0.01) 0.98±0.01(0.02) 0.96±0.00(0.00)
Test Acc. 0.91±0.01 0.92±0.01(0.01) 0.91±0.01(0.00) 0.92±0.00(0.01) 0.89±0.01(0.02) 0.91±0.01(0.00) 0.91±0.00(0.00) 0.90±0.01(0.01) 0.92±0.00(0.01) 0.91±0.00(0.00)
Avg Gap 0.0000 0.0275 0.0325 0.0175 0.0375 0.0200 0.0175 0.0250 0.0200 0.0125

C
IF

A
R

-1
0 MIA Acc. 0.88±0.00 0.90±0.00(0.02) 0.91±0.00(0.03) 0.84±0.02(0.04) 0.81±0.02(0.07) 0.88±0.00(0.00) 0.89±0.01(0.01) 0.90±0.00(0.02) 0.84±0.02(0.04) 0.87±0.00(0.01)

Forget Acc. 0.99±0.00 0.99±0.00(0.00) 1.00±0.00(0.01) 0.99±0.00(0.00) 0.96±0.01(0.03) 1.00±0.00(0.01) 1.00±0.01(0.01) 0.99±0.00(0.00) 0.99±0.00(0.00) 1.00±0.00(0.01)
Retain Acc. 1.00±0.00 1.00±0.00(0.00) 1.00±0.00(0.00) 1.00±0.00(0.00) 0.97±0.01(0.03) 1.00±0.00(0.00) 1.00±0.01(0.00) 0.99±0.00(0.01) 1.00±0.00(0.00) 1.00±0.00(0.00)
Test Acc. 0.98±0.01 0.99±0.01(0.01) 0.99±0.01(0.01) 0.99±0.00(0.01) 0.96±0.01(0.02) 0.99±0.01(0.01) 0.99±0.01(0.01) 0.99±0.00(0.01) 0.99±0.01(0.01) 0.98±0.01(0.00)
Avg Gap 0.0000 0.0075 0.0125 0.0125 0.0375 0.0050 0.0075 0.0100 0.0125 0.0050

M
U

FA
C

MIA Acc. 0.57±0.00 0.52±0.08(0.05) 0.52±0.07(0.05) 0.52±0.10(0.05) 0.35±0.05(0.22) 0.59±0.01(0.02) 0.59±0.01(0.02) 0.47±0.08(0.10) 0.53±0.12(0.04) 0.59±0.01(0.02)
Forget Acc. 0.57±0.01 0.61±0.01(0.04) 0.66±0.02(0.09) 0.58±0.01(0.01) 0.43±0.06(0.14) 0.62±0.01(0.05) 0.59±0.04(0.02) 0.58±0.01(0.01) 0.58±0.01(0.01) 0.63±0.00(0.06)
Retain Acc. 0.66±0.01 0.72±0.01(0.06) 0.71±0.01(0.05) 0.67±0.02(0.01) 0.47±0.07(0.19) 0.66±0.01(0.00) 0.63±0.04(0.03) 0.72±0.01(0.06) 0.68±0.01(0.02) 0.66±0.01(0.00)
Test Acc. 0.65±0.01 0.66±0.01(0.01) 0.65±0.03(0.00) 0.64±0.01(0.01) 0.50±0.08(0.15) 0.66±0.01(0.01) 0.64±0.01(0.01) 0.63±0.02(0.02) 0.64±0.02(0.01) 0.65±0.01(0.00)
Avg Gap 0.0000 0.0400 0.0475 0.0200 0.1750 0.0200 0.0200 0.0475 0.0200 0.0200
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et MIA Acc. 0.30±0.01 0.00±0.00(0.30) 0.00±0.00(0.30) 0.00±0.00(0.30) 0.67±0.52(0.37) 0.96±0.01(0.66) 0.95±0.01(0.65) 0.67±0.58(0.37) 0.00±0.00(0.30) 0.53±0.01(0.23)
Forget Acc. 0.58±0.00 0.70±0.02(0.12) 0.73±0.02(0.15) 0.56±0.02(0.02) 0.49±0.04(0.09) 1.00±0.00(0.42) 1.00±0.00(0.42) 0.68±0.03(0.10) 0.62±0.01(0.04) 0.91±0.01(0.33)
Retain Acc. 1.00±0.00 0.73±0.02(0.27) 0.73±0.02(0.27) 0.73±0.02(0.27) 0.55±0.04(0.45) 1.00±0.00(0.00) 1.00±0.00(0.00) 0.71±0.02(0.29) 0.71±0.02(0.29) 0.93±0.01(0.07)
Test Acc. 0.89±0.01 0.40±0.01(0.19) 0.41±0.01(0.18) 0.41±0.02(0.18) 0.36±0.03(0.23) 0.60±0.01(0.01) 0.60±0.00(0.01) 0.40±0.02(0.19) 0.41±0.01(0.18) 0.55±0.00(0.04)
Avg Gap 0.0000 0.2200 0.2250 0.1925 0.2850 0.2725 0.2700 0.2375 0.2025 0.1675

C
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A
R
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00

MIA Acc. 0.49±0.01 0.00±0.00(0.49) 0.00±0.00(0.49) 0.00±0.00(0.49) 0.33±0.58(0.16) 0.78±0.05(0.29) 0.59±0.05(0.10) 0.00±0.00(0.49) 0.00±0.00(0.49) 0.28±0.22(0.21)
Forget Acc. 0.57±0.02 0.40±0.06(0.17) 0.41±0.06(0.16) 0.31±0.06(0.26) 0.27±0.03(0.30) 0.93±0.03(0.36) 0.50±0.32(0.07) 0.40±0.07(0.17) 0.38±0.04(0.19) 0.81±0.08(0.24)
Retain Acc. 0.94±0.03 0.41±0.06(0.53) 0.41±0.06(0.53) 0.37±0.07(0.57) 0.28±0.03(0.66) 0.93±0.03(0.01) 0.50±0.32(0.44) 0.41±0.07(0.53) 0.41±0.04(0.53) 0.92±0.02(0.02)
Test Acc. 0.60±0.02 0.35±0.05(0.25) 0.35±0.05(0.25) 0.31±0.06(0.29) 0.25±0.03(0.35) 0.60±0.02(0.00) 0.36±0.20(0.24) 0.34±0.04(0.26) 0.35±0.03(0.25) 0.61±0.01(0.01)
Avg Gap 0.0000 0.3600 0.3575 0.4025 0.3675 0.1650 0.2125 0.3625 0.3650 0.1200

C
IF

A
R
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0

MIA Acc. 0.76±0.03 0.30±0.26(0.46) 0.48±0.50(0.28) 0.48±0.50(0.28) 0.43±0.37(0.33) 0.94±0.01(0.18) 0.81±0.11(0.05) 0.46±0.03(0.30) 0.16±0.28(0.60) 0.82±0.10(0.06)
Forget Acc. 0.91±0.02 0.97±0.01(0.06) 0.97±0.01(0.06) 0.96±0.01(0.05) 0.71±0.18(0.20) 1.00±0.00(0.09) 0.86±0.16(0.05) 0.93±0.01(0.02) 0.94±0.02(0.02) 0.99±0.00(0.08)
Retain Acc. 0.99±0.02 0.98±0.01(0.01) 0.97±0.01(0.02) 0.97±0.01(0.02) 0.71±0.18(0.28) 1.00±0.00(0.01) 0.87±0.16(0.12) 0.93±0.01(0.06) 0.95±0.02(0.04) 0.99±0.00(0.00)
Test Acc. 0.91±0.02 0.89±0.02(0.02) 0.88±0.02(0.03) 0.89±0.02(0.02) 0.66±0.16(0.25) 0.93±0.01(0.02) 0.80±0.15(0.11) 0.86±0.01(0.05) 0.86±0.03(0.05) 0.91±0.01(0.00)
Avg Gap 0.0000 0.1375 0.0975 0.0925 0.2650 0.0750 0.0825 0.1075 0.1800 0.0350

M
U

FA
C

MIA Acc. 0.48±0.04 0.54±0.09(0.06) 0.53±0.08(0.05) 0.33±0.31(0.15) 0.34±0.01(0.14) 0.70±0.05(0.22) 0.70±0.06(0.22) 0.40±0.35(0.08) 0.53±0.08(0.05) 0.53±0.04(0.05)
Forget Acc. 0.47±0.04 0.64±0.04(0.17) 0.68±0.04(0.21) 0.66±0.04(0.19) 0.53±0.07(0.06) 0.88±0.06(0.41) 0.87±0.06(0.40) 0.71±0.03(0.24) 0.63±0.05(0.16) 0.86±0.04(0.39)
Retain Acc. 0.89±0.04 0.64±0.04(0.25) 0.66±0.03(0.23) 0.80±0.03(0.09) 0.76±0.04(0.13) 0.89±0.04(0.00) 0.89±0.05(0.00) 0.73±0.03(0.16) 0.67±0.04(0.22) 0.85±0.08(0.04)
Test Acc. 0.56±0.02 0.43±0.01(0.13) 0.43±0.01(0.13) 0.47±0.02(0.09) 0.48±0.03(0.08) 0.54±0.03(0.02) 0.54±0.03(0.02) 0.46±0.01(0.10) 0.43±0.02(0.13) 0.54±0.05(0.02)
Avg Gap 0.0000 0.1525 0.1550 0.1300 0.1025 0.1625 0.1600 0.1450 0.1400 0.1250

Table 6. Accuracy Metrics used to compute Average (Avg) Gap. Mean performance and standard deviation (µ±σ) are reported across
three trials with different forget and retain sets. Performance gaps relative to the Gold Standard are noted as (•), with smaller gaps indicating
stronger performance. Avg Gap serves as a key indicator, summarizing performance across MIA, Forget, Retain, and Test Accuracy. Lo-
TUS achieves state-of-the-art results in MIA, retain and test accuracies, ranking as the best in most cases and second-best in the remaining.

further reinforces its capacity to balance forgetting and
retention, as evidenced by Avg Gap.

This also raises concerns about the widely used Avg
Gap metric, as it may lead to misleading evaluation of
unlearning. However, incorporating both Avg Gap and JSD
metrics in the evaluation helps mitigate these concerns.

10. Detailed Comparison of RF-JSD and ZRF

The ZRF metric [9] assesses the unlearning effectiveness
by computing the JSD score twice: once between the
unlearned and a randomly initialized model, and again
between the pre-trained and the same randomly initialized
model. The latter serves as a reference point for the optimal
value.

By contrast, RF-JSD simplifies the evaluation by
requiring only a single JSD computation –between the
unlearned model and the original model– where the optimal
value is fixed at zero. This direct alignment with the
JSD metric (which also has an optimal value fixed at

zero) facilitates a more comprehensive evaluation of the
unlearning effectiveness.

Beyond the obvious efficiency gain from RF-JSD not
requiring inference on an additional randomly initialized
model to obtain a reference score –unlike ZRF– its use of
normalized class-wise mean distributions further enhances
computational efficiency. Specifically, this reduces the
complexity from O(nf ·nu · k) to O

(
(nf +nu) · k

)
, where

nf and nu denote the number of samples in the forget
and test sets, respectively, and k is the number of classes.
This optimization significantly reduces the computational
overhead, particularly for large datasets. In this analysis,
we exclude the complexity of the feed-forward process,
which remains unchanged.

Finally, Table 7 presents a detailed correlation between
RF-JSD and JSD as measured by the Pearson correlation
coefficient (PCC) for all benchmarks. PCC results exhibit
a strong correlation between these two metrics, with
RF-JSD offering the additional advantage of not requiring
a retrained model (i.e., gold standard).



Dataset
(

num. of forget samples
num. of training samples × 100%

)
PCC (↑) p-value (↓)

V
iT

CIFAR-100 (10%) 0.84 0.0043
CIFAR-10 (10%) 0.92 0.0005
MUFAC 0.93 0.0003
CIFAR-100 (50%) 0.94 0.0001
CIFAR-10 (50%) 0.99 0.0000

R
es

N
et

18

CIFAR-100 (10%) 0.97 0.0000
CIFAR-10 (10%) 0.90 0.0011
MUFAC 0.88 0.0018
CIFAR-100 (50%) 0.91 0.0006
CIFAR-10 (50%) 0.89 0.0013

Mean ± Std 0.92±0.04 0.0010±0.0016

Table 7. Retrain Free-JSD (RF-JSD) and JSD Correlation
measured with the Pearson correlation coefficient (PCC). A high
PCC (closer to 1) indicates a strong correlation, while a low
p-value reflects high confidence in the measurement. The table
shows that RF-JSD strongly correlates with the well-established
JSD metric across datasets and architectures, demonstrating its
reliability as unlearning metric that is particularly useful when the
gold standard model is not available (e.g., it is impractical due to
high computational complexity or it is infeasible due to not access
to the original training set) .

11. Detailed Analysis on the Time Complexity
This section provides an in-depth analysis that demon-
strates why LoTUS achieves superior efficiency compared
to state-of-the-art approaches, as observed in Tabs. 1,
3 and 4 and discussed in Sec. 5. We define the time
complexity of model updates in DNNs, generalized across
architectures like ResNet18 and ViT, as follows:

O(E ·nf + nr

B
·Np ·Ni) (13)

where E represents the total number of epochs, nf and
nr are the number of instances in Df (forget set) and Dr

(retain set) used during unlearning, respectively, B is the
batch size, Np is the total number of model parameters,
and Ni is the input dimensionality. While this definition
abstracts away architectural-specific details and optimiza-
tions, it provides a meaningful framework for comparing
methods on shared benchmarks.

The main advantage of LoTUS over Finetuning, Neg-
Grad+, Random Labeling, and SCRUB is that it requires
significantly fewer instances nr from the retain set Dr.
Specifically, LoTUS can use only 30% of the instances in
Dr to preserve the utility of the model. All other factors
(E,nf , B,Np, Ni) are the same for all unlearning baselines
in our benchmarks. As shown in Tab. 1, LoTUS achieves
superior efficiency.

As the number of instances nf in the forget set increases,
the execution time of LoTUS increases, in alignment with
Eq. (13). Thus, in the extreme scenario where 50% of the
forget set is designated for unlearning, we observe that the

Metric (↓) Finetuning NegGrad+ RndLbl LoTUS

V
iT

C
-1

00

Avg. Gap 0.0400 0.0600 0.0250 0.0225
JSD×1e4 0.02±0.00 0.03±0.01 0.01±0.01 0.01±0.00

Time (min) 6.34±0.01 12.68±0.02 12.63±0.02 13.79±0.02

V
iT

C
-1

0 Avg. Gap 0.0125 0.0200 0.0050 0.0050
JSD×1e4 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00

Time (min) 6.48±0.27 12.97±0.50 12.60±0.03 14.09±0.53

R
N

18
C

-1
00

Avg. Gap 0.3200 0.3150 0.3875 0.1725
JSD×1e4 1.39±0.10 1.38±0.08 1.03±0.23 0.28±0.00

Time (min) 0.26±0.01 0.52±0.00 0.48±0.00 0.57±0.01

R
N

18
C

-1
0 Avg. Gap 0.1100 0.1475 0.2100 0.0650

JSD×1e4 0.31±0.00 0.31±0.01 0.73±0.22 0.09±0.01
Time (min) 0.26±0.01 0.51±0.02 0.48±0.00 0.57±0.00

Table 8. Scaling up the Forget set to 50% of the training sets:
LoTUS outperforms basic unlearning methods in unlearning ef-
fectiveness, but not in efficiency.

efficiency of Finetuning, NegGrad+, and Random Labeling
may exceed that of LoTUS, as shown in Tab. 3. In Tab. 8
we present the scores of these basic unlearning methods
that are not presented in Tab. 3, and show that they may be
better in terms of efficiency, but LoTUS remains the best in
terms of effectiveness.

Next, we compare the time complexity of the auxiliary
computations between LoTUS and other unlearning base-
lines that use equal or fewer samples from the retain set Dr:

LoTUS: O(nf+nv), where nv is the total number of
instances in the validation set, for computing τd.

Bad Teacher [9]: O
(
(nf+nr)·k

)
, where k is the total

number of classes, for calculating the KL divergences
between the student and the teacher.

UNSIR [34]: O(Enoise ·nf ·Ni), where Enoise are the
epochs for noise optimization, and Ni represents the
total input dimensionality (product of channels, width
and height of the images).

SSD [14]: O(nf ·N2
p ) for computing the Fisher Informa-

tion Matrix.

In this analysis, we exempt the complexity of the feed-
forward process which is the same for all the unlearning
methods in our benchmarks. Also, SalUn [12] introduces
a computational overhead prior to unlearning due to the
computations of the saliency mask for weight pruning.
The complexity of this auxiliary computation contributes
to the overall complexity of the downstream method used
for unlearning (e.g., Random Labeling and LoTUS in our
case). Among the unlearning methods, LoTUS is the only
one with auxiliary computations of linear complexity.

12. Cleaning the MUFAC Dataset
We identified duplicates within the forget, retain, valida-
tion, and test splits of the MUFAC dataset. More critically,



Figure 3. Duplicates in MUFAC: An example of a duplicate
within the retain set (top) and a critical duplicate shared between
the retain and forget set (bottom), which introduces information
leakage.

we discovered instances of information leakage across
these splits. To address this, we used image hashing to
detect identical images with different filenames in these
splits, as shown in Fig. 3.

After cleaning MUFAC, the retain set contains 5, 513
samples, and the forget set contains 1, 062 samples. We
provide the code for identifying duplicate images and
cleaning MUFAC in https://github.com/cspartalis/LoTUS.

Moreover, Figure 4 presents the class distribution of
samples in the clean version of MUFAC, showing that
the forget set and the unseen set (i.e., the validation set in
our case) follow different class distributions. The strong
performance of LoTUS in MUFAC further suggest that the
assumption of distributional similarity between the forget
and unseen sets, discussed in Sec. 3.2, can be relaxed.

13. Failure Analysis

Unlearning samples from MUFAC (the clean version)
presents greater challenges for all unlearning methods,
as reflected in significantly higher JSD scores in Tab. 1.
In addition, MUFAC & ResNet18 is the only benchmark
where LoTUS achieves the second-best Avg Gap rather
than the best. To explore the particularities of this dataset,
we investigated the orthogonality of the forget and retain
sets (i.e., how much they differ). Figure 5 presents that the
images in the forget and retain sets of MUFAC are more
similar, making unlearning more challenging.

Figure 4. Number of MUFAC Samples per Class & Split.
Unlike the balanced CIFAR-10/100 splits, MUFAC exhibits
imbalanced class distributions of that varies across the retain,
forget, test, and validation splits.

Figure 5. Orthogonality of Forget/Retain Sets. We measure
the similarity between samples in the forget and retain sets using
the absolute difference between their image hashes. MUFAC
exhibits significantly higher similarity between forget and retain
sets, complicating the unlearning process.

(a)
prediction:

pizza (b)
prediction:

potpie

Figure 6. Class Activation Maps and Model Predictions: (a)
before and (b) after class unlearning.

14. Class Unlearning with LoTUS

After retraining the model excluding a single pizza im-
age from the training set, the model preserves global
information that stems from the remaining pizzas in the
training set, being able to correctly classify many of them
(see Forget Acc. in Tab. 6). In instance-wise unleanring,
LoTUS prevents performance degradation by preventing
the elimination of global information. To do so, it uses

https://github.com/cspartalis/LoTUS


Metric (↓) Gold Std Finetuning NegGrad+ RndLbl BadT SCRUB SSD UNSIR SalUn LoTUS
Ti

ny
IN

Pi
zz

a Avg Gap 0.0000 0.2975 0.3250 0.2925 0.3125 0.4200 0.3650 0.5075 0.2925 0.0925
JSD×1e4 0.00±0.00 94.96±7.24 86.36±9.66 92.27±6.43 72.62±22.07 73.10±0.82 34.96±14.21 102.29±9.33 91.01±8.59 37.02±18.68
Time (min.) 42.15±16.05 3.23±0.01 3.24±0.03 3.27±0.03 1.59±0.01 4.05±0.03 3.19±0.03 1.01±0.01 3.98±0.01 1.30±0.02

C
-1

00
B

ea
ve

r Avg Gap 0.0000 0.2825 0.3725 0.2925 0.3000 0.3225 0.4325 0.4050 0.2850 0.1200
JSD×1e4 0.00±0.00 101.48±2.87 108.50±2.59 102.66±3.11 78.65±3.12 64.09±8.71 45.19±9.19 76.28±6.88 100.93±2.44 25.46±1.41
Time (min.) 4.00±0.11 0.43±0.00 0.44±0.01 0.45±0.00 0.26±0.01 0.55±0.00 0.83±0.03 0.20±0.01 1.16±0.01 0.23±0.01

Table 9. Class Unlearning with ResNet18 models and the TinyImageNet (TinyIN) and CIFAR-100 (C-100) datasets. We highlight the
best and second-best scores.

accuracy on labeled unseen pizzas, Acc(forig, Du) in
Eq. (11) as an estimator of global information.

Framing class unlearning as sequential instance-wise un-
learning applied to all class samples, global information is
ultimately eliminated (see Class Activation Maps of pizza
class in Fig. 6). Since there is no global information to esti-
mate, we also do not need the unseen set. To adapt LoTUS
to class unlearning, we set as objective the accuracy on the
forget set to become zero (an empirical observation by re-
taining the model without the specific class):

τd=exp
(
α(Acc(fun, Df )−�������:0

Acc(forig, Du))
)

(14)

Table 9 shows that LoTUS can be adapted to the class
unlearning task, outperforming state-of-the-art methods,
combining unlearning effectiveness and efficiency.

15. Contribution of Gumbel noise
In Tab. 10, we demonstrate the contribution of the introduc-
tion of Gumbel noise in the Softmax activation function. To
do so, we perform an ablation analysis using the Gumbel
Softmax and the Softmax with Temperature as activation
functions in LoTUS. Softmax with Temperature is defined
similarly with Eq. (15) as:

pi = st(π, τ) =
exp ((log πi) /τ)∑k
j=1 exp ((log πj) /τ)

, i = 1,. . ., k

(15)

16. Entropy-based Analysis of the Streisand
Effect

Further evaluation of the Streisand effect includes inves-
tigating the model’s uncertainty, as in [15]. In Fig. 7, it
is shown that LoTUS prevents an adversary from readily
inferring whether an instance is a member of the training
set, or whether it belongs to the forget or retain set, since
the entropy distributions of the forget/retain/test sets are
similar. In contrast, the existing unlearning method [17]
that also performs in the output space, but indiscrimi-
nately increases the entropy, clearly presents a significant
vulnerability to the Streisand effect.

Figure 7. Privacy Evaluation via entropy comparison: LoTUS
achieves indistinguishable entropy distributions between forget
and retain sets, similar to the orignal and gold standard models.
In contrast, Random Labeling produces disproportionately lower
entropy in the retain set, making it easier for adversaries to
distinguish retain from forget and unseen samples.

17. Social Impact
LoTUS can address privacy-related concerns, such as opt-
out requests, where users request their data to be deleted not
only from the databases, but also from the DNN models.
From a security perspective, LoTUS can be applied to
unlearn training samples modified by adversaries, which
may otherwise compromise the model’s performance. In
such scenarios, where privacy or security issues arise for
specific data points and need to be removed, instance-wise
unlearning is more consistent with real-world conditions
than class unlearning [5].



Vision Transformer ResNet18
TinyImageNet CIFAR-100 CIFAR-10 MUFAC TinyImageNet CIFAR-100 CIFAR-10 MUFAC

A
vg

G
ap

Gumbel-
Softmax

0.0150 0.125 0.0050 0.0200 0.1675 0.1200 0.0350 0.1250

Softmax with
Temperature

0.0675 0.0225 0.0050 0.0200 0.1850 0.1075 0.0675 0.1175

JS
D
×
1
e4

Gumbel-
Softmax

0.03 0.04 0.01 0.05 0.62 1.67 0.32 6.90

Softmax with
Temperature

0.15 0.04 0.01 0.08 0.65 1.36 0.41 7.33

Table 10. Contribution of Gumbel noise into the activation function. Ablation analysis using Gumbel-Softmax and Softmax with
Temperature as activation functions. LoTUS performs better with Gumbel-Softmax in the majority of the benchmarks.
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