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Abstract

Large simulation costs are a persistent challenge in Simulation Based Inference
(SBI). Thus we strive for methods which are more sample efficient, requiring fewer
simulations to achieve accurate parameter estimates. Across many scientific do-
mains, SBI can be made more sample efficient by exploiting hierarchical structure.
Rather than directly learning the full posterior, we learn single-site likelihoods, or
posterior factors, that can be combined into a full hierarchical posterior. Current
approaches assume conditional independence of local posteriors given the global
parameters, which is often not suitable, and require training separate estimators
for each level of the hierarchy which adds complexity to training. We present a
tokenised flow matching estimator for posterior estimation (TFMPE), along with
a sample efficient algorithm (Bottom-up sampling) for hierarchical parameter in-
ference which makes no structural assumptions on the dependence of local and
global parameters. We find that our method exhibits stable inference with improved
sample efficiency compared to non-hierarchical methods for hierarchical inference
tasks. We also examine posterior estimates for an infectious disease model and
find that they are as reliable as MCMC approaches despite reduced computational
demands.

1 Introduction

In a hierarchical SBI, the number of parameters to estimate and the number of simulations required
for inference increase dramatically. With hierarchical models, a simulator is applied to many local
settings and is parameterised with global parameters, which govern dynamics which are common
to all settings, and local parameters, which condition local dynamics. For example, fitting a disease
transmission model to data from multiple countries requires global parameters for pathogenic or
immunological properties and local parameters for region-specific contact rates, seasonal effects and
intervention policies. However, the computational cost of dataset generation and the complexity of
posterior estimation grows with the size of the parameters space.

Notation. In Simulation Based Inference, we we would like to estimate a posterior distribution
over some parameters θ given observational data y: p(θ|y) ∝ p(y|θ)p(θ). There is no closed form
solution for p(y|θ), however we do have a simulator at our disposal a which can generate y given θ.

In the hierarchical case, we consider a two-level hierarchical model where θ is partitioned into global
parameters θg ∈ Rdg and local parameters θl = (θl[1], . . . , θl[ns]) where each θl[s] ∈ Rdl parame-
terises a site s ∈ {1, . . . , ns}. The global parameters act as hyperpriors for the local parameters,
giving the prior distribution: p(θg, θl) = p(θg)

∏ns

s=1 p(θl[s]|θg).
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The simulator generates observations y[s] ∈ Rne×dy for each site s ∈ {1, . . . , ns}. We denote the
complete set of observations across all sites as y = (y[1], . . . , y[ns]). The complete hierarchical
posterior takes the form: p(θl, θg|y) ∝ p(θg)

∏ns

s=1 p(θl[s]|θg)p(y[s]|θl[s]). Note that this is the same
hierarchical posterior proposed by Gelman et al. [2021].

Factorised Posteriors. In cases where observational data can be assumed i.i.d, the posterior can
be factorised as, p(θ|y) ∝ p(θ)1−n

∏
s p(θ|y[s]), by applying the Bayes rule twice. Many posterior

estimation workflows have exploited this factorisation to train estimators for arbitrarily sized sets
of observational data using using datasets containing pairs of parameters and single observations
(θ, y[s]) [Radev et al., 2023, Boelts et al., 2024, Geffner et al., 2023]. Some of these methods rely on
“summary networks”, such as permutation invariant networks such as Deep Sets [Zaheer et al., 2017],
in order to estimate posteriors from variable sized observations.

To account for local parameters in factorisations, recent methods have introduced separate estimators
for global and local parameters to learn the posterior from datasets with fewer simulations [Arruda
et al., 2025, Heinrich et al., 2024, Habermann et al., 2024, Rodrigues et al., 2021]. These methods
extend the previous factorisation by separating global and local estimation through conditional
independence, p(θg, θl|y) ∝ p(θg, θl)

1−np(θg|y)
∏

s p(θl[s]|θg, y[s]. In this approach, two estimators
are required, a global estimator for θ̂g ∼ p(θg|y) trained from dataset wide observations, and a local
estimator for ˆθl[s] ∼ p(θl[s]|θ̂g, y[s]).

Conditional Independence in hierarchical posteriors. However the above factorisation assumes
that local posteriors are conditionally independent given θg , i.e. θl can be ignored when estimating θg ,
which is not always an appropriate treatment. Note that is distinct from the widely held assumption
in hierarchical modelling that θl is conditionally independent from θg, which describes the data
generating/forward process not the inverse problem of parameter inference after observing data.
To illustrate this distinction with the epidemiological example from the introduction, while the
pathogenic and intervention parameters for an infectious disease model can be safely assumed to
have independently influential effects on the observed incidence data, the same assumption does not
hold for posterior estimates. When we condition on observed incidence data, the posterior estimates
for both parameters become dependent.

We alternatively propose to learn the posterior by factorising the likelihood function, similarly to
Neural Likelihood Estimation, described in Section A.1. This allows us to estimate the posterior in
its entirety and relax any structural assumptions with respect to the parameters and simply assume
conditional independence of observations given parameters.

Contributions. In this work, we combine likelihood factorisation, tokenisation and flow matching
to address the limitations of existing hierarchical SBI methods. Likelihood factorisation avoids
the conditional independence assumptions of prior work on hierarchical SBI, while still reducing
simulations for training. Tokenisation (Appendix A.3) mitigates error propagation from multiple
estimators and enables amortised posterior estimation. Flow matching (Appendix A.4) provides a
more stable training objective compared to score-based approaches which have been widely used
in hierarchical SBI. Together, these contributions form TFMPE, a unified tokenised flow matching
posterior estimator that learns factorised likelihoods and posteriors jointly.

2 Method

2.1 Tokenisation

We adopt a tokenisation approach that embeds arbitrarily-sized parameter and observation sets,
enabling a flexible handling of variable-sized local parameters and function-valued observations.
Each token encodes three components: (1) parameter or observation values embedded as fixed-length
vectors in Rd, (2) variable identifiers enumerated and embedded in Ri, and (3) functional inputs
encoded using Gaussian Fourier embeddings in Rf to map continuous function inputs (e.g., time or
spatial coordinates) into bounded fixed-length vectors via sinusoidal features. Tokens are processed
through an encoder-decoder transformer architecture where the encoder embeds context and the
decoder generates vector fields for flow matching.

2



E
m

be
dd

in
g Encoder

Decoder Linear

Solve

L
in

ea
r

y

θt vt

p(θ0) p(θ|y)

Figure 1: Method overview: Encoder-decoder transformer architecture for tokenised flow matching.
The encoder processes context tokens y, while the decoder processes parameter tokens θt. Masking at
attention blocks models conditional independence structure, and the final linear layer outputs vector
field vt optimised using the FMPE objective.

For hierarchical models, we embed the conditional independence of observations with local param-
eters, i.e. p(y|θl) =

∏
s p(y[s]|θl[s]), using structured cross-attention masking. When training the

factorised likelihood, the decoder masks attention from non-influential local parameter tokens. The
full implementation details are provided in Section A.5.1 of the appendix.

2.2 Bottom-up Sampling for Hierarchical Models

We propose a two-stage sampling strategy, which we refer to as “Bottom-up sampling” which creates
training data for amortised hierarchical posterior estimation. In stage one, we learn a factorised
likelihood by generating training data Ds = {(θ(i)g , θ

(i)
l[s], y

(i)
[s] )}

N
i=1 from single-site simulations,

optimising: L1(ϕ) = Eθg,θl[s],y[s]

[
LFMPE

(
ϕ; y[s]|θg, θl[s]

)]
In stage two, we use the estimated likelihood to generate full multi-site training data Dm =

{(θ(i)g , θ
(i)
l , y(i))}Ni=1 where observations are sampled from qϕ(y|θ(i)g , θ

(i)
l ), and optimise: L2(ϕ) =

Eθg,θl,y [LFMPE (ϕ; θg, θl|y)]
An aggregate dataset D = Ds ∪Dm is maintained during training, jointly optimising both objectives
with appropriate loss functions applied per sample. This avoids the conditional independence
assumptions of prior hierarchical approaches while enabling amortisation through a unified estimator.
The strategy can optionally be extended as sequential refinement by resampling parameters from the
latest posterior to generate more concentrated training data. Detailed data generation procedures and
padding strategies for variable-sized parameters are described in Section A.5.2 of the appendix.

3 Results

We evaluated TFMPE with bottom up sampling on two toy hierarchical SBI tasks as well as a more
realistic infectious disease model. Through the toy models we could investigate the scaling behaviour
of TFMPE compared to FMPE with respect to different sampling budgets and the number of local
parameters. For the infectious disease model, we provided a more qualitative assessment of posterior
estimates compared to MCMC.

We are developing a benchmark for hierarchical inference tasks. A description of the development
strategy and formulation of the models is listed in Section A.9.

3.1 Toy hierarchical inference tasks

We compared TFMPE to a baseline FMPE approach. In the baseline, parameters and observations
were vectorised, concatenated, and provided to a multi-layer perceptron for vector field estimation.
For Brownian motion, fixed observation times were used during training. FMPE was trained on
multi-simulation datasets with ns simulations per sample, consuming the budget more rapidly than
tokenised TFMPE. The toy examples used for comparison are listed in Table 2 We found that
tokenised FMPE consistently exhibited a preferable sample efficiency when increasing simulation
budget, shown in Figure 4a and Figure 4c, and increasing number of local parameters, shown in
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(a) (b)

Figure 2: SEIR posterior comparison: a Pairplot of posterior estimates for global parameter β0 and
local parameters A1, A2 comparing TFMPE (tokenised flow matching), NUTS, and ESS estimates.
True parameter values shown as red crosshairs. b Posterior predictive check showing observed data
(red crosshairs) against posterior predictive samples for each method across both sites.

Figure 4b and Figure 4d. The biggest advantage over traditional FMPE is realised when hierarchical
inference is scaled over large amounts of local parameters, making FMPE quickly untenable for
ns > 20.

Table 1: LC2ST results for varying simulation budget (n_theta = 50, m = 5 observations).
n_simulations Gaussian Task Brownian Task

FMPE TFMPE(prior) FMPE TFMPE(prior)

1,000 0.216 [0.181, 0.252] 0.045 [-0.008, 0.098] 0.215 [0.201, 0.228] 0.003 [-0.002, 0.007]
5,000 0.176 [0.146, 0.206] 0.038 [0.015, 0.060] 0.222 [0.213, 0.230] 0.006 [0.001, 0.011]
10,000 0.140 [0.072, 0.209] 0.012 [0.001, 0.023] 0.227 [0.218, 0.236] 0.000 [-0.000, 0.001]

3.2 Comparison to MCMC estimates for an Infectious Disease Model

MCMC is widely considered the gold standard for Bayesian parameter estimation and so we compared
TFMPE posterior estimates to MCMC estimates for a simple Infectious Disease model. We used a
Susceptible, Exposed, Infected, Recovered (SEIR) compartmental model as the simulator. Details of
the SEIR model specification and parameterisation are provided in the appendix, see Section A.7.
For the MCMC inference procedure, details on the sampling kernels and convergence criteria are
provided in Section A.8. We found that TFMPE estimates were well calibrated in the posterior
predictive and showed a strong update towards the latent true parameters, see Figure 2. The MCMC
estimates were more dominated by the priors and showed more conservative updates towards the true
parameters and posterior predictive.

4 Discussion

We plan to evaluate TFMPE with a more extensive benchmark, outlined in Section A.9, include
alternative hierarchical estimators as baselines and apply our method to more complex and realistic
inference problems to test sample efficiency in practice. We would also like to thoroughly investigate
the effects of accumulated error in our two-step estimation and the stability of sequential inference
for large and complex parameter and observation spaces.
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A Appendix

A.1 Extended Background

Simulation Based Inference (SBI) methods are essential in the sciences for calibrating numerical
simulators to real world observations. As simulators become more realistic, requiring complex
parameterisation and computational resources, we must scale our inference methods to keep robust
and reliable inference feasible. Markov Chain Monte Carlo (MCMC) methods, widely considered the
gold standard for parameter inference, require (often intractable) closed form likelihoods, struggle to
sample large parameter spaces, and are often slow due to the sequential nature of sampling.

Neural Density Estimation (NDE) methods are strong candidates for scalable SBI. In NDE, one
trains neural networks to estimate parameters from a dataset of simulations, often generated in
parallel to make use of modern computing resources, and observations without requiring a likelihood
function. Many "amortised" estimators are able to generate parameter estimates for observations
within wide observational data spaces, for example arbitrary singular observations, sets of independent
observations, or function-valued observations without further training or sampling.
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In a hierarchical setting, the number of parameters to estimate and the number of simulations required
for inference increase dramatically. With hierarchical models, a simulator is applied to many local
settings and its parameters can be divided into global parameters, which govern common dynamics,
and local parameters, which condition local dynamics. For example, fitting a disease transmission
model to data from multiple countries requires global parameters for pathogenic or immunological
properties and local parameters for region-specific contact rates, seasonal effects and intervention
policies. However, scaling inference with respect to local settings requires increasing the number
of simulations and parameters during inference which adds to the computational cost of dataset
generation and the complexity of density estimation.

There has been recent work on sample efficient hierarchical SBI [Arruda et al., 2025, Heinrich et al.,
2024, Habermann et al., 2024, Rodrigues et al., 2021]. In general, the proposed factorisations of the
posterior have assumed conditional independence of local parameters such that one can train a global
estimator based on all observations, or a "dataset wide" estimator, and subsequently train a separate
local estimator for local parameters given the global estimate. Commonly, permutation invariant
architectures, such as Deep Sets [Zaheer et al., 2017] and Transformers [Vaswani et al., 2017] are
used to allow for arbitrarily sized sets of observations and to reduce simulation costs during training
through sub-set sampling. Arruda et al. [2025] in particular have demonstrated score based estimators
which scale to an impressive 750,000 local parameters. However, the structural assumptions are
restrictive for many real world hierarchical inference tasks.

In this work, we investigated the sample efficiency of likelihood factorisation (through the "Bottom-
up" algorithm) and tokenised flow matching (through TFMPE) for hierarchical SBI. The Bottom-
up algorithm estimates global and local parameters jointly, avoiding the structural assumptions of
competing methods, without the need for several simulations per parameter draw. We demonstrate that
TFMPE can serve as a unified estimator in hierarchical SBI, as it can estimate different conditionals
under a joint distribution. We compiled a benchmark of hierarchical inference tasks, adapted from
Lueckmann et al. [2021] to compare our contributions to existing hierarchical and non-hierarchical
methods. We also applied method for inference to two realistic hierarchical SBI tasks, a global
infectious disease model and a haemodynamics model to compare estimates to MCMC.

A.2 Non-hierarchical SBI

Neural Likelihood Estimation and Neural Likelihood Ratio Estimation (NLE/NRE) approaches
posterior estimation by first estimating the likelihood qϕ(θ) ≈ p(y|θ) [Papamakarios et al., 2019,
Hermans et al., 2020, Greenberg et al., 2019] or the likelihood evidence ratio qϕ(θ) ≈ p(y|θ)/p(y).
The likelihood estimator trained on a dataset of (y, θ) pairs generated by a proposal distribution,
p̃, i.e. (y(i), θ(i)) ∼ p̃(θ)p(y|θ). One can then infer the posterior through traditional means, for
example MCMC [Papamakarios et al., 2019] or variational inference [Glöckler et al., 2022]. NLE is
convenient for hierarchical settings since the likelihood is trivially factorised per site, i.e. p(y|θg, θl) =∏ns

s=1 p(y[s]|θl[s]), and can be trained on single simulations with few alterations to the workflow.
However, the combination of likelihood estimation and traditional inference introduces multiple
layers of approximation error to the inference workflow.

Neural Posterior Estimation (NPE), tackles posterior estimation directly and in an amortised fashion.
In NPE, one trains a posterior estimator, qϕ(θ|yo) ≈ p(θ|yo), for arbitrary observations yo [Papa-
makarios and Murray, 2016, Lueckmann et al., 2017, Greenberg et al., 2019]. In hierarchical settings,
the dataset (y(i), θ(i)g , θ

(i)
l ) ∼ p̃(θ)p(y|θ) requires ns simulations per sample and cannot be trivially

decomposed. This problem worsens with large ns because θl[s] depends on θg and y[s] depends on
θl[s], restricting the diversity of training data and requiring even more simulations to adequately cover
the parameter-observation space. To mitigate this, there has been significant research on factorising
the posterior to benefit from efficient single simulation datasets without sacrificing amortisation.

A.3 Tokenised SBI

Recently, Gloeckler et al. [2024] (SimFormer) introduced a general abstraction for simulation
based inference in which the structure of the model is embedded into tokens, which we refer to as
tokenised SBI. Alongside the sampled value for each parameter, which is used by traditional neural
estimators, a tokenised estimator uses tokens which include parameter identifiers, functional inputs,
and dependence and conditioning information. This comes with several benefits: (1) parameters

7



and observations could be treated symmetrically so that any conditional in the joint distribution can
be estimated, (2) structured attention masks can be parameterised based on known dependencies,
(3) functional parameters or observations could be modelled to flexibly handle missing and/or
unstructured data.

Their proposed SimFormer used a score estimation approach for estimating conditionals. Score
matching is a valuable alternative to the widespread normalising flow-based estimators, avoiding
mode-seeking biases of the reverse KL objective and the computational demands of invertability
and Jacobian computation [Papamakarios et al., 2021]. However, Flow Matching provides a more
principled alternative, combining the architectural flexibility of score-based methods with improved
training stability and efficiency.

A.4 Flow Matching for Posterior Estimation

Flow matching, a method for training continuous normalising flows, has shown promise for posterior
estimation [Dax et al., 2023]. Lipman et al. [2022] provided a framework for defining vector fields,
ut(θ, θ1), which generate desired probability paths between a base and desired distribution. The
vector field is used in the Conditional Flow Matching objective, a tractable objective for learning
continuous time flows over continuous data. Dax et al. [2023] then adapted the objective to posterior
estimation for parameters θ and observations y, where the goal is to learn a flow from a base
distribution to the posterior, p(θ|y) using a learned vector field vt(.):

LFMPE(ϕ; θ|y) = Et,p(θ),p(y|θ),pt(θ|θ1)||vt(ϕ, θt, y)− ut(θt|θ1)||2 (1)

There are several benefits to estimating the posterior this way. Learning a continuous flow places
fewer restrictions on the neural architecture. The only constraint is that, for uniqueness, the vector
field must be Lipshitz continuous in θ and continuous in t [Chen et al., 2019]. However, flow matching
provides similar guarantees to discrete normalising flows for density estimation in the target space and
bijection with the base distribution, through the continuity equation [Lipman et al., 2022]. Compared
to score matching, flow matching can learn simpler paths, e.g. conditional optimal transport paths
[Lipman et al., 2022], which lead to faster and more stable training.

A popular objective is to learn Gaussian probability paths, pt(θ|θ1) = N(µt(θ1), σt(θ1)
2I). And the

Optimal Transport map is learned through the vector field: ut(θt|θ1) = θ1−(1−σmin)θt
1−(1−σmin)t

, see Lipman
et al. [2022] for details.

A.5 Additional method details

A.5.1 Tokenisation

We defined a tokenisation scheme which embeds arbitrarily sized, functional or non-functional
parameter and observation sets. This provides the flexibility for estimating posteriors or factorised
likelihoods with different numbers of local parameters and embedding spatial or temporal correlates.

Let parameter-observation samples be represented by (θg, θl, y) where θl = (θl[1], . . . , θl[ns]) and
y = (y[1], . . . , y[ns]). Local parameters can represent either i.i.d. draws θl[s] ∼ p(θl) or draws from
function-valued random variables θl[s] ∼ p(θl|h[s]) where h[s] are functional inputs to the local prior.
Similarly, observations can be i.i.d., y[s] ∼ p(y), or function-valued, y[s] ∼ p(y|i[s]), where i[s] are
functional inputs for observations. We will refer to vectorised function inputs for θl and y as h and i
respectively. Independence can be specified at the token level using attention masking.

We embed tokens by encoding the values, variable name, and function inputs for each token, as is
depicted in Figure 3a. All parameter and observation values are embedded as fixed-length vectors
in Rd. Vectors with fewer than d dimensions are zero-padded to match this size. Variable names
are enumerated and then embedded into a continuous space in Ri. Function inputs are encoded
using Gaussian Fourier embeddings in Rf . These map continuous function inputs (e.g., time or
spatial coordinates) into bounded fixed-length vectors via sinusoidal features, similarly to SimFormer
[Gloeckler et al., 2024]. Since tokens for parameters and observations are symmetric, each token is
also given an identifier in {0, 1} to mark it as a parameter or an observation.
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Figure 3: Detailed method figures from method overview: a Tokenisation scheme for embedding
parameters and observations with structural information. Each column represents a token with
five components: ID (variable identifier), Val. (variable values in Rd), fin (functional inputs using
Gaussian Fourier embeddings), Cond. (conditioning indicator), and t (flow time). Parameters or
observations are grouped by brackets showing variable event sizes ne. b Detailed encoder-decoder
layers with attention mechanisms and masking for conditional independence structure.

We used an encoder-decoder transformer architecture, shown in Figure 3b, to estimate vector fields
for flow matching. The encoder embeds the context, while the decoder generates a vector field for
flow estimation.

For hierarchical models, we embedded the conditional independence of observations with local
parameters, i.e p(y|θl) =

∏
s p(y[s]|θl[s]), using cross attention masking. When training or sampling

from the factorised likelihood, described in Section A.5.2, the decoder masked attention from encoded
local parameter tokens which were not influential.

A.5.2 Bottom-up sampling for hierarchical models

The bottom up sampling strategy is designed to create training data for amortised hierarchical
posterior estimation by first learning a factorised likelihood function. Our estimator is initialised with
parameters ϕ and the sampling strategy proceeds in two stages with distinct data generation:

(1) Factorised Likelihood Learning: We first generate factorised likelihood training data Ds =

{(θ(i)g , θ
(i)
l[s], y

(i)
[s] , h

(i)
[s] , i

(i)
[s] )}

N
i=1, where for each sample i we select a locale s ∈ {1, . . . , ns}, sample

parameters from the prior (θg, θl[s]) ∼ p(θg)p(θl[s]|θg), sample function inputs from p(h[s], i[s]), and
generate observations from the simulator.

Ds samples are then used to learn the factorised likelihood:

L1(ϕ) = Eθg,θl[s],y[s],h[s],i[s]

[
LFMPE

(
ϕ; y[s]|θg, θl[s], h[s], i[s]

)]
9



(a) (b)

(c) (d)

Figure 4: Sample efficiency results for Gaussian and Brownian motion tasks (detailed plots). Top
row shows Gaussian task results: a Sample efficiency with simulation budget and b sample efficiency
with number of local variables. Bottom row shows Brownian motion task results: c Sample efficiency
with simulation budget and d sample efficiency with number of local variables. For all experiments:
m = 5 observations per variable, nround = 1. Simulation budget experiments used n = 50 local
variables; local variable scaling experiments used nsim = 5, 000. All posteriors evaluated using the
ℓ-c2st metric (lower is better). Each experiment was repeated over 6 random number generation seeds
to capture mean and standard deviation performance. Quantitative results for the parameter scaling
are summarized in Table 3.

(2) Full Posterior Learning: In this stage we generate posterior training data Dm =

{(θ(i)g , θ
(i)
l , y(i), h(i), i(i))}Ni=1, where θ

(i)
l = (θ

(i)
l[1], . . . , θ

(i)
l[ns]

) and observations y(i) are simulated

from the estimated likelihood: y(i) ∼ qϕ(y|θ(i)g , θ
(i)
l , h(i), i(i)).

Dm samples are then used to learn the full posterior, qϕ(θg, θl|y, h, i), by optimising:

L2(ϕ) = Eθg,θl,y,h,i [LFMPE (ϕ; θg, θl|y, h, i)]

At each training step, an aggregate dataset D = Ds ∪ Dm is maintained to train the estimator,
applying the corresponding loss functions for each sample to jointly optimise each objective. The
variable sizes of conditioning and target variables are addressed by padding the training data with
empty tokens for fast batching, applying the appropriate attention masks for decoding and padding
masks when computing the loss function.

Bottom-up sampling can also be extended as a sequential refinement. To refine the posterior estimate,
in subsequent rounds one can resample (θg, θl) from the latest qϕ(θg, θl|y, h, i) to generate single-site
training data which are more concentrated around the desired posterior. Sequential schemes have
been shown to improve the quality of posterior estimates, see [Papamakarios et al., 2019, Greenberg
et al., 2019].
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Input: Prior functions p(θg), p(θl[s]|θg, h[s]), function input distributions p(h[s]), p(i[s]),
simulator function sim(θg, θl[s], i[s]), observed data yobs = (yobs

[1] , . . . , y
obs
[ns]

) with
corresponding function inputs hobs, iobs, number of rounds R, number of samples per
round N

Output: Trained tokenised estimator parameters ϕ

// Initialization
Randomly initialize estimator parameters ϕ ;
Initialize empty single-simulation dataset Ds = {} ;
Initialize empty multi-simulation dataset Dm = {} ;

for r = 0, 1, . . . , R− 1 do
// Generate single-simulation training data
if r = 0 then

Sample θ
(i)
g ∼ p(θg) for i = 1, . . . , N ;

Sample function inputs h(i)
[s] ∼ p(h[s]), i

(i)
[s] ∼ p(i[s]) for i = 1, . . . , N ;

Sample θ
(i)
l[s] ∼ p(θl[s]|θ

(i)
g , h

(i)
[s] ) for i = 1, . . . , N ;

Simulate y
(i)
[s] ∼ sim(θ

(i)
g , θ

(i)
l[s], i

(i)
[s] ) for i = 1, . . . , N ;

Ds = {(θ(i)g , θ
(i)
l[s], y

(i)
[s] , h

(i)
[s] , i

(i)
[s] )}

N
i=1 ;

else
Sample θ

(i)
g ∼ p(θg) for i = 1, . . . , N ;

Sample θ
(i)
l = (θ

(i)
l[1], . . . , θ

(i)
l[ns]

) ∼ qϕ(θl|θ(i)g , yobs, hobs, iobs) from previous round ;

Simulate y
(i)
[s] ∼ sim(θ

(i)
g , θ

(i)
l[s], i

obs
[s] ) for i = 1, . . . , N ;

Ds := Ds ∪ {(θ(i)g , θ
(i)
l[s], y

(i)
[s] , h

obs
[s] , i

obs
[s] )}

N
i=1 ;

end
// Stage 1: Learn local likelihood
Optimize ϕ using L1(ϕ) = LFMPE(ϕ; y[s]|θg, θl[s], h[s], i[s]) on Ds ;

// Generate multi-simulation training data using learned local
likelihood

for i = 1, . . . , N do
Sample θ

(i)
g ∼ p(θg) ;

Sample function inputs h(i) ∼ p(h), i(i) ∼ p(i) ;
Sample θ

(i)
l[s] ∼ p(θl[s]|θ

(i)
g , h

(i)
[s] ) for s = 1, . . . , ns ;

Generate y
(i)
[s] ∼ qϕ(y[s]|θ

(i)
g , θ

(i)
l[s], i

(i)
[s] ) for s = 1, . . . , ns ;

end
Dm := Dm ∪ {(θ(i)g , θ

(i)
l , y(i), h(i), i(i))}Ni=1 ;

// Stage 2: Learn full posterior
Optimize ϕ using L2(ϕ) = LFMPE(ϕ; θg, θl|y, h, i) on Dm ;

end

return ϕ such that θl, θg ∼ qϕ(θg, θl|yobs, hobs, iobs)
Algorithm 1: Bottom-up Sampling for Tokenised FMPE

A.6 Toy hierarchical inference experiments

A.7 The SEIR Infectious Disease Model

We use a Susceptible, Exposed, Infected, Recovered (SEIR) compartmental model as a simulator
for comparing TFMPE and MCMC posterior estimation. An SEIR model is specified as Ordinary
Differential Equations (ODE) which track the proportions of the population in each disease state. The
infectiousness is parameterised by β0, which controls the base transmission rate. The infectiousness
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Task Global Local Observations Functional
Parameters Parameters Input

Gaussian µ ∼ N(µ0, σ
2
0) νi ∼ N(µ, σ2

µ) yi,j ∼ N(νi, σ
2
y) —

i = 1, . . . , ns j = 1, . . . ,m

Brownian µ ∼ N(µ0, σ
2
0) νi ∼ N(µ, σ2

µ) yi,j ∼ N(νi, t) t ∼ Exp(1)
i = 1, . . . , ns j = 1, . . . ,m

Table 2: Symbolic definition of toy hierarchical inference tasks. Global parameters govern the
distribution of local parameters (partial pooling). A single simulation generates all observations
{yi,j} for one local parameter νi. The Brownian task includes function-valued observations through
the functional input t.

Table 3: LC2ST results for varying number of local variables (n_simulations = 5000, m = 5 observa-
tions).

n_theta Gaussian Task Brownian Task
FMPE TFMPE(prior) FMPE TFMPE(prior)

1 0.002 [-0.000, 0.005] 0.115 [0.006, 0.225] 0.000 [0.000, 0.001] 0.028 [-0.034, 0.089]
2 0.001 [-0.001, 0.003] 0.067 [-0.032, 0.166] 0.000 [0.000, 0.001] 0.020 [-0.014, 0.053]
5 0.002 [0.001, 0.003] 0.034 [-0.010, 0.078] 0.003 [-0.002, 0.007] 0.006 [-0.002, 0.014]
10 0.004 [-0.001, 0.008] 0.013 [-0.003, 0.028] 0.019 [-0.014, 0.051] 0.001 [-0.001, 0.004]
20 0.021 [-0.012, 0.055] 0.022 [-0.018, 0.061] 0.177 [0.133, 0.221] 0.004 [-0.003, 0.012]
50 0.176 [0.146, 0.206] 0.038 [0.015, 0.060] 0.222 [0.213, 0.230] 0.006 [0.001, 0.011]

in any specific site is assumed to follow sinusoidal seasonal dynamics with amplitude As. The
Kolmogorov forward equations for the model are:

dS

dt
= −βsSI

dE

dt
= βsSI − σE

dI

dt
= σE − γI

dR

dt
= γI

where βs = β0(1 +As cos(2πT
1 − ϕ))

(2)

A.8 SEIR Model Inference with MCMC

As MCMC kernels we used both the No-U-Turn Sampler (NUTS) [Hoffman and Gelman, 2011]
and Ensemble Slice Sampler (ESS) [Karamanis and Beutler, 2020] from the numpyro package
[Phan et al., 2019]. Each sampler was run until convergence, with derivatives for NUTS provided
by forward-mode autodifferentiation as implemented in the diffrax package [Kidger, 2021]. To
make MCMC estimation tractable, we selected ns = 2, and estimated only β and As, assuming
other parameters were known. However for global infectious disease studies, it is not uncommon to
estimate parameters using ns > 1000 sites.

A.9 Hierarchical SBI Benchmark

We adapted a benchmark for Simulation Based Inference [Lueckmann et al., 2021] to evaluate the
sample efficiency on hierarchical inference tasks. Similarly to the original benchmark, the posteriors
exhibit a range of posterior geometries, dimensionality and dependence structures. However, we
adapted the tasks in one of two ways: (1) All parameters were assumed conditionally independent
given observations and replicated across ns sites. New global parameters were introduced to govern
the distribution of the replicated parameters (i.e. a partial pooling model). (2) Parameters were
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partitioned into global and local parameters with only the local parameters being replicated across ns

sites. The local parameters retained their original priors, however they were sampled independently
across ns sites.

Task Description Parameter Prior Distribution

Gaussian Linear Shared noise scale with
site-specific means

Global
σ ∈ R+ HalfNormal(0.1)

Local
µs ∈ R5 N (0, 0.1I5), s ∈ [ns]

Gaussian Linear Uni-
form

Shared noise scale with
site-specific bounded
means

Global
σ ∈ R+ HalfNormal(0.1)

Local
µs ∈ [−10, 10]5 Unif(−10, 10) per dim, s ∈ [ns]

Gaussian Mixture
Global pooling controls
local mixture parame-
ters

Global
µg ∈ [−10, 10]2 Unif(−10, 10) per dim
σg ∈ R2

+ HalfNormal(1.0) per dim

Local
θl[s] ∈ [−10, 10]2 TruncNorm(µg, σg,−10, 10), s ∈ [ns]

Lotka-Volterra Partial pooling of all LV
parameters

Global
µα, µβ , µγ , µδ N (0, 1)
σα, σβ , σγ , σδ HalfNormal(0.5)

Local
αs, βs, γs, δs ∈ R+ LogNormal(µ∗, σ∗), s ∈ [ns]

SIR
Shared recovery rate
with site-specific trans-
mission rates

Global
γ ∈ R+ LogNormal(log 0.125, 0.2)

Local
βs ∈ R+ LogNormal(log 0.4, 0.5), s ∈ [ns]

SLCP
Shared covariance struc-
ture with site-specific
means

Global
s1, s2 ∈ [0.5, 3.0] Unif(0.5, 3.0) each
ρ ∈ [−3, 3] Unif(−3, 3)

Local
m0,s,m1,s ∈ [−3, 3] Unif(−3, 3) each, s ∈ [ns]

Two Moons
Global pooling controls
local two-moon parame-
ters

Global
µg,0, µg,1 ∈ [−1, 1] Unif(−1, 1) each
σg,0, σg,1 ∈ R+ HalfNormal(0.5) each

Local
θl[s] ∈ [−1, 1]2 TruncNorm(µg, σg,−1, 1), s ∈ [ns]

Table 4: Hierarchical SBIBM benchmark tasks with parameter specifications and prior distributions.
Strategy 1 tasks (Gaussian Linear, Gaussian Linear Uniform, SIR, SLCP) have naturally separated
global and local parameters. Strategy 2 tasks (Gaussian Mixture, Lotka-Volterra, Two Moons) have
global parameters controlling the distribution of local parameters. All local parameters are replicated
independently across ns sites.
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