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ABSTRACT

A key frontier for Multimodal Large Language Models (MLLMs) is the ability
to move beyond semantic description and perform structured spatial analysis di-
rectly from images. Mathematical surface plots provide a rigorous testbed for this
capability, as they isolate systematic visual reasoning from the semantic noise of
natural images. To measure progress on this frontier, we introduce MaRVL-QA
(Mathematical Reasoning over Visual Landscapes), a new benchmark designed
to quantitatively evaluate these foundational skills. The benchmark comprises two
novel tasks: Topological Counting, which requires models to identify and enu-
merate local extrema; and Transformation Recognition, which tests their ability
to detect applied geometric transformations. Generated from a curated library of
functions with rigorous ambiguity filtering, our evaluation on MaRVL-QA reveals
that even state-of-the-art MLLMs struggle significantly, often resorting to superfi-
cial heuristics instead of robust strategies. We present MaRVL-QA as a challeng-
ing diagnostic tool to expose current limitations and to guide the development of
MLLM:s with stronger and more systematic visual-mathematical abilities.

1 INTRODUCTION

The fusion of large language models with visual data has unlocked powerful new capabilities in
artificial intelligence. These Multimodal Large Language Models (MLLMs) can interpret the visual
world with remarkable fluency, moving far beyond simple object labeling. They excel at generating
rich, detailed descriptions for complex scenes, answering nuanced questions about the relationships
and interactions between objects, and even engaging in multi-turn, contextual dialogue about what
they see |OpenAl et al.| (2024); |(Comanici et al.| (2025); [Liu et al.| (2023b). At its core, this success
comes from their ability to create a strong correspondence between natural language and the high-
level semantic content of an image Radford et al.[(2021)); Li et al.| (2023a).

However, this strength with high-level semantics stands in stark contrast to a fundamental limitation:
a difficulty with precise spatial and structural analysis. This deficit is readily observed in natural im-
age contexts, where these models often fail to accurately count objects, determine specific positional
relationships, or interpret complex spatial arrangements [Fu et al.| (2024); L1 et al.| (2023b); [Zhang
et al.| (2018); |Grover et al.| (2025); Tamarapalli et al.| (2025). Diagnosing these failures in natural
scenes is inherently challenging, since rich semantic context can mask whether a model is strug-
gling with perception, reasoning, or both Johnson et al.|(2017). Mathematical visualizations offer a
more controlled alternative: they strip away semantic cues and isolate the task of interpreting struc-
tural and geometric properties. In this work, we leverage such plots to evaluate the foundational
visual-mathematical skills that underpin more complex reasoning.

Concurrently, mathematical reasoning has been established as a key evaluation axis for language
models, with benchmarks such as GSM8K |Cobbe et al.| (2021) and MATH Hendrycks et al.| (2021)
driving progress on complex, text-based quantitative problems. However, these benchmarks focus
on reasoning from equations and word problems, leaving open the question of how well models
can interpret mathematical concepts presented visuallyLu et al.| (2024). Tasks such as inferring
properties of a function from its plot require interpreting topological and geometric structure in a
semantically sparse setting - a capability that is not captured by existing evaluations

To address this gap, we introduce MaRVL-QA: Mathematical Reasoning over Visual Land-
scapes, a benchmark for testing how MLLMs connect visual perception with basic mathematical
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Figure 1: Illustration of the core MaRVL-QA tasks, showcasing the visual and textual prompts
presented to the models. (a) Topological Counting: A single plot is shown, and the model must
answer a direct question about the number of a specific topological feature, such as local maxima.
(b) Transformation Recognition: An original plot and its transformed version are presented, and
the model must select the correct transformation from a list of choices.

structure. It is designed as a diagnostic framework: it focuses on controlled tasks that isolate founda-
tional visual-mathematical skills. It comprises two task categories, which represent essential build-
ing blocks for more advanced reasoning: Topological Counting, which assesses the identification
of structural features; and Transformation Recognition, which tests their ability to detect applied
geometric transformations.

This work makes the following primary contributions:

* We introduce MaRVL-QA, a two-task evaluation of intrinsic visual-mathematical skills (i)
extrema counting and (ii)transformation recognition.

* We build the benchmark from a curated library of mathematical functions, programmati-
cally generating more than 80,000 QA pairs with multi-stage ambiguity filtering to yield
objective ground truth.

* We release MaRVL-QA-Mini, a 2,748-item, stratified subset balanced across styles and
transformations for efficient, comparable evaluation.

* We evaluate modern MLLMs on MaRVL-QA, exposing systematic failure modes and gaps
that are obscured by semantics in natural images.

2 RELATED WORK

2.1 CHART AND PLOT COMPREHENSION

A primary focus of multimodal research is reasoning over visual data representations. Founda-

tional VQA benchmarks target natural images |Antol et al.| (2015); |Goyal et al.| (2017); |Yerramilli
(2025). Plot-centric work evaluates data visualizations: early FigureQA and PlotQA test basic

point/value retrieval Kahou et al.| (2018)); Methani et al.| (2020); later ChartQA and related tasks in-
crease semantic complexity and rely on text—visual fusion Masry et al.[(2022)); |[Hossain et al.| (2022);
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chart-to-table aims to reconstruct underlying data Liu et al.| (2023a). Unlike these, MaRVL-QA is
geometry-first and OCR-proof: axes/labels are held constant across pairs, so models must reason
about the surface itself rather than read values; each validated item is rendered across diverse styles
(color maps, contour/heatmap settings) to test style robustness controls that typical chart QA lacks.

2.2  EVALUATION OF SPATIAL REASONING

Spatial reasoning datasets document MLLM limitations [Wu et al.| (2023)). CLEVR and successors
benchmark extrinsic relations among discrete objects in synthetic or more realistic scenes, including
direction distinctions Johnson et al.|(2017); Liu et al.| (2023c). MaRVL-QA instead targets intrinsic
reasoning on a single continuous surface:(i) counting visually unambiguous extrema (topological
primitives), and (ii) deciding which operation (rotation/translation) maps one rendering to another -
providing a controlled testbed for claimed spatial equivariance.

2.3 MATHEMATICAL REASONING BENCHMARKS

Text-centric math benchmarks (e.g., GSM8K, MATH) emphasize problem solving from language
Cobbe et al.| (2021); [Hendrycks et al.| (2021); even when images appear (e.g., UniGeo), the task is
primarily defined by text|Chen et al.|(2023). MaRVL-QA inverts this dependency: the visualization
defines the problem. It measures grounding of mathematical concepts (topology, global transforma-
tions) directly in visual fields - capabilities not isolated by existing multimodal math benchmarks.

3 BENCHMARK GENERATION PIPELINE

The MaRVL-QA benchmark is systematically generated from a comprehensive library of three-
dimensional functions, z = f(x,y). To ensure mathematical diversity and analytical rigor, we
explicitly hand-selected these function families rather than relying on random procedural genera-
tion, guaranteeing that every task is grounded in an objective, provable truth. We further refined this
library by individually selecting the plotting domain for each function, ensuring its most significant
visual features are centered and prominent. These curated functions are then programmatically ren-
dered into plots and assembled into tasks, as detailed in the following sections. A full specification
of the function families is available in the appendix

3.1 PLOT RENDERING

Each curated function is programmatically rendered into a high-resolution image from a densely
sampled data grid. To test model robustness against superficial visual features, our rendering
pipeline generates plots in several distinct styles. This is achieved by systematically varying both
the plot type (e.g., heatmaps, contour plots) and cosmetic properties like color maps.

A critical design choice is to render all plots with their corresponding axes and numerical labels.
This methodology compels a model to synthesize the visual information of the plotted surface with
the symbolic information of the coordinate system, moving beyond simple shape recognition. As de-
tailed in the following sections, additional measures are taken during the generation of each specific
task to ensure the problems demand genuine spatial reasoning rather than simple text extraction. A
full specification of the rendering parameters, plot styles, and color maps is provided in the appendix.

3.2 TASK SPECIFIC PIPELINES

3.2.1 TorPOLOGICAL COUNTING

The Topological Counting task is designed to directly evaluate a model’s ability to identify and
enumerate fundamental topological features of a surface. The task focuses specifically on counting
local maxima and minima, as these features manifest as discrete and perceptually unambiguous
visual signatures (e.g., bright peaks and dark valleys). In contrast, features such as saddle points were
excluded; they lack a single, clear visual signature in 2D renderings and can be indistinguishable
from other features (like two nearby peaks), which undermines the goal of objective, reproducible
ground truth.
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Figure 2: Distribution of correct answers in the 1548-item Topological Counting task.

The task is framed as a question-answering problem where the model is presented with a single im-
age and asked a question such as, “How many local maxima are visible in this plot?”” The generation
of ground truth for this task is a multi-stage process designed to ensure precision and eliminate am-
biguity, combining automated analysis with meticulous manual curation. The automated stage uses
a hybrid coarse-to-fine strategy: an image-based algorithm finds approximate extrema locations on
a dense data grid, which are then refined with a high-precision numerical optimization routine on
the underlying continuous function.

Crucially, this is followed by a manual curation stage to certify that every question is fair and visu-
ally unambiguous. During this stage, authors reviewed every generated plot to filter out instances
with ambiguous features (e.g., those near the plot boundary) and certified that the programmatically
identified count exactly matched the number of clearly visible features. This hybrid pipeline yielded
1,548 high-confidence question-answering pairs, with a diverse distribution of ground-truth counts
as illustrated in Figure [2| The full technical specification of the algorithms and review protocol is
detailed in the appendi)?@

3.2.2 TRANSFORMATION RECOGNITION

The Transformation Recognition task evaluates a model’s holistic spatial reasoning by testing its
ability to identify global geometric transformations. The task is structured as a multiple-choice
problem and deliberately focuses on atomic transformations - single-axis translations and rotations
because they admit a unique, unambiguous mapping between plots. More complex operations were
avoided as they often result in visually indistinguishable cases, which complicates objective ground
truth.

A core design principle is to compel genuine spatial reasoning rather than allowing solutions based
on simple heuristics like Optical Character Recognition (OCR). To prevent models from inferring
transformations by reading axis labels, we employ specific rendering strategies. For rotations, both
plots are rendered within a unified, expanded coordinate domain; for translations, the surface is
shifted within a fixed domain window. In both cases, the axis labels remain identical, forcing the
model to reason about the surface’s geometric features.

To guarantee that each question has a single, unambiguous visual answer, we implemented a rig-
orous, multi-stage filtering pipeline. This process programmatically eliminates two key sources of
ambiguity: (1) symmetric transformations that result in no discernible visual change, and (2) con-
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founding transformations where one operation is perceptually indistinguishable from another (e.g.,
a rotation appearing as a translation).

This crucial two-way validation ensures, for example, that an accepted translation is visually distinct
from any possible rotation, and vice-versa. This pipeline produced 79,542 high-confidence QA
pairs distributed across four transformation types. The full technical specification of our filtering
algorithms and similarity metrics is detailed in the appendix.

3.3 THE MARVL-QA-MINI TEST SET

To provide a focused and computationally tractable standard for evaluation, we constructed the
MaRVL-QA-Mini test set. This set is composed of the complete, manually-curated Topological
Counting task (1,548 QA pairs) and a high-quality, stratified subset of 1,200 QA pairs from the
Transformation Recognition task. This sample size was chosen to provide sufficient statistical power
for fine-grained analysis while ensuring the benchmark remains efficient for repeated model evalu-
ation.

To create the Transformation Recognition subset and prevent confounding biases, we used a strat-
ified sampling strategy. First, the subset was balanced by visual style consistency, with 600 pairs
where the original and transformed plots share the same visual style and 600 pairs where their styles
differ. Within each of these two groups, the data was further balanced by transformation type, with
exactly 150 examples for each of the four transformation types (90-degree rotation, 180-degree ro-
tation, x-translation, and y-translation). Finally, within these smaller blocks, a round-robin sampling
strategy ensured a uniform distribution across the underlying function families, to the extent possi-
ble given our ambiguity filters. This principled construction makes MaRVL-QA-Mini a robust and
reliable tool for model evaluation.

4 RESULTS AND ANALYSIS

We evaluated the performance of ten distinct Multimodal Large Language Models (MLLMs) on
the Topological Counting and Transformation Recognition tasks. Our evaluation aimed to be as
deterministic as possible (temperature = 0), and our system prompts requested that models
provide a direct answer in a specific format.

However, we observed that many models, particularly open-source variants, failed to consistently
adhere to the requested format. For instance, some models would output the word “twelve” instead
of the integer “12” for counting tasks. Because these inconsistencies render rule-based parsers brittle
and prone to error, we employed a capable LLM (GPT-4.1) to interpret the model’s intended answer
from its full text output, ensuring fair and accurate evaluation across all systems (results without

LLM parser in[A.6.1).

The specific format of the ground truth was tailored to each task. For the Topological Counting task,
the ground truth was an integer value representing the total count of maxima or minima. In the case
of the Transformation Recognition task, presented as a five-option multiple-choice question (MCQ)
labeled 1 through 5, the ground truth was the integer of the correct option.

4.1 ToPOLOGICAL COUNTING

We evaluate performance on the Topological Counting task using three metrics: Accuracy, and
Relaxed Accuracy at 10% and 20% tolerance, which credits near-miss answers. The full results,
including 95% confidence intervals, are in Table

The results reveal a profound deficit in this capability across all tested models. The accuracy for
the top-performing model, 04-mini, is only 58.91%, underscoring the fundamental difficulty of this
task for current systems. However, the story is in the errors. o4-mini’s accuracy jumps by nearly
17 points to 75.78% with a 20% tolerance, indicating that a significant portion of its mistakes are
’near-misses’.

This pattern does not hold for low-performing models. For LLaVA-13B, relaxing the accuracy
criteria provides almost no benefit, with its score barely moving from 6.65% to 9.82%. This suggests
its failures are not minor miscounts but catastrophic breakdowns in reasoning; when it is wrong, it
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is not even close. This clear divergence where top models are often approximately correct while
weaker models fail completely, points to the absence of a robust, generalizable counting mechanism
in most MLLMs.

Table 1: Overall performance on the Topological Counting task. We report Strict Accuracy and
Relaxed Accuracy at 10% and 20% tolerance, with 95% confidence intervals. The data highlights a
key divergence in failure modes: top-performing models often make near-miss errors, while lower-
performing models fail catastrophically.

Model Accuracy (%) Relaxed Acc. Relaxed Acc.

(10%) (20%)
OpenAl 04-mini |OpenAl| (2025)) 5891 + 245 63.24 +2.40 7578 £2.13
Claude Sonnet 4 |Anthropic|(2025)) 53.94 +2.48 57.69 +2.46  66.28 £ 2.35
OpenAl 03 |OpenAll (2025) 50.52 £+ 2.49 5530 +2.47 65.63 £2.36
Qwen-2.5 VL Max [Bai et al.[(2025) 41.80 + 2.45 43.09 +2.46 5646 4+ 2.47
Pixtral Large Mistral Al et al.| (2024) 38.37 +£2.42 40.63 £2.44 5543 £2.47
Mistral 3.1 Small Mistral Al| (2025b)) 38.18 £2.42 40.70 +2.44 5433 +£2.48
Mistral 3.1 Medium Mistral Al|(2025a)  34.88 + 2.37 36.56 £2.40 52.20+2.49
Llava 1.6 13B|Liu et al.| (2024) 6.65 £ 1.24 6.65 + 1.24 9.82 + 1.48
Llava 1.6 7B |Liu et al.| (2024) 0.65 +0.42 0.65 + 0.42 0.65 +£0.42
Llava 1.6 34B|Liu et al.| (2024) 0.19 £+ 0.25 0.19 £+ 0.25 0.26 +£0.28
4.1.1 ANALYSIS BY FEATURE COUNT
100 —e— OpenAl 04-mini (Exact Match) —e— Qwen-2.5 VL Max (Exact Match)
= OpenAl 04-mini (Relaxed @ 10%) ~-=- Qwen-2.5 VL Max (Relaxed @ 10%)
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Figure 3: Model performance on Topological Counting as a function of the number of features to
be counted. The plot shows the strict accuracy for four representative models, illustrating a sharp
decline in performance as scene complexity increases. This demonstrates a critical scalability failure
in current MLLMs. Error bands denote 95% confidence intervals.

The most critical factor impacting performance is the number of features to be counted. As illus-
trated in Figure 3] all competent models exhibit a sharp decline in accuracy as the scene complexity
increases, a finding consistent with literature noting the brittleness of MLLLM counting abilities. The
full data is in Appendix Table[T0}

Small Counts (1-5 features): In the range analogous to human “subitizing,” models perform best.
Even here, however, the task is not solved; the top-performing 04-mini achieves just 69.64% strict
accuracy. Moderate and High Counts (6+ features): Performance collapses once the count ex-
ceeds the subitizing range. o4-mini’s accuracy falls to 61.88% for the 6-10 bin and plummets to
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just 32.22% for counts of 11-15. This steep decline suggests a fundamental failure in procedural
enumeration - the process of systematically identifying and tallying individual items.

Interestingly, the relaxed accuracy metrics reveal a key nuance in this failure. In the 11-15 count
range, while o4-mini’s accuracy is only 32.22%, its accuracy at 20% tolerance is 71.11%. This
widening gap at higher counts suggests that while models lose precision, they often retain an ap-
proximate sense of quantity. This points to a specific breakdown in the enumeration process rather
than a complete loss of numerical understanding; the model seems to know there are “a lot” of
features but loses the exact count.

4.1.2 ANALYSIS BY COUNT TYPE

A universal bias is observed across all mod-
els: they are consistently less accurate at count- 80 = Opennl ot
ing minima than maxima. This performance = Claude Sonnet 4
gap is not due to task difficulty; a weighted 70 S Do 31 Sred
average calculated from our ground-truth fre- '
quencies shows that maxima-counting tasks re-
quire counting slightly more items (a mean of
7.53) than minima tasks (a mean of 7.15). This
suggests the gap stems from the lower visual
salience of minima (dark valleys) compared to
maxima (bright peaks). Figure ] (Full table in
appendix [T2) illustrates this phenomenon for
our four representative models, revealing dis- Count Type
tinct tiers of reasoning ability and exposing dif-
ferent failure modes:

60.9% 59,8%
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Figure 4: Analysis of accuracy by count type for
the same models. This illustrates the performance
Robust Models: The most capable models, 04-  gap when counting visually salient maxima versus
mini and 03, show only a minimal performance less-salient minima. Error bars denote 95% confi-
drop (under 4 and 3 points, respectively). This dence intervals.

suggests they have a more abstract reasoning

ability that is less reliant on the brightness of

a feature and can identify peaks and valleys almost equally well.

Sensitive Models: A second tier is highly sensitive to feature type, with Claude Sonnet-4’s ac-
curacy dropping 11 points and Pixtral-Large’s over 9. Their failure modes show a clear divide:
for minima, they consistently undercount (errors of -1, -2, -3), suggesting they fail to perceive less-
salient dark features. For maxima, however, their errors are more varied and include frequent over-
counting (+1 errors for Claude Sonnet-4 and Mistral-Medium), indicating a different failure mode
related to confusion with highly salient features.

4.2 TRANSFORMATION RECOGNITION

The results for the Transformation Recognition task are summarized in Table[2] The overall accuracy
scores reveal a clear performance hierarchy, with o4-mini leading significantly. However, a deeper
diagnosis requires analyzing how model performance changes with task difficulty, for which the
breakdown by visual style consistency serves as an excellent proxy. This analysis reveals three
distinct and revealing failure profiles among the models.

Robust Reasoners: The top-performing models, like 04-mini, exhibit the expected behavior. Their
accuracy is high but drops gracefully on the harder version of the task (e.g., by 13 points when plot
types differ). This sensitivity to difficulty is the signature of a model genuinely engaging with the
visual problem.

Brittle Reasoners: A second group of models, including Claude Sonnet 4 and Pixtral Large, are
also sensitive to task difficulty, but their reasoning is fragile. Claude Sonnet 4’s accuracy plummets
by a catastrophic 19.5 points on the harder “Different Plot Type” task, with its performance falling
well below that of a random guesser. This suggests a reasoning mechanism that is present but breaks
completely under increased abstraction, a fundamentally different failure mode.
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Disengaged Heuristic Models: The final group, most notably the LLaVA family, exhibits an
anomalous insensitivity to task difficulty. Their performance remains perfectly flat, hovering just
a few points above the 20% random-chance baseline. This is not robustness; it is a symptom of dis-
engagement. A random guessing strategy is naturally insensitive to the difficulty of the questions.
The LLaVA models’ behavior is a strong indicator of a non-reasoning heuristic, where the model
has defaulted to a strategy that is disconnected from the visual evidence.

These distinct patterns demonstrate the diagnostic power of the benchmark, revealing not just that
models fail, but the specific ways in which their underlying reasoning strategies differ and break
down.

Table 2: Performance on the Transformation Recognition task, with a breakdown by visual style
consistency. The data reveals a clear performance drop for most models when plot styles differ,
confirming an increase in task difficulty.

Model Overall Acc. (%) Plot Type Color Map
Same Different Same Different

OpenAl 04-mini 67.12 £ 2.45 72.31 59.2 72.4 66.16
OpenAl 03 67.0 4 2.49 71.55 57.96 69.32 67.93
Claude Sonnet 4 29.0 +2.48 35.71 16.17 33.28 29.55
Mistral 3.1 Small 26.83 £ 2.42 27.57 25.37 29.38 23.99
LLaVA 1.6 13B 24.83 +1.27 24.81 24.88 25.49 26.26
LLaVA 1.6 34B 24.67 £0.25 24.56 24.88 23.38 25.25
Pixtral Large 16.58 + 2.42 19.17 11.44 18.34 16.16
Mistral 3.1 Medium 14.5 +2.37 18.3 6.97 16.88 13.13
Qwen-2.5 VL Max 10.0 +2.45 11.9 6.22 10.88 10.86
LLaVA 7B 3.67 +£0.42 4.26 2.49 3.9 2.78
Random Baseline 20 20 20 20 20
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Figure 5: Strict accuracy by transformation op-
tion for four representative models. The plot
reveals strong, systematic biases; some models
fail at translation while excelling at a single ro-
tation type.

Figure 6: Distribution of the top three incorrect
answers for each model. The plot diagnoses dis-
tinct failure modes, from conservative guessing
("No Change”) to collapsing to a single, prede-
termined answer.

4.3 ANALYSIS OF TRANSFORMATION-SPECIFIC BIASES AND FAILURE MODES.

A fine-grained analysis of performance by transformation option, combined with an analysis of the
models’ failure modes, reveals not just that models fail, but that they fail in profoundly different
ways, exposing the chasm between heuristic-based and reasoning-based strategies.

The most dramatic finding is a pattern of degenerate, non-reasoning behavior in several models. As
shown in Figure 5 (left) (full table in appendix [13), models like Mistral Small 3.1 and LLaVA-34b
exhibit a paradoxical, “one-trick pony” performance. They are completely incapable of translation
(scoring near 0%) but are nearly perfect at identifying a single, specific rotation type (99.0% for
180° rotations for Mistral, 98.67% for 90° rotations for LLaVA).
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The reason for this behavior is not specialized competence, but a collapsed strategy. Figure[6|(right)
provides the “smoking gun”: when these models are wrong, their most frequent incorrect answer
is their single preferred rotation type. This confirms their high accuracy is a direct artifact of them
consistently guessing a predetermined answer, regardless of the visual input.

In stark contrast, the failure analysis reveals a fundamentally different and more sophisticated failure
mode for the top-performing models. As seen in Figure[6] 04-mini the most common failure mode
is the “No Change” option. This is the signature of a system that is genuinely engaging with the
task: it attempts to find a transformation, fails to do so with high confidence, and defaults to the
“null hypothesis.” This is a failure within the process of reasoning, a sign of uncertainty rather
than a predetermined guess, and it represents a qualitatively more advanced kind of error than the
heuristic-based strategies employed by other models.

4.4 CORRELATION WITH ESTABLISHED BENCHMARKS

To demonstrate that the foundational skills isolated by MaRVL-QA are critical for real-world appli-
cations, we analyzed its relationship with established benchmarks that serve as proxies for complex,
real-world reasoning. Our Topological Counting task showed strong, statistically significant corre-
lations with both MMMU (p = 0.85,p < 0.01; N=9) and MathVista (p = 0.85,p < 0.01; N=8).
Since these benchmarks test a wide spectrum of abilities from reasoning over statistical plots and
geometric figures in MathVista to general scientific and expert-level understanding in MMMU, this
strong correlation indicates that systematic enumeration is a foundational skill required for these
complex applications. The Transformation Recognition task correlated powerfully with CharXiv
(p = 0.9, p < 0.05; N=5), confirming that geometric reasoning is fundamental to chart comprehen-
sion. These findings indicate that MaRVL-QA performance is not only diagnostic but also predictive
of downstream benchmark success.

5 ARCHITECTURAL BOTTLENECKS IN VISUAL-MATHEMATICAL
REASONING

The systemic failures on MaRVL-QA are not incidental but symptomatic of core architectural bot-
tlenecks in modern MLLMs, which are fundamentally optimized for semantic understanding at the
expense of precise structural analysis. A primary bottleneck is the vision encoder’s training objec-
tive; models like CLIP are optimized to align an entire image with a text caption, an objective that
prioritizes capturing the semantic “gist” over preserving the fine-grained spatial detail required for
procedural tasks like counting. This semantic compression is likely exacerbated by the lossy pro-
jection layers connecting the vision and language components, which discard the high-fidelity geo-
metric information needed to distinguish between transformations. The language model, therefore,
does not reason over the visual world itself but over a low-dimensional, pre-digested abstraction.
This forces it to learn brittle heuristics - associating superficial changes in token patterns with trans-
formation labels - rather than acquiring a true, generative understanding of geometric operations,
leading to the collapsed strategies we observe.

6 CONCLUSION AND FUTURE WORK

We introduced MaRVL-QA, a diagnostic benchmark designed to evaluate the foundational visual-
mathematical skills of Multimodal Large Language Models. By testing models on topological count-
ing and transformation recognition, tasks which isolate geometric reasoning from the semantic com-
plexity of natural images, our work reveals profound fragility and a reliance on superficial heuristics
in even state-of-the-art systems. The strong correlation between performance on MaRVL-QA and
established multimodal benchmarks confirms that these foundational skills are critical for complex,
real-world applications. The specific failure modes diagnosed by our benchmark illuminate a clear
path forward, highlighting the need for architectures that enforce sequential processing to overcome
counting failures, pre-training objectives grounded in geometric principles to teach true spatial rea-
soning, and aggressive data augmentation to ensure models learn to separate underlying structure
from superficial style.



Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We are committed to full reproducibility and will publicly release all code and data used for bench-
mark generation and evaluation. The supplementary material includes a small data sample for both
the tasks. The MaRVL-QA benchmark is programmatically generated from a curated library of
32 mathematical function families (Appendix A.1), ensuring the entire process is replicable. The
generation pipeline (Section 3), including plot rendering (Appendix A.2) and task-specific ground
truth creation with rigorous ambiguity filtering (Algorithm 1, Appendices A.3-A.5), is thoroughly
documented. Our evaluation methodology (Section 4) is designed to be deterministic, with model
temperatures set to 0 and the exact system prompts provided in Appendix A.7. To ensure fair and
transparent answer parsing, we employ an LLM-based parser, with results from a stricter rule-based
parser also reported for comparison (Appendix A.6.1). The public release will include all code
necessary to generate the dataset, run model evaluations, parse results, and produce the figures and
tables in this paper, facilitating the complete verification of our findings.
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A APPENDIX

A.1 FUNCTION FAMILY TIERS
The library is organized into five distinct tiers of complexity:

¢ Tier 1: Foundational & Quadric Surfaces This tier establishes a baseline with the most
fundamental geometric forms. Key examples include the Plane and the Elliptic Paraboloid.

* Tier 2: Periodic & Wave-like Surfaces This tier introduces functions with regular, repeat-
ing structures to test reasoning over periodic patterns. Examples include the Wave Surface
and the Ripple function.

¢ Tier 3: Singularities, Boundaries, & Discontinuities This tier is designed to probe model
robustness by presenting challenging edge cases. It contains functions like the Cone and
the Step Function .

* Tier 4: Composite & Modulated Surfaces This tier features more complex topologies
created by combining or modifying simpler forms. One example is the Gaussian Mixture,
which allows for the precise placement of multiple, varied local extrema.

* Tier 5: Advanced & Special Surfaces The final tier includes advanced functions that
represent highly complex geometric forms. Examples include the Hyperboloid of One
Sheet and the Extruded Witch of Agnesi.

This tiered curation is a cornerstone of our methodology. It ensures that MaRVL-QA provides a rich,
structured, and challenging environment for evaluating the visual reasoning capabilities of MLLMs.

Table B shows the number of functions used from each of the function families.

A.2 PLOT RENDERING DETAILS

This section provides the specific implementation details for the plot rendering.
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Table 3: Distribution of function instances across 32 families.

Function Count Family

20 Lattice of Gaussian Peaks, Inverted Lattice
of Valleys

17 Windowed Waves

13 Gaussian Mixture, Inverted Gaussian Mix-
ture

12 Crossed Tunnels

10 Plane, Elliptic Paraboloid, Hyperbolic

Paraboloid, Parabolic Cylinder Wave
Surface, Circular Ripples, Gabor Function,
Checkerboard, Cone, Cusp, Monkey Sad-
dle, Step Function, Sharp Ridge, Astroidal
Bowl, Logarithmic Singularity, Ring Singu-
larity, Modulated Wave, Damped Oscillator,
Volcano, Spiraling Surface, Mixed-Sign
Gaussian Mixture, Contained Symmetric
Lobes,Beaded Rings, Inverted Beaded
Rings, Hyperboloid of One Sheet, Extruded
Witch of Agnesi

Plot Styles and Color Maps To ensure visual diversity and test for model robustness, each func-
tion was rendered using a combination of different plot types and color maps.

 Plot Types: Three distinct plot visualization styles were used:

1. heatmap: A standard two-dimensional heatmap.

2. contour: A plot showing only the contour lines.

3. heatmap-contour: A plot overlaying the contour lines on top of the heatmap.
* Color Maps: All plot types were rendered using four different perceptually uniform and

colorblind-friendly Matplotlib color maps:

1. viridis

2. plasma
3. inferno
4,

magma

Rendering and Analysis Resolution A distinction was made between the grid resolution used for
rendering the final image and the one used for the numerical analysis to find ground-truth extrema.

* Rendering Grid: For generating the final plot images presented to the models, all functions
were sampled over a 400x400 grid. This resolution was chosen to produce visually clear,
high-quality images without being computationally prohibitive.

 Analysis Grid: For the initial numerical analysis in the Topological Counting task, a much
denser 2000x2000 grid was used. This higher resolution was essential for the coarse lo-
calization stage, ensuring that the peak-finding algorithm could reliably detect even small
or closely-spaced features before they were refined using numerical optimization on the
underlying continuous function. As mentioned in the main paper, any potential disparities
between the high-resolution analysis and the final rendered image were resolved during
our manual curation phase, where we certified that the programmatic ground-truth count
exactly matched the number of clearly visible features in the image.

A.3 IMPLEMENTATION DETAILS FOR THE TOPOLOGICAL COUNTING TASK
This section provides the specific implementation details for the ground-truth generation pipeline of

the Topological Counting task. The process involves a two-stage automated analysis followed by a
manual curation protocol.

Automated Numerical Analysis. The hybrid coarse-to-fine strategy for identifying extrema was
implemented as follows:
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1. Coarse Localization: An initial, efficient localization of extrema was performed on a
discrete data grid using the skimage . feature.peak_local_max function to identify
approximate pixel coordinates.

2. High-Precision Refinement: The pixel coordinates from the coarse localization step
were used as initial seeds for a high-precision numerical optimization using the
scipy.optimize.minimize function to refine the location of each extremum on the
underlying continuous mathematical function.

Table [ summarizes the specific parameters and functions used in this automated analysis.

Table 4: Parameters for Automated Extrema Detection.

Stage Parameter Specification
Analysis Grid 2000 x 2000
o Peak Detection Function peak_local_-max
Coarse Localization . . .
min_distance 10 pixels
exclude_border True
Optimization Function minimize
. .. Method "Nelder-Mead’
High-Precision Refinement Tolerance (to1) le—9
Final Precision Rounded to 4 decimal places
Family Name Countable Features
Wave Surface Maxima & Minima
Lattice of Gaussian Peaks Maxima only
Inverted Lattice of Valleys Minima only
Gabor Function Maxima & Minima
Crossed Tunnels Minima only
Gaussian Mixture Maxima only
Inverted Gaussian Mixture Minima only
Mixed-Sign Gaussian Mixture ~Maxima & Minima
Windowed Waves Maxima & Minima
Contained Symmetric Lobes Maxima & Minima
Beaded Rings Maxima only
Inverted Beaded Rings Minima only

Table 5: Function families selected for the Topological Counting task and the specific features (max-
ima, minima, or both) certified for unambiguous counting.

Manual Curation Protocol. Following the automated analysis, a meticulous manual review was
conducted by members of the research team to certify that every generated question was visually
unambiguous and fair. The protocol for this review was as follows:

1. Feature Visibility and Disambiguation: Each identified extremum had to be a clearly
perceptible, discrete feature. The criteria for this varied by plot type:

¢ In heatmap plots, a maximum (or minimum) had to be visible as a distinct region of
peak color intensity that faded before brightening again towards a neighboring maxi-
mum.

¢ In contour plots, an extremum had to be enclosed by at least one contour line of lower
(or higher) intensity relative to its immediate surroundings, ensuring it was not part of
a flat plateau or ridge.

2. Final Certification: The reviewers confirmed that for every plot, the number of program-
matically identified extrema exactly matched the number of features that met the visual
criteria above. This final step ensured the integrity of the ground truth and its alignment
with the visual evidence presented to the models.
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Algorithm 1 Unambiguous Transformation Generation

Input: A function f, a candidate transformation 7.

Qutput: An unambiguous QA pair, or failure.

1: if T is a rotation then

2:  if IsSymmetric(f,T") then

3 return failure {Reject symmetric rotation}

4:  endif

5. Tequiv < FindEquivalentTranslation(f,T")

6 if IsSimilar(f, T, Tequiv) then

7 return failure {Reject if rotation resembles translation }
8 end if

else if 7" is a translation then
10:  if not HasProminentFeatures(f) then
11: return failure {Reject featureless surfaces}
12 endif

13:  found_pure_translation < false
14:  for each candidate distance d do

15: Let Ty be a translation by d.

16: if IsSimilar(f, f,T,;) then

17: continue {Skip if translation is symmetric}
18: end if

19: if IsSimilarToAnyRotation(f, T;) then

20: continue {Skip if translation resembles a rotation }
21: end if

22: T+ Ty

23: found_pure_translation < true

24: break

25:  end for

26:  if not found_pure_translation then

27: return failure

28:  endif

29: end if

30: Generate QA pair for (f, T).
31: return QA pair

A.4 IMPLEMENTATION DETAILS FOR THE TRANSFORMATION RECOGNITION TASK

This section provides the specific implementation details for the ground-truth generation pipeline of
the Transformation Recognition task.

Ambiguity Filtering Algorithm. At the core of our pipeline is a rigorous, two-way ambiguity
filter designed to ensure that each transformation is visually distinct and not confusable with an-
other. The high-level logic is detailed in Algorithm[I} The core of this algorithm is a similarity
check, which we quantify by computing the normalized Root Mean Squared Error (NRMSE) on the
functions’ 2000 x 2000 sampled data grids. The specific hyperparameters used in this algorithm are
detailed in Table[6l

Table 6: Hyperparameters for Ambiguity Filtering (Algorithm .

Parameter Value Description

Comparison Grid 2000 x 2000  Resolution of data grids for NRMSE.

Significance Threshold 0.07 Min. NRMSE for a transformation to be non-symmetric.
Candidate Samples 10 Number of random translation distances tested per axis.

Prominent Feature Filtering for Translations. To ensure that translation tasks were visually
meaningful, we filtered out functions that lacked prominent features. This was a two-stage process:
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1. Automated Prominence Check: We programmatically identified peaks and calculated
their ”prominence” (the vertical distance from the peak to the lowest point on any path to a
higher peak). A function was flagged as having prominent features if at least one peak had
a prominence of at least 10% of the function’s total dynamic range.

2. Manual Review: Functions that failed the automated check were manually reviewed. This
was crucial for functions with visually prominent features that are not peaks (e.g., sharp
discontinuities or ridges). If such features were deemed significant by a human reviewer,
the function was added back to the candidate pool for translation tasks.

Combinatorial Style Expansion. To test for robust, style-agnostic reasoning, we generated 81
visually distinct QA pairs for each validated (function, transformation) pair. This was achieved by
creating a palette of 9 unique plot styles and then generating all possible pairings for the original
and transformed plots. The 9 styles were derived from our plot types and color maps as follows:

* Heatmap: 4 styles (one for each color map: viridis, plasma, inferno, magma).

* Contour with Heatmap: 4 styles (one for each color map).

e Contour-Only: 1 style (contours are black and white, no color map applied).

This resulted in 9 styles (Plot A) x 9 styles (Plot B) = 81 unique visual combinations for every
question.

A.5 AMBIGUOUS CASES
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Table 7: Examples of ambiguous transformation cases identified by our rigorous ambiguity detection
algorithm. Each row displays an image with its corresponding question, actual answer, and the

possible options that create the ambiguity.

Image

Question Actual Answer

Possible Options

Section A: Symmetric Rotations

Which single transformation

has been applied to plot A to Rotation 90 degrees

Rotation 180 degrees

produce plot B? clockwise No Change
Which single transformation

has been applied to plot A to Rotation 180 degrees No Change
produce plot B?

Section B: Symmetric Translations

Which single transformation

has been applied to plot A to  Translation in X No Change
produce plot B?

Which single transformation

has been applied to plot A to TranslationinY No Change

produce plot B?

Section C: Rotations Appearing as Translations

Which single transformation
has been applied to plot A to Rotation 180 degrees
produce plot B?

Translation in X

Which single transformation
has been applied to plot A to
produce plot B?

Rotation 90 degrees
clockwise

Section D: Undetectable Translations for Featureless Functions

Translation in Y

Which single transformation

has been applied to plot A to  Translation in Y No Change
produce plot B?

Which single transformation

has been applied to plot A to  Translation in X No Change

produce plot B?
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A.6 ADDITIONAL ANALYSIS DATA

A.6.1 RESULTS WITHOUT LLM PARSER

The tables below show the model performance when using a strict, rule-based parser instead of an
LLM to extract answers. The results for most proprietary models that consistently adhered to the
specified output format, such as OpenAl 04-mini and Claude Sonnet 4, show minimal to no change
across both tasks.

However, the performance of several open-source models drops, revealing their tendency to fail to
follow formatting instructions. The most dramatic impact is on the LLaVA models in the Topo-
logical Counting task (Table [8)), where accuracies fall significantly. For example, LLaVA 13B’s
accuracy drops from 6.65% to 1.29%, indicating that its outputs were frequently valid in natural
language (e.g., "twelve”) but not in the required integer format (”12”).

In contrast, the results for the Transformation Recognition task (Table E]) are much more sta-
ble. Most models successfully followed the multiple-choice format by outputting a single integer,
resulting in negligible accuracy changes. This highlights that the models’ formatting failures are
task-dependent; they struggle more with open-ended numerical answers than with selecting from a
constrained set of options.

Table 8: Overall performance on the Topological Counting task with rule-based extraction

Model Accuracy (%)
OpenAl 04-mini 58.91
Claude Sonnet 4 53.94
OpenAl 03 50.06
Qwen-2.5 VL. Max 41.80
Pixtral Large 37.6
Mistral 3.1 Small 38.18
Mistral 3.1 Medium 34.88
Llava 1.6 13B 1.29
Llava 1.6 7B 0.65
Llava 1.6 34B 1.81

Table 9: Overall performance on the Transformation Recognition task with rule-based extraction

Model Accuracy (%)
OpenAl 04-mini 67.92
OpenAl 03 63.83
Claude Sonnet 4 29.17
Mistral 3.1 Small 26.83
Llava 1.6 13B 24.83
Llava 1.6 34B 24.67
Pixtral Large 16.58
Mistral 3.1 Medium 14.5
Qwen-2.5 VL Max 10.0
Llava 1.6 7B 3.67

A.6.2 ANALYSIS BY COLORMAP

To evaluate model robustness against superficial visual features, we analyzed performance across
four different colormaps. Figure [/|illustrates this for four representative models. The results show
that top-performing models like 04-mini and Claude Sonnet-4 are largely robust to these stylistic
variations, with their accuracy remaining stable within a narrow 4-point range regardless of the
colormap used. This suggests they do not rely on simple color-based heuristics.
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g In contrast, some mid-tier models exhibit sensitivity to style. For instance, Mistral 3.1 Small’s
973 performance varies by over 7 percentage points depending on the colormap, dropping from
974 41.86% on 'magma’ to 34.59% on ’plasma’. This performance variance suggests these mod-
975 els may be relying on more fragile, color-dependent heuristics rather than a style-agnostic

976 method for identifying features. The full breakdown for all models is available in [I1]
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Table 10: Detailed accuracy breakdown by feature count bin. We report Accuracy and Relaxed
Accuracy at 10% and 20% tolerance. All metrics are shown with 95% confidence intervals.

Model Count Bin Acc. (%) Relaxed Acc. (10%) Relaxed Acc. (20%)

1-5 69.64 69.64 74.80
. 6-10 61.88 63.42 80.85

OpenAl o4-mini 11-15 32,20 53.70 7111
16-20 33.33 33.33 55.56
1-5 57.43 57.43 60.72

6-10 60.85 62.39 76.58

Claude Sonnet 4 11-15 34.81 52.96 61.48
16-20 33.33 33.33 44.44
1-5 66.67 66.67 70.42
6-10 45.98 48.72 62.56
OpenAl 03 11-15 25.56 47.04 62.59
16-20 33.33 33.33 57.41
1-5 50.86 50.86 57.12
6-10 4821 4821 63.76
Qwen-2.5 VL Max 11-15 10.00 17.41 45.56
16-20 24.07 24.07 24.07

1-5 46.64 46.64 52.58
Pixtral Laroe 6-10 40.34 41.37 64.10
g 11-15 15.93 26.67 47.41

16-20 31.48 31.48 35.19

1-5 44.44 44.44 52.43

. 6-10 41.88 42.05 60.51
Mistral 3.1 Small 11-15 17.04 31.11 49.63
16-20 29.63 29.63 33.33

1-5 48.83 48.83 57.28

. . 6-10 33.68 33.68 55.21
Mistral 3.1 Medium ) 5 10.37 17.78 39.63
16-20 5.56 16.67 2222

1-5 15.18 15.18 19.09

6-10 0.85 0.85 4.10

Llava 13B 11-15 0.37 0.37 2.22
16-20 0.00 0.00 0.00

1-5 1.56 1.56 1.56

6-10 0.00 0.00 0.00

Llava 7b 11-15 0.00 0.00 0.00
16-20 0.00 0.00 0.00

1-5 0.31 0.31 0.31

6-10 0.17 0.17 0.34

Llava 348 11-15 0.00 0.00 0.00
16-20 0.00 0.00 0.00
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Table 11: Detailed strict accuracy (%) on the Topological Counting task by model and colormap.

Model Inferno (%) Magma (%) Plasma (%) Viridis (%)
OpenAl 04-mini 58.72 60.17 61.92 59.30
Claude Sonnet 4 54.94 55.52 52.91 56.69
OpenAl 03 52.91 49.13 47.97 54.36
Qwen-2.5 VL Max 46.22 44.48 40.99 40.12
Pixtral Large 44.19 39.83 38.66 35.76
Mistral 3.1 Small 40.12 41.86 34.59 36.92
Mistral 3.1 Medium 38.08 36.34 34.30 35.47
Llava 13B 5.23 6.69 5.81 8.43
Llava 7b 0.58 0.58 0.58 0.58
Llava 34B 0.00 0.00 0.29 0.29

Table 12: Detailed accuracy (%) on the Topological Counting task by feature type. All metrics are
shown with 95% confidence intervals.

Minima Acc. (%)

Model Maxima Acc. (%)
OpenAl 04-mini 60.91 + 3.47
Claude Sonnet 4 59.81 £+ 3.50
OpenAl 03 51.85 +£3.63
Qwen-2.5 VL Max 45.13 £ 3.62
Pixtral Large 4321 £3.58
Mistral 3.1 Small 42.52 £ 3.56
Mistral 3.1 Medium 40.05 + 3.51
Llava 13B 7.96 + 1.99
Llava 7b 1.37 £ 0.88
Llava 34B 0.41 +0.53

57.14 £3.35
48.72 £3.41
49.33 £3.42
38.83 £3.34
34.07 £3.28
3431 +£3.29
30.28 £3.18
549+ 1.59
0.00 £ 0.47
0.00 + 0.47
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Table 13: Model Accuracy by Transformation Type with 95% Confidence Intervals.

Model Transformation Type Accuracy (%)
Rotate 90 Degrees Clockwise 47.7+£5.6

Rotate 180 Degrees 34.7£54

Claude Sonnet 4 Translation in X 13.3 £3.8
Translation in Y 20.3 1+ 4.5

Rotate 90 Degrees Clockwise 14.0+£ 3.9

Rotate 180 Degrees 0.0£0.6

Llava 138 Translation in X 85.3 + 4.0
Translation in Y 0.0£0.6

Rotate 90 Degrees Clockwise 98.7+14

Rotate 180 Degrees 0.0+0.6

Llava 34B Translation in X 0.0+£0.6
Translation in Y 0.0£0.6

Rotate 90 Degrees Clockwise 13.3+£3.9

Llava 7b Rotate 180 Degrees 0.0£0.6
Translation in X 1.3+14

Translation in Y 0.0£0.6

Rotate 90 Degrees Clockwise 19.0+4.4

. . Rotate 180 Degrees 34.7£54
Mistral 3.1 Medium Translation in X 1.7+1.6
Translation in Y 27+1.9

Rotate 90 Degrees Clockwise 6.3 £2.8

. Rotate 180 Degrees 99.0£ 1.3
Mistral 3.1 Small Translation in X 1.3+14
Translation in Y 0.7+1.1

Rotate 90 Degrees Clockwise 59.0 £ 5.5

Rotate 180 Degrees 43.0£5.6

OpenAl 03 Translation in X 86.7 £ 3.9
Translation in Y 79.3 + 4.6

Rotate 90 Degrees Clockwise 65.7 £5.3

OpenAl od-mini Rotate 180 Degrees 43.0£5.6
p Translation in X 84.3+4.1
Translation in Y 78.7+4.6

Rotate 90 Degrees Clockwise 3.3+2.1

Pixtral Laree Rotate 180 Degrees 48.0£5.6
g Translation in X 7.0+ 2.9
Translation in Y 8.0+3.1

Rotate 90 Degrees Clockwise 5.7+2.7

Rotate 180 Degrees 8.3+3.2

Qwen-2.5 VL Max 1y lation in X 21.3+4.6
Translation in Y 4.7+24
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A.7 SYSTEM PROMPTS

We specify the exact system prompts used for every task to evaluate model responses.

Counting System Prompt

You are an expert in analyzing the topology of mathematical surfaces. Your primary function is to act as a
feature counter for 2D plots of 3D functions, which will be presented as either heatmaps or contour plots.
You will be asked to count the number of local maxima or local minima. When performing this task, you
must adhere strictly to the following four rules for every plot you analyze:

1. Definition Rule: A feature must be a distinct peak (for a maximum) or valley (for a minimum).

2. Boundary Rule: Do not count a feature if its highest point (peak) or lowest point (valley) lies on the exact
boundary of the plot area.

3. Plateau Rule: A single, continuous flat region (a plateau at a high value or a flat-bottomed basin at a low
value) must be counted as exactly one feature.

4. Saddle Point Rule: You must not count saddle points. A saddle point is a location that appears to be a
peak from some directions and a valley from others, and is not a true local extremum.

Your final answer for any task must be a single integer number (e.g., 0, 1, 2, etc.) in this format on a new
line:

<final_answer>count</final_answer>

Here, <final_answer>and </final_answer> are XML tags and “count” is the integer number you
counted. Do not provide any additional text, explanation, or justification.

Transformation System Prompt

You are an expert at comparing mathematical plots. You will be given a single input image containing two
2D plots of 3D functions - Plot A on the left and Plot B on the right.

Each plot can either be a heatmap or a contour plot. Your task is to determine the transformation that has
been applied to Plot A (the left plot) to obtain Plot B (the right plot).

For transformations that include translation, the shift in any direction will not exceed 25% of the correspond-
ing axis range (i.e. at most one-quarter of the plot’s width or height).

You will also be given a set of numbered transformation options (labeled 1 ... N). Exactly one option is
correct. Identify which single option describes the transformation applied to Plot A to obtain Plot B. If
uncertain, pick the single closest option.

Output only one line in this exact format:

<final_answer>option_number</final_answer>

Here, <final_answer>and </final_answer> are XML tags and “option_number” is the number of
the option you think is correct. Do not provide any additional text, explanation, or justification.

A.8 USE OF GENERATIVE Al

We utilized Generative Al tools to help improve the language, phrasing, and readability of this
manuscript.
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