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Abstract

The self-improving ability of large language001
models (LLMs), enabled by prompting them002
to analyze and revise their own outputs, has003
garnered significant interest in recent research.004
However, this ability has been shown to be005
absent and difficult to learn for smaller mod-006
els, thus widening the performance gap be-007
tween state-of-the-art LLMs and more cost-008
effective and faster ones. To reduce this gap,009
we introduce TRIPOST, a training algorithm010
that endows smaller models with such self-011
improvement ability, and show that our ap-012
proach can improve LLaMA-7B’s performance013
on math and reasoning tasks by up to 7.13%.014
In contrast to prior work, we achieve this by015
using the smaller model to interact with LLMs016
to collect feedback and improvements on its017
own generations. We then replay this experi-018
ence to train the small model. Our experiments019
on four math and reasoning datasets show that020
the interactive experience of learning from and021
correcting its own mistakes is crucial for small022
models to improve their performance.023

1 Introduction024

Large language models (OpenAI, 2023; Ouyang025

et al., 2022) together with techniques such as few-026

shot prompting (Brown et al., 2020) and Chain-of-027

Thought (CoT) prompting (Wei et al., 2023; Ko-028

jima et al., 2023) have been shown to be effective029

in achieving strong performance on various down-030

stream language tasks. More recently, a new way to031

adapt LLMs to downstream tasks has captured the032

attention of many researchers, namely to further033

enhance the LLM’s downstream task performance034

by asking the LLM to provide feedback on its own035

generations and then use the feedback to revise its036

outputs (Bai et al., 2022; Huang et al., 2023; Peng037

et al., 2023a; Shinn et al., 2023). This process is038

often called “self-improvement”, and has proven to039

be an effective technique to make the LLM’s gener-040

ations more diverse, more precise, or more faithful041
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Figure 1: Compared to LLMs, smaller models have dif-
ficulty performing self-improvement on math or logical
tasks, such as Multistep Arithmetics and Logical Deduc-
tion from the Big-Bench. +ft: finetuned on ground-
truth rationales; +SI. prompt: prompted to perform
self-improvement; +ft SI. demo further finetuned +ft
on LLM self-improvement demonstrations.

to a given piece of knowledge (Schick et al., 2022; 042

Madaan et al., 2023; Peng et al., 2023a). 043

However, Saunders et al. (2022); Huang et al. 044

(2023) found that the ability to generate critical 045

feedback or to self-improve is hardly evident in 046

smaller models1. Similarly, Ye et al. (2023) found 047

that fine-tuning smaller models (e.g. 7-13B) with 048

self-improvement demonstrations from LLMs can 049

still fail on tasks such as math, reasoning, and 050

factuality. Following these previous works, we 051

performed a similar study on two math and rea- 052

soning tasks in Figure 1. We compared the accu- 053

racy of the final answer generated by prompting 054

a 175B Codex (Chen et al., 2021) to self-improve, 055

with prompting or training a LLaMA-7B model to 056

1The distinction between small and large language models
is often context-dependent (Saunders et al., 2022). In this
work, we denote “small models" to those with a few billion
parameters (e.g., LLaMA-7B), and LLMs as those scaled to
hundreds of billions of parameters (e.g., ChatGPT).
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Method Codex (175B) LLaMA+ft (7B)

Input Q: ((4 - 0 * -1 * 8 + 6) + (0 + 4 + 9 * 5 * -2)) =

Attempt: (1) This equation can be written as "(A + B)" ... (1) This equation can be written as "(A + B)" ...
(2) Let’s calculate A=(4 - 0 * -1 * 8 + 6) (2) Let’s calculate A=(4 - 0 * -1 * 8 + 6)

=(4 - (0 * -1 * 8) + 6) =(4 - (0 * -1 * 8) + 6)
=(4 - (0 + 6)) =(4 - (0 + 8) + 6)
=(4 - 6) =(4 - 8 + 6)
=-2 =2

(3) Let’s calculate B=(0 + 4 + 9 * 5 * -2) (3) Let’s calculate B=(0 + 4 + 9 * 5 * -2)
=(0 + 4 + (9 * 5 * -2)) =(0 + (4 + (9 * 5)))
=(0 + 4 + (-90)) =(0 + (13))
=-86 =13

(4) Then, the final eq is (A + B) = (-2 + -86) = -88. (4) Then, the final eq is (A + B) = (2 + 13) = 15.
(Final response) So the answer is -88. (Final response) So the answer is 15.

Table 1: Training smaller models using self-improvement demonstrations from LLMs can be ineffective, as models
of different sizes make different types and amount of mistakes (highlighted in red). Small models can make simple
copying errors, while LLMs can make other arithmetic errors, such as not switching plus or minus signs when
adding parentheses. See Appendix B for a more quantitative analysis.

self-improve using demonstrations from Codex (Ye057

et al., 2023). In Figure 1, we surprisingly find that058

smaller models performed worse using prior self-059

improvement-related methods than simply training060

on ground-truth step-by-step rationales (+ft). By061

comparing the generated solutions from Codex-062

175B and LLaMA-7B, we find that smaller models,063

such as LLaMA-7B, not only make more mistakes,064

but also different types of mistakes compared to an065

LLM (Table 1 and Appendix B). Due to the smaller066

model’s weaker math and reasoning ability, we067

believe training on LLM self-improvement demon-068

strations is less effective, as it forces the smaller069

model to learn from mistakes not of its own.070

Motivated by this finding, we propose TRIPOST,071

a training algorithm that can more effectively train072

a small model to learn from its mistakes, gen-073

erate feedback, and improve its performance on074

math and reasoning tasks. TRIPOST is an iter-075

ative algorithm consisting of three stages: Inter-076

active Trajectory Editing, Data Post-processing,077

and Model Training. Similar to the exploration078

stage in reinforcement learning, TRIPOST first cre-079

ates improvement demonstrations using the small080

model to interact with the expert LLMs or rele-081

vant Python scripts. Then, TRIPOST postprocesses082

the collected data by filtering out failed improve-083

ment attempts, and then re-balances the dataset084

to disincentivize the model from trying to self-085

“improve” when it is not needed. Finally, TRIPOST086

replays the post-process dataset (Andrychowicz087

et al., 2018; Schaul et al., 2016), and trains the088

smaller model using weighted supervised learn-089

ing. TRIPOST repeats entire the process several090

times. We evaluate our approach on four maths 091

and reasoning datasets from the BIG-Bench Hard 092

(Suzgun et al., 2022) collection, and find that 093

TRIPOST-trained models can use its learned self- 094

improvement ability to improve their task perfor- 095

mance. We also find that TRIPOST-trained models 096

achieve better in-domain and out-of-domain perfor- 097

mance than models trained using just the ground 098

truth step-by-step rationales and trained using di- 099

rect LLM demonstrations (Saunders et al., 2022; 100

Ye et al., 2023). This paper makes the following 101

contributions: 102

• We illustrate how prior work (Saunders et al., 103

2022; Ye et al., 2023) can be ineffective in 104

training smaller models to self-improve their 105

performance on math and reasoning tasks. 106

• We propose TRIPOST, an iterative training 107

algorithm that trains a smaller language model 108

to learn to self-improve. 109

• We show that TRIPOST-trained models 110

achieve better performance than models 111

trained using ground-truth rationales or us- 112

ing LLM demonstrations on four math and 113

reasoning datasets from BIG-Bench Hard. 114

2 Approach 115

TRIPOST is an algorithm that trains a small lan- 116

guage model to self-improve by learning from its 117

own mistakes. Each iteration of TRIPOST consists 118

of three stages. On a high level, we first collect 119

a set of improving trajectories by using a smaller 120

model Mθ to interact with LLMs. We use Mθ to 121
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Feedback: The final answer is correct. [END]

Update:
(1) a = (1+2) = 3
(2) b = (4-3) = 1
(Ans) The answer is 3 * 1 = 3

Q: ((1+2) * (4-3)) = ?

repeat

weighted SL
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Figure 2: Overview of TRIPOST algorithm. TRIPOST consists of three stages: interactive trajectory editing where
we use our FBK and IMP module to edit trajectories generated by a smaller model Mθ; data post-processing where
we filter out erroneous trajectories and create a re-balanced dataset; and model training where we train Mθ using
weighted supervised learning on the post-processed dataset.

generate initial attempts and then use a feedback122

module FBK and an improvement module IMP123

to edit parts of the Mθ generated attempts. This124

creates a trajectory that includes attempts gener-125

ated by the small model, with feedbacks and im-126

provements tailored to the small model’s capability127

(Figure 2). Next, we post-process the collected128

trajectories by 1) using scripts and other heuristics129

to filter out failed “improvement” attempts; and 2)130

re-balancing the dataset using both directly correct131

attempts and the improving trajectories. Finally, we132

use weighted supervised learning to train a smaller133

model Mθ using the post-processed data.134

We provide an overview of our algorithm in Fig-135

ure 2, and detail each of the three stages in Sec-136

tion 2.2, Section 2.3, and Section 2.4, respectively.137

2.1 Notation138

We denote the entire attempt from a language139

model to solve a given question as a trajectory x:140

x = (xinit, xfb1 , x
up
1 , xfb2 , x

up
2 , ..., xfbm),141

where xinit denotes the initial attempt, and xfbi , x
up
i142

denotes the i-th feedback and updated attempt,143

respectively. Such a trajectory ends when the144

last feedback xfbm contains the phrase "the final145

response is correct". Therefore, directly correct146

trajectories take the form of x✓ = (xinit, xfb1 ),147

and self-improving trajectories take the form of148

xSI = (xinit, xfb1 , x
up
1 , ..., xfbm) where m > 1.149

2.2 Interactive Trajectory Editing 150

In our prior study in Figure 1 and Table 1, we find 151

that it is difficult to elicit a 7B model to perform 152

self-improvement due to its significantly weaker 153

math and reasoning capability compared to LLMs. 154

To address this issue, we use the smaller model Mθ 155

to first generate an initial attempt (and feedbacks or 156

improvements if Mθ generates them), and then ap- 157

ply a feedback module FBK and an improvement 158

module IMP to rewrite parts of the Mθ trajecto- 159

ries. Specifically, we first use FBK (prompting 160

text-davinci-003 or using a Python script) to gen- 161

erate a feedback xfb∗i based on the first error step 162

it identified for each incorrect attempt. After that, 163

we edit the trajectory by replacing the first feed- 164

back that Mθ and FBK disagree on with the FBK- 165

generated feedback, creating: 166

xedited = (xinit, ..., xupi−1, x
fb∗
i ). 167

Finally, we use our improvement module IMP 168

(prompting Codex) to generate an improved at- 169

tempt conditioned on the previous attempt xupi−1 170

and feedback xfb∗i , and append it to xedited. We 171

repeat this process, up to a maximum number of 172

iterations, until the last attempt in xedited is cor- 173

rect, and we discard xedited that failed to reach the 174

correct answer. 175
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2.3 Data Post-processing176

After the interactive trajectory editing step, we have177

three types of data: 1) gold step-by-step demonstra-178

tions xgold for the task, 2) directly correct trajecto-179

ries x✓ generated by Mθ, and 3) edited trajectories180

xedited created using Mθ,FBK, and IMP.181

To make training easier, we first split all data182

into triplets of single-step improvement ximp =183

(xatt, xfb, xup) if an attempt xatt ∈ {xinit, xupi }184

was incorrect, or into xT = (xatt, xfb) where the185

attempt is correct and the trajectory ends with xfb186

containing the phrase "the final response is correct".187

Next, we filter out some ximp triplets that contain188

incorrect feedbacks or improvement steps using189

some rules (see more in Appendix H). Then, we190

combine xT and filtered ximp into a single dataset,191

and balance them using a hyperparameter p spec-192

ifying the proportion of ximp. We find that this193

parameter is important for the model to learn to194

improve its attempt only when necessary. This is195

because we found that training with too many ximp196

can cause the model to attempt self-improvement197

even when the last attempt is already correct, thus198

damaging its performance (see Section 4.2).199

2.4 Model Training200

Finally, we use supervised learning (SL) to train a201

smaller model Mθ on the combined dataset. To pro-202

mote the model to focus on learning the feedback203

and improvement steps in ximp, we use a weighted204

cross-entropy loss. We weight the loss for all the205

tokens in xT with w = 1.0, but with w > 1.0 for206

the tokens that belong to xfb or xup in single-step207

improvement triplets ximp. We note that we also ex-208

perimented with masking xinit (Zheng et al., 2023),209

but found it to be less effective than weighted SL210

in our case. See Appendix E for more empirical211

analysis and discussions on related techniques.212

2.5 TRIPOST213

In Figure 2 and Algorithm 1 we summarize our214

TRIPOST algorithm. For each of the t iterations,215

we first utilize Mθ to generate its own attempts216

X , and then use FBK and IMP to generate and217

create a set of edited trajectories as described in218

Section 2.2. Next, we process the newly collected219

trajectories and the gold task demonstrations Xgold220

by first splitting them into a unified format of ximp221

triplet or xT, and then filtering out erroneous ximp222

data (Section 2.3). Finally, we create a training223

dataset D by balancing the number of ximp and224

xT using a hyperparameter p, and finetune Mθ on 225

D using weighted SL. Unless otherwise specified, 226

we repeat this procedure for t = 3 iterations, and 227

refer to the model trained using TRIPOST with t 228

iterations as TRIPOST(t). 229

Algorithm 1 TRIPOST Training Algorithm

Require: Generative language model Mθ

Require: FBK and IMP modules
Require: Gold task demonstrations Xgold

Require: Data buffer B
1: for t iterations do
2: // interactive trajectory editing
3: Gen. trajectories X = {X✓, X✗} with Mθ

4: Add correct trajectories X✓ to B
5: for each incorrect trajectory x✗ ∈ X✗ do
6: Use FBK to generate feedbacks xfb∗

7: Replace feedback from x✗ with xfb∗

8: Prompt IMP to generate xup

9: Repeat until termination cond. reached
10: Add edited trajectory xedited to B
11: end for
12: // data post-processing
13: Split Xgold ∪ B into triplets ximp or xT
14: Filter ximp

15: D = {ximp, xT}, balanced using p
16: // model training
17: Train Mθ on D using weighted SL
18: end for

3 Experiments 230

In this section, we test if our TRIPOST can 1) 231

help distill self-improvement ability into a smaller 232

model Mθ, and 2) help Mθ improve performance 233

on math and reasoning tasks. 234

3.1 Dataset and Preprocessing 235

We utilize the BIG-Bench (Srivastava et al., 2023) 236

benchmark to evaluate our approach. BIG-Bench 237

is a collection of more than 200 text-based tasks 238

including categories such as traditional NLP, math- 239

ematics, commonsense reasoning, and more. 240

We perform experiments on four math and rea- 241

soning tasks from the challenging BIG-Bench Hard 242

(Suzgun et al., 2022) collection. We consider two 243

scriptable tasks: Multistep Arithmetic and Word 244

Sorting, where a step-by-step solution (rationale) 245

and a feedback can be generated using a script; 246

and two unscriptable tasks: Date Understanding 247

and Logical Deduction, where we prompt an LLM 248
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Dataset Criterion Example seen subtask unseen subtask

Multistep Arithmetic nesting depth (d) and Q: ((2 * 2 + 1) + (3 * 1 - 1)) l = {3, 4} × d = {2} l = {3, 4} × d = {3} and
number of operands (l) // l = 3, d = 2 l = {5, 6} × d = {2, 3}

Word Sorting number of words to sort (l) Q: orange apple banana pear l = {2, 3, ..., 7} l = {8, 9, ..., 16}
// l = 4

Date Understanding number of steps to solve (l) Q: Today is 01/02, what’s the l = {1, 2} l ≥ 3
date yesterday? // l = 1

Logical Deduction number of options (l) Q: John runs ... Who runs fastest? l = {3, 5} l = {7}
Options: (A).. (B).. (C).. // l = 3

Table 2: Categorization of the datasets into seen and unseen tasks. seen tasks are chosen to be easier and are used
for training. Example questions are abbreviated, for complete examples please refer to Appendix A.

Method
Multistep Arithmetic† Word Sorting† Date Understanding Logical Deduction

seen unseen total seen unseen total seen unseen total seen unseen total

LMSI 10.83 0.00 4.33 67.72 5.56 26.83 14.55 9.09 12.99 61.11 20.00 48.10
ft rationale 39.75 1.48 16.78 73.49 5.82 28.50 33.35 21.21 29.87 62.69 8.67 45.78
ft SI. demo 29.17 0.00 11.67 53.54 1.98 19.26 27.27 18.18 24.68 54.63 15.00 41.67

O
ur

s TRIPOST(t = 1) 41.67 0.84 17.17 74.02 5.16 28.23 32.73 13.64 27.27 57.88 22.00 46.52
TRIPOST(t = 2) 49.58 1.39 20.67 74.02 7.14 29.55 35.46 25.00 32.47 58.80 18.00 45.25
TRIPOST(t = 3) 52.50 2.50 22.50 77.17 5.95 29.82 40.00 29.55 37.01 63.89 15.00 48.42

Table 3: Overall performance of TRIPOST on four BIG-Bench hard datasets. For each dataset, we train our models
on the seen tasks, and evaluate their performance on both seen and unseen tasks. For all runs, we use p = 0.43
for TRIPOST. Total accuracy (total) is weighted based on the number of test samples. † denotes that the task uses
scripted rationale/feedback. Results are averaged over three runs.

Dataset
SI. Contrib.

Directly Correct Total Acc.
seen unseen total

Multistep Arithmetic 1.39 0.28 1.67 20.83 22.50
Word Sorting 1.85 0.52 2.37 27.44 29.82

Date Understanding 1.95 1.29 3.25 33.76 37.01
Logical Deduction 8.23 0.63 8.86 39.56 48.52

Table 4: Analyzing how TRIPOST-trained models improved the overall task performance. Total accuracy is first
decomposed into attempts that are directly correct (Directly Correct) and attempts with self-improvement (SI.
Contrib.). SI. Contrib. is then further decomposed into its accuracy contribution on the seen and unseen subtasks.

(Codex/text-davinci-003) to generate feedbacks.249

We prompt Codex as the IMP module for all tasks.250

For each task, we first collect a set of gold step-251

by-step rationales by either scripting a solution for252

scriptable tasks, or using the CoT prompts from253

Suzgun et al. (2022) to generate a solution using254

LLMs. For those LLM-generated rationales, we255

only keep the correct ones (see Appendix A for256

more details) for training. Then, to better measure257

a model’s generalization ability, we split each of258

the 4 tasks further into seen and unseen subtasks.259

We mainly categorize simpler questions as the seen260

subtasks to be used for model training. We describe261

our categorization method in Table 2.262

3.2 Models and Baselines263

Models We use LLaMA-7B as Mθ in our main264

experiments in Table 3. LLaMA (Touvron et al.,265

2023a) is a collection of foundation language mod- 266

els ranging from 7B to 65B that have shown strong 267

performance compared to GPT-3 (175B) on many 268

benchmarks (Zheng et al., 2023; Taori et al., 2023; 269

Peng et al., 2023b). Due to the cost of training lan- 270

guage models, we use the smallest 7B model. For 271

results with LLaMA-2 models, see Appendix D. 272

For training hyperparameters, see Appendix I. 273

Baselines We compare TRIPOST training with 274

three baselines: fine-tuning using self-generated, 275

self-consistent rationales (LMSI, Huang et al. 276

(2023)); fine-tuning using only ground truth ra- 277

tionales (ft rationale); and fine-tuning using self- 278

improvement demonstrations from LLMs (ft SI. 279

demo, similar to Ye et al. (2023)). For better perfor- 280

mance, we initialize with the model trained after ft 281

rationale for all methods. For more implementa- 282

tion details, see Appendix G and Appendix H. 283
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3.3 Metrics284

To measure task performance, we follow prior stud-285

ies on Big-Bench (Ho et al., 2023; Huang et al.,286

2023) and report the accuracy of the final answer287

extracted from the model’s output. For each task,288

we report the accuracy on the seen subtasks and289

unseen subtasks, and its overall performance. To290

measure the model’s self-improvement ability, we291

mainly consider two metrics: 1) how often the292

model tries to self-improve (SI. Freq.), and 2)293

how much those of self-improvement attempts con-294

tribute to the model’s task performance (SI. Con-295

trib.). We measure SI. Freq. as the number of times296

the model attempted to self-improve divided by the297

size of the test set, and SI. Contrib. as the num-298

ber of times those improvement attempts actually299

reached the correct final answer.300

3.4 Main Results301

Table 3 summarizes TRIPOST’s evaluation results302

on the four datasets. First, we find LMSI (Huang303

et al., 2023) to be roughly on-par with ft. rationale304

only when the performance of the base model (i.e.,305

ft. rationale) is already high on the training ques-306

tions (the seen subtask). This is understandable,307

as LMSI was originally designed for LLM (e.g.,308

PaLM-540B) to improve on tasks where it can al-309

ready achieve a reasonable performance. Next, we310

find ft SI. demo to slightly degrade the model’s311

performance across all tasks, which we believe is312

due to the capability mismatch between the LLM313

demonstrator and the small LM learner (Section 1).314

This forces the small LM to learn from “advanced”315

errors not from its own (Table 1 and Appendix B).316

Finally, we see that in all tasks, TRIPOST-trained317

models performs the best in all metrics. In general,318

we also observe improvement in the performance319

of TRIPOST-trained models as the number of it-320

erations t increases. We believe this is because,321

during the process of learning to self-improve, the322

model also learns to better understand the tasks323

by learning from its own mistakes (Zhang et al.,324

2023; Andrychowicz et al., 2018; Lightman et al.,325

2023). This enables the model to not only gen-326

erate better initial attempts, but also improve its327

self-improvement ability.328

In Table 4, we further explore the contribution of329

Mθ’s self-improvement ability by describing how330

its overall performance improved. We find that in331

two out of the four datasets, TRIPOST-trained mod-332

els generate an more accurate initial attempt than333

the baselines (denoted as Directly Correct), and in 334

all cases, TRIPOST-trained models had measurable 335

self-improvement contributions in both seen and 336

unseen tasks (cf. Figure 1 and Table A4). This sug- 337

gests that TRIPOST-training can 1) help the model 338

better understand the tasks and generate better ini- 339

tial attempts, and 2) help distill self-improving abil- 340

ity into the model. We believe that the combination 341

of both factors improve the model’s overall perfor- 342

mance in Table 3. 343

3.5 TRIPOST-auto 344

In Table 5, we explore another way of training Mθ 345

with TRIPOST. Instead of re-balancing the training 346

dataset using a fixed p as in Section 3.4, we can 347

simply include all the edited improvement tuples 348

ximp and the directly correct attempts xT generated 349

by Mθ. We denote this method as TRIPOST-auto, 350

as it automatically “balances” its training data to 351

be proportional to its current performance, because 352

p can be interpreted as how often the model’s at- 353

tempts were incorrect and needed editing. TRI- 354

POST-auto training included no less ximp com- 355

pared to TRIPOST (but generally more xT, result- 356

ing in p < 0.43), and we find that the model now 357

rarely attempts to self-improve. However, this un- 358

expectedly leads to even better overall performance, 359

especially on unscriptable tasks. We believe this 360

indicates that 1) learning to always generate a use- 361

ful feedback and the corresponding improvement is 362

harder than learning to directly generate a correct 363

attempt, and 2) using LLM-generated feedbacks, 364

which covers more error cases than a Python script, 365

is effective in improving a model’s performance. 366

4 Analysis 367

To investigate the factors that can influence how 368

TRIPOST-trained models learned to attempt self- 369

improvement, we focus our analysis on the Mul- 370

tistep Arithmetic and Logical Deduction datatset. 371

We also mainly study TRIPOST with p = 0.43, 372

which has both a measurable self-improvement con- 373

tribution and improvement in its task performance 374

(see Table 3 and Table 4). 375

4.1 Ablation Studies 376

We perform ablation studies for each of the three 377

stages in TRIPOST to better understand their con- 378

tribution to model’s overall performance. In Ta- 379

ble 6, we report the task accuracy when: interac- 380

tion between Mθ and LLM is removed, so that 381

6



Method
Multistep Arithmetic† Word Sorting† Date Understanding Logical Deduction

SI. Freq SI. Cont. total SI. Freq SI. Cont. total SI. Freq SI. Cont. total SI. Freq SI. Cont. total

TRIPOST(t = 1) 0.00 0.00 17.17 1.58 0.52 28.23 0.00 0.00 27.27 8.86 2.85 46.52
TRIPOST(t = 2) 1.33 1.11 20.67 2.90 0.52 29.55 1.94 0.65 32.47 29.72 11.39 45.25
TRIPOST(t = 3) 3.67 1.67 22.50 4.38 2.37 29.82 10.38 3.25 37.01 23.42 8.86 48.42

TRIPOST-auto(t = 1) 0.00 0.00 20.00 0.00 0.00 30.34 0.00 0.00 32.47 1.90 0.63 51.27
TRIPOST-auto(t = 2) 0.00 0.00 23.33 0.00 0.00 29.55 0.00 0.00 56.82 0.63 0.00 55.06
TRIPOST-auto(t = 3) 0.00 0.00 24.33 0.00 0.00 30.34 0.00 0.00 68.83 0.63 0.63 56.96

Table 5: Overall performance of TRIPOST without explicit re-balancing. TRIPOST-auto uses the same training
procedure as TRIPOST, except that the proportion of ximp used for training is determined automatically using the
model’s current task performance.

Method
Multistep Arithmetic Logical Deduction

SI. Contrib. Total Acc. SI. Contrib. Total Acc.

TRIPOST 1.67 22.50 8.86 48.42
-interaction 0.28 11.67 0.00 41.67
-filtering 0.33 20.67 7.59 48.27
+auto-balance 0.00 24.33 0.63 56.96
-weighed SL 0.00 21.33 1.90 43.67

Table 6: TRIPOST ablation studies.

Mθ is distilled with purely LLM demonstrations382

(-interaction); data filtering is removed (-filtering);383

dataset balancing is changed to using its own per-384

formance (+auto-balance); and the weights for385

SL are changed to be the same for all tokens (-386

weighed SL). We find that all components are im-387

portant for TRIPOST to work well, and the choice388

of fixing p presents a trade-off between a model’s389

self-improvement ability and its task performance390

(notibly, both TRIPOST and TRIPOST-auto im-391

prove upon the baselines).392

4.2 Proportion of SI. Training Data393

In Table 7, we investigate how much improvement394

demonstration (ximp) is needed to elicit a measur-395

able self-improvement contribution from Mθ. We396

find that when a large proportion (e.g. p = 0.70)397

of the training data contains ximp, the model often398

attempts to self-improve but does not always result399

in an overall better performance. This is because400

many of the “improvement” attempts result in fail-401

ures (e.g. changing an already correct attempt to402

become an incorrect one), and the best performance403

is achieved typically when p is low. Despite this,404

we find that for all other cases with p ≤ 0.43, TRI-405

POST-trained model achieved a better performance406

than the baseline methods (see Table 4).407

4.3 Number of TRIPOST Iterations408

In most of our experiments, we trained TRIPOST409

up to t = 3 iterations. This is because we found410

that LLMs and our Python scripts start to strug-411

gle with generating feedback or improving Mθ at-412

Dataset p
Self-Improvement

Total Acc.
Freq. Contrib.

Multistep Arithmetic

0.05 0.00 0.00 23.17
0.20 0.00 0.00 24.33
0.43 3.67 1.67 22.50
0.56 8.61 2.50 20.00
0.70 18.88 3.61 18.67

Logical Deduction

0.05 0.00 0.00 49.37
0.20 0.63 0.00 52.63
0.43 23.42 8.86 48.42
0.56 20.25 7.59 45.57
0.70 59.49 31.64 45.57

Table 7: Varying the proportion of xSI used during
TRIPOST training.

1 2 3
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Figure 3: Improvement demonstrations become more
difficult to collect as TRIPOST iteration increases.

tempts after three iterations. In Figure 3, we present 413

how the number of self-improving trajectories col- 414

lected (ximp, after filtering) changes as TRIPOST 415

iteration increases. We found that as Mθ improves 416

its performance over time, it 1) poses a greater chal- 417

lenge for our FBK module to generate feedback 418

and/or the IMP module to generate improvement, 419

and 2) generates fewer incorrect attempts for TRI- 420

POST to edit. This is especially impactful for Mul- 421

tistep Arithmetic, as our feedback scripts can only 422

consider a fixed number of error types. This also 423

shows that even LLMs can struggle at generating 424

useful feedbacks or correct improvements, which 425

supports our findings in Section 3.5 that learning 426
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to generate feedback and improvements may be427

harder than to directly generate a correct solution.428

5 Related Work429

Prompting LLMs to Self-Improve Recently,430

many work (Bai et al., 2022; Madaan et al., 2023)431

have discovered LLM’s capability to self-improve432

by letting it revise its own answer after prompting433

it to generate feedbacks. Following these work,434

Yang et al. (2022); Peng et al. (2023a); Shinn et al.435

(2023); Schick et al. (2022); Yang et al. (2023)436

has utilized such a capability to improve LLM’s437

performance on various tasks. For example, Yang438

et al. (2022) recursively prompts an LLM to gen-439

erate a longer story, and Madaan et al. (2023) iter-440

atively prompts an LLM to improve its answers441

on a wide range of tasks such as sentiment re-442

versal and dialogue response generation. More443

generally, Yang et al. (2023) finds that LLMs can444

be prompted to act as an “optimization function”,445

which can be used to automatically perform prompt446

engineering. Our work focuses on distilling the447

self-improvement ability of LLMs into a smaller448

model, which was initially not capable of self-449

improvement (Figure 1).450

Training LMs to Self-Improve Besides prompt-451

ing methods, recent work also explored approaches452

to train a LM to self-improve. LMSI (Huang453

et al., 2023) trains LMs (e.g., PaLM-540B) with454

self-generated, self-consistent answers to improve455

their task performance, yet we found such method456

ineffective for small LMs. Many work such as457

Paul et al. (2023); Welleck et al. (2022); Madaan458

et al. (2021); Yasunaga and Liang (2020); Du et al.459

(2022) considered using multiple small LMs to gen-460

erate feedback and improvement, which also relates461

to model ensemble methods (Dietterich, 2000). For462

example, Welleck et al. (2022) trains a “correc-463

tor” to improve answers generated by a given fixed464

generator. This method gathers improved attempts465

by sampling from the generator and pairing high-466

scoring attempts with low-scoring ones. It also467

does not provide reasonings (e.g., feedbacks) for468

each improvement. Paul et al. (2023) first trains a469

feedback model by using a set of predefined rules470

that perturbs an original solution, and then trains a471

separate model to generate answers conditioned on472

the feedback. Our work leverages LLMs to train473

a single model capable of generating both feed-474

back and improvement, and also does not require475

any predefined rules (e.g., using LLMs as the FBK476

module). Saunders et al. (2022); Ye et al. (2023) 477

has attempted to equip a single small model to self- 478

improve by training on LLM demonstrations, but 479

found that it had little to no effect for small models 480

on math/reasoning tasks. Our work presents anal- 481

yses of how these previous methods can fail, and 482

proposes TRIPOST that can train a small model to 483

self-improve and achieve better task performance. 484

Knowledge Distillation Learning from experts’ 485

demonstrations or reasoning (e.g., from GPT-4) 486

has shown to be successful at improving the perfor- 487

mance of smaller models in various tasks (Mukher- 488

jee et al., 2023; Laskin et al., 2022; Peng et al., 489

2023b; Ho et al., 2023; Ye et al., 2023; Huang 490

et al., 2023). Distillation methods (Hinton et al., 491

2015; Ba and Caruana, 2014) generally train a tar- 492

get model using expert demonstrations unaware of 493

the target model’s capability. While TRIPOST also 494

use LLMs to demonstrate generating a feedback or 495

an improvement, these demonstrations are always 496

conditioned on the output of the smaller model. In 497

this view, our approach combines merits from re- 498

inforcement learning with knowledge distillation 499

techniques, where small models are distilled with 500

demonstrations that are created by its own explo- 501

ration augmented by LLMs’ supervision. 502

6 Conclusion 503

We introduce TRIPOST, a training algorithm that 504

distills the ability to self-improve to a small model 505

and help it achieve better task performance. TRI- 506

POST first creates improving trajectories using in- 507

teractions between a smaller model and an LLM, 508

then post-process the collected trajectories, and fi- 509

nally train the smaller model to self-improve using 510

weighted SL. We evaluated TRIPOST on four math 511

and reasoning tasks from the Big-Bench Hard col- 512

lection and found that it can help small models 513

achieve better task performance. In our analysis, 514

we find that 1) the interactive process of learning 515

from and correcting its own mistakes is crucial 516

for small models to learn to self-improve and 2) 517

learning to always generate a useful feedback and 518

a corresponding improvement can be much harder 519

than learning to directly generate a correct answer. 520

These findings suggest that other data formats, be- 521

yond the traditional (input, answer) pair, could be 522

better suited for training a language model to solve 523

a downstream task. We believe this also opens new 524

possibilities for future work to leverage LLMs to 525

improve the performance of smaller, faster models. 526
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7 Limitations527

Model Sizes In all of our experiments, we used528

a single A100 and mainly tested TRIPOST on 7B529

models, the smallest in the LLaMA-1 and LLaMA-530

2 family (Touvron et al., 2023a,b). However, with531

the recently introduced flash attention technique532

(Dao et al., 2022; Dao, 2023) which can be used to533

reduce memory usage during training, we plan to534

extend our experiments to use models with more535

than 7B parameters.536

Datasets We focused our experiments on math537

and reasoning tasks because 1) prior work (Ye et al.,538

2023) had found it difficult to train a 7-13B to539

self-improve on those tasks and 2) measuring per-540

formance improvement is more well defined (for541

example, as compared to creative story writing).542

However, we note that as TRIPOST is task agnos-543

tic, in theory it can be applied to other tasks such as544

knowledge-grounded dialogue generation (Yoshino545

et al., 2023) or dialogue safety (Dinan et al., 2019).546

We intend to leave this for future work.547

LLM Usage While attempts for some tasks can548

be parsed and evaluated using a Python script (e.g.,549

multistep arithmetic and word sorting), it quickly550

becomes unmanageable for tasks where reasonings551

mostly take the form of free text (e.g., date under-552

standing and logical deduction). Therefore, we use553

LLMs such as GPT-3 and Codex (and ChatGPT,554

see Appendix F), which are highly performant at a555

reasonable cost. Specifically, we mainly use text-556

davinci-003 as the feedback module and Codex557

as the improvement module, as we found this to558

be the most cost-performant configuration in our559

experiments.560

However, since the ability of LLMs to generate561

feedback or improvements is crucial for TRIPOST562

to collect training data, this presents a trade-off be-563

tween the cost of using more performant LLMs564

(e.g., GPT-4) and the training outcome of TRI-565

POST, for example on harder tasks such as GSM8k566

(Cobbe et al., 2021). We hope that with advances in567

making LLMs more available (Zhang et al., 2022a),568

such a trade-off would diminish.569

8 Ethical Considerations570

Our work describes an algorithm to improve small571

models’ performance on math and reasoning tasks,572

by distilling them the ability to self-improve using573

interaction records with LLMs. Generally, while574

most algorithms are not designed for unethical us- 575

age, there is often potential for abuse in their ap- 576

plications. In our experiments, we apply TRIPOST 577

to four math and reasoning tasks from the Big- 578

Bench Hard collection (Suzgun et al., 2022). How- 579

ever, because training algorithms are typically task- 580

agnostic, it is possible to use them for unethical 581

tasks, such as scamming and generating harmful 582

responses (Welbl et al., 2021; Gehman et al., 2020). 583

We do not condone the use of TRIPOST for any 584

unlawful or morally unjust purposes. 585
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A More Details on Datasets and922

Preprocessing923

We use four tasks from the Big-Bench Hard collec-924

tion (Suzgun et al., 2022) for our experiments: mul-925

tistep arithmetic, word sorting, date understanding,926

and logical deduction. Since these tasks do not pro-927

vide ground truth step-by-step rationale, we either928

generate them using a script (for multistep arith-929

metic and word sorting), or prompt Codex (Chen930

et al., 2021) in a few-shot setting using examples931

from Suzgun et al. (2022). For rationales gener-932

ated using prompting, we only keep the ones that933

reached the correct answer and passed a simple con-934

sistency check (e.g. for multiple choice questions,935

we ensure that the final selected choice in the last936

step appeared in the second last step). We provide937

example rationales used for each task in Table A7,938

Table A8, Table A9, and Table A10. Since Big-939

Bench (Srivastava et al., 2023) did not provide an940

official training/validation/test split, we generated941

our own splits with statistics shown in Table A1.

Dataset Train Validation Test

Multistep Arithmetics 550 50 300
Word Sorting 433 40 379
Date Understanding 191 20 87
Logical Deduction 360 40 158

Table A1: Number of training, validation, and test sam-
ples used for the four tasks from the Big-Bench Hard
collection (Suzgun et al., 2022).

942

B Analyzing Errors Made by Codex and943

LLaMA-7B944

To detail the different type and amount of errors945

made by an LLM (e.g., Codex) and a smaller model946

(e.g., LLaMA-7B), we manually examine incorrect947

attempts generated by the two models in the Mul-948

tistep Arithmetics dataset. We use Codex with949

few-shot prompting, and LLaMA-7B after super-950

vised finetuning on ground-truth step-by-step solu-951

tions (denoted as LLaMA+ft). We randomly sam-952

ple 50 generated attempts with incorrect answers,953

and carefully review each step in those attempts.954

For each incorrect step, we apply the principle of955

error-carried-forward and categorize the first error956

encountered according to Table A2.957

We present our analysis in Figure A1 and Ta-958

ble A3. Figure A1 shows that calculation er-959

rors take up more than 50% of the time for both960

Codex and the finetuned LLaMA-7B. However,961

Codex also makes many algebriac errors (such as 962

forgetting to change sign after adding brackets), 963

while LLaMA-7B often hallucinates by adding or 964

deleting terms from previous calculations. Fur- 965

thermore, Table A3 shows that, compared to the 966

fine-tuned LLaMA-7B, Codex generates longer 967

solutions while producing fewer errors per step. 968

These findings suggest that supervised finetuning 969

a smaller LM (e.g., LLaMA-7B) based on correct- 970

ing LLM-generated errors may be inefficient, as it 971

forces the smaller model to learn from attempts and 972

mistakes very different from its own (see Section 1 973

and Appendix C for more details). 974

C More Details on the Prior Study 975

In the prior study mentioned in Section 1, we ex- 976

perimented with distilling a smaller model (e.g. 977

LLaMA-7B) with self-improvement demonstration 978

using just the LLMs. We found that not only can 979

the smaller model not self-improve by few-shot 980

prompting, they also still fail to do so after train- 981

ing on the LLM self-improvement demonstrations 982

(also discussed in Section 1). In Figure 1 we pre- 983

sented the performance gap between prompting 984

Codex (175B) and finetuning/prompting LLaMA 985

(7B) with self-improvement demonstrations, and in 986

Table A4 we show the detailed numerical results. 987

D Additional Results on LLaMA-2 988

In Table A5 we present the results of using the 989

LLaMA-2 7B model (Touvron et al., 2023b) for 990

TRIPOST training. We used the same proce- 991

dure as testing with the LLaMA-1 model in our 992

main experiments (Section 3), except that we used 993

p = 0.26 across all settings with LLaMA-2 instead 994

of p = 0.43. This is because we found that the 995

LLaMA-2 baseline (ft rationale) achieves almost 996

twice the performance compared to its LLaMA-1 997

counterpart. As the LLaMA-2 models make fewer 998

mistakes, we decrease p accordingly to prevent 999

TRIPOST from terminating early due to lack of 1000

data. In general, Table A5 shows a similar trend as 1001

discussed in Section 3 that 1) fine-tuning on LLM 1002

demonstrations of self-improvement did not help 1003

improve math/reasoning task performance, and 2) 1004

TRIPOST can further improve upon the baselines. 1005

E Effect of Weighted SL 1006

Besides balancing the training dataset, we also 1007

found it important to use a weighted cross-entropy 1008

loss to emphasize learning the improvement-related 1009
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Error Name Definition Example

Calculation Error errors in performing basic arithmetic operations (addition, subtrac-
tion, multiplication, division)

2 + 3 = 7

Algebraic Error errors in algebraic manipulation, such as forgetting to change signs
when adding brackets or forgetting the correct order of operations

1− 2 + 3 = 1− (2 + 3)

Copy Error mis-copying an operand or an operator from previous steps 7 + 1 + (...) = 7− 1 + (...)
Hallucation adding or deleting an operand or an operator from previous steps 7 + (...) = 7− 1 + (...)
Other Error errors that do not fall into the above categories

Table A2: Categorization of errors commonly made by Codex or LLaMA-7B in the Multistep Arithmetics dataset.

51.3%

31.6%

6.8%
9.4%

(a) Codex

55.0%

7.6%

9.2%

26.0% Calculation Error
Algebraic Error
Copy Error
Hallucination
Other Error

(b) LLaMA+ft (7B)

Figure A1: LMs of different sizes make different types of errors. In the Multistep Arithmetics dataset, more than
half of the errors made by Codex or a finetuned LLaMA-7B belong to Calculation Error. However, the second most
common error is Arithmetic Error for Codex, and Copy Error for LLaMA-7B.

Codex LLaMA+ft (7B)

Avg. Char per Question 113.8 102.4
Avg. Char per Attempt 920.0 650.1
Percent Steps with Errors 31.7 35.1

Table A3: LMs of different sizes make different amount
of errors. In the Multistep Arithmetics dataset, Codex
makes less errors per step compared to a finetuned
LLaMA-7B, while answering longer questions and gen-
erating longer solutions.

Dataset Method SI. Contrib. Total Acc.

MS.A.

Codex (175B) - 31.33
+ SI. prompting 2.00 33.33 ↑

LLaMA+ft (7B) - 16.78
+ SI. prompting 0.00 11.60 ↓
+ ft SI. demo 0.28 11.67 ↓

L.D.

Codex (175B) - 81.01
+ SI. prompting 4.43 85.44 ↑

LLaMA+ft (7B) - 45.78
+ SI. prompting 0.00 43.67 ↓
+ ft SI. demo 0.00 41.67 ↓

Table A4: Compared to LLMs, smaller models have
difficulty performing self-improvement (SI.) on math-
ematical/logical tasks, such as Multistep Arithmetics
(MS.A.) and Logical Deduction (L.D.).

tokens (xfb or xup) of each training sample. In 1010

Table A6, we find that using a weight too low 1011

(w = 1.0) can result in the model rarely attempt- 1012

ing to self-improve, while using a weight too high 1013

(w = 3.0) does not result in better performance. 1014

We believe that this has a similar effect of adjust- 1015

ing p in Section 4.2: some incentive is needed for 1016

the model to learn to self-improve, while too much 1017

emphasis on trying to self-improve can result in a 1018

worse performance. 1019

While we also experimented with alternatives 1020

such as masking easier tokens (xinit), we believe 1021

there is a rich set of techniques that can be used 1022

to train the model to focus on harder inputs. This 1023

includes boosting algorithms (Schapire, 1999; He 1024

et al., 2019), automatic loss reweighing methods 1025

(Kanai et al., 2023; Wang et al., 2022, 2020), 1026

as well as importance-sampling based methods 1027

(Katharopoulos and Fleuret, 2019). We leave this 1028

for future work as it is orthogonal to our main con- 1029

tributions. 1030

F Prompting Details 1031

Besides prompting to generate rationales (e.g. for 1032

date understanding), we also use prompting to gen- 1033

erate feedbacks and improvements given the ini- 1034
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Method
Multistep Arithmetics† Logical Deduction

seen unseen total seen unseen total

L
L

aM
A

-1
(7

B
) ft rationale 38.75 1.48 16.78 62.69 8.67 45.78

ft SI. demo 29.17 0.00 11.67 54.63 15.00 41.67

TRIPOST(t = 1) 41.67 0.84 17.17 57.88 22.00 46.52
TRIPOST(t = 2) 49.58 1.39 20.67 58.80 18.00 45.25
TRIPOST(t = 3) 52.50 2.50 22.50 63.89 15.00 48.42

L
L

aM
A

-2
(7

B
) ft rationale 72.50 5.00 32.00 87.04 34.00 70.25

ft SI. demo 51.67 2.22 22.00 80.56 42.00 68.35

TRIPOST(t = 1) 71.67 3.89 31.00 83.33 52.00 73.42
TRIPOST(t = 2) 75.00 6.11 33.67 83.33 48.00 72.15
TRIPOST(t = 3) 72.22 5.19 32.00 71.67 50.00 72.78

Table A5: Using TRIPOST with LLaMA-2 7B model. Overall, LLaMA-2 performs better than its LLaMA-1
counterpart, and TRIPOST further improves LLaMA-2’s task performance.

Dataset w
Self-Improvement

Total Acc.
Freq. Contrib.

Multistep Arithmetic
1.0 0.00 0.00 21.33
1.5 3.67 1.67 22.50
3.0 3.33 1.38 22.00

Logical Deduction
1.0 10.13 1.90 43.67
1.5 23.42 8.86 48.42
3.0 19.62 9.49 46.84

Table A6: Varying the SL weights w used during TRI-
POST training.

tial attempt. For scriptable tasks such as multistep1035

arithmetic and word sorting, we use a script to gen-1036

erate the feedback by first parsing each step in the1037

attempt, and check their correctness/consistency1038

with other steps using a set of predefined rules.1039

This is similar to Welleck et al. (2022), but we also1040

generalize this to unscriptable tasks such as date1041

understanding and logical deduction by few-shot1042

prompting GPT-3 (text-davinci-003) (Brown et al.,1043

2020) and Codex (Chen et al., 2021) to generate1044

feedbacks and improvements. We found that being1045

able to generate useful feedback is critical for gath-1046

ering successful improvement trajectories, and we1047

discovered that ChatGPT (OpenAI, 2022) is less1048

effective than GPT-3 or Codex in our case. We1049

provide examples of the feedbacks generated for1050

each task in Table A11, and the prompts used to1051

generate feedback or improvements in Table A12,1052

Table A13, Table A14, and Table A15. Note that1053

we used a form-type of prompting for generating1054

feedback because it can more easily ensure that our1055

(formatted) feedback will contain all the elements1056

we need.1057

When an answer is correct, we manually attach1058

the phrase “Step 1 to step x is correct, and the1059

final response is also correct.” as the termination 1060

feedback, where “x” is the last step number. This 1061

termination condition is also used during inference. 1062

G More Details on Baselines 1063

LMSI Huang et al. (2023) proposed LMSI, a 1064

method to improve PaLM-540B (Chowdhery et al., 1065

2022) on math and reasoning tasks by training it 1066

on self-generated and consistent step-by-step ra- 1067

tionales. First, LMSI generates multiple step-by- 1068

step solutions using a high temperature (τ = 1.2). 1069

Then, LMSI only keeps the answers that are self- 1070

consistent (by majority voting) in the final answer. 1071

Finally, LMSI further augments these solutions 1072

with mixed formats, such as removing all the inter- 1073

mediate steps and only keep the final answer. To 1074

be comparable with other methods in Table 3 that 1075

have access to the ground truth answer, we modify 1076

the second step to only keep the answers that are 1077

correct. In addition, since small models such as 1078

LLaMA-7B performed poorly in these tasks with- 1079

out fine-tuning, we perform LMSI after training the 1080

model on the collected silver step-by-step solutions 1081

in Appendix A. 1082

ft. SI demo Following Ye et al. (2023), ft. SI 1083

demo finetunes a model on LLM-generated self- 1084

improvement demonstrations. For all tasks, we 1085

experimented with LLMs ∈ {ChatGPT, Codex} 1086

and reported one with better performance (often 1087

Codex). In details, we first prompt a LLM (e.g. 1088

Codex) to generate an initial attempt, and then re- 1089

used TRIPOST with the same LLM as the FBK and 1090

IMP to generate a feedback and an improvement. 1091

For a fair comparison in Table 3, we also balanced 1092

the collected data using the same p = 0.43 as with 1093
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TRIPOST. Finally, train the small LM using (un-1094

weighted) SL on the collected data.1095

H Implementation Details1096

We combine techniques from prompting-based self-1097

improvement (Madaan et al., 2023; Bai et al., 2022)1098

and active learning (Zhang et al., 2022b; Lightman1099

et al., 2023) to collect a set of self-improving tra-1100

jectories. Specifically, we first either use a script1101

or few-shot prompting (see Appendix F for more1102

details) to gather feedbacks on a given attempt, and1103

then use prompting to generate improvements con-1104

ditioned on the previous attempt, the feedback, and1105

all the steps in the previous attempt before the first1106

error step (see Tables A12 to A15 for example).1107

This is to ensure that the improved attempt is mak-1108

ing modifications on the previous attempt, rather1109

than creating an entirely new attempt.1110

To edit the original attempt given the1111

script/LLM-generated feedback, we 1) find1112

the first xfb∗i feedback that differs from the Mθ-1113

generated feedback xfbi (usually i = 1); 2) replace1114

xfb∗i with xfbi ; 3) remove all the attempts, feedback,1115

and improvement after after xfbi from the trajectory.1116

After this, we prompt an LLM in the improvement1117

module IMP to generate an improvement as1118

described above and in Appendix F.1119

To filter out some of the unhelpful feedbacks or1120

incorrectly “improved” attempts, we mainly check1121

1) whether the final attempt reached the correct1122

answer; 2) if there is at least one difference between1123

the previous attempt and the improved attempt; and1124

3) if the final answer is consistent with the second1125

last step. We only keep the data that have passed1126

all checks. The effect of this filtering is discussed1127

in our ablation studies in Section 4.1.1128

I Model/Training hyperparameters1129

In our main experiments, we used a single A1001130

GPU with DeepSpeed (Rasley et al., 2020) Zero-21131

optimization. We used AdamW (Loshchilov and1132

Hutter, 2019) as the optimizer. For each iteration1133

of the TRIPOST algorithm, we train the model for1134

4 epochs (line 17). We use a linear learning rate1135

schedule with 20% of warmup steps and a peak1136

learning rate of 1e-6. We use a maximum sequence1137

length of 1024 tokens, batch size = 1 and gradient1138

accumulation step = 4. On average, three iterations1139

of TRIPOST take about 12 hours to train.1140
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Example Question and Generated Rationale for Multistep Arithmetic

Q: ((7 - -1 + -1 + -4) - (-7 + 7 * 3 * -9)) =
Answer: Let’s think step by step. Recall that the order of operations in mathematics is as follows:
(1) Parentheses, (2) exponents, (3) multiplication and division (from left to right), (4) addition
and multiplication (from left to right). So, remember to always compute the expressions inside
parentheses or brackets first.
(1) This equation can be written as “(A - B)”, where A = (7 - -1 + -1 + -4) and B = (-7 + 7 * 3 * -9).
(2) Let’s calculate A = (7 - -1 + -1 + -4) = (((7 - -1) + -1) + -4) = ((8 + -1) + -4) = (7 + -4) = 3.
(3) Let’s calculate B = (-7 + 7 * 3 * -9) = (-7 + ((7 * 3) * -9)) = (-7 + (21 * -9)) = (-7 + -189) = -196.
(4) Then, the final equation is (A - B) = (3 - -196) = 199.
(Final response) So the answer is 199.

Table A7: Examples of generated rationales for Multistep Arithmetic using Python scripts. Question and prompts
are written in gray italics, and the generated step-by-step rationale is shown in black.

Example Question and Generated Rationale for Word Sorting

Q: Sort the following words alphabetically:
List: sioux fortescue purloin percept helmsman
Attempt: Let’s think step by step.
(1) The first letter: “sioux”=“s”, “fortescue"=“f" (6), “purloin"=“p" (16), “percept"=“p" (16),
“helmsman"=“h" (8)
(2) We now have: (6) “fortescue” < (8) “helmsman” < (16) [“purloin” ? “percept”] < (19) “sioux”.
(3) Now sort this subpart [“purloin” ? “percept”] by looking at their second letters:
“purloin”=“u” (21), “percept”=“e” (5).
(3.1) We now have: (5) “percept” < (21) “purloin”.
(3.2) Hence, we have “percept” < “purloin”.
(4) Hence, we have “fortescue” < “helmsman” < “percept” < “purloin” < “sioux”.
(Final response) So the answer is: fortescue helmsman percept purloin sioux.

Table A8: Examples of generated rationales for Word Sorting using Python scripts. Question and prompts are
written in gray italics, and the generated step-by-step rationale is shown in black.

Example Question and Generated Rationale for Date Understanding

Q: Jane scheduled 3 appointments with 5 poeple for tomorrow (Tue, 7/9/1972).
What is the date one year ago from today in MM/DD/YYYY?
Options:
(A) 07/01/1971
(B) 07/08/1971
(C) 07/15/1971
(D) 07/07/1971
(E) 07/09/1971
(F) 07/08/1910
Attempt: Let’s think step by step.
(1) If Jane scheduled 3 appointments with 5 people for tomorrow (Tuesday, 7/9/1972), then today’s
date is Monday, 7/8/1972.
(2) The date one year ago from today is 7/8/1971.
(Final response) So the answer is (B).

Table A9: Examples of generated rationales for Date Understanding by prompting Codex (Chen et al., 2021).
Question and prompts are written in gray italics, and the generated step-by-step rationale is shown in black.
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Example Question and Generated Rationale for Logical Deduction

Q: The following paragraphs each describe a set of three objects arranged in a fixed
order. The statements are logically consistent within each paragraph. On a shelf, there
are three books: a white book, a green book, and an orange book. The green book is
to the right of the white book. The orange book is the rightmost.
Options:
(A) The white book is the leftmost.
(B) The green book is the leftmost.
(C) The orange book is the leftmost.
Attempt: Let’s think step by step. Let “??” represent 0 or more objects, and “?”
represent exactly 1 object.
(1) The green book is to the right of the white book: “(left) ?? white ?? green ?? (right)”.
(2) The orange book is the rightmost: “(left) ?? orange (right)”.
(3) There are in total three books: a white book, a green book, and an orange book.
(4) Combining (1) and (2) we get the following ordering: ”(left) ?? white ?? green ?? orange (right)”.
(5) Combining (3) and (4) we get the following ordering: ”(left) white green orange (right)”.
(6) According to this ordering, the leftmost book is the white book.
(Final response) So the answer is (A).

Table A10: Examples of generated rationales for Logical Deduction by prompting Codex (Chen et al., 2021).
Question and prompts are written in gray italics, and the generated step-by-step rationale is shown in black.
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Task Example

Multistep Arithmetic† Q: ((-8 + -2 * 1 * 3) * (-2 * -1 * 5 - 2)) =
Answer: Let’s think step by step. Recall that the order of operations in mathematics ...
(1) This equation can be written as "(A * B)", where A = (-8 + -2 * 1 * 3) and B = ...
(2) Let’s calculate A = (-8 + -2 * 1 * 3) = ... = -14.
(3) Let’s calculate B = (-2 * -1 * 5 - 2) = ... = (2 * 5 - 2) = 10.
Then, the final equation is (A * B) = (-14 * 10) = -140.
(Final response) So the answer is -140.
Feedback: Step (1) to (2) are correct. In step (3) the part " (2 * 5 - 2) = 10 " is incorrect.
This is because there is a calculation error, since (2 * 5 - 2) is not equal to 10.

Word Sorting† Q: Sort the following words alphabetically:
List: cole estonia brian redneck coda
Answer: Let’s think step by step.
(1) The first letter: "cole"="c" (3), "estonia"="e" (5), ..., "coda"="c" (3).
(2) We now have: (2) "brian" < (3) ["cole" ? "coda"] < (5) "estonia" < (18) "redneck".
(3) Now sort this subpart ["cole" ? "coda"] by looking at their second letters:
"cole"="o" (15), "coda"="o" (15).
(3.1) We now have: (15) ["cole" ? "coda"].
(3.2) Now sort this subpart ["cole" ? "coda"] by looking at their third letters:
"cole"="l" (12), "coda"="d" (4).
(3.2.1) We now have: (12) "cole" < (4) "coda".
...
(Final response) So the answer is: cole coda estonia brian redneck.
Feedback: Step (1) to (3.2) are correct. In step (3.2.1) the part " (12) "cole" < (4) "coda" "
is incorrect. This is because words are not sorted in ascending order. Using results from
step (3.2), the first and smallest number should be 4.

Date Understanding Q: Jane thinks today is 6/18/2019, but John thinks today is 6/19/2019. Jane is correct.
What is the date one week from today in MM/DD/YYYY?
Options:
(A) 04/21/2019 (B) 06/25/2019
(C) 06/26/2019 (D) 06/24/2019
(E) 05/28/2019 (F) 07/04/2019
Answer: Let’s think step by step.
(1) If Jane thinks today is 6/18/2019, but John thinks today is 6/19/2019, then today’s
date is 6/19/2019.
(2) The date one week from today is 6/26/2019, that is 06/26/2019.
(Final response) So the answer is (D).
Feedback: In step (1) the part "today’s date is 6/19/2019" is incorrect. This is because
Jane is correct, so today’s date should be 6/18/2019.

Logical Deduction Q: The following paragraphs each describe a set of three objects arranged in a fixed order.
The statements are logically consistent within each paragraph. In an antique car show,
there are three vehicles: a motorcycle, a bus, and a tractor. The motorcycle is the oldest.
The bus is newer than the tractor.
Options:
(A) The motorcycle is the newest.
(B) The bus is the newest.
(C) The tractor is the newest.
Answer: Let’s think step by step. Let "??" represent 0 or more objects, and "?" represent
exactly 1 object.
(1) The motorcycle is the oldest: "(oldest) motorcycle ?? (newest)".
(2) The bus is newer than the tractor: "(newest) bus ?? tractor ?? (oldest)".
(3) There are in total three vehicles: a motorcycle, a bus, and a tractor.
(4) Combining (1) and (2) we get the following ordering: "(newest) bus ?? tractor ?? (oldest)"
(5) Combining (3) and (4) we get the following ordering: "(oldest) motorcycle bus (newest)
tractor".
(6) According to this ordering, the vehicle that is the newest is the tractor.
(Final response) So the answer is (C).
Feedback: Step (1) to (2) are correct. In step (3) the part "(newest) bus ?? tractor ?? (oldest)"
is incorrect. This is because it is missing the motorcycle from step (1).

Table A11: Examples of an incorrect attempt generated by a small model, followed by its feedback generated by
either an LLM (Codex or text-davinci-003) or a script (indicated by †) for each task. Input question is written in
black, a generated attempt is written in blue, and its feedback is written in cyan.
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Prompt Type Prompt Example

Get Improvement Q: (((-9 * 3 + -6) * (-2 + 7 * -6)) - ((-4 - -6 + 6) * (4 * -4 + 8))) =
Answer: Let’s think step by step. Recall that the order of operations in mathematics is as follows:
(1) Parentheses, (2) exponents, (3) multiplication and division (from left to right), (4) addition
and multiplication (from left to right). So, remember to always compute the expressions inside
parentheses or brackets first.
(1) This equation can be written as "((A * B) - (C * D))", where A = (-9 * 3 + -6), B = (-2 + 7 * -6),
C = (-4 - -6 + 6) and D = (4 * -4 + 8).
(2) Let’s calculate A = (-9 * 3 + -6) = ((-9 * 3) + -6) = (-27 + -6) = -33.
(3) Let’s calculate B = (-2 + 7 * -6) = (-2 + (7 * -6)) = (-2 + -42) = -44.
(4) Let’s calculate C = (-4 - -6 + 6) = ((-4 - -6) + 6) = (2 + 6) = 8.
(5) Let’s calculate D = (4 * -4 + 8) = ((4 * -4) + 8) = (-16 + 8) = -8.
(6) Then, the final equation is ((A * B) - (C * D)) = ((-33 * -44) - (8 * -8)) = (1424 - (8 * -8)) =
(1424 - 64) = 1360.
(Final response) So the answer is 1360.
Feedback: Step (1) to step (5) are correct. In step (6) the part "((-33 * -44) - (8 * -8))
= (1424 - (8 * -8))" is incorrect. This is because there is a calculation error, since (-33 * -44)
should be 1452.
Updated Answer: Let’s think step by step. Recall that the order of operations in mathematics is
as follows: (1) Parentheses, (2) exponents, (3) multiplication and division (from left to right),
(4) addition and multiplication (from left to right). So, remember to always compute the
expressions inside parentheses or brackets first.
(1) This equation can be written as "((A * B) - (C * D))", where A = (-9 * 3 + -6), B = (-2 + 7 * -6),
C = (-4 - -6 + 6) and D = (4 * -4 + 8).
(2) Let’s calculate A = (-9 * 3 + -6) = ((-9 * 3) + -6) = (-27 + -6) = -33.
(3) Let’s calculate B = (-2 + 7 * -6) = (-2 + (7 * -6)) = (-2 + -42) = -44.
(4) Let’s calculate C = (-4 - -6 + 6) = ((-4 - -6) + 6) = (2 + 6) = 8.
(5) Let’s calculate D = (4 * -4 + 8) = ((4 * -4) + 8) = (-16 + 8) = -8.
(6) Then, the final equation is ((A * B) - (C * D)) = ((-33 * -44) - (8 * -8)) = (1452 - (8 * -8)) =
(1452 - -64) = 1516.
(Final response) So the answer is 1516. [END]

Table A12: Prompt used for generating improvement for Multistep Arithmetic. The generated feedback is then
formatted as “Step 1 to step {earliest error step - 1} is correct. In step {earliest error step} the part ‘{error segment}’
is incorrect. This is because ‘{error reason}’.” In general, we used three-shot prompting. Parts that will be generated
are highlighted in blue. Due to limited space, we present one example used for each task. Please refer to our
code repository for the full prompt.
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Prompt Type Prompt Example

Get Improvement Q: Sort the following words alphabetically:
List: cosh inferno every foyer coterie mcfadden halifax
Answer: Let’s think step by step.
(1) The first letter: “cosh”=“c” (3), “inferno”=“i” (9), “every”=“e” (5), “foyer”=“f” (6),
“coterie”=“c” (3), “mcfadden”=“m” (13), “halifax”=“h” (8).
(2) We now have: (3) “cosh” ? “coterie” < (5) “every” < (6) “foyer” < (8) “halifax” <
(9) “inferno” < (13) “mcfadden”.
(3) Now sort this subpart ["cosh" ? "coterie"] by looking at their second letters:
"cosh"="o" (15), "coterie"="o" (15).
(3.1) We now have: (15) ["cosh" ? "coterie"].
(3.2) Now sort this subpart ["cosh" ? "coterie"] by looking at their third letters:
"cosh"="s" (19), "coterie"="c" (3).
(3.3) We now have: (3) "coterie" < (19) "cosh".
(3.4) Hence, we have "coterie" < "cosh".
(4) Hence, we have "coterie" < "cosh" < "every" < "foyer" < "halifax" < "inferno" < "mcfadden".
(Final response) So the answer is: coterie cosh every foyer halifax inferno mcfadden. [END]
Feedback: Step (1) to (3.1) are correct. In step (3.2) the part " "coterie"="c" (3) " is incorrect.
This is because the third letter of "coterie" should be "t".
Updated Answer: Let’s think step by step.
(1) The first letter: "cosh"="c" (3), "inferno"="i" (9), "every"="e" (5), "foyer"="f" (6),
"coterie"="c" (3), "mcfadden"="m" (13), "halifax"="h" (8).
(2) We now have: (3) ["cosh" ? "coterie"] < (5) "every" < (6) "foyer" < (8) "halifax" <
(9) "inferno" < (13) "mcfadden".
(3) Now sort this subpart ["cosh" ? "coterie"] by looking at their second letters:
"cosh"="o" (15), "coterie"="o" (15).
(3.1) We now have: (15) ["cosh" ? "coterie"].
(3.2) Now sort this subpart ["cosh" ? "coterie"] by looking at their third letters:
"cosh"="s" (19), "coterie"="t" (20).
(3.3) We now have: (19) "cosh" < (20) "coterie".
(3.4) Hence, we have "cosh" < "coterie".
(4) Hence, we have "cosh" < "coterie" < "every" < "foyer" < "halifax" < "inferno" < "mcfadden".
(Final response) So the answer is: cosh coterie every foyer halifax inferno mcfadden. [END]

Table A13: Prompt used for generating improvement for Word Sorting. The generated feedback is then formatted
as “Step 1 to step {earliest error step - 1} is correct. In step {earliest error step} the part ‘{error segment}’ is
incorrect. This is because ‘{error reason}’.” In general, we used three-shot prompting. Parts that will be generated
are highlighted in blue. Due to limited space, we present one example used for each task. Please refer to our
code repository for the full prompt.
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Prompt Type Prompt Example

Get Feedback Q: Yesterday was 12/31/1929. Today could not be 12/32/1929 because December has only
31 days. What is the date tomorrow in MM/DD/YYYY?
Options:
(A) 12/12/1929
(B) 01/01/1930
(C) 01/02/1998
(D) 01/02/1885
(E) 01/02/1930
(F) 12/23/1929
Answer: Let’s think step by step.
(1) If yesterday was 12/31/1929, then today is 01/01/1930.
(2) The date tomorrow is 01/02/1930.
(Final response) So the answer is (F).
Earliest error step: (Final response)
Error segment: "the answer is (F)"
Error reason: (F) 12/23/1929 is inconsistent with the result "01/02/1930" in step (2). [END]

Get Improvement Q: Yesterday was 12/31/1929. Today could not be 12/32/1929 because December has only
31 days. What is the date tomorrow in MM/DD/YYYY?
Options:
(A) 12/12/1929
(B) 01/01/1930
(C) 01/02/1998
(D) 01/02/1885
(E) 01/02/1930
(F) 12/23/1929
Answer: Let’s think step by step.
(1) If yesterday was 12/31/1929, then today is 01/01/1930.
(2) The date tomorrow is 01/02/1930.
(Final response) So the answer is (F).
Feedback: Step (1) to step (2) are correct. In step (Final response) the part "the answer is (F)"
is incorrect. This is because (F) 12/23/1929 is inconsistent with the result "01/02/1930"
in step (2).
Updated Answer: Let’s think step by step.
(1) If yesterday was 12/31/1929, then today is 01/01/1930.
(2) The date tomorrow is 01/02/1930.
(Final response) So the answer is (B). [END]

Table A14: Prompt used for generating feedback and improvement for Date Understanding. The generated feedback
is then formatted as “Step 1 to step {first error step - 1} is correct. In step {first error step} the part ‘{error part}’ is
incorrect. This is because ‘{error reason}’.” In general, we used three-shot prompting. Parts that will be generated
are highlighted in blue. Due to limited space, we present one example used for each task. Please refer to our
code repository for the full prompt.
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Prompt Type Prompt Example

Get Feedback Q: The following paragraphs each describe a set of three objects arranged in a fixed order.
The statements are logically consistent within each paragraph. On a branch, there are three birds:
a hummingbird, an owl, and a falcon. The falcon is to the right of the owl. The hummingbird is to
the left of the owl.
Options:
(A) The hummingbird is the second from the left.
(B) The owl is the second from the left.
(C) The falcon is the second from the left.
Answer: Let’s think step by step. Let "??" represents 0 or more objects, and "?" represents exactly
1 object.
(1) The falcon is to the right of the owl: "(left) ?? owl ?? falcon ?? (right)".
(2) The hummingbird is to the left of the owl: "(left) ?? hummingbird ?? owl ?? (right)".
(3) There are in total three birds: a hummingbird, an owl, and a falcon.
(4) Combining (1) and (2) we get the following ordering: "(left) ?? hummingbird ?? owl ?? falcon
?? (right)".
(5) Combining (3) and (4) we get the following ordering: "(left) hummingbird owl falcon (right)".
(6) According to this ordering, the bird that is second from the left is the falcon.
(Final response) The falcon is the second from the left. So the answer is (C).
Earliest error step: (6)
Error segment: "the bird that is second from the left is the falcon"
Error reason: It is inconsistent with the ordering in step (5), which established that
"(left) hummingbird owl falcon (right)". [END]

Get Improvement Q: The following paragraphs each describe a set of three objects arranged in a fixed order.
The statements are logically consistent within each paragraph. On a branch, there are three birds:
a hummingbird, an owl, and a falcon. The falcon is to the right of the owl. The hummingbird is to
the left of the owl.
Options:
(A) The hummingbird is the second from the left.
(B) The owl is the second from the left.
(C) The falcon is the second from the left.
Answer: Let’s think step by step. Let "??" represents 0 or more objects, and "?" represents exactly
1 object.
(1) The falcon is to the right of the owl: "(left) ?? owl ?? falcon ?? (right)".
(2) The hummingbird is to the left of the owl: "(left) ?? hummingbird ?? owl ?? (right)".
(3) There are in total three birds: a hummingbird, an owl, and a falcon.
(4) Combining (1) and (2) we get the following ordering: "(left) ?? hummingbird ?? owl ?? falcon
?? (right)".
(5) Combining (3) and (4) we get the following ordering: "(left) hummingbird owl falcon (right)".
(6) According to this ordering, the bird that is second from the left is the falcon.
(Final response) The falcon is the second from the left. So the answer is (C).
Feedback: Step (1) to (5) are correct. In step (6) the part "the bird that is second from the left
is the falcon" is incorrect. This is because it is inconsistent with the ordering in step (5), which
established that "(left) hummingbird owl falcon (right)".
Updated Answer: Let’s think step by step. Let "??" represents 0 or more objects, and "?" represents
exactly 1 object.
(1) The falcon is to the right of the owl: "(left) ?? owl ?? falcon ?? (right)".
(2) The hummingbird is to the left of the owl: "(left) ?? hummingbird ?? owl ?? (right)".
(3) There are in total three birds: a hummingbird, an owl, and a falcon.
(4) Combining (1) and (2) we get the following ordering: "(left) ?? hummingbird ?? owl ??
falcon ?? (right)".
(5) Combining (3) and (4) we get the following ordering: "(left) hummingbird owl falcon (right)".
(6) According to this ordering, the bird that is second from the left is the owl.
(Final response) The owl is the second from the left. So the answer is (B). [END]

Table A15: Prompt used for generating feedback and improvement for Logical Deduction. The generated feedback
is then formatted as “Step 1 to step {first error step - 1} is correct. In step {first error step} the part ‘{error part}’ is
incorrect. This is because ‘{error reason}’.” In general, we used three-shot prompting. Parts that will be generated
are highlighted in blue. Due to limited space, we present one example used for each task. Please refer to our
code repository for the full prompt.
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