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ABSTRACT

While batch normalization has been successful in speeding up the training of neural
networks, it is not well understood. We cast batch normalization as an approxima-
tion of the limiting case where the entire dataset is normalized jointly, and explore
other ways to approximate the gradient from this limiting case. We demonstrate an
approximation that removes the need to keep more than one example in memory at
any given time, at the cost of a small factor increase in the training step computa-
tion, as well as a fully per-example training procedure, which removes the extra
computation at the cost of a small drop in the final model accuracy. We further use
our insights to improve batch renormalization for very small minibatches. Unlike
previously proposed methods, our normalization does not change the function class
of the inference model, and performs well in the absence of identity shortcuts.

1 INTRODUCTION

Batch normalization (BN) is an often-effective tool in training deep models. It achieves such
effectiveness by normalizing the elements of a minibatch jointly, and doing so pervasively throughout
the model. When BN is used, it is ensured that there are representations throughout the model where
the per-dimension first and second moments (means and variances) are fixed throughout training.

Batch normalization is not well-understood theoretically, and is known to introduce undesired, and
often surprising, artifacts into training. Because BN relies on the interaction between examples
during training, it causes models to perform poorly when training minibatches are small or contain
dependencies between examples. This was shown e.g. in (Ioffe, 2017), which also demonstrated that
this can be alleviated by carefully using the moving averages of minibatch statistics during training.

The adverse effects of BN, as well as the engineering complexity needed for large minibatches, have
led researchers to tackle the problem of normalization that depends only on individual examples,
such as (Ba et al., 2016; Wu & He, 2018). These methods, however, change the architecture used
for inference, as the normalization needs to be performed during inference as well. While this may
lead to a difference in performance, such interventions do not change only the optimization, but also
the hypothesis class. On the other hand, inference-time BN can be folded into the rest of the model
weights to yield a regular model (e.g. using only convolutions, bias additions, and ReLU). Hence
batch normalization does not change the class of models and can be viewed as solely an optimization
device. Approaches that change only the optimization and not the architecture include (Zhang et al.,
2019; Brock et al., 2021) which remove the normalization entirely, but depend on identity shortcuts
in the model.

In this work, we aim to develop a method for performing per-example normalization in a way that
does not modify the inference-time architecture. The resulting method combines per-example gradient
computation, the maintenance of moving first and second moments, and an aggregation step that
joins the information from multiple examples similar to the way that the gradients with respect to the
model parameters are commonly averaged over the minibatch in SGD.
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2 APPROXIMATING POPULATION NORMALIZATION

Consider a model that involves a normalization step, such as yi = xi−Ex or yi = xi√
E x2

. Here, xi is
an activation within a model computed for a particular (ith) model input, yi is the normalized activa-
tion, and E · is the expectation taken over the training data distribution. The examples above achieve
a zero mean and unit second moment, respectively. We decouple these two types of normalization in
what follows.

Performing a normalization that involves the expectation over the data distribution needs to take into
account the fact that the normalizers such as Ex and Ex2 depend on the distribution of the activation
x and therefore depend on the model parameters that affect x. For example, if x is an output of a
layer in a model, then its value depends on the parameters of this layer as well as of the preceding
layers. Stochastic optimization relies on computing a stochastic estimate of the gradient ∂L

∂W of the
loss with respect to weights. Without cross-example interactions, an unbiased estimate is given by the
gradient for a randomly sampled example or minibatch. With cross-example normalization, however,
this does not hold since we no longer have per-example gradients: the computation for an example
is influenced by all other examples. This work aims at obtaining an estimate, albeit not necessarily
unbiased, of the overall gradient from a subset of the examples, whose computation requires minimal
(ideally none) interaction between examples.

Let us consider a general normalization layer of the form zi = f(xi, S), where S is defined as the
expectation of some statistic of the activation, S = E s(x). Observe that if the model parameters
are fixed and the model is structured as a directed acyclic graph, then the normalizers S can be
computed for various layers by considering them in the topological order. However, just computing
the normalizers is not enough; as they depend on the model parameters, we need to capture this
dependence in the gradient calculation. Batch Normalization (Ioffe & Szegedy, 2015) proposes
a solution: approximate each expectation S with its minibatch estimate, through which we can
backpropagate during training, using the population averages for inference. However, the fact that no
layer other than the input observes the activations computed the same way during training as during
inference is a likely culprit for the catastrophic failures of batch normalization, when they happen
(Ioffe, 2017). We would like to use the same normalizers during training and inference.

We could approximate the normalizers by computing exponential moving averages (EMAs) through-
out training. The update rate of the EMA allows us to trade off between the variance (lower
weight given to the last minibatch means lower variance) and staleness of the parameters (higher
weight for the last minibatch means the statistics being averaged are computed for more-similar
model parameters). The question is now how to backpropagate through the normalizers, once
the examples other than the ones in the current minibatch are no longer available. One ap-
proach was proposed in (Yao et al., 2020). In another, Batch Renormalization backpropagates
using only the current minibatch, while using the EMAs in the forward pass. Specifically, batch
renormalization normalizes its inputs (with xn denoting the value for the nth training example) as
xn−µ
σ StopGradient(σσ̄ ) + StopGradient(µ−µ̄σ̄ ) where µ and σ are the mean and standard deviation of

x1...N and µ̄, σ̄ are their EMAs.

2.1 COMPUTATION GRAPHS, GRADIENTS, AND JACOBIANS

To better reason about what we would like the minibatch normalization scheme to do, let us consider
the graph representing the computation of the full-batch loss. This is a directed, acyclic graph, whose
inputs are the input examples (such as images and labels) and the model weights, and whose output is
the batch loss. The other nodes represent intermediate computations, such as hidden layer activations.
Each node’s value is computed as a function (the node’s operation) applied to the node’s inputs (nodes
from which there is an edge to the given node). Each fixed sequence of operations can be represented
with such a graph. Gradient-based learning relies on the computation of gradients in this graph,
typically computed by backpropagation. As an alternative formulation, it is easy to show that for any
weight node W and loss L, the gradient ∂L

∂W can be computed by considering all directed paths in the
graph from W to L, computing for each such path the product of the Jacobians corresponding to all
edges in that path, and adding the products over all the paths. Backpropagation computes this sum of
products efficiently via dynamic programming.
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Batch nodes and shared nodes. For ease of exposition, and without loss of generality, we will
consider a full-batch computation graph applied to a finite dataset (D1...N ), where the nth example
Dn could contain, for example, an image and its ground-truth label. We will focus our attention
on computation graphs each of whose nodes is either a batch node or a shared node. Batch nodes
compute a value for each of the data points, while the shared nodes compute quantities that are
aggregated over the dataset. Specifically:

Batch nodes. The output of a batch node contains one value per training point. One of the batch
nodes is the input node that contains the training data set: D = (D1 . . . DN ). Other batch nodes take
batch nodes and, possibly, shared nodes as inputs, and compute the outputs such that each output
value depends only on the corresponding values from the input batch nodes.

Shared nodes. Shared nodes compute values that are shared by the entire dataset. Shared nodes
include the model parameters. The other type of a shared node is an reduction node, which has a
batch node as the input and computes the average of the corresponding per-example values. Consider
a batch node Q = (Q1 . . . QN ) containing a value for each example. Then a reduction node S would
compute S = 1

N

∑N
n Qn = EnQn. To refer to the batch node Q that is the input to the shared node

S, we will denote Q = Sbatch = (Sbatch
1 . . . Sbatch

N ). We are considering the setting in which the
model loss L is also a shared node, with the total loss computed as the average of per-example losses.

As an example, if the loss is computed as L = En |W (xn − µ)− yn|, where W is the parameter to
be learned, (xn, yn) are the training inputs and outputs, and µ = En xn, then the input batch node
would have elements Dn = (xn, yn), the shared nodes are L, µ and W , and the other nodes in the
computation graph are batch nodes.

Graph over shared nodes. For a computation graph consisting of batch and shared nodes, it is
easy to prove (by induction over the graph nodes) that the output of a batch node Q can be written
as Q = (f(Dn,S))n=1...N , where f is some function and S is a subset of the shared nodes in the
computation graph. In other words, each element of the batch of values computed by the batch node
can be computed from the corresponding input element Dn as well as some of the shared nodes.
Constructively, such computation is represented by the subgraph of the computation graph consisting
of the nodes and edges that can be reached by walking backwards from the given batch node without
crossing shared nodes. It follows that the value of a reduction shared node S can be computed as
S = En Sbatch

n = En f(Dn,S). We will say that S is S-dependent ("S" is for "shared") on D and
on each of R ∈ S. A shared node S is S-dependent on R if R is either a shared node or the input
batch node, and there is a directed path from R to S in the computation graph that does not contain
intermediate shared nodes.

We can represent the computation of L (which is a reduction node) as a graph whose nodes are the
shared nodes and the input batch node, and which has an edge R→ S if in the original computation
graph S is S-dependent on R. We will refer to this graph as the S-graph, and to the original
computation graph as the base graph. See Figure 1. Each node in the S-graph performs an operation
on its inputs that is represented with a subgraph of the original computation graph. Computing the
values of all the nodes in the S-graph is no more expensive than a single forward pass in the original
computation graph. Similarly, computing the gradient of a linear combination of nodes in the S-graph,
with respect to the model parameters, has the same cost as a single backpropagation in the original
computation graph.

Jacobians between shared nodes. Consider an edge S → T in the S-graph, where S and T are
shared nodes and T = f(D,S) (for some subset of the shared nodes S 3 S and the input batch D).
We define the Jacobian J(S, T ) = ∂f

∂S ∈ R|T |×|S|. From the chain rule, we have the gradient of the
loss with respect to a parameter W : ∂L

∂W =
∑
k,(S0...Sk) J(Sk−1, Sk)J(Sk−2, Sk−1) . . . J(S0, S1)

where the summation is over all directed paths (S0 = L . . . Sk = L) from W to L in the S-graph.

Because the target T of an edge S → T is a reduction node, we have, T = En f(Dn,S), thus
J(S, T ) = En ∂f(Dn,S)

∂S . Therefore, the single-example Jacobian Jn(S, T ) = ∂f(Dn,S)
∂S is an

unbiased estimate of J(S, T ), and can be computed from only the nth training example and the
values of some shared nodes. However, a product of such unbiased estimates will not give an
unbiased estimate of the product of the Jacobians. For example, consider an S-graph with nodes
W , S, L, edges W → S, W → L, S → L. Then ∂L

∂W = J(W,L) + J(S,L)J(W,S), but the
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Figure 1: An example computation graph (left) and the corresponding S-graph (right). Shared nodes
are ovals, batch nodes are rectangles. The S-graph contains the shared nodes and the input batch node,
with an edge between two nodes if a path exists between them in the computation graph that does not
pass through other shared nodes. A node in the S-graph computes En f(Dn,S) where (Dn) are the
training examples and S is a subset of the shared nodes. An edge S → T in the S-graph corresponds
to the Jacobian J(S, T ), and the desired gradient of the loss with respect to model parameters is
a sum of products of such Jacobians. This work aims to construct better estimates of such sum of
products using a minibatch of examples, or a single example.

approximation of this gradient using a single example (or a minibatch) is not in general unbiased:
En Jn(W,L) + Jn(S,L)Jn(W,S) = J(W,L) + En Jn(S,L)Jn(W,S) 6= ∂L

∂W .

2.2 DEPENDENCIES BETWEEN JACOBIANS LEAD TO BIASED GRADIENTS

Below, we note some of the ways that dependence between the Jacobian estimates in the computation
graph manifests itself, and some ways to reduce these dependencies.

Scaling the second moment gradients. Consider the divisive normalization yn = xn√
S

, where xn
is the activation in the nth example, and S is the second moment of the inputs. For shared nodes
R and T with S-graph edges R → S → T , the single-example estimates Jn(R,S) and Jn(S, T )
depend on the corresponding xn and therefore on each other, resulting in Jn(S, T )Jn(R,S) being
a biased estimate of J(S, T )J(R,S). To ameliorate this, we will modify the estimates of the form
Jn(R,S) to reduce their dependence on the nth example. Observe that if xn is an output of a linear
layer xn = Wun with weights W , then both Qn = x2

n and ∂Qn

∂W scale quadratically with the scaling
of un. Based on this, we propose scaling Jn(W,S) by S

Qn
, such that it is independent of the scale of

un (and the expected inverse scaling amount of scaling is 1). We apply the same scaling to Jn(R,S)
for all R, which amounts to scaling the gradient as it backpropagates through S. If a minibatch of
B examples are allowed to interact, and the Jacobians are estimated as EBb Jb(R,S), then we scale
the gradient by S

EB
b Qb

. In both cases, the amount of scaling is capped by fmax = 2 (that value is not
critical).

Reducing dependence due to per-node normalization and nonlinearity. Another source of
dependence between J(R,S) and J(S, T ), where S is the second moment, is the normalization
followed by a nonlinearity. For simplicity but without loss of generality, consider a ReLU. As
above, the single-example estimate Jn(R,S) depends on xn, even with the gradient scaling above.
So does the single-example estimate of Jn(S, T ), which has ∂ReLU(γyn+β)

∂yn
as a factor, which is 0

whenever γ√
S
xn + β < 0. We alleviate that dependence by reducing the degree to which a particular

nonlinearity input is affected by any normalized activation. To do so, consider an entire vector of
node values xn, e.g. the output of a neural network layer for the nth example. Instead of applying
both the normalization and the nonlinearity per node, we will compute ReLU(R · (γy) + β) for
some fixed matrix R, with · denoting matrix product. We can set R to a random and fixed rotation
matrix, preserving the total energy in both the forward and back pass. Note that if x is computed by a
linear layer (or convolution), then the rotation by R can be fused into that linear layer and preserves
the inference model class. For some matrix sizes, we can also set R to a Hadamard matrix, which has
the smallest maximum absolute value of the elements. In the convolutional case, we apply a 1× 1
convolution between the normalization and the nonlinearity, multiplying the Hadamard matrix (or a
random rotation) by the stack of channel values at each spatial location.

Shrinking the gradients. An additional modification to the gradients that we have found very
useful is shrinkage. The intuition is that the variance in the estimation of J(R,S) can be reduced by
multiplying the estimate by a scalar r < 1, and this may in turn reduce the estimation error by finding
a more favorable bias-variance tradeoff. When scaling the gradients, we apply the same scaling
to J(R,S) for all R, and therefore can accomplish this by simply modifying the backpropagation
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through S. When processing the nth example, we replace S with ScaleGrad(S, Sbatch
n , r) which

returns S but scales the gradients in backpropagation.

Averaging Jacobians over the minibatch. Consider a minibatch of B examples, from which
we want to estimate the gradient ∂L

∂w , which in turn is the sum of the Jacobian products of the
form J(Sk−1, Sk) . . . J(S0, S1) (with S0 = W , Sk = L). Each of Jacobians could be estimated
as the minibatch average. Although these estimates are not independent, this can be effective in
practice when combined with gradient scaling, and is what Batch Renormalization does. However,
computing the minibatch estimates of all of the Jacobians forces interactions among the examples in
the minibatch at each layer during backpropagation. We could estimate all of the Jacobians based on
individual examples to avoid the interactions, but this increases the bias in the gradient estimation
due to the dependence between the Jacobians. As a compromise between these two extremes, we
break the product J(SK−1, SK) . . . J(S0, S1) into subproducts, such that each of these factors is
estimated as the product of per-example estimates of the constituent Jacobians for each example
in the minibatch, averaged over the minibatch. A decomposition that both gives good empirical
performance and lends itself to efficient computation is into two groups, one of which is the single
Jacobian J(Sk−1, L) and the other containing all the others:

J(Sk−1, L) . . . J(S0, S1)
biased
≈

∑B
b Jb(Sk−1, L)

B

∑B
b Jb(Sk−2, Sk−1) . . . Jb(S0, S1)

B
. (1)

The first factor is the minibatch estimate of the partial derivatives of the L node in the S-graph.
It can be computed via backpropagation, as the minibatch average of per-example gradients with
respect to the shared nodes, without backpropagating through the shared nodes. The second factor
is the biased estimate of the gradient of the linear combination of the shared nodes with respect
to the model weights. The product of the two factors is computed by backpropagation from the
shared nodes, feeding in the first decomposition factor, and averaging the resulting per-example
gradients. The estimate in Eq. (1) is biased even as B →∞ because e.g. En Jb(S1, S2)Jb(S0, S1) 6=
J(S1, S2)J(S0, S1). To alleviate the bias, we need to use the rescaling of the gradients through the
second moments, and may need to apply the gradient shrinkage, as described above.

3 TWO-STAGE BACKPROPAGATION

We present a complete description of the two-stage backpropagation procedure here. We consider a
model that contains the subtraction of the mean and division by the square root of the second moment.
We estimate the gradients using a minibatch of size B, use the estimates (such as exponentially
moving averages, EMAs) of the shared nodes in the forward pass, and modify the backpropagation of
the gradients.

3.1 MODIFYING THE NORMALIZATION

For generality we consider the convolutional case where multiple values in the model share the
normalization statistics. Let xb = (xb,1...d) be the vector being normalized corresponding to the bth
example with d being the number of units normalized jointly, such as the number of spatial locations
in the convolutional map. Below we show the computation of the subtractive normalization that
subtracts the data mean µ, and divisive normalization that divides by the square root of the data
second moment ν. Let us define ScaleGrad(S,Q, r) for a scalar r as the operation returning its first
argument S, but propagating the gradient to Q after scaling it by r, so that ScaleGrad(S,Q, r) =
StopGradient(r)Q+ StopGradient(S − rQ).

Subtractive: Define per-example mean µb = Edi xb,i, and current population mean µ = EMA(µb).
Define µ†b = ScaleGrad(µ, µb, rm) for gradient shrinkage rm (1 by default). Output (xb − µ†b).

Divisive: Let νb = Edi x2
b,i, ν = EMA(νb), ν†b = ScaleGrad(ν, νb, rv min( ννb , fmax)). Output

( xb√
ν†b+ε

).

Such normalizations do not involve example interactions in backpropagation. If the examples in the
minibatch are allowed to interact (as in Batch Renormalization), the subtractive normalization would
be modified to use µ = EBb µb instead of µb, and the divisive normalization to use ν = EBb νb instead
of νb.
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3.2 MODIFYING THE BACKPROPAGATION

We use the estimates from Eq. (1) by breaking the backpropagation into two parts, interleaved with
gradient aggregation. Let Lb is the loss computed on bth example in the minibatch, with the minibatch
loss defined as ` = EBb Lb. We will refer to the set of the means in the model as {µ}, the set of the
second moments as {ν}, and the weights {W}.
In Sec. 3.1 we modified the normalization such that backpropagation does not require inter-example
interactions. Now let us add extra nodes that cause the per-example gradients to interact. For
the subtractive normalization, let µ‡ = ScaleGrad(µ,EBb µb, rm). For the divisive normalization,
let ν‡ = ScaleGrad(ν,EBb νb, rv min( ν

EB
b νb

, fmax)). Note that the gradients of µ‡ and ν‡ can be
computed by combining per-example gradients computed separately from each other.

(a) Backpropagate from the minibatch loss ` to all {µ†b}, {ν
†
b}, and {W}, without backpropagating

through any of those nodes. This can be done for each example independently. Denote the resulting
gradients {gµb }, {gνb } and {gW }, respectively. Define gµ =

∑B
b g

µ
b , gν =

∑B
b g

ν
b . These are

estimates of Jacobians of the form J(S,L).
(b) Feed in the gradients from the previous step into backpropagation starting from {µ‡} and {ν‡},
i.e. compute the gradients, with respect to {W}, of

∑
µ∈{µ} g

µµ‡ +
∑
ν∈{ν} g

νν‡ where g· are
considered constant. This can be done for each example separately followed by adding the gradients.
Denote the gradients from this step as {hW }.
(c) The total gradients are {gW + hW }.

Compared to standard backpropagation in a model with batch normalization (or batch renormaliza-
tion), the above procedure uses roughly twice the amount of computation because the backward pass
is performed twice. What is gained is the ability to process one example at a time.

3.3 NORMALIZING CONVOLUTIONAL MODELS

We compute the mean before the linear operation and the second moment after it, which removes the
dependence of the mean on the weights of the given layer. With batch normalization, subtracting the
mean before or after the linear operation is equivalent, but in our case they are not due to the staleness
of the moving averages; computation of mean µ before the linear transform removes the dependence
of the EMA estimate of the mean on the layer weights W. If the inference architecture is to add the
bias after the linear operation and not before, we equivalently replace W(x− µ) = Wx−Wµ. In
convolutional models with circular padding, we can similarly replace W?(x−µ) with W?x−W̃µ

where W̃ is the sum of the convolutional kernel W along the spatial dimensions. We apply the
same modification even with other padding types; in such cases subtracting W̃µ does not make the
normalized activations zero-mean, but we have not found this to be an issue in practice.

3.4 TWO TOWERS

The combination of the normalization modification (to avoid gradient aggregation) and the two-step
gradient computation has another interpretation, in which two model towers are created. The first
tower uses the modified normalization and also computes the aggregated moments {µ‡} and {ν‡}.
Those are used to perform the normalization in the second tower, and the minibatch loss is set to the
loss computed from the second tower. In backpropagation, gradients for different examples interact
only when adding the gradients with respects to the weights, and when backpropagating through
{µ‡} and {ν‡}. Therefore the gradient computation can be broken up into two stages, the first
backpropagating (in the second tower) to {µ‡} and {ν‡} and the second continuing from there (in the
first tower), which amounts to two sets of per-example computations, with the gradient aggregation
after each of the two sets.

We show the construction of a convolutional layer in such two towers in Alg. 1. There the layer
receives the minibatches x in the first tower and x′ in the second. The two sets of values, as well
as the outputs of the corresponding layers in the two towers, are equal in the forward pass, but the
gradients propagate differently between the towers. We also show how the corresponding layer is
constructed in the inference model, such that at the inference time it acts like a standard convolution
followed by bias and the ReLU. One additional modification the algorithm introduces is scaling the

6



Under review as a conference paper at ICLR 2022

Trainable: W (size H×H×Ci×Co, for convolution spatial support H×H); β, γ (size Co)
Const: scalars rm, rv, fmax, ε; umax (bound on second moment of normalized activations
during training); rotation R (size Co×Co; optional)

Moving averages: µ (size Ci), ν (size Co)

Function ConvLayer_Train(x,x′): . Input sizes: B×S×S×Ci (for spatial size S×S)
µ = Ei,j x·,i,j,·; µ† = ScaleGrad(µ,µ, rm) . size B × Ci

p = conv(x,W)− µ†(
∑
i,jWi,j,·,·)

ν = Ei,j p2
·,i,j,· + ε; ν† = ScaleGrad(ν,ν, rv min(ν

ν , fmax))

q = p√
ν†

StopGradient(min(1, umax

√
ν
ν ))

µ‡ = ScaleGrad(µ,Eb µb,·, rm); ν‡ = ScaleGrad(ν,Eb νb,·, rv min( ν
Eb νb,·

, fmax))

q′ =
conv(x′,W)−µ‡(

∑
i,j Wi,j,·,·)√

ν‡
StopGradient(min(1, umax

√
ν
ν ))

UpdateEMA(µ,Eb µb,·); UpdateEMA(ν,Eb νb,·)
return ReLU(Rotate(q� γ) + β),ReLU(Rotate(q′ � γ) + β)

Function ConvLayer_Inference(x):
K = W�γ√

ν
R; return ReLU(conv(x,K) + (−matmul(µ,

∑
i,jKi,j,·,·) + β))

Function Rotate(y): return conv(y, reshape(R, 1× 1× Co × Co]))

Algorithm 1: Convolutional layer for training and inference. The training inputs are minibatches
x and x′ which have the same forward values but differently defined gradients. We build two
towers, where the first has the gradients defined to enable per-example gradient computation, and
computes the moments used to perform the normalization in the second tower. The loss used
for backpropagation is computed for the second tower. The operator ScaleGrad(S,Q, r) behaves
like StopGradient(r)Q in backpropagation, but returns S in the forward pass. The training loss is
computed from the second tower, corresponding to x′.

activations to prevent their per-example norm from becoming too large, which happens rarely but can
cause instability in training. No such scaling is applied at the inference time.

4 RELATED WORK

There has been a substantial body of work attempting to reduce or remove the minibatch dependence
that is required by batch normalization. One class of approaches changes the architecture such that
the normalization is confined to a single example, and the inference architecture contains the same
normalization. This includes group normalization (Wu & He, 2018) and layer normalization (Ba
et al., 2016), among many others, that normalize sets of activations for an example relative to each
other, rather than normalizing the values of the same activation across a set of examples. Such
approaches are applicable in situations that batch normalization is not, such as recurrent models.
The normalization affects the model class, which can be a disadvantage, as it conflates two distinct
properties of the model architecture – on the one hand, being able to capture the function of interest
and containing the appropriate inductive biases, and on the other hand being amenable to gradient
optimization. This differs from batch normalization, which does not change the function class.

Another class of approaches eliminates the normalization altogether, via a combination of architectural
building blocks and appropriate initialization. An example of this is the fixup initialization (Zhang
et al., 2019), combining the residual connections (He et al., 2015) with the initialization that causes
the residual blocks to act as identity at initialization. This is tightly coupled to the choice of the
function class. We aim to provide a method that, like batch normalization, does not change the
function class, does not rely on skip connections, and enables training that behaves similarly (in terms
of accuracy as the function of the training steps) as batch normalization.

Yet another class of approaches, which ours is closest to, aims to recover the properties of batch
normalization while reducing the dependence on the minibatch size. One such work is (Yao et al.,
2020), which approximates the gradients via the normalization statistics using the information
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collected from multiple examples, while processing only one example at a time – and, in addition,
enables the use of that information even when the model has been updated since the other examples
have been seen. The experiments in that work have been conducted using ResNets (He et al., 2015),
while in this work we deliberately avoid the models with skip connections to avoid dependence on
the advantages they provide.

The approach taken by (Chiley et al., 2019) also aims at using single examples, combined with the
moving average history of previous example statistics, to approximate the behavior of batchnorm.
However, they include an extra step of normalizing the activations in an example, relative to the other
activations, changing the function class, which we aim to avoid.

5 EXPERIMENTS

We train the Inception-v3 (Szegedy et al., 2015) model (without the side head) on the ImageNet
ILSVRC-2012 dataset (Russakovsky et al., 2015). The learning rate for the final classification layer is
reduced by 10× to account for the potentially larger activations without the minibatch normalization.
The training uses 50 workers, each processing minibatches of size 32 (32 × 50 = 1600 examples
per training step). After each step the moving averages are updated at the rate of 0.2. The moving
averages are initialized by using the first 200 steps to only update the EMAs but not the weights. For
50 updates after that, each weight update is followed by 50 steps of only updaing the EMAs, to avoid
their staleness very early in training when the weights change rapidly (an alternative is to ramp up
the learning rate (You et al., 2017)). During training, we clip the per-example second moment of the
normalized activations by umax = 5, and cap the scaling of the gradient through second moments
by fmax = 2 (these values are not critical). Gradient shrinkage is not used (rm = rv = 1) unless
noted. The test accuracy is increased slightly by decaying learning rate at half the speed for the biases
as compared to convolution weights, injecting multiplicative (uniform from [0.9, 1.1]) and additive
(uniform from [−0.1, 0.1]) noise after normalization, and setting the dropout keep probability to 0.6.

For the experiments below, we provide the peak validation accuracy along with the number of training
steps required to achieve it, as well as the accuracy achieved after the same number of training steps
as it takes the baseline model to achieve its peak accuracy.

Baseline. We train the Inception model on ImageNet, using batch normalization. The model reaches
the peak validation accuracy of 78.5% at 120k steps. For the experiments that follow, we report the
validation accuracy at 120k steps, as well as the peak validation accuracy.

Two-stage gradient computation. We replaced batch normalization with the method in sec. 3,
which allows the gradients to be estimated processing each example separately, followed by the
aggregation of gradients, followed by the second stage of gradient computation processing each
example separately and using the above aggregation results. The model accuracy is 77.8% at 120k
steps, increasing to 78.2% at 150k steps.

Different minibatches for two stages. While the method in sec. 3 replicates a minibatch, the
minibatches used for the two parts of gradient computation do not need to be the same. We have
found that the only a small reduction in the model performance results from using a much smaller
minibatch for the second stage of the gradient computation (backpropagating from the shared nodes
other than the loss). We augmented a minibatch of 32 examples with an extra minibatch of 4 examples,
for the resulting minibatch (x1:4;x′1:32). All 4 + 32 examples are sampled from the training dataset,
but the labels for x1:4 are not used. This gives the accuracy of 77% at 120k steps, which increases
to 77.6% at 150k steps.

Improving batch renormalization. Batch renormalization (Ioffe, 2017) allows the use of smaller
minibatches for normalization, compared to BN. Here, we show how to improve it. Instead of
computing the gradient in two passes as in sec. 3, we can perform cross-example normalization
at every layer. To enable this, we use the statistics µ‡ and ν‡ instead of µ† and ν†. This removes
the need for two minibatches and the doubling of computation, but causes the example gradients to
interact at every layer.

We use small microbatches (of size 2 or 4) for cross-normalization, with the gradients from multiple
microbatches (total 1600 examples) added to perform an update. When normalizing over microbatches
of size 4, we get the accuracy of 77.4% at 170k steps (76.2% at 120k). For this microbatch size,
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(Ioffe, 2017) reports the smaller peak accuracy of 76.5% (at 130k steps, at which point we get
76.7%). For a microbatch of 2, we obtain the accuracy of 72% at 180k steps (70.5% at 120k).
This can be improved by using the Hadamard rotation between the normalization and ReLU as
described in sec. 2.2, raising the accuracy to 74.8% at 180k steps (73.5% at 120k). The rotation
and the preceding normalization can be fused for inference with the convolution before them, thus
the inference architecture remains unchanged.

Further improvements to the accuracy at small microbatches can be achieved by shrinking the
gradients through the means by rm and through the second moments by rv. For a microbatch of size
2, with Hadamard rotation and rm = rv = 0.5 we get 77.8% at 155k steps (77.2% at 120k).

Single examples. Finally, to push the algorithm to its extreme, we considered the true per-example
gradient computation, with no interaction between examples. This is the limiting case of our Batch
Renormalization modification, with the microbatch size of 1 (which the original batch renormalization
does not allow). Without gradient shrinkage, we trained the model both with and without the
Hadamard rotation, with the rotation increasing the validation accuracy by about 5%: 68.3% vs.
63.8% (65.8% vs. 60% at 120k), with vs. without the rotation, respectively. The rotation is critical
in this setting, and the performance can be improved further via gradient shrinkage. With a coarse
search for rm, rv, for rm = 0, rv = 0.8 we achieve the validation accuracy of 75% at 170k steps
(73.7% at 120k). Although at 120k steps this model performs 5% worse than the baseline model
(with BN), our method requires no interaction between the examples, and has the same computation
complexity during training as the batch-normalized model.

Residual networks. In addition to the experiments with the Inception architecture, we evaluated
the performance of our method on the Resnet-50 architecture (He et al., 2015). We applied batch
normalization to each convolutional layer, and also to the linear skip-connections that change the
number of channels. The baseline achieved 76.3% top-1 accuracy. Two-stage gradient computation
gave a similar 76.6%. The improved batch renormalization (described above), normalizing over
microbatches of 2 examples, gave 75% when using the gradient scaling factors rm = 0, rv = 0.8
and Hadamard rotation.

6 DISCUSSION

We have presented an interpretation of batch normalization as a method for approximating population
normalization – similar to the way that stochastic gradient computation aims to approximate the
full gradients. We seek other solutions with more favorable properties: making the training model
and inference model equivalent in the forward pass, and reducing the cross-example interaction in
the gradient computation. We propose a method for estimating the gradients that, by reducing this
interaction, enables the gradients to be estimated without holding more than one example in memory
at any given time, at the cost of doubling the computation, although this can be reduced (at a small cost
to the accuracy) by using a smaller minibatch for portions of the gradient estimation. We show how to
achieve better performance with batch renormalization for extremely small (2 examples) minibatches,
and demonstrate only a modest degradation in performance when avoiding cross-example interactions
altogether, wherein the parameter gradient is a simple average of the per-example gradients. Our
method does not change the inference architecture of convolutional models, in that the model used
for inference is still a convnet without any extra operations such as inference-time normalization.
Our experiments are conducted on Inception-v3, which, unlike the state-of-the-art image analysis
architectures, lacks skip connections and enables us to show that our proposed approach does not
take advantage of the beneficial properties of such shortcuts. We did not conduct experiments on the
state-of-the-art architectures that benefit from skip connections.

We proposed several building blocks motivated by reducing the detrimental effects of the bias
introduced when the gradients are estimated from minibatches, and products of Jacobians are
estimated as products of their stochastic and non-independent samples. This includes scaling the
gradients to compensate for the easily-identifiable sources of dependence, introducing the rotation
between the normalization and nonlinearity to reduce the gradient dependence, and a scaling applied
to gradients as they backpropagate through certain nodes in the computation graph. We suspect that
at least some of these building blocks not only enable the reduction in the minibatch size required for
normalization, but are applicable to other use cases in which the population gradient is not a mere
expectation of per-example gradient over the data, and needs to be estimated from minibatches.
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