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Abstract

Compared with natural images, the target of a single-frame infrared small target image
occupies fewer pixels, has fuzzy imaging, less shape and texture information, and a more
complex background. This leads to lower detection accuracy and makes it difficult to
achieve accurate target localization. Therefore, in this paper, an infrared small target de-
tection algorithm, IST-YOLO, is proposed based on yolov8. First, our algorithm improves
the structure of standard model by adding an upsampling layer and a higher resolution
detection head, which has a better ability to detect small targets. Second, we designed
the Adaptive Residual Module (ARM) by combining the residual structure with the fre-
quency adaptive dilated convolution to enhance the capacity of extracting deep small target
position information while retaining the rich semantic information in the shallow layers.
Finally, the Local and Globa Fusion (LGFusion) module is designed to enhance the infor-
mation interaction between local and global features of the model. Experiments show that
the accuracy of IST-YOLO outperforms both standard and popular algorithms.

Keywords: Infrared Small Targets Detection; YOLOv8; Adaptive Residual Module; Local
and Global Fusion;

1. Introduction

In recent years, the rapid development of digital image processing technology has promoted
the research about infrared target detection. The International Society for Optical Engi-
neering (SPIE) defines an infrared small target as a target occupying no more than 9 × 9
pixels in a 256 × 256 pixel infrared image with low target resolution Zhang et al. (2003).
Single-frame type detection algorithms detect small targets within a single image Zhao et al.
(2022). There are four main types of algorithms for common single-frame type infrared small
target detection methods: filter-based Bae et al. (2012), human visual system-based Nasiri
et al. (2017), image data structure-based Xia et al. (2022) and deep learning-based Wu
et al. (2021). Bai and Zhou (2010) proposed the classical Top Hat Operational Transform
(Top Hat), which applies morphological methods to the detection of small targets. Hou and
Zhang (2007) proposed a significance detection method based on spectral residuals, which
is simple to operate and easy to implement, but the detection effect of the infrared images
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with complex backgrounds is not ideal, and it is prone to misdetection. Gao et al. (2013)
proposed a new Infrared Patch-Image (IPI) model, which utilizes a local block construction
method and a stable principal component tracking method to recover the target sparse
component and the background low-rank component in the data matrix, and finally uses
image reconstruction and segmentation to complete the detection of small targets.

With the development of artificial intelligence, small target detection algorithms based
on deep learning have been increasingly emphasized by researchers at home and abroad.
Deep learning networks currently used for object detection are categorized into two-stage
object detection algorithms and single-stage object detection algorithms. The two-stage ob-
ject detection algorithms are represented by R-CNN Girshick et al. (2014) and its variants
Fast R-CNN Girshick (2015), Faster R-CNN Ren et al. (2015). The one-stage object detec-
tion algorithms are represented by the SSD Liu et al. (2016), YOLO family Redmon et al.
(2016); Redmon and Farhadi (2017, 2018); Bochkovskiy et al. (2020); Jocher (2020); Li et al.
(2022); Wang et al. (2023, 2024b,a) of algorithms. The Faster R-CNN algorithm first pre-
sets prediction boxes with different aspect ratios, then classifies the prediction boxes using
image features, filters out the candidate frames related to the background so as to generate
sparse region candidate frames, and finally classifies the objects in the generated candidate
frames in the second stage and predicts the target location. The detection framework of
SSD consists of two parts, the front-end network is a convolutional neural network VGG16
used for the initial extraction of features from the image, and the back-end is a multi-scale
feature detection network used to extract features at different scales from the feature maps
generated by the front-end network. After the image is processed by SSD network, the
category probability and position coordinates of the object can be obtained directly, and
the final result can be obtained directly after a single detection, which is characterized by
fast detection speed. The YOLO algorithm views object detection as a regression problem,
it trains directly on the whole image as input, treating the target and the background as a
whole, rather than using a sliding window, which greatly improves the detection speed, but
there is a certain degree of degradation in the detection accuracy.

However, since infrared imaging systems rely on temperature difference imaging, com-
pared with visible light images, infrared images often have problems such as small targets,
blurred imaging , and little shape and texture information Hsieh et al. (1997). The current
deep learning networks for object detection, such as Faster R-CNN, SSD, YOLO series al-
gorithms, etc., have better detection results for medium and large targets in general scenes
where the targets are dispersed and do not have overlapping or occlusion phenomena, but
the average detection accuracy of small targets in infrared images is poor, and the detection
accuracy is much lower than that of medium and large targets in general scenes Nasrabadi
(2013). Therefore, finding a more suitable network for infrared small and small target
detection is still a worthwhile research problem.

To address the above problems, we propose IST-YOLO, an infrared small target de-
tection network based on yolov8. Our proposed method has three improvements. The
improved model structure incorporates an upsampling layer and a higher resolution detec-
tion head to detect small targets with smaller pixel occupancy. The Adaptive Residual
Module (ARM) combines the idea of frequency adaptive dilated convolution with residual
structure He et al. (2016) to extract the deep small target positional information in the
feature extractor while preserving the shallow rich semantic information. The Local and
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Global Fusion (LGFusion) module models local and global features, fuses shallow and deep
features of the model, and enhanced information interaction between local and global fea-
tures of small targets. In summary, the contributions of this paper can be summarized as
follows:

(1) An object detection network with a high-resolution detection head is introduced to
improve the accuracy of small target detection. This network adds upsampling layers and
a high-resolution detection head to the original network, and a feature map with larger
size is employed for small target detection. This method provides better detection of small
targets.

(2) An ARM is proposed that combines frequency adaptive dilation convolution with
residual structure to enhance the ability of extracting deep positional information in the
feature extractor while retaining the rich semantic information in the shallow layer, so as
to make a better effect of doing cross-layer connectivity during up-sampling.

(3) The LGFusion module is designed, motivated by the idea of convolutional attention
fusion, which models local and global features and enhance information interaction between
local and global features of small targets, and this approach achieve the good detection
performance of the small target.

(4) Experimental results on the NUAA-SIRST dataset show that these enhancements
make IST-YOLO outperform the original algorithm and other algorithms object detectors
in terms of detection accuracy.

2. Method

2.1. IST-YOLO

The overall architecture of our proposed IST-YOLO is shown in Fig. 1. An upsampling
layer and a higher resolution detection head are introduced for better detection of small
targets.The backbone network is passed through the C2f to extract features. ARM is passed
before SPPF in order to extract advanced position information. Deep and shallow features
are spliced during upsampling. The LGFusion module is added before the detection head to
model local and global features, enhance information interaction between local and global
features of small targets. Finally, the multi-scale detection head is then used to detect
targets of different sizes.

2.2. Improvement of Model Structure

The yolov8 contains three detector heads with resolutions of 20×20, 40×40, and 80×80.
The low resolution detection head is used to detect objects with a large pixel ratio, and the
high resolution detection head is used to detect objects with a small pixel ratio. Since the
target of a single-frame infrared small target image accounts for a small pixel ratio of the
whole image, it is difficult for the original detection head to detect it, so we improved the
network structure of yolov8 by adding upsampling layers, increasing the size of the feature
map from 80×80 to 160×160, and adding a detection head with a resolution of 160×160.
This method can better detect small targets, and the experimental results show that the
improved structure compared to the standard model without degrading mAP50 while the
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Figure 1: The proposed IST-YOLO, consisting of two parts: backbone and head. ARM
and LGFusion are our self-developed modules. The parameters in the figure are
the ones when the model size is s.

mAP50−95 is improved from 0.358 to 0.383. The standard model and the improved structure
of the model network are shown in Fig. 2.

2.3. Adaptive Residual Module (ARM)

Dilated convolution Yu and Koltun (2015) was initially proposed to solve problems in image
segmentation to obtain richer positional information and aggregate multi-scale contextual
information from an expanded sense field. The widely used extended convolution can be
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Figure 2: Structure of the standard and improved models. We added upsampling layers
and a high-resolution detection head to the standard model.

represented by the following Eq. 1:

Y (p) =

K×K∑
i=1

WiX (p+∆pi ×D) (1)

where Y (p) is the pixel value at position p in the output feature map, K is the kernel size,
Wi is the weight parameter of the kernel, and X (p+∆pi ×D) is the pixel value at the
position corresponding to the position where p is offset by ∆pi in the input feature map.
The receptive field can be expanded by increasing the expansion rate. However, the increase
of expansion rate to expand the receptive field also leads to the degradation of the frequency
information capturing ability. Chen et al. (2024a) proposed a Frequency Adaptive Dilated
Convolution, which achieves a balance between the effective bandwidth and the receptive
field by dynamically adjusting the expansion rate. As shown in Eq. 2, D̂(p) can be predicted
using a convolutional layer with parameter θ.

Y (p) =
K×K∑
i=1

WiX
(
p+∆pi × D̂ (p)

)
(2)
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The optimization of θ can be written as Eq. 3. HP+ and HP− denote pixels with the
highest/lowest high-frequency power, respectively.

θ = max
θ

 ∑
p∈HP−

D̂ (p)−
∑

p∈HP+

D̂

 (3)

For a static convolutional kernel, the weights W can be decomposed into Eq. 4. Here
W̄ represents the kernel-wise averaged W. The term Ŵ denotes the residual part, extracting
the high-frequency components.

W = W̄ + Ŵ (4)

Adaptive kernel dynamically adjusts the high-frequency and low-frequency components,
which can be formalized as Eq. 5. where µl, µh are the dynamic weights of each channel,
predicted by a simple lightweight global pooling + convolutional layer.

W = µlW̄ + µhŴ (5)

In the yolov8 algorithm downsampling process, the loss of position information leads to low
detection accuracy. This problem is partially solved by adding a high-resolution detection
head, which improves the detection accuracy. However, the feature extractor is strong in
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Figure 3: (a) is the proposed ARM. For the input feature map, firstly go through 1×1
convolution layer to reduce the number of channels to reduce the amount of com-
putation, and secondly after split operation to input into the residual structure,
and then after convolution for channel splicing, and finally through the 1×1 con-
volution layer to reduce the dimensionality. (b) is the FADC module in ARM,
AdaDR is an adaptive dilation rate.
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semantic information extraction and poor in location information extraction. Inspired by
Chen et al. (2024a), we designed the Adaptive Residual Module (ARM), which expands
the deep sensing field of the feature extractor and extracts more location information while
conveying rich semantic information. It makes up for the shortcomings of the backbone
network where small targets are rich in semantic information but insufficient in location
information. The module is shown in Fig. 3. We add the ARM to the eighth layer in the
backbone network, as shown in Fig. 1, to retain the rich semantic information in the shallow
layer while better extracting the small target location information.

2.4. Local and Global Fusion (LGFusion)

Convolutional operations are limited by local properties and receptive fields, and are defi-
cient in modeling global features. On the contrary, attention mechanisms excel at extracting
global features and capturing remote dependencies. Based on these two points Hu et al.
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Figure 4: (a) is the proposed LGFusion module, c stands for Channel-wise Concatenation
and s for Sigmoid. Firstly the input feature maps are preliminarily fused, and
the local and global features are extracted and fused by the CAFM module.
Secondly, channel cascading, channel shuffling and activation are performed to
obtain weights W , which fully mix the weights of global and local branches to
ensure information interaction. Finally the weights W are then used to further
fuse the input feature map. (b) is the CAFM module in LGFusion. It consists of
two branches, Local branch and Global branch.



Wang Li Wang Niu Wang

(2024) proposed a convolution and attention fusion module (CAFM). In the CAFM a self-
attention mechanism is used in the global branch to capture a wider range of information
about the hyperspectral data, while the local branch focuses on extracting local features
for comprehensive denoising. The module explores the problem of global and local model-
ing using a combination of convolution and attention.The network of yolov8 extracts local
features more adequately for small targets and less for global features. This leads to poor
detection of small targets. Inspired by Hu et al. (2024) and combining the idea of content-
guided attention Chen et al. (2024b) we designed an LGFusion module, as shown in Fig. 4.
The module employs an attentional mechanism to obtain global dependencies while ex-
tracting local features, enhancing cross-channel interactions and facilitating the integration
of local and global information for small targets. The LGFusion module is added to the
model before the detection header, connecting layers 2 and 18, 4 and 21, 6 and 24, 9 and
27, respectively, as shown in Figure 1. The network model with LGFusion added obtains
global dependencies and models local and global features based on shallow and deep layers,
enhance information interaction between local and global features of small targets.

3. Experiments and Analysis

3.1. Datasets

Publicly available datasets of infrared small target imagery are very limited, and most
traditional methods are evaluated on their internal datasets.The infrared small target images
studied in this paper are from the NUAA-SIRST dataset, which is the first high-quality
single-frame infrared small target dataset constructed by Dai et al. (2021).

(a) Cloud background (b) Sea background (c) Ground background (d) City background(a) Cloud background (b) Sea background (c) Ground background (d) City background

Figure 5: Example of a typical scenario for the NUAA-SIRST dataset. They are cloud
background, sea background, ground background and city background.

The dataset contains 427 infrared images with 480 targets, constructed by selecting
the most representative images from hundreds of image sequences. The targets have weak
brightness, low contrast, lack of color and texture information, and are hidden in complex
background environments such as clouds, cities, and oceans, which are interfered with by
strong light sources, sheeted clouds, the sea surface, and the edge of the sky, and many of
them are even difficult to be recognized by the human eye. These targets are difficult to
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detect. Fig. 5 illustrates the typical scene images contained in the above dataset, with a
preponderance of images with clouds in the background and fewer of the other three.

3.2. Evaluation Metrics

In this study, two metrics, mAP50 and mAP50−95, are used to evaluate the performance
of the network. mAP is the mean Average Precision, which is the average value of AP .
A target detection model is usually described in terms of the precision (mAP) metric to
describe the strengths and weaknesses, and the higher the mAP value, the better the
detection of that object detection model on a given dataset. For a dataset containing N
classes, the mAP is represented as in Eq. 6.

mAP =
1

N

N∑
i=1

APi (6)

ThemAP50−95 is themAP threshold of 50% to themAP threshold of 95% at 5% intervals,10
mAP values were obtained and then these ten values were averaged as in Eq. 7.

mAP50−95 =
1

10

9∑
n=0

mAP50+5n (7)

AP is determined by Precision(P ), Recall(R), and the thresholds of the intersection over
union(IoU) defined as Eq. 8.

AP =
∑
K

(RK −Rk−1)Pk (8)

Pk and Rk denote the ratio of true-positive objects at the kth threshold to all detected true-
true objects and ground true-true objects, respectively. They are calculated as in Eq. 9 and
10.

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

where TP denotes correctly categorized objects with IoU above a particular threshold. FP
is a predicted bounding box with IoU below a certain threshold, or an incorrectly detected
object. FN denotes a missed ground truth object.

3.3. Ablation Experiments

In order to compare the improved algorithm proposed in this paper with the YOLOv8
algorithm and to ensure the reliability of the experiments, all the training and testing data
are trained in the same training environment and the epoch of each training is guaranteed
to be 100. after the training is completed, the optimal model weights are used for testing.
So as to fully verify the applicability of the detection network designed in this chapter to
different complex scenarios and the effectiveness of the detection of infrared small targets,
ablation experiments are carried out on the NUAA-SIRST dataset, and the detection results
are shown in Tab. 1.
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Table 1: Ablation experiments for each module on the NUAA-SIRST dataset.

Structural
improvements

ARM LGFusion mAP50 mAP50-95

0.899 0.358

✓ 0.899 0.383

✓ 0.916 0.382

✓ 0.912 0.377

✓ ✓ ✓ 0.929 0.384

As shown in Tab. 1, the improvement of structure improves mAP50−95 by 0.25 without
degrading mAP50. mAP50 and mAP50−95 are both significantly improved by adding the
ARM module and LGFusion module, respectively. Finally, the accuracy of the model is
optimized by adding the three improvement points simultaneously. Compared with Base-
line, mAP50 increases by 0.3 and mAP50−95 increases by 0.26, indicating that the model
structure of IST-YOLO is more reasonable for the learning of infrared small targets. The
mAP50, mAP50−95 during training is shown in Fig. 6. The bounding box loss, PR curve is
shown in Fig. 7.
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Figure 6: Comparison of accuracy between IST-YOLO and YOLOv8. (a) is a comparison
plot of mAP50 curves and (b) is a comparison plot of mAP50−95 curves.

It can be seen that IST-YOLO’s mAP50 training is not much different from YOLOv8
in the early stage, but it is significantly better than YOLOv8 in the later stage. and IST-
YOLO’s mAP50−95 is consistently much better than YOLOv8. Thus, it can be seen that
IST-YOLO’s learning of the single-frame infrared small targets is more reasonable.



IST-YOLO

(a) Epoch-Boxloss Diagram (b) Precision-Recall Curve
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Figure 7: Loss and PR curves. (a) is the loss of the prediction box during training, and (b)
is a comparison of the PR curves of the models.

As shown in Fig. 7 (a), the bounding box loss of IST-YOLO converges faster and the
loss is lower. The PR curve is the curve of Precision and Recall for different IOU thresholds,
and the larger the area enclosed by the PR curve, the better the model is for that dataset.
As shown in (b), IST-YOLO is better than YOLOv8 on the single-frame infrared small
target dataset.

3.4. Comparison Experiment

We compared IST-YOLO with different algorithms on the NUAA-SIRST dataset, and the
results are shown in Tab. 2. All methods in the table have a training epoch of 100.

Table 2: Compare results with different models on NUAA-SIRST dataset.
Method mAP50 mAP50-95

YOLOv3 0.843 0.339
YOLOv5s 0.901 0.374
YOLOv6 0.901 0.336

YOLOv7-tiny 0.798 0.256
YOLO-world 0.876 0.344
YOLOv9c 0.866 0.371

RT-DETR-resnet50 0.887 0.365
RT-DETR-resnet101 0.881 0.357

YOLOv10s 0.872 0.356
IST-YOLO(Ours) 0.929 0.384
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It can be seen that both mAP50 and mAP50−95 have objective improvements compared
to previous versions of YOLOv3 Redmon and Farhadi (2018), YOLOv5 Jocher (2020),
YOLOv6 Li et al. (2022) and YOLOv7 Wang et al. (2023). Compared with the latest
YOLO-World Cheng et al. (2024), YOLOv9 Wang et al. (2024b), RT-DETR-resnet50, RT-
DETR-resnet101 Zhao et al. (2024), and YOLOv10 Wang et al. (2024a), mAP50 improves
by 5.3%, 6.3%, 12.5%, 4.8%, and 5.7%, respectively, and mAP50−95 improved by 4%, 1.3%,
4.1%, 2.7%, and 2.8%, respectively. The effectiveness of the proposed network model for
infrared small target detection in complex background is fully verified. The PR curves of
all the above methods are shown in Fig. 8.
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Figure 8: PR curve for IST- YOLO and other methods. PR curves are Precision and Recall
curves for different IOU thresholds, the larger the area enclosed by the PR curve,
the better the model for the dataset.

The PR curve of IST-YOLO is significantly better than the other methods. The de-
tection comparison between IST-YOLO and other models methods on the NUAA-SIRST
dataset is shown in Fig. 9. The three infrared small targets in the first row of data YOLOv8
detects only one, YOLOv10 detects two, and YOLOv9 does not detect them, while IST-
YOLO detects all three small targets. It can be seen that our algorithm detects dense small
targets better than other algorithms. In the second row of data are targets with a small
percentage of pixels, only our IST-YOLO detects the small targets accurately. In the third
row of data our algorithm detects better, both YOLOv8 and YOLOv9 algorithms incor-
rectly detect the background as a target, which shows that our algorithm can reduce the
false alarm rate. In the fourth row of data our algorithm has the best detection of targets,
while YOLOv8 has false alarms and incorrectly recognizes the background as a target.
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IST-YOLO(ours)YOLOv8sYOLOv9cInput YOLOv10s IST-YOLO(ours)YOLOv8sYOLOv9cInput YOLOv10s

Figure 9: Prediction results for IST-YOLO and other networks on the NUAA-SIRST
dataset. The blue box in the first column zooms in on the target.

4. Conclusion

Single-frame infrared small targets are difficult to detect due to small target size, blurred
imaging, and little shape and texture information. This paper proposes the IST-YOLO
algorithm to better detect small targets by adding a high-resolution detection head. The
ARM module is introduced to enhance the position information of infrared small targets
for more accurate localization of small targets. The LGFusion module is proposed to es-
tablish the dependence of local and global information to increase the detection accuracy
of infrared small targets. The experimental results show that the IST-YOLO algorithm
outperforms other algorithms. The improvement in accuracy illustrates that our algorithm
can be considered as an effective method for infrared small target detection. IST-YOLO
achieves high accuracy but suffers from slower inference due to additional layers. Future
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research aims to develop the faster and more effective frameworks for infrared small target
detection.
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