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Abstract

Speculative decoding (SD) has attracted a sig-001
nificant amount of research attention due to the002
substantial speedup it can achieve for LLM in-003
ference. However, speculative decoding meth-004
ods often achieve optimal performance on high-005
end devices or with a substantial GPU mem-006
ory overhead. Given limited memory and the007
necessity of quantization, a high-performing008
SD model on a high-end GPU can slow down009
by up to 7 times. To this end, we propose010
Skippy Simultaneous Speculative Decoding011
(or S3D), a cost-effective self-speculative SD012
method based on simultaneous multi-token de-013
coding and mid-layer skipping. When com-014
pared against recent effective open-source SD015
systems, our method has achieved one of the016
top performance-memory ratios while requir-017
ing minimal architecture changes and training018
data. Leveraging our memory efficiency, we019
created a smaller yet more effective SD model020
based on Phi-3. It is 1.4 to 2 times faster than021
the quantized EAGLE model and operates in022
half-precision while using less VRAM.023

1 Introduction024

Speculative decoding (SD) (Stern et al., 2018;025

Zhang et al., 2024; Xia et al., 2024) can acceler-026

ate LLM inference without sacrificing the quality.027

As a result, it is becoming one of the most com-028

mon optimization techniques in LLMs. At a high029

level, typical speculative decoding (SD) works by030

drafting tokens at a relatively faster speed, and then031

verifying the guessed tokens at the end of an iter-032

ation using a full forward pass. The speedup is033

based on the assumption that the accepted tokens034

in one forward pass during the verification step will035

offset the cost of the drafting steps.036

However, greater speedups are not always free.037

On one hand, some popular SD systems (Cai et al.,038

2024; Li et al., 2024; Chen et al., 2024) add a con-039

siderable amount of memory, e.g., due to the extra040
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Figure 1: Training efficiency, inference efficiency per
memory unit, and load-time VRAM evaluated for dif-
ferent models on MT-Bench. From left to right: The
most recent open-source SD systems ordered by release
dates. All systems use 7B target models with 8-bit quan-
tization. Our model (S3D) stands out in both training
efficiency and memory-speed trade-offs.

modules or a large token trees used for drafting. 041

When models are deployed at scale, even a mi- 042

nor memory overhead can largely increase the cost 043

of inference, given the high cost of using HBM 044

VRAM in inference. On the other hand, high- 045

performing SD can achieve remarkable speedups 046

using a large model (Zhang et al., 2023a; Zhao 047

et al., 2024; Yang et al., 2024) or on high-end 048

GPUs (Zhang et al., 2023a; Chen et al., 2024; Kou 049

et al., 2024; Elhoushi et al., 2024). However, we 050

notice that these speedups become limited or even 051

start underperforming when a smaller model or 052

low-memory device is used where quantization is 053

necessary. Surprisingly, the state-of-the-art open- 054

source SD model (in speedups) may slow down by 055

up to 7 times when applying quantization under 056

constrained GPU memory, highlighting the signifi- 057

cant overheads from quantization (Lin et al., 2024). 058

In such cases, we question the cost-effectiveness 059
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of existing SD methods, even if they show greater060

speedups on high-end GPUs.061

Although recently Chen et al. (2024) designed062

a GPU-agnostic optimization by pre-profiling the063

GPU times for the draft and verify stages, their064

approach relies on the hard assumption of fixed065

acceptance rates among different levels of the draft066

token tree, making it less applicable to various SD067

methods. Additionally, the optimal trees have fewer068

differences for smaller models or slower GPUs,069

limiting their potential on low-end devices.070

In this work, we introduce Skippy Simultaneous071

Speculative Decoding (or S3D) to achive fast in-072

ference, low VRAM costs, and high training effi-073

ciency. Our key contributions are listed below:074

Effective Self-speculative SD: We propose a sim-075

ple and cost-effective self-speculative decoding076

scheme named S3D for low-memory GPUs. Our077

scheme features mid-layer skipping and simulta-078

neous multi-token predictions, offering no added079

VRAM costs and high training efficiency. Com-080

pared to Zhang et al. (2023a), S3D overcomes the081

limited speedups in smaller models.082

Optimal hyper-parameters: Instead of relying083

on statistical optimization, we formalize the rela-084

tionship between the number of skipped layers and085

speedup in self-speculative decoding, as previously086

studied in Zhang et al. (2023a) empirically. Based087

on our formalization, we can also verify the op-088

timal number of token predictors, as empirically089

observed by Gloeckle et al. (2024).090

Optimal speed-memory ratio: Our SD method091

demonstrates optimal performance-memory ratios092

among recent open-source SD models. By exploit-093

ing the memory efficiency, we can avoid the signif-094

icant quantization overheads under certain VRAM095

constraints and outperform the previous fastest SD096

method, i.e., EAGLE (Li et al., 2024), under 8-bit097

quantization by up to 3.9x in speedups on an A10G098

GPU. Moreover, by switching to a smaller target099

model, we have created a more effective SD model100

based on Phi-3, which decodes 1.4 to 2 times faster101

than EAGLE on an A10G while using less VRAM.102

2 Related Work103

Early work in speculative decoding (SD) using104

Transformers (Stern et al., 2018; Sun et al., 2021;105

Xia et al., 2023) focused on in-domain tasks such106

as translation and grammar error correction, where107

significant speedups are easily achieved. These108

methods are characterized by single-branch specu- 109

lation using additional modules (Stern et al., 2018) 110

or an independent draft model (Xia et al., 2023). 111

By using speculative sampling (Chen et al., 2023), 112

SD can also sample tokens from target model dis- 113

tribution (Leviathan et al., 2023). In contrast, our 114

work targets general domain tasks and focuses on 115

greedy1 and non-batching decoding via simultane- 116

ous multi-token prediction. We save memory and 117

gain training efficiency through layer-skipping. 118

2.1 Multi-Token Predictions 119

Since Stern et al. (2018), predicting the next k 120

tokens simultaneously has proven effective, but 121

it requires adding k feed-forward decoder layers 122

from the last encoder state. Cai et al. (2024) popu- 123

larized this idea using Medusa heads, additionally 124

predicting multiple token branches using tree atten- 125

tion (Miao et al., 2024; Spector and Re, 2023). 126

In the SpecDec method (Xia et al., 2023), multi- 127

token prediction is done by unmasking future to- 128

kens from multiple decoder heads attending to dif- 129

ferent encoder states, utilizing distinct attention 130

queries for predicting different tokens. However, 131

SpecDec requires full model fine-tuning for all lay- 132

ers as the decoder-only target model has not been 133

pretrained on multi-token unmasking tasks. More 134

recently, Bhendawade et al. (2024) predict multiple 135

tokens by adding streaming embeddings initialized 136

from upper layers, with the token tree reduced by 137

early exiting. 138

Multi-token prediction can also be implemented 139

auto-regressively (Yang et al., 2024; Li et al., 2024; 140

Ankner et al., 2024), which takes multiple steps to 141

predict the next draft token conditioned on previ- 142

ously drafted tokens in one iteration. To mitigate 143

the substantial overheads incurred by multi-step 144

drafting within a single iteration, the draft over- 145

head should be minimal while ensuring it retains 146

the capability to generate acceptable tokens. In the 147

case of EAGLE (Li et al., 2024), this is achieved 148

by efficiently utilizing the target model’s high-level 149

features with the embeddings or hidden states of 150

the next tokens for regression via an additional 151

layer of Transformer decoder. 152

Another line of work to generate multiple draft 153

tokens in parallel is based on Jacobi iteration meth- 154

ods, treating auto-regressive decoding in LLM as 155

a non-linear system of equations, or Jacobi decod- 156

1Our approach can be easily extended to support sampling;
we focus on greedy decoding as it is orthogonal to speculative
sampling.
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ing (Song et al., 2020; Santilli et al., 2023). In157

practice, however, an LLM may obtain marginal158

speedups from Jacobi decoding as it can rarely pro-159

duce an accepted token if a previous token in the160

trajectory is predicted incorrectly. Lookahead de-161

coding (Fu et al., 2024) attempts to address this162

issue by introducing memory costs and caching163

n-gram tokens from previous Jacobi trajectories.164

Inspired by the Consistency Model (Song et al.,165

2023), CLLMs (Kou et al., 2024) additionally train166

their target models to minimize the distances be-167

tween Jacobi trajectories and the fixed point, lead-168

ing to faster convergence and thus greater speedups.169

Compared to regular SD methods, Jacobi decoding170

does not have a separate draft phase.171

2.2 Layer Skipping172

Layer skipping is a type of structured pruning tech-173

nique (Anwar et al., 2017; Louizos et al., 2018; Xia174

et al., 2022) that reduces a model by only using175

a subset of its layers. Structured pruning is par-176

ticularly intriguing for LLM optimizations due to177

its compatibility with GPU acceleration. This is178

because it enables immediate gains in memory and179

compute by discarding substructures entirely (Oud-180

eraa et al., 2024).181

Various layer skipping schemes explored for182

Transformer models are discussed next. Early Exit-183

ing (Dehghani et al., 2019; Teerapittayanon et al.,184

2016) utilizes early layers and skips the rest. Lay-185

erDrop (Fan et al., 2020) randomly drops layers186

during training and skips layers during inference.187

Lagunas et al. (2021); Ouderaa et al. (2024) have188

identified sub-layer structures (e.g., attention heads189

or weight blocks) to be pruned during training. Saj-190

jad et al. (2023) propose symmetric dropping of191

complete top and bottom layers, based on the ob-192

servation that middle layers of a Transformer are193

less critical. This observation has been validated194

by Ma et al. (2023); Wu and Tu (2024) on larger195

LLMs and for KV-cache as well. Recently, Raposo196

et al. (2024) have trained additional parameters to197

dynamically skip layers.198

Combining layer skipping with SD leads to an199

intriguing way to save memory, known as self-200

speculative decoding (Bae et al., 2023; Zhang et al.,201

2023a; Liu et al., 2024a; Elhoushi et al., 2024),202

where a static or adaptive number of layers of the203

target model are used for drafting tokens. These ap-204

proaches mitigate the common memory overheads205

of SD by incorporating minimal or no extra mod-206

ules for the draft stage. Specifically, they either207

entail no additional training (Zhang et al., 2023a) 208

or only necessitate training for learning an adap- 209

tive early exit threshold (Bae et al., 2023; Elhoushi 210

et al., 2024) with a potential trade-off in quality. In 211

Elhoushi et al. (2024), they reuse KV-cache from 212

draft stages, reducing the computation needed for 213

the remaining layers in the verify stage. However, 214

their approach involves training LayerDrop (Fan 215

et al., 2020) and requires complex early exit thresh- 216

olds during inference. 217

A concurrent work by Gloeckle et al. (2024) 218

combines self-speculative decoding with multi- 219

token predictions. However, their approach trains 220

additional independent heads comprising entire 221

Transformer layers, potentially adding more mem- 222

ory cost compared to EAGLE (Li et al., 2024). In 223

contrast, our SD scheme imposes no extra model 224

load cost and has minimal training requirements 225

through applying mid-layer skipping. 226

3 Preliminaries 227

Given a Transformer decoder-only model (Rad- 228

ford et al., 2018) Mp, its generated next-token dis- 229

tribution p(t≤i) given the current context tokens 230

t≤i = t1, t2, ..., ti can be expressed in terms of 231

Transformer layers. For layer ℓ = 1, 2, ..., L, 232

h
(0)
i =Emb(ti) (1) 233

h
(ℓ)
i =T (ℓ)(h

(ℓ−1)
≤i ,Pos≤i) (2) 234

ti+1 ∼p(t≤i) = LM-Head(h(L)i ) (3) 235

where Emb represents the embedding transforma- 236

tion, and T (ℓ) denotes the Transformer layer at level 237

l, which receives the context hidden states from the 238

previous layer h(ℓ−1)
≤i , associated with their posi- 239

tion information Pos≤i. The LM-Head maps the 240

hidden space to a vocabulary distribution p for the 241

next token sampling. 242

The decoder-only language model is typically 243

trained using the next-token prediction task, where 244

training involves employing cross entropy loss 245

across tokens in parallel. Given a sample of se- 246

quential tokens ti, i = 1, 2, ..., N , the loss is 247

L =
1

N − 1

N−1∑
i=1

− log p(t≤i)ti+1 (4) 248

During a SD iteration, a more efficient draft 249

model Mq is often used to predict the next γ to- 250

ken(s) from the target model Mp through sampling 251

ti+j+1 ∼ q(t≤i+j) where j = 0, 1, 2, ..., γ − 1. To 252
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produce tokens as if they were sampled from the253

target distribution, Leviathan et al. (2023) show254

that we can verify drafted tokens by comparing255

p(ti+j) with q(ti+j) successively, and accept each256

token with a probability of min(1,
p(ti+j)
q(ti+j)

). Upon257

completion, one more last token ti+γ+1 can be sam-258

pled from the target distribution p. On rejection,259

sampling is done from a normalized distribution of260

max(0, p − q). In greedy decoding, this process261

is equivalent to accepting only the matched tokens262

produced from p and q.263

4 S3D264

We propose a self-speculative SD scheme called265

Skippy Simultaneous Speculative Decoding (or266

S3D). In S3D, the draft model Mq uses partial lay-267

ers from target model Mp.268

To adhere to the Transformer decoder architec-269

ture and circumvent the need for auxiliary modules,270

we opt to emulate the Masked Language Modeling271

(MLM) task commonly employed in Transformer272

encoder training. This involves inserting a special273

mask token, denoted as <M>, into future inputs to274

predict the next γ tokens concurrently. Specifically,275

draft model receives the last token, and γ− 1 mask276

tokens:277

ti+1, ..., ti+γ ∼ q(t≤i,<M>, ...,<M>︸ ︷︷ ︸
γ−1

) (5)278

where the draft model Mq uses all previous hidden279

states of the target model h(ℓ)≤i , ℓ = 1, 2, ..., L:280

h
(ℓ)
i = T (ℓ)(h

(ℓ−1)
≤i ,Pos≤i). (6)281

Different from Xia et al. (2023), the simultane-282

ously generated tokens at j = i+1, i+2, ..., i+ γ283

require only propagating through lower and top284

layers, skipping middle m-th to n-th layers of the285

target model:286

h
(n−1)
j =h

(m)
j (7)287

h
(ℓ′)
j =T (ℓ′)(h

(ℓ′−1)
≤j ,Pos≤j) (8)288

where non-skipping layers ℓ′ = 1, 2, ...,m, n, n+289

1, ..., L. Unlike Zhang et al. (2023a), a non-290

skipping layer ℓ is able to utilize previous states291

of the target model, i.e., h(ℓ−1)
≤i . Furthermore, in292

contrast to early exiting in Zhang et al. (2023a),293

the current draft states from top layers are kept294

for decoding. Additionally, we do not necessarily295

skip lower layers due to the adjustments required in296

lower-level representations for skipped middle lay- 297

ers, a notion explored similarly by Ma et al. (2023) 298

and Wu and Tu (2024). We will further justify this 299

skipping scheme in Section 5.3. 300

Training: Our training objective is to accurately 301

uncover masked tokens while preserving the orig- 302

inal next-token prediction capability. To this end, 303

we train the draft model to decode both the next 304

token right after i and its following masked to- 305

kens. Assume the masked tokens are located at 306

i+ 1, i+ 2, ..., i+ γ − 1, our training loss is 307

L(S3D) =
1

|D|
∑
j∈D

− log q(t≤j)tj+1 (9) 308

where decoding set D = {i, i+ 1, ..., i+ γ − 1}. 309

During training, we freeze the skipped layers 310

to preserve the target model distribution. Instead 311

of predicting next tokens sequentially, we assign 312

masked tokens randomly so that training samples 313

can be processed in one batch, utilizing the paral- 314

lelism of Transformer. An illustration of our mod- 315

eling is shown in Figure 2. 316

Predicting speedup: Given target ratio β ∈ [0, 1], 317

which represents the ratio of target model parame- 318

ters that the draft model uses during decoding, the 319

acceptance rate α of the first drafted token should 320

be a function of β. Naturally, in the self-speculative 321

case, α(1) = 1 and α → 0 when β → 0 . 322

In this work, we have hypothesized a function to 323

estimate draft token acceptance rate as a function 324

of model size (parameterized by U ): 325

α(β;U) =
1− Uβ

1− U
. (10) 326

We will show in Section 5.3 that the above function 327

aligns well with empirical observations. 328

In multi-token predictions, assume the true ac- 329

ceptance rate at the k-th draft token, i.e., αk(β), is 330

discounted by k in a discrete function (which we 331

may readily estimate from empirical data). Follow- 332

ing the notation in Li et al. (2024), the expected 333

newly generated tokens τ is 2 334

τ(γ, β) =

γ+1∑
n=1

n ·
n−1∏
k=1

αk(β) · zn(β) (11) 335

where the shorthand notation zn(β) = 1− αn(β) 336

if n ̸= γ + 1 and 1 otherwise. 337

2When drafting a single next token, i.e., αk(β) = α1(β),
Eq. 11 is a capped geometric series and can be further simpli-
fied to a formula given by Leviathan et al. (2023).
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Figure 2: An illustration of S3D based on simultaneous predictions of the last γ tokens (γ = 2). A mask token <M>
is added into vocabulary prior to training, and a partial model is trained to predict the next tokens simultaneously.
Tree attention is adopted to verify multiple branches of predictions give top candidates of the k-th draft token.
Unlike other self-speculative decoding methods based on fully-skipped layers, we only skip the middle layers on
top of the draft tokens so that the draft model can access high-level features from top layers as well as the previous
states verified by the complete target model.

When the number of drafting tokens is not sig-338

nificant (which commonly happens on low-end de-339

vices), it is reasonable to assume the time cost for340

a full-model forward pass to be a constant C. We341

also assume there is a fixed overhead H0 for each342

iteration, proportionally to C, i.e., H0 = δ ·C, then343

deriving the decoding speed by taking out C leaves344

us the Improvement Factor (Leviathan et al., 2023)345

for self-speculative decoding, i.e.,346

IF (γ, β) =
τ(γ, β)

δ + β + 1
, (12)347

assuming that the forward time for a partial model348

scales linearly with the number of its parameters.349

Note that Eq. 12 represents a different improve-350

ment factor compared to the one in auto-regressive351

drafting schemes (Leviathan et al., 2023), where γ352

predictions are performed sequentially.353

5 Experiments354

5.1 Experimental Setup355

Datasets We consider datasets commonly used356

in SD evaluations, including MT-Bench (Zheng357

et al., 2023) for multi-turn conversation, Human-358

Eval (Chen et al., 2021) for coding, and CNN-359

Daily (Hermann et al., 2015) for summarization.360

For CNN-Daily, we only use the 1, 000 samples361

similar to Zhang et al. (2023a), while the complete362

datasets are used for the others. For MT-Bench,363

we use Gemini Pro (Anil et al., 2024) for evalua-364

tion. We report accuracy scores for Human-Eval365

and Rouge-1 and Rouge-L scores (Lin, 2004) for 366

CNN-Daily. 367

Baselines A fair comparison is conducted by run- 368

ning all systems on identical samples and hardware 369

using a uniform evaluation framework. To this 370

end, our model is compared to open-source SD sys- 371

tems including: Self-Spec (Zhang et al., 2023a), 372

Medusa (Cai et al., 2024), EAGLE (Li et al., 373

2024), MCSD (Yang et al., 2024), Sequoia (Chen 374

et al., 2024), Ouroboros (Zhao et al., 2024), and 375

CLLMs (Kou et al., 2024). Self-Spec is a repre- 376

sentative training-free self-speculative method that 377

predicts the next single token via layer skipping. 378

Medusa is a popular SD method that adds paral- 379

lel decoder heads to predict multiple next tokens. 380

EAGLE concatenates the target model’s late-layer 381

hidden states with the last token embedding to pre- 382

dict the next five tokens auto-regressively via an 383

additional Transformer decoder layer. In a recent 384

benchmark (Xia et al., 2024), it reportedly achieves 385

the highest speedup. And recent work MCSD, Se- 386

quoia, and Ouroboros generate draft tokens through 387

a separate draft model. In particular, Sequoia con- 388

structs an optimal draft token tree from profiling 389

the underlying hardware. In these three systems, 390

we adopt the 68M JackFram LLaMA (Miao et al., 391

2024) as the draft model, which is also the default 392

and most efficient option for their LLaMA target 393

models. Lastly, CLLMs is considered as the latest 394

development in the direction of Jacobi or Looka- 395

head decoding (Santilli et al., 2023; Fu et al., 2024). 396
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Table 1: The cost-effectiveness comparisons on an A10G GPU considering peak VRAM costs. All models are 8-bit
quantized and are based on the 7B LLaMA-v2 target model except mentioned otherwise in parentheses. The largest
3 numbers in each column are highlighted in italics or bold. “Peak” denotes the peak VRAM usage in GiB. The
overall (averaged) results count for both M speed and the relative effectiveness metrics compared to the baseline.

Model \ Metric MT-Bench Human-Eval CNN-Daily Overall
Peak ↓ Tok / s M Score Peak ↓ Tok / s M Acc. % Peak ↓ Tok / s M R-1 R-L M Eff.

Baseline 8.53 7.02 1.00 7.05 8.43 7.02 1.00 6.71 8.96 6.53 1.00 0.19 0.13 1.00 1.00
Self-Spec. 7.77 5.00 0.78 7.08 7.46 4.89 0.79 6.10 8.09 5.01 0.85 0.19 0.14 0.81 0.97
Medusa (Vicuna) 9.09 9.27 1.24 4.98 8.94 10.69 1.44 7.93 9.36 7.62 1.12 0.24 0.14 1.26 1.03
EAGLE 9.58 13.03 1.65 6.98 9.45 15.22 1.93 5.49 9.86 12.43 1.73 0.19 0.13 1.77 0.94
MCSD 7.76 7.72 1.21 6.79 7.40 7.77 1.26 9.76 8.10 6.74 1.14 0.20 0.14 1.21 1.16
Sequoia 8.44 8.64 1.24 6.46 8.35 9.01 1.30 3.05 8.57 7.99 1.28 0.18 0.12 1.27 0.77
Ouroboros 7.95 5.47 0.84 7.08 7.61 5.83 0.92 8.54 8.30 4.91 0.81 0.18 0.13 0.86 1.09
CLLM 7.51 11.75 1.90 5.31 7.37 16.29 2.66 3.66 7.53 8.06 1.47 0.20 0.14 2.01 0.79

Ours
S3D 7.79 12.39 1.93 5.68 7.60 13.85 2.19 6.71 8.80 9.58 1.49 0.28 0.19 1.87 1.09
S3D (Phi-3, fp16) 8.14 25.31 3.78 7.04 7.92 28.13 4.27 20.12 8.87 17.35 2.69 0.25 0.18 3.58 1.77

Implementation details All implementations use397

eager-mode decoding based on Huggingface Trans-398

formers (Wolf et al., 2020) and we adopt the native399

BNB 8-bit quantization (Dettmers et al., 2022) for400

quantized models.401

We configure each system with greedy decoding402

and keep the other SD configurations default for403

different systems. A non-speculative implementa-404

tion is used as the common baseline to calculate405

speedups and relative memory costs as it shares406

the same instructional LLaMA-v2 (Touvron et al.,407

2023) backbone for most of our evaluated systems.408

We mostly consider the 7B target model size.409

In exception to this, we also train a 3.8B Phi-3410

Mini (Abdin et al., 2024) target model and a 13B411

LLaMA-v2 target model to demonstrate the gen-412

eralization ability of our method. Unless specified413

otherwise, our S3D implementations use the opti-414

mal hyper-parameters suggested by Section 5.3.415

Cost effectiveness metric We propose a memory-416

normalized speed metric M , which divides a417

speedup by the relative memory usage compared418

to the baseline model:419

M =
v1
v0

/
m1

m0
=

v1
m1

/
v0
m0

(13)420

where v0 and m0 are the generation speed and421

memory consumption of the baseline model, and422

v1 and m1 are the generation speed and memory423

consumption of the evaluating model. This metric424

quantifies the generation speedup per memory unit,425

ensuring a fair and memory-aware comparison for426

target models of the same size.427

Training Similar to Medusa, EAGLE, CLLMs, et428

al.(Cai et al., 2024; Li et al., 2024; Kou et al.,429

2024), we train our models on the ShareGPT430

dataset. All training is conducted using bf16 and431

FlashAttention-2 (Dao, 2024) with a batch size of 432

64 for one epoch on A10G GPUs. Please refer to 433

Appendix A for detailed training descriptions. 434

5.2 Main Results 435

Initially, we discuss the cost-effectiveness of our 436

model. In Table 1 and 2, we observe that our S3D 437

models and CLLM exhibit the highest overall M 438

speeds among the evaluated systems, which re- 439

mains consistent across different GPUs. 440

Importantly, models producing high speedups 441

are not necessarily the most cost-effective, as seen 442

in the case of Medusa and EAGLE, where the cost 443

of extra draft module(s) must be considered. We 444

also observed discrepancies in the effectiveness 445

scores of models when using the original target 446

model for token verification, likely due to imple- 447

mentation issues or numerical errors. However, 448

our model generally maintains baseline effective- 449

ness and achieves the highest overall effective- 450

ness among systems requiring target model train- 451

ing (i.e., Self-Spec., CLLM, and ours). By using 452

layer adapters like LoRA (Hu et al., 2022), we can 453

easily enable lossless decoding at the expense of 454

efficiency costs (see analysis in Appendix B). 455

Interestingly, the vanilla self-speculative decod- 456

ing method, i.e., Self-Spec, underperforms the base- 457

line in terms of speed for the 7B target model. This 458

highlights the limitation of naive self-speculative 459

decoding (γ = 1) in smaller models, where the par- 460

tial draft model becomes further constrained and 461

is unable to propose good draft tokens. In contrast, 462

we alleviate this issue by allowing the draft model 463

to attend to previous target model states and train- 464

ing the model to predict multiple tokens (γ > 1), 465

thereby enhancing the effectiveness of smaller self- 466

speculative models. 467
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Figure 3: Speed comparison between ours (S3D) and
EAGLE on different GPU devices (MT-Bench samples,
7B LLaMA target model). The dashed bars represents
the full speed potentials of the EAGLE model without
memory restrictions. However, when constrained with
a VRAM limit of 16 GiB, the quantized EAGLE model
(indicated by red bars) suffers from severe speed degra-
dation, highlighting the significant overheads associated
with quantization.

Admittedly, the LLaMA-based S3D model ties468

closely to EAGLE and underperforms CLLM469

in overall M speed, primarily due to the high470

speedups and optimal memory efficiency achieved471

by EAGLE and CLLM, respectively. However, as472

shown in Table 1 and 2, we are able to exploit473

our memory efficiency and outperform EAGLE in474

both efficiency and effectiveness while using less475

amount of VRAM by switching to a non-quantized476

Phi-3 target model. 3 Even without switching to a477

different target model, we demonstrate in Figure 3478

that our LLaMA-based S3D model can operate in479

half-precision within a VRAM limit of 16 GiB, and480

outperform EAGLE by up to 3.9 times when EA-481

GLE needs to be quantized. This underscores the482

critical importance of memory efficiency.483

On the other hand, we find that the training ob-484

jectives of CLLM may encourage repeating pat-485

terns in its outputs, leading to degraded effective-486

ness scores, as seen in Table 1 and additional case487

studies in Appendix D. In contrast, our model can488

preserve effectiveness scores more robustly while489

achieving the optimal speed-memory ratios.490

5.3 Optimal Hyper-Parameters491

We first study the optimal layer skipping choices.492

To this end, we have empirically explored three493

3We conducted ablations in Appendix C to understand
the significant improvements in Phi-3 S3D. For a larger 13B
model, our cost-effectiveness can be maintained as well (see
Appendix Table 3).
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Figure 4: The overall acceptance rates and individual
acceptance rates at different drafting depths (w/ only
a single branch of future tokens). L, LMH, and EMB
stand for regular layer, LM heads, and the embedding
layer, respectively. Skipping the middle layers sym-
metrically has shown better acceptance rates in general.
Note that we distinguish embedding layer and lm_head
here although in practice they may have tied weights.

different schemes by skipping a fixed number of 494

original layers in the LLaMA 7B target model: (1) 495

Skipping asymmetrically from the middle, includ- 496

ing early existing and using only late layers while 497

skipping all early layers. (2) Skipping symmetric 498

layers from the middle, i.e., layer 5 → 26 or skip- 499

ping the middle 20 layers. (3) Alternate evenly 500

between skipping and non-skipping layers. 501

Looking at Figure 4 (and Appendix Figure 9 for 502

training efficiencies), skipping symmetrical layers 503

from the middle performs best, achieving higher 504

overall acceptance rates and optimal training effi- 505

ciency. In contrast, skipping from layer 11 to the 506

top (LM-head) layer and skipping from the bottom 507

(embedding) layer to layer 20 have the worst perfor- 508

mance, highlighting the importance of both early 509

and late layers. Lastly, skipping symmetric mid- 510

dle layers or alternating every 3 layers has similar 511

training efficiency. 512

To answer what is the optimal number of lay- 513

ers and what is the best number of tokens to be 514

predicted in parallel, we train different number of 515

layers (β) skipped symmetrically from the middle 516

layer, each trained model is evaluated for different 517

γ values up to 5. We run different models on MT- 518

Bench for 50 samples, and linearly interpolate the 519

acceptance rate discount function αk(β) (detailed 520

in Appendix E). 521

As summarized in Figure 5, our proposed for- 522

mula for predicting self-speculative acceptance 523

rates in Eq. 10 mostly matches with the empiri- 524
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Figure 5: Upper: The predicted (in dashes) and sampled
acceptance rates (interpolated orange dots) of various
draft model sizes (β). Lower: The predicted (in curves)
and sampled (in dots) speeds of different draft model
sizes and different number of guesses (γ). All experi-
ments are evaluated using MT-Bench. Our prediction
curves justify the optimality of using around half the
number of layers and γ = 4, as observed individually
and respectively in Zhang et al. (2023a) and Gloeckle
et al. (2024).

cal results except for the lowest β value, and this525

outlier may be explained by the less predictability526

in training a small partial model (< 1.5B). Ad-527

dtionally, the speedup formula in Eq. 12 success-528

fully predicts both the trend and the sweet spot in529

speedups. Higher γ values align less with the pre-530

diction because the acceptance rates for far-future531

tokens have higher uncertainty and variance as re-532

flected by Figure 4.533

In addition to the findings from Zhang et al.534

(2023a); Gloeckle et al. (2024), we have unified535

multi-token predictions with layer skipping. Our536

prediction in Eq. 12 has also justified their findings537

that the optimal speed for single next-token pre-538

diction is achieved by skipping around half of the539

layers and the overall optimal γ is 4 (as shown in540

Figure 5, a higher γ results in an almost diminished541

speedup, offset by fewer accepted tokens).542

5.4 Training Efficiency543

In addition to its cost-effectiveness, S3D also544

demonstrates greater training efficiency compared545

to other effective SD models (see Figure 1). So546

we hypothesize that the self-speculative decoding547

method used in S3D inherently lowers training548
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Figure 6: Training loss comparisons between EAGLE’s
classification loss (Li et al., 2024) and our (S3D) training
loss in Eq. 9. EAGLE requires training an extra layer of
Transformer with additional linear mappings.

costs, as the training task leverages the existing 549

model weights. In light of this, we train and com- 550

pare both S3D and EAGLE models using 20, 000 551

data rows (the original EAGLE was trained on 552

68, 000 data rows). 553

As shown in Figure 6, S3D consistently demon- 554

strates lower training losses, even when accounting 555

for more layers and the inclusion of far-future to- 556

kens, which are typically difficult to predict. Re- 557

markably, even in the least favorable scenario in- 558

volving early exiting or early layer skipping, our 559

loss values generally remain lower than those of 560

EAGLE. Overall, S3D training exhibits less vari- 561

ance and achieves more stable convergence. 562

6 Conclusion 563

We have proposed S3D, a self-speculative SD 564

method based on simultaneous multi-token predic- 565

tions and mid-layer skipping. S3D demonstrates 566

one of the best cost-effectiveness among recent 567

open SD systems, while also exhibiting high train- 568

ing efficiency and maintaining the effectiveness of 569

the original model. We have also verified the opti- 570

mal hyper-parameters for our proposed method in a 571

principled manner, without requiring any black-box 572

optimizations beforehand. By leveraging memory 573

efficiency, S3D can avoid quantization and surpass 574

the speed of quantized EAGLE when a 16 GiB 575

VRAM limit is imposed. Additionally, S3D, based 576

on the smaller Phi-3 target model, decodes 1.4 to 577

2 times faster than quantized EAGLE on an A10G 578

GPU, with reduced VRAM usage and better effec- 579

tiveness. 580
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Limitations581

Our focus is primarily on memory-efficient and582

training-efficient accelerations, so the speedups of583

our model may not be optimal when compared to584

other models based on the same target model. Also,585

we adopt the HuggingFace official quantization for586

its data-free calibration implementation (Dettmers587

et al., 2022), which may be subject to future per-588

formance improvements, potentially reducing the589

impact of quantization penalties. Our scope of590

application may also be limited to edge devices591

or in budget-sensitive environments where GPU592

memory is a major concern. Lastly, due to resource593

constraints, we are unable to extensively explore all594

popular LLMs of different sizes, so our proposed595

formula for predicting acceptance rates in Eq. 10596

may need further adaptation for other models.597
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Appendix875

A Training Configurations876

We train 7B models with a per-device batch size877

of 2, a max sequence length of 2048, and 8 gra-878

dient accumulation steps with 4 GPUs. For 13B879

models, we use a per-device batch size of 1, a max880

sequence length of 1024, and the same 8 gradient881

accumulation steps but with 8 GPUs parallelized882

in Zero-3 using DeepSpeed with parameter offload-883

ing (Rajbhandari et al., 2020).884

We uniformly apply a learning rate of 3 · 10−5885

with 50 linear warm-up steps and a fused AdamW886

(Loshchilov and Hutter, 2019) kernel from PyTorch887

for optimization. During our multi-token predic-888

tion training, we sample 20, 000 data rows and889

mask out 15% tokens randomly.890

B S3D using LoRA891

Using an S3D model fine-tuned with adapters can892

easily guarantee the same output as the original893

target model, thus maintaining the original model894

quality. With this intention, we have trained S3D895

models using LoRA (Hu et al., 2022) with the same896

amount of data as full fine-tuning.897

We apply LoRA to the optimal layer skipping898

schemes (5 → 26 and 7 → 24) and vary matrix899

ranks r from 12 to 128, and LoRA parameter α900

from 32 to 128. However, as shown by Figure 8,901

the speed of a LoRA-based S3D model is notably902

penalized by the overheads from the attached linear903

adapters, and the acceptance rate underperforms904

compared to that of a fully fine-tuned model. As a905

result, we observe inferior speed when using S3D906

with LoRA adapters. We have also experimented907

AdaLoRA (Zhang et al., 2023b) but have observed908

similar negative results for end-to-end speeds.909

Nevertheless, we have seen that the BitDelta910

method (Liu et al., 2024b) successfully compressed911

fine-tuned adapter weights by more than 10x. How-912

ever, BitDelta requires large training resources913

and needs to keep three model copies simultane-914

ously. Despite this, we still see great potential to915

achieve similar efficiency to a fully fine-tuned S3D916

model with guaranteed original model outputs us-917

ing adapters, but we leave this to future work.918

C Phi-3 S3D Ablation Study919

To understand the high cost-effectiveness of our920

proposed S3D speculative decoding scheme when921

applied to the Phi-3 target model, we conducted an922

ablation study, analyzing the contributions of the 923

target model, quantization, and the S3D method. 924

From Table 4, it is observed that avoiding quan- 925

tization generally only enhances speed, while the 926

significant improvements in cost-effectiveness stem 927

from two main factors: 1) transitioning to Phi-3 928

Mini as the target model, and 2) implementing the 929

S3D method. However, the latter is crucial for sur- 930

passing the state-of-the-art SD in both speedups 931

and cost-effectiveness under limited memory. 932

D Issues of CLLMs 933

Similar to our method, CLLMs (Kou et al., 2024) 934

incurs no additional memory costs to the original 935

model. It iterates and verifies multiple tokens in 936

parallel using Jacobi iterations with random ini- 937

tial guess tokens. Consequently, in Table 1 and 2, 938

CLLM has achieved higher speed-memory ratios 939

comparable to ours. 940

However, we have discovered that the CLLM 941

model we have evaluated is prone to generating 942

repetitive patterns, presumably due to its training 943

objectives, which encourage the target model to 944

shorten the Jacobi trajectories before reaching the 945

fixed point. While this can accelerate inference con- 946

vergence and mitigate the issue of relatively slow 947

speedups from vanilla Jacobi decoding, we have 948

observed relatively low effectiveness scores from 949

the officially trained 7B model using ShareGPT 950

data (shown in Table 1). In contrast, S3D preserves 951

most of the effectiveness of the original model. 952

In Figure 7, we present a comparison between 953

two example outputs of CLLM. The one with repet- 954

itive patterns can generate tokens 2x faster than 955

its counterpart, raising questions about the speed 956

optimization of CLLM in terms of preserving the 957

effectiveness of the original model. 958

E Prediction Formula Details 959

Our prediction for both acceptance rates and speeds 960

shown in Fig 5 can be captured by only a few hyper- 961

parameters. For Eq. 10, we use U = 0.01. For 962

the discount function of the k-th token acceptance 963

rate, we use a linear interpolation of real data from 964

the MT-Bench experiments shown in Figure 10. 965

Specifically, 966

αk(β) = (1.22− 0.22k) · α(β) (14) 967

for k ≤ 5. Similarly, we profile the iteration over- 968

heads and set δ = 0.04 in Eq. 12. 969
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Table 2: The cost-effectiveness comparisons on a low-end RTX 3060 GPU considering peak VRAM costs. All
models are 8-bit quantized and are based on the 7B LLaMA-v2 target model except mentioned otherwise in
parentheses. The largest three numbers in each column are highlighted in italics or bold. “Peak” denotes the peak
VRAM usage in GiB. Effectiveness metrics are omitted here as they mirror those in Table 1.

Model \ Metric MT-Bench Human-Eval CNN-Daily Overall
Peak ↓ Tok / s M Peak ↓ Tok / s M Peak ↓ Tok / s M M

Baseline 8.42 8.11 1.00 8.35 7.82 1.00 8.90 7.42 1.00 1.00
Self-Spec. 7.81 5.71 0.76 7.46 5.46 0.78 8.08 5.68 0.84 0.79
Medusa (Vicuna) 9.09 10.32 1.18 8.94 11.97 1.43 9.36 7.99 1.02 1.21
EAGLE 9.59 15.18 1.64 9.45 17.39 1.97 9.86 13.82 1.68 1.76
MCSD 7.78 8.51 1.14 7.42 8.46 1.22 8.07 7.01 1.04 1.13
Sequoia 8.44 10.29 1.27 8.35 10.48 1.34 8.57 9.01 1.26 1.29
Ouroboros 7.94 6.28 0.82 7.60 6.79 0.95 8.23 5.62 0.82 0.86
CLLM 7.47 14.14 1.97 7.39 19.19 2.77 7.53 9.28 1.48 2.07

Ours
S3D 7.81 13.99 1.86 7.58 14.99 2.11 8.72 10.41 1.43 1.80
S3D (Phi-3, fp16) 8.15 29.88 3.23 7.92 33.70 3.18 8.81 19.49 2.65 3.23

Table 3: The cost-effectiveness comparison considering peak VRAM costs for selected models using 13B 8-bit
quantized LLaMA as the target model (A10G GPU). The largest number in each column are highlighted in italics or
bold. “Peak” denotes the peak VRAM usage in GiB. The overall (averaged) results count for both M speed and the
relative effectiveness metrics compared to the baseline.

Model \ Metric MT-Bench Human-Eval CNN-Daily Overall
Peak ↓ Tok / s M Score Peak ↓ Tok / s M Acc. % Peak ↓ Tok / s M R-1 R-L M Eff.

Baseline (13B) 15.39 5.60 1.00 7.36 15.03 5.51 1.00 6.10 15.88 5.09 1.00 0.21 0.15 1.00 1.00
EAGLE (13B) 16.96 10.67 1.73 7.40 16.82 12.58 2.04 4.27 17.29 9.82 1.77 0.21 0.15 1.85 0.90
S3D (13B) 14.39 10.70 2.04 6.18 14.08 12.23 2.37 6.71 15.80 7.87 1.55 0.25 0.17 1.99 1.04

Table 4: Ablations on the cost-effectiveness of S3D models based on Phi-3 Mini (A10G GPU), considering peak
VRAM costs. The largest two numbers in each column are highlighted in italics or bold. “Peak” denotes the peak
VRAM usage in GiB. Although using non-quantized fp16 generally improves model speeds, it does not neccessarily
add cost-effectiveness due to the additional memory overheads.

Models \ Metrics MT-Bench Human-Eval CNN-Daily Overall
Peak ↓ Tok / s M Peak ↓ Tok / s M Peak ↓ Tok / s M M

LLaMA (8-bit) 8.53 7.02 1.00 8.43 7.02 1.00 8.96 6.53 1.00 1.00
Phi-3 (8-bit) 4.64 8.91 2.33 3.78 8.82 2.80 5.49 7.99 2.00 2.38
Phi-3 (fp16) 7.99 16.43 2.50 8.22 15.97 2.33 8.80 13.59 2.12 2.32
Phi-3 (S3D, 8-bit) 4.79 14.39 3.65 5.11 26.71 6.28 5.53 11.11 2.76 4.23
Phi-3 (S3D, fp16) 8.19 26.00 3.86 8.56 48.23 6.77 8.88 16.95 2.62 4.42
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USER: tell me a few interesting facts about the sun and the moon.

ASSISTANT: 1. The sun is approximately 4.6 million miles away from Earth,while the moon
is about 238,900 miles away. 2. The sun is about 864,000 miles in diameter, while the
moon is only about 2,159 miles in diameter. 3. The sun is made up of hydrogen and helium,
while the moon is primarily composed of silicon and iron. 4. The sun is a spherical object,
while the moon has a slightly irregularshape due to its formation process. 5. The sun takes
approximately 24 days to complete one rotation, while the moon takes approximately 27.3
days to complete one rotation around Earth. 6. The sun is approximately4.6 billion years
old, while the moon is estimated to be around4.5 billion years old. 7. The sun’s surface
temperature is approximately 5,500°F (3,000°C), while the moon’s surface temperature
ranges from -273°F (-170°C) during the night to 260°F (127°C) during the day. 8. The sun
is a star, while the moon is a natural satellite of Earth. 9. The sun is the source of all energy
on Earth,while the moon has no intrinsic energy source. 10. The sun is the largest object in
the solar system, while the moon is the largest natural satellite in the solar system.

USER: tell me a few interesting facts about the sun and the moon.

ASSISTANT: 1. The sun is a gigantic ball of plasma, while the moonis a rocky body. 2.
The sun is approximately 4.6 billion years old, while the moon is approximately 4.5 billion
yearsold. 3. The sun is approximately 109 times larger thanthe moon, and the moon is
approximately 300 times smaller than thesun. 4. The sun is approximately 100 times more
massivethan the moon. 5. The sun is approximately 93 million miles(150 million kilometers)
away from Earth, while the moon isapproximately 238,900 miles (384,400 kilometers) away.
6. The sun is approximately 10,000 degrees Fahrenheit (5,538 degrees Celsius) at its surface,
while the moon’s surface temperature rangesfrom -273 to -233 degrees Fahrenheit (120 to
-150 degrees Celsius). 7. Thesun is approximately 864,000 miles (1,392,000 kilometers) in
diameter, while the moon isapproximately 2160 miles (3474 kilometers) indiameter. 8. The
sun is approximately 109 times more luminous than the moon. 9. The sun is approximately
10,000 times more massive than the moon. 10. Thesun is approximately 10,000 times more
luminous thanthe moon. 11. The sun is approximately 10,000 times more massive than the
moon. 12. The sun isapproximately 10,000 times more luminous than the moon. 13. The sun
is approximately 10,000times more massive than the moon. 14. The sun is approximately
10,000 times more luminous than the moon. 15. The sun is approximately 10,000 times
moremassive than the moon. 16. The sun is approximately 10,000 times more luminous
than the moon. 17. The sun is approximately 10,000 times more massive thanthe moon.
18. The sun is approximately 10,000 times more luminous than the moon. 19. Thesun is
approximately 10,000 times more massive than the moon. 20. The sun is approximately
10,000times more luminous than the moon. ... (repetitive pattern continues)

Figure 7: Examples of CLLM outputs (on a RTX 3060 GPU with 8-bit quantization). The implementation is
non-deterministic due to potential numerical errors. As a result, we are able to show two different inputs from the
same prompt. Upper: A good example which has a speed of 10.85 tokens per second. Lower: A bad example
which shows repetitive patterns at the end, having a 2x higher speed of 21.98 tokens per second.
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Figure 8: S3D full fine-tuning compared with using LoRA adapters (MT-Bench). LoRA settings include attaching
adapters to all linear layers (all) or only attaching to value, key, and output projection layers (vko). Given the same
layer skipping scheme, vko and low-rank LoRA have lower inference overheads but achieve lower acceptance rates
(at depth-0). Overall, LoRA does not offer similar speeds compared to full fine-tuning, although it reliably maintains
the original model output.

0 50 100 150 200 250 300 350 400
Step

3

4

5

6

7

8

9

10

11

Lo
ss

layer 11 → lm_head
layer 10 → 31
layer 9 → 30
layer 7 → 28
layer 5 → 26
every 3 layers
layer 3 → 24
layer 1 → 22
layer 0 → 21
embed_layer → 20

Figure 9: The training loss when fine-tuning different skipping schemes. We alter the skipped layers while keeping
the total number of used layers (12 layers or β = 0.375) unchanged.
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Figure 10: Acceptance rates comparison at different draft token tree depths, compared between ours (S3D) and
the state-of-the-art open-source model EAGLE in different datasets. Since we predict tokens simultaneously, our
acceptance rates drop more at future positions. However, we achieve similar acceptance rates at the draft root and
are able to outperform EAGLE cost effectively while using much less training data.

15


	Introduction
	Related Work
	Multi-Token Predictions
	Layer Skipping

	Preliminaries
	S3D
	Experiments
	Experimental Setup
	Main Results
	Optimal Hyper-Parameters
	Training Efficiency

	Conclusion
	Training Configurations
	S3D using LoRA
	Phi-3 S3D Ablation Study
	Issues of CLLMs
	Prediction Formula Details

