
Emergence in non-neural models:
grokking modular arithmetic via average gradient

outer product

Anonymous Author(s)
Affiliation
Address
email

Abstract

Neural networks trained to solve modular arithmetic tasks exhibit grokking, the1

phenomenon where the test accuracy improves only long after the model achieves2

100% training accuracy in the training process. It is often taken as an example3

of “emergence”, where model ability manifests sharply through a phase transi-4

tion. In this work, we show that the phenomenon of grokking is not specific5

to neural networks nor to gradient descent-based optimization. Specifically, we6

show that grokking occurs when learning modular arithmetic with Recursive Fea-7

ture Machines (RFM), an iterative algorithm that uses the Average Gradient Outer8

Product (AGOP) to enable task-specific feature learning with kernel machines.9

We show that RFM and, furthermore, neural networks that solve modular arith-10

metic learn block-circulant features transformations which implement the previ-11

ously proposed Fourier multiplication algorithm.12

1 Introduction13

In recent years the idea of “emergence” has become an important narrative in machine learning.14

While there is no broad agreement on the definition (Rogers & Luccioni, 2023), it is often argued15

that “skills” emerge during the training process once certain data size, compute, or model size thresh-16

olds are achieved (Wei et al., 2022; Arora & Goyal, 2023). Furthermore, these skills are believed to17

appear rapidly, exhibiting sharp and seemingly unpredictable improvements in performance at these18

thresholds. One of the simplest and most striking examples supporting this idea is “grokking” mod-19

ular arithmetic (Power et al., 2022; Nanda et al., 2023). A neural network trained to predict modular20

addition or another arithmetic operation on a fixed data set rapidly transitions from near-zero to per-21

fect (100%) test accuracy at a certain point in the optimization process. Surprisingly, this transition22

point occurs long after perfect training accuracy is achieved. Not only is this contradictory to the23

traditional wisdom regarding overfitting but, as we will show, some aspects of grokking do not fit24

neatly with our modern understanding of “benign overfitting” Bartlett et al. (2021); Belkin (2021).25

Despite a large amount of recent work on emergence and, specifically, grokking, (see, e.g., (Power26

et al., 2022; Liu et al., 2023; Nanda et al., 2023; Thilak et al., 2022; Furuta et al., 2024; Miller et al.,27

2024)), the nature or even existence of the emergent phenomena remains contested. For example,28

the recent paper Schaeffer et al. (2023) suggests that the rapid emergence of skills may be a “mirage”29

due to the mismatch between the discontinuous metrics used for evaluation, such as accuracy, and30

the continuous loss used in training. The authors argue that, in contrast to accuracy, the test (or31

validation) loss or some other suitably chosen metric may decrease gradually throughout training32

and thus provide a useful measure of progress. Another possible progress measure is the training33

loss. As SGD-type optimization algorithms generally result in a gradual decrease of the training34

loss, one may posit that skills appear once the training loss falls below a certain threshold in the35

Submitted to the Mathematics of Modern Machine Learning Workshop at NeurIPS 2024. Do not distribute.

Ac
cu

ra
cy

RFM Iterations
Sq

ua
re

 L
os

s

Learned Feature (AGOP) Matrices

Figure 1: Recursive Feature Machines grok the modular arithmetic task f∗(x, y) = (x+ y)mod 59.

optimization process. Indeed, such a conjecture is in the spirit of classical generalization theory,36

which considers the training loss to be a useful proxy for the test performance Mohri et al. (2018).37

In this work, we show that sharp emergence in modular arithmetic arises entirely from feature learn-38

ing, independently of other aspects of modeling and training, and is not predicted by the standard39

measures of progress. We then clarify the nature of feature learning leading to the emergence of40

skills in modular arithmetic. We discuss these contributions in further detail below.41

Summary of the contributions. We demonstrate empirically that grokking modular arithmetic:42

(1) is not specific to neural networks; (2) is not tied to gradient-based optimization methods; (3) is43

not predicted by training or test loss1, let alone accuracy.44

Specifically, we show grokking for Recursive Feature Machines (RFM) (Radhakrishnan et al.,45

2024a), an algorithm that iteratively uses the Average Gradient Outer Product (AGOP) to enable46

task-specific feature learning in general machine learning models. In this work, we use RFM to en-47

able feature learning in kernel machines, which are a class of predictors with no native mechanism48

for feature learning. In this setting, RFM iterates between three steps: (i) training a kernel machine,49

f , to fit training data; (ii) computing the AGOP matrix of f , M , over the training data to extract50

task-relevant features; and (iii) transforming input data, x, using the learned features via the map51

x→Ms/2x for a matrix power s > 0 (see Section 2 for details).52

In Fig. 1 we give a representative example of RFM grokking modular addition, despite not using any53

gradient-based optimization methods and achieving perfect (numerically zero) training loss at every54

iteration. We see that during the first few iterations both the test loss and and test accuracy remain at55

the constant (random) level. Around iteration 10 the test loss starts improving and, a few iterations56

later, test accuracy quickly transitions to 100%. We also observe that even early in the iteration,57

structure emerges in AGOP feature matrices (see Fig. 1). The gradual appearance of structure in58

these feature matrices is striking given that the training loss is identically zero at every iteration and59

that the test loss does not significantly change until iteration 8. The striped patterns observed in60

feature matrices correspond to matrices whose sub-blocks are circulant with entries that are constant61

along the “long” diagonals which wrap around the matrix.2 Such circulant feature matrices are key62

to learning modular arithmetic. In Section 3 we demonstrate that standard kernel machines using63

random circulant features easily learn modular operations. As these random circulant matrices are64

generic, we argue that no additional structure is required to solve modular arithmetic.65

1We note that for neural networks trained by SGD, emergence cannot be decoupled from training loss, as
non-zero loss is required for training to occur at all.

2Feature sub-matrices may also be constant on anti-diagonals. We also refer to these matrices as circulant.

2

To demonstrate that the feature matrices evolve toward this structure (including for multiplication66

and division under an appropriate re-ordering of the input coordinates), we introduce two “hidden67

progress measures” (Barak et al., 2022): (1) Circulant deviation, which measures constancy of68

the diagonals of a matrix, and (2) AGOP alignment, which measures similarity between the feature69

matrix at iteration t and the AGOP of a fully trained model. We will see that both of these measures70

show gradual (initially nearly linear) progress toward a model that generalizes.71

We further argue that emergence in fully connected neural networks trained on modular arithmetic72

identified in prior work (Gromov, 2023; Liu et al., 2022) is analogous to that for RFM and is exhib-73

ited through the AGOP (see Section 4). By visualizing covariances of network weights, we observe74

that these models also learn block-circulant features to grok modular arithmetic. We demonstrate75

that these features are highly correlated with the AGOP of neural networks, corroborating prior ob-76

servations from Radhakrishnan et al. (2024a). Furthermore, paralleling our observations for RFM,77

our progress measures indicate gradual progress toward a generalizing solution during neural net-78

work training. Finally we demonstrate that training neural networks on data transformed by random79

block-circulant matrices dramatically decreases training time needed to learn modular arithmetic.80

Why are these learned block circulant features effective for modular arithmetic? We provide support-81

ing theoretical evidence that circulant features result in kernel machines implementing the Fourier82

Multiplication Algorithm (FMA) for modular arithmetic (see Section 5). For the case of neural net-83

works, several prior works have argued empirically and theoretically that neural networks learn to84

implement the FMA to solve modular arithmetic (Nanda et al., 2023; Varma et al., 2023; Morwani85

et al., 2024). While kernel RFM and neural networks utilize different classes of predictive models,86

our results suggest that they discover similar algorithms for implementing modular arithmetic.87

By decoupling feature learning from predictor training, our results provide evidence for emergent88

properties of machine learning models arising purely as a consequence of their ability to learn fea-89

tures. We hope our work will help isolate the underlying mechanisms of emergence and shed light90

on the key practical concern of how, when, and why these seemingly unpredictable transitions occur.91

Paper outline. Section 2 reviews preliminary concepts. In Section 3, we demonstrate emergence92

with RFM and show AGOP features consist of circulant blocks. Section 4, shows that neural network93

features are circulant and are captured by the AGOP. In Section 5, we prove that kernel machines94

learn the FMA with circulant features. We provide a discussion and conclude in Section 6.95

2 Preliminaries96

Learning modular arithmetic. Let Zp = Z/pZ denote the field of integers modulo a prime p and97

let Z∗
p = Zp\{0}. We learn modular functions f∗(a, b) = g(a, b)mod p where f∗ : Zp×Zp → Zp,98

a, b ∈ Zp, and g : Z× Z→ Z is an arithmetic operation on a and b, e.g. g(a, b) = a+ b. Note that99

there are p2 discrete input pairs (a, b) for all modular operations except for f∗(a, b) = (a÷b)mod p,100

which has p(p− 1) inputs as the denominator cannot be 0.101

To train models on modular arithmetic tasks, we construct input-label pairs by one-hot encoding the102

input and label integers. Specifically, for every pair a, b ∈ Zp, we write the input as ea ⊕ eb ∈ R2p103

and the output as ef∗(a,b) ∈ Rp, where ei ∈ Rp is the i-th standard basis vector in p dimensions and104

⊕ is concatenation. The training dataset consists of a random subset of n = r×N input/label pairs,105

where r is the training fraction and N = p2 or p(p− 1) is the number of possible discrete inputs.106

Circulant matrices. The features that RFMs and neural networks learn in order to solve modular107

arithmetic contain blocks of circulant matrices, which are defined as follows. Let σ : Rp → Rp108

be the cyclic permutation which acts on a vector u ∈ Rp by shifting its coordinates by one cell109

to the right: [σ(u)]j = uj−1mod p , for j ∈ [p]. We write the ℓ-fold composition of this map110

σℓ(u) ∈ Rp with entries [σℓ(u)]j = uj−ℓmod p. A circulant matrix C ∈ Rp×p is determined by111

a vector c = [c0, . . . , cp−1] ∈ Rp, and has rows (in order from first to last): c, σ(c), . . . , σp−1(c).112

Feature matrices may also have have constant anti-diagonals (so-called Hankel matrices). To ease113

terminology, we will use the word circulant to refer to both Hankel and circulant matrices.114

Average Gradient Outer Product (AGOP). The AGOP matrix, which will be central to our dis-115

cussion, is defined as follows.116

Definition 2.1 (AGOP). Given a predictor f : Rd → Rc with c outputs, f(x) ≡117

[f0(x), . . . , fc−1(x)], let ∂f(x′)
∂x ∈ Rd×c be the Jacobian (transposed) of f evaluated at some point118

3

Ac
cu
ra
cy

(%
)

RFM Iterations

Te
st

Lo
ss

RFM Iterations RFM Iterations RFM Iterations

Te
st
 L
os
s
of

Co
rr
ec
t

Ou
tp
ut
 C
la
ss

Ci
rc
ul
an
t

De
vi
at
io
n

AG
OP

Al
ig
nm
en
t

RFM Iterations RFM Iterations RFM Iterations RFM Iterations

Accuracy & Loss

Progress Measures

Add Sub Mul Div

A

B

RFM
Circ:
frob

Figure 2: RFM with the quadratic kernel on modular arithmetic with modulus p = 61 trained for
30 iterations. (A) Test accuracy, test loss (mean squared error) over all output coordinates, and test
loss of the correct class output coordinate do not change in the first 8 iterations and then, sharply
transition. (B) Circulant deviation and AGOP alignment show gradual progress towards generalizing
solutions despite accuracy and loss metrics not changing in the initial iterations. For multiplication
(Mul) and division (Div), circulant deviation is measured with respect to the feature sub-matrices
after reordering by the discrete logarithm.

x′ ∈ Rd with entries [∂f(x
′)

∂x]s,ℓ = ∂fℓ(x
′)

∂xs
. Then, for f trained on a set of data points {x(j)}nj=1,119

with x(j) ∈ Rd, the Average Gradient Outer Product (AGOP), G, is defined as,120

G(f ; {x(j)}nj=1) =
1

n

n∑
j=1

∂f(x(j))

∂x

∂f(x(j))

∂x

⊤

∈ Rd×d. (1)

For simplicity, we omit the dependence on the dataset in the notation. Top eigenvectors of AGOP can121

be viewed as the “most relevant” input features, those input directions that influence the output of a122

general predictor (for example, a kernel machines or a neural network) the most. As a consequence,123

the AGOP can be viewed as a task-specific transformation that can be used to amplify relevant124

features and improve sample efficiency of machine learning models.125

Indeed, a line of prior works (Yuan et al., 2023; Trivedi et al., 2014; Hristache et al., 2001) have used126

the AGOP to improve the sample efficiency of predictors trained on multi-index models, a class of127

predictive tasks in which the target function depends on a low-rank subspace of the data. Though128

the study of AGOP has been motivated by these multi-index examples, we will see that the AGOP129

can be used to recover useful features for modular arithmetic that are, in fact, not low-rank.130

AGOP and feature learning in neural networks. Radhakrishnan et al. (2024a) posited that AGOP131

was a mechanism through which neural networks learn features. In particular, the authors introduce132

the Neural Feature Ansatz (NFA) stating that for any layer ℓ of a trained neural network with weights133

Wℓ, the Neural Feature Matrix (NFM), WT
ℓ Wℓ, are highly correlated to the AGOP of the model134

computed with respect to the input of layer ℓ. The NFA suggests that neural networks learn features135

at each layer by utilizing the AGOP. For more details on the NFA, see Appendix C.136

Recursive Feature Machine (RFM). Importantly, AGOP can be computed for any differentiable137

predictor, including those such as kernel machines that have no native feature learning mechanism.138

As such, the authors of Radhakrishnan et al. (2024a) developed an algorithm known as RFM, which139

iteratively uses the AGOP to extract features. Below, we present the RFM algorithm used in conjunc-140

tion with kernel machines. Suppose we are given data samples (X, y) ∈ Rn×d × Rn where X con-141

tains n samples denoted {x(j)}nj=1. Given an initial symmetric positive-definite matrix M0 ∈ Rd×d,142

4

and Mahalanobis kernel k(·, · ;M) : Rd × Rd → R, RFM iterates the following steps for t ∈ [T]:143

Step 1 (Predictor training): f (t)(x) = k(x,X;Mt)α with α = k(X,X;Mt)
−1y ; (2)

Step 2 (AGOP update): Mt+1 = [G(f (t))]s ; (3)

where s > 0 is a matrix power and k(X,X;M) ∈ Rn×n denotes the matrix with entries144

[k(X,X;M)]j1j2 = k(x(j1), x(j2);M) for j1, j2 ∈ [n]. In this work, we select s = 1
2 for145

all experiments (see Algorithm 1 for complete pseudocode). We use the following two Maha-146

lanobis kernels: (1) the quadratic kernel, k(x, x′;M) =
(
x⊤Mx′)2 ; and (2) the Gaussian kernel147

k(x, x′;M) = exp
(
−∥x− x′∥2M/L

)
, where for z ∈ Rd, ∥z∥2M = z⊤Mz, and L is the bandwidth.148

3 Emergence with Recursive Feature Machines149

We now show that RFM exhibits sharp transitions in performance on modular arithmetic tasks (ad-150

dition, subtraction, multiplication, and division) due to the emergence of block-circulant features.151

Add

Sub Mul
(reordered)

Div
(reordered)

Learned Feature Matrices (AGOP)

A

C
Mul

(original)
Div

(original)

B

Figure 3: RFM with the quadratic ker-
nel for modular arithmetic with p = 61.
(A) The square root of the kernel AGOPs
for addition (Add), subtraction (Sub) vi-
sualized without their diagonals to empha-
size the off-diagonal blocks. (B) Square
root of the kernel AGOP for multiplication
(Mul), division (Div). (C) For Mul and
Div, rows and columns of each sub-matrix
is re-ordered by the discrete log. base 2.

We will use a modulus of p = 61 and train RFM with152

quadratic and Gaussian kernel machines (experimental153

details are provided in Appendix D). As we solve ker-154

nel ridgeless regression exactly, all iterations of RFM155

result in zero training loss and 100% training accuracy.156

The top two rows of Fig. 2A show that the first several157

iterations of RFM result in near-zero test accuracy and158

approximately constant, large test loss. Despite these159

standard progress measures initially not changing, con-160

tinuing to iterate RFM leads to a dramatic, sharp in-161

crease to 100% test accuracy and a corresponding de-162

crease in the test loss later in the iteration process.163

Sharp transition in loss of correct output coordi-164

nate. It is important to note that our total loss func-165

tion is the square loss averaged over p = 61 classes.166

It is thus plausible that, due to averaging, the near-167

constancy of the total square loss over the first few iter-168

ations conceals steady improvements in the predictions169

of the correct class. However, in Fig. 2A (third row) we170

show that the test loss for the output coordinate (logit)171

of the correct class closely tracks the total test loss.172

Emergence of block-circulant features in RFM. To173

understand RFM generalization, we visualize the 2p×174

2p feature matrix given by the square root of the AGOP175

from the final iteration of RFM. We first visualize the176

feature matrices for RFM trained on modular addition/-177

subtraction in Fig. 3A. Their visually-evident striped178

structure suggests a more precise characterization:179

Observation 1 (Block-circulant features). Feature matrix M∗ ∈ R2p×2p at the final iteration of180

RFM on modular addition/subtraction is of the form181

M∗ =

(
A C⊤

C A

)
, (4)

where A,C ∈ Rp×p, C is an asymmetric circulant matrix. , A = c1I + c211
⊤ for scalars c1, c2.182

Similarly to addition and subtraction, RFM successfully learns multiplication and division. Yet,183

in contrast to addition and subtraction, the structure of feature matrices for these tasks, shown in184

Fig. 3B, is not at all obvious. Nevertheless, re-ordering the rows and columns of the feature matrices185

for these tasks brings out their hidden circulant structure of the form stated in Eq. (4). We show the186

effect of re-ordering in Fig. 3C (see also Appendix Fig. 1 for the evolution of re-ordered and original187

features during training).188

5

We briefly discuss the reordering procedure below and provide further details in Appendix E. To189

reorder, we use the fact of group theory that the multiplicative group Z∗
p is a cyclic group of order190

p − 1 (e.g., Koblitz (1994)). By definition of the cyclic group, there exists at least one element191

g ∈ Z∗
p, known as a generator, such that Z∗

p = {gi ; i ∈ {1, . . . , p − 1}}. As we will see, re-192

ordering the rows and columns of the AGOP by powers of a generator reveals circulant structure.193

For modular multiplication/division, the map taking gi to i is known as the discrete logarithm base194

g (Koblitz, 1994, Ch.3). It is natural to expect block-circulant feature matrices to arise in modular195

multiplication/division after reordering by the discrete log as the discrete log converts modular mul-196

tiplication/division into modular addition/subtraction. We note the recent work Doshi et al. (2024)197

also used the discrete log to reorder coordinates in the context of constructing a solution for solving198

modular multiplication with neural networks.199

Progress measures. We propose and examine two measures of feature learning, circulant deviation200

and AGOP alignment.201

Circulant deviation. As the final feature matrices contain circulant sub-blocks, a natural progress202

measure for learning modular arithmetic with RFM is how far AGOP feature matrices are from203

a block-circulant matrix. For a feature matrix M , let A denote the bottom-left sub-block of M .204

We define circulant deviation as the total variance of the (wrapped) diagonals of A normalized by205

the norm ∥A∥2F . In particular, let S ∈ Rp×p → Rp×p denote the shift operator, which shifts206

the ℓ-th row of the matrix by ℓ positions to the right. Also let Var(v) =
∑p−1

j=0(vj − Ev)2 be207

the variance of a vector v. If A[j] denotes the j-th column of A, we define circulant deviation D208

as: D(A) = 1
∥A∥2

F

∑p−1
j=0 Var(S(A)[j]). As circulant matrices are constant along their (wrapped)209

diagonals, they have a circulant deviation of 0.210

We see in Fig. 2B (top row) that circulant deviation exhibits gradual improvement through the course211

of training with RFM. We find that for the first 10 iterations, while the training loss is numerically212

zero and the test loss does not improve, circulant deviation exhibits gradual, nearly linear, improve-213

ment. The improvements in circulant deviation reflect visual improvements in features, as was also214

shown in Fig. 1. These curves also provide further support for Observation 1, as the circulant devi-215

ation is close to 0 at the end of training.216

Circulant deviation depends crucially on the observation that for modular arithmetic the feature217

matrices contained circulant blocks. For more general tasks, we may not be able to identify such218

structure. Thus, we propose a second, more general progress measure, AGOP alignment.219

AGOP alignment. Given two matrices A,B ∈ Rd×d, let ρ(A,B) denote the standard cosine simi-220

larity between these two matrices when vectorized. Specifically, let Ã, B̃ ∈ Rd2

denote the vector-221

ization of A and B respectively, then ρ(A,B) = ⟨Ã,B̃⟩
∥Ã∥ ∥B̃∥ .222

If Mt denotes the AGOP at iteration t of RFM (or epoch t of a neural network) and M∗ denotes the223

final AGOP of the trained RFM (or neural network), then AGOP alignment at iteration t is given by224

ρ(Mt,M
∗). The same measure of alignment was used in Zhu et al. (2024), except their alignment225

was computed with respect to the AGOP of the ground truth model. Note that as modular operations226

are discrete, in our setting there is no unique ground truth model for which AGOP can be computed.227

Like circulant deviation, AGOP alignment exhibits gradual improvement in the regime that test loss228

is constant and large (see Fig. 2B, bottom row). Moreover, AGOP alignment is a more general229

progress measure since it does not require assumptions on the structure of the AGOP. For instance,230

AGOP alignment can be measured without reordering for modular multiplication/division. While231

AGOP alignment does not require a specific form of the final features, it is still an a posteriori232

measurement of progress as it requires access to the features of a fully trained model.233

Random circulant features allow standard kernels to generalize. We conclude this section by234

providing further evidence that the form of feature matrices given in Observation 1 is key to enabling235

generalization in kernel machines trained to solve modular arithmetic tasks. We now show that a236

transformation with a generic block-circulant matrix enables kernels machines to learn modular237

arithmetic. We generate a random circulant matrix C by first sampling entries of the first column238

i.i.d. from the uniform distribution on [0, 1] ⊂ R and then shifting the column to generate the239

remaining columns of C. We construct M∗ in Observation 1 with c1 = 1, c2 = −1/p. For modular240

addition, we transform the input data by mapping xab = ea ⊕ eb to x̃ab = (M∗)
1
4xab , and then241

6

Ac
cu
ra
cy

(%
)

Epochs

Lo
ss

Epochs Epochs Epochs

Lo
ss
 o
f

Co
rr
ec
t

Ou
tp
ut
 C
la
ss

Ci
rc
ul
an
t

De
vi
at
io
n

AG
OP

Al
ig
nm
en
t

Epochs Epochs Epochs Epoch

Accuracy & Loss

Progress Measures

Add Sub Mul Div

A

B

NN
Circ:
frob

Figure 5: One hidden layer fully-connected networks with quadratic activations trained on modular
arithmetic with p = 61 trained for 50 epochs with the square loss. (A) Test accuracy, test loss
over all outputs, and test loss of the correct class output do not change in the initial iterations. (B)
Progress measures for circulant deviation and AGOP alignment. Circulant deviation for Mul and
Div are computed after reordering by the discrete logarithm base 2.

train on the new data pairs (x̃ab, ea+bmod p) for a subset of all possible pairs (a, b) ∈ Z2
p. Note that242

transforming data with (M∗)
1
4 is akin to using s = 1/2 in RFM.243

Te
st
 L
os
s

Te
st
 A
cc
ur
ac
y
(%
)

Te
st
 L
os
s

Te
st
 A
cc
ur
ac
y
(%
)

Training fraction (%) Training fraction (%)

Add Mul

Figure 4: Random circulant features
generalize with standard kernels for
modular arithmetic. RFM with the
Gaussian kernel on addition (Add) and
multiplication (Mul) for modulus p =
61 is compared to a base Gaussian ker-
nel machine trained on random circulant
features (for Mul, the sub-blocks are cir-
culant after re-ordering by the discrete
logarithm base 2).

We do the same for modular multiplication after reorder-244

ing the random circulant by the discrete logarithm as de-245

scribed above. The experiments in Fig. 4 show that stan-246

dard kernel machines trained on feature matrices with247

random circulant blocks outperform RFM that learns such248

features through AGOP. We also find that directly enforc-249

ing circulant blocks in the sub-matrices of Mt throughout250

RFM iterations accelerates grokking and improves test251

loss (see Appendix F, Appendix Fig. 2). These exper-252

iments provide direct evidence that the structure in Ob-253

servation 1 is key for generalization on modular arith-254

metic and, furthermore, no additional structure beyond255

a generic circulant is required.256

4 Emergence257

in neural networks through AGOP258

We now show that grokking in two-layer neural networks259

relies on the same principles as grokking by RFM. Specif-260

ically we demonstrate that (1) block-circulant features are261

key to neural networks grokking modular arithmetic; and262

(2) our measures (circulant deviation and AGOP align-263

ment) indicate gradual progress towards generalization,264

while standard measures of generalization exhibit sharp265

transitions. All experimental details are provided in Ap-266

pendix D.267

Grokking with neural networks. We first reproduce grokking with modular arithmetic using fully-268

connected networks as identified in prior works (Fig. 5A) (Gromov, 2023). In particular, we train269

7

Add Sub Mul (reordered) Div (reordered)

NN
AGOP

NFM

B

A

Figure 6: Feature matrices from one hidden layer neural networks with quadratic activations trained
on addition, subtraction, multiplication, and division modulo 61. The Pearson correlations between
the NFM and square root of the AGOP for each task are 0.955 (Add), 0.942 (Sub), 0.924 (Mul),
0.929 (Div). Mul and Div are shown after reordering by the discrete logarithm base 2.

one hidden layer fully connected networks f : R2p → Rp of the form f(x) = W2ϕ(W1x) with270

quadratic activation ϕ(z) = z2 on modulus p = 61 data with a training fraction 50%.271

Consistent with prior work (Gromov, 2023) and analogously to RFMs, neural networks exhibit an272

initial training period where the train accuracy reaches 100%, while test accuracy is at 0% and test273

loss does not improve (see Fig. 5A). After this point, we see that the accuracy rapidly improves to274

achieve perfect generalization. We further verify that the sharp transition in test loss is not an artifact275

of averaging the loss over all output coordinates. In the third row of Fig. 5A we show that the test276

loss of the individual correct output coordinate closely tracks the total loss.277

Emergence of block-circulant features in neural networks. To understand the features learned278

by neural networks we visualize the first layer Neural Feature Matrix, defined as follows.279

Definition 4.1. Given a fully connected network f(x) = a⊤ϕ(W1x), the first layer Neural Feature280

Matrix (NFM) is the matrix W⊤
1 W1 ∈ R2p×2p.281

The NFM is the un-centered covariance of network weights and has been used in prior work in order282

to understand the features learned by various neural network architectures at any layer (Radhakrish-283

nan et al., 2024a; Trockman et al., 2022). Fig. 6A displays the NFM for one hidden layer neural284

networks with quadratic activations trained on modular arithmetic tasks. For addition/subtraction,285

we find that the NFM exhibits block circulant structure, akin to the feature matrix for RFM. As286

described in Section 3 and Appendix E, we reorder the NFM for networks trained on multiplica-287

tion/division with respect to a generator for Z∗
p in order to observe block-circulant structure (see288

Appendix Fig. 4A for a comparison of multiplication/division NFMs before and after reordering).289

The block-circulant structure in both the NFM and the feature matrix of RFM suggests that the two290

models are learning similar sets of features.291

The work Radhakrishnan et al. (2024a) posited that AGOP is the mechanism through which neural292

networks learn features. The authors stated their claim in the form of the Neural Feature Ansatz293

(NFA), which states that NFMs are proportional to a matrix power of AGOP through training (see294

Eq. (5) for a restatement of the NFA). As such, we additionally compute the square root of the AGOP295

to examine the features learned by neural networks trained on modular arithmetic tasks. We visualize296

the square root of the AGOPs of these trained models in Fig. 6B and also find that the square root297

of the AGOP and the NFM are highly correlated (greater than 0.92), where Pearson correlation is298

equal to cosine similarity after centering the inputs to be mean 0. Moreover, we find that the square299

root of AGOP of neural networks again exhibits the same structure as stated in Observation 1 (see300

Appendix Fig. 4B for a comparison of multiplication/division AGOPs before and after reordering).301

Random circulant maps improve generalization of neural networks. To further establish the302

importance and generality of block-circulant features, we demonstrate that training networks on303

inputs transformed with a random block-circulant matrix greatly accelerates learning. In Fig. 7, we304

compare the performance of neural networks trained on one-hot encoded modulo p integers and the305

8

Epochs Epochs

Ac
cu
ra
cy
 (
%)

Ac
cu
ra
cy
 (
%)

Sq
ua
re
 L
os
s

Sq
ua
re
 L
os
s

NN Random Circulant + NN

17.5% - ¼ M matrix

Add

Epochs Epochs

Ac
cu
ra
cy
 (
%)

Ac
cu
ra
cy
 (
%)

Sq
ua
re
 L
os
s

Sq
ua
re
 L
os
s

NN Random Circulant + NN

Mul

Figure 7: Random circulant features speed up generalization in neural networks for modular arith-
metic tasks. We compare one hidden layer MLPs with quadratic activations trained on modular
addition and multiplication for p = 61 using standard one-hot encodings or those transformed by
random circulant matrices (re-ordered by the discrete logarithm for multiplication).

same integers transformed with a random block-circulant matrix. At a training fraction of 17.5%,306

we find that networks trained on transformed integers achieved 100% test accuracy within several307

hundred epochs and exhibit little delayed generalization while networks trained on non-transformed308

integers do not achieve 100% test accuracy even within 3000 epochs.309

Progress measures. Given that the square root of the AGOP of neural networks exhibits block-310

circulant structure, we can use circulant deviation and AGOP alignment to measure gradual progress311

of neural networks toward a generalizing solution. As before, we measure circulant deviation in312

the case of multiplication/division after reordering the feature submatrix by a generator of Z∗
p. In313

Fig. 5B, we see that our measures indicate gradual progress in contrast to sharp transitions in the314

standard measures of progress shown in Fig. 5A. There is a period of 5-10 epochs where circulant315

deviation and AGOP alignment improve while test loss and test accuracy do not. As was the case of316

RFM, these metrics reveal gradual progress of neural networks toward generalizing solutions.317

5 Fourier multiplication algorithm from circulant features318

We have seen so far that features containing circulant sub-blocks enable generalization for RFMs319

and neural networks across modular arithmetic tasks. We now provide theoretical support that shows320

how kernel machines equipped with such circulant features learn generalizing solutions. In particu-321

lar, we show that there exist block-circulant feature matrices, as in Observation 1, such that kernel322

machines equipped with these features and trained on all available data for a given modulus p solve323

modular arithmetic through the Fourier Multiplication Algorithm (FMA). Notably, the FMA has324

been argued both empirically and theoretically in prior works to be the solution found by neural325

networks to solve modular arithmetic (Nanda et al., 2023; Zhong et al., 2024).326

The FMA is a specific solution for implementing modular arithmetic that first represents the data by327

its Discrete Fourier Transform (DFT). Intuitively, transforming the data with circulant matrices ex-328

tracts the DFT of the one-hot encoded vectors following the well-known fact that circulant matrices329

can be diagonalized using the matrix that encodes the DFT (Gray et al., 2006). We state our result330

informally here (for more details on the FMA, the precise theorem, and its proof, see Appendix G).331

Theorem 5.1 (Circulant features give the FMA). Training on all of the discrete data for any mod-332

ular operation, for each output class ℓ ∈ {0, · · · , p − 1}, suppose we train a separate quadratic333

kernel predictor and particular block-circulant feature matrices Mℓ (having the structure in Obser-334

vation 1). Then, the concatenated predictor given by kernel ridgeless regression on each output is335

equivalent to the Fourier Multiplication Algorithm for that modular operation.336

Notably, the FMA is defined over all of R2p, not just on one-hot encoded inputs. Thus, not only do337

neural networks and RFM learn similar features, we have established a setting where kernel meth-338

ods equipped with block-circulant feature matrices learn the same out-of-domain solution as neural339

networks for these tasks. This result is interesting, in part, as the only constraint for generalization340

on these tasks is to obtain perfect accuracy on inputs that are standard basis vectors.341

9

6 Discussion and Conclusions342

Most classical analyses of generalization relied on the training loss serving as a proxy for the test loss343

and thus a useful measure of generalization. Empirical results of deep learning have upended this344

long-standing belief. In many settings, predictors that fit the data exactly can still generalize, thus345

invalidating training loss as a predictor of test performance. This has led to the recent developments346

in understanding benign overfitting, in neural networks as well as in classical kernel and linear mod-347

els Belkin (2021); Bartlett et al. (2021). Since the training loss may not predict generalization, the348

common suggestion has been to use the validation loss computed on a separate validation dataset.349

Emergent phenomena, such as grokking, show that we cannot rely even on validation performance350

at intermediate training steps to predict generalization at the end of training. Indeed, validation loss351

at a certain iteration may not be indicative of the validation loss itself only a few iterations later.352

Further, contrary to Schaeffer et al. (2023), we show these phase transitions in performance are not353

generally “a mirage” since, as we observe in this work, they are not always predicted by a priori354

measures of performance, continuous or discontinuous. Instead, emergence is fully determined by355

feature learning, which is difficult to observe without having access to a fully trained model. Indeed,356

the progress measures discussed in this work, as well as those suggested in, e.g., Barak et al. (2022);357

Nanda et al. (2023); Doshi et al. (2024) can be termed a posteriori progress indicators. They all358

require either understanding of the algorithm implemented by a generalizing trained model (such as359

our circulant deviation, the Fourier gap considered in Barak et al. (2022), or the Inverse Participation360

Ratio in Doshi et al. (2024)) or access to such a model (e.g. AGOP alignment).361

Consider generalizing features for modular multiplication shown in Fig. 3. The original features362

shown in panel B of this figure do not have an easily identifiable pattern. In contrast, re-ordered363

features in panel C are clearly striped, containing block-circulants. As discussed in Section 3, re-364

ordering of features requires understanding that the multiplicative group Z∗
p is cyclic of order p− 1.365

While a well-known result, it is far from obvious a priori. It is thus plausible that in other settings366

hidden feature structures may be hard to identify due to a lack of mathematical insight.367

Why is learning modular arithmetic surprising? The task of learning modular operations is368

different from many other statistical machine learning tasks. In continuous ML settings, we typically369

posit that the “ground truth” target function is smooth in an appropriate sense. Hence any general370

purpose algorithm capable of learning smooth functions (such as, for example, k-nearest neighbors)371

should be able to learn the target function given enough data. Primary differences between learning372

algorithms are thus in sample and computational efficiency. In contrast, it is unclear what principle373

leads to learning modular arithmetic from partial observations. There are many ways to fill in the374

missing data and we do not know a simple inductive bias, to guide us toward a solution. Several375

recent works argued that margin maximization with respect to certain norms can account for learning376

modular arithmetic (Morwani et al., 2024; Lyu et al., 2023; Mohamadi et al., 2024). While the377

direction is promising, general underlying principles are not yet clear.378

Analyses of grokking. Recent works (Kumar et al., 2024; Lyu et al., 2023; Mohamadi et al., 2024)379

argue that grokking occurs in neural networks through a two phase mechanism that transitions from a380

“lazy” regime, with no feature learning, to a “rich” feature learning regime. Our experiments clearly381

show that grokking in RFM does not undergo such a transition. For RFM on modular arithmetic382

tasks, our progress measures indicate that the features evolve gradually toward the final circulant383

matrices, even as test performance initially remains constant (Fig. 2). Grokking in these settings384

is entirely due to the gradual feature quality improvement and two-phase grokking does not occur.385

Additionally, we have not observed significant evidence of “lazy” to “rich” transition as a mechanism386

for grokking in our experiments with neural networks, as most of our measures of feature learning387

start improving early on in the training process (improvement in circulant deviation measure is388

delayed for addition and subtraction, but not for multiplication and division, while AGOP feature389

alignment initially shows near linear improvement for all tasks), see Fig. 5. Our observations for390

neural networks are in line with the results in (Doshi et al., 2024; Nanda et al., 2023), where their391

proposed progress measures, Inverse Participation Ratio and Gini coefficients of the weights in the392

Fourier domain, are shown to increase prior to improvements in test loss and accuracy for modular393

arithmetic.394

10

References395

Navid Ardeshir, Daniel J. Hsu, and Clayton H. Sanford. Intrinsic dimensionality and generalization396

properties of the r-norm inductive bias. In Gergely Neu and Lorenzo Rosasco (eds.), Proceedings397

of Thirty Sixth Conference on Learning Theory, volume 195 of Proceedings of Machine Learning398

Research, pp. 3264–3303. PMLR, 12–15 Jul 2023. URL https://arxiv.org/pdf/2206.399

05317.400

Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language models.401

arXiv preprint arXiv:2307.15936, 2023. URL https://arxiv.org/pdf/2307.15936.402

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hid-403

den progress in deep learning: Sgd learns parities near the computational limit. Advances in Neu-404

ral Information Processing Systems, 35:21750–21764, 2022. URL https://openreview.405

net/pdf?id=8XWP2ewX-im.406

Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.407

Acta numerica, 30:87–201, 2021. URL https://arxiv.org/pdf/2103.09177.408

Daniel Beaglehole, Adityanarayanan Radhakrishnan, Parthe Pandit, and Mikhail Belkin. Mech-409

anism of feature learning in convolutional neural networks. arXiv preprint arXiv:2309.00570,410

2023. URL https://arxiv.org/pdf/2309.00570.411

Daniel Beaglehole, Ioannis Mitliagkas, and Atish Agarwala. Feature learning as alignment:412

a structural property of gradient descent in non-linear neural networks. arXiv preprint413

arXiv:2402.05271, 2024a. URL https://arxiv.org/pdf/2402.05271.414

Daniel Beaglehole, Peter Súkenı́k, Marco Mondelli, and Mikhail Belkin. Average gradient outer415

product as a mechanism for deep neural collapse. arXiv preprint arXiv:2402.13728, 2024b. URL416

https://arxiv.org/pdf/2402.13728.417

Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through418

the prism of interpolation. Acta Numerica, 30:203–248, 2021. URL https://arxiv.org/419

pdf/2105.14368.420

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations421

with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022. URL422

https://arxiv.org/pdf/2206.15144.423

Xander Davies, Lauro Langosco, and David Krueger. Unifying grokking and double descent. ML424

Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022),425

2023. URL https://arxiv.org/abs/2303.06173.426

Darshil Doshi, Tianyu He, Aritra Das, and Andrey Gromov. Grokking modular polynomials.427

International Conference on Learning Representations (ICLR): BGPT Workshop, 2024. URL428

https://arxiv.org/abs/2406.03495.429

Hiroki Furuta, Gouki Minegishi, Yusuke Iwasawa, and Yutaka Matsuo. Interpreting grokked430

transformers in complex modular arithmetic. arXiv preprint arXiv:2402.16726, 2024. URL431

https://arxiv.org/pdf/2402.16726.432

Robert M Gray et al. Toeplitz and circulant matrices: A review. Foundations and Trends® in Com-433

munications and Information Theory, 2(3):155–239, 2006. URL https://ee.stanford.434

edu/˜gray/toeplitz.pdf.435

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023. URL436

https://arxiv.org/pdf/2301.02679.437

11

https://arxiv.org/pdf/2206.05317
https://arxiv.org/pdf/2206.05317
https://arxiv.org/pdf/2206.05317
https://arxiv.org/pdf/2307.15936
https://openreview.net/pdf?id=8XWP2ewX-im
https://openreview.net/pdf?id=8XWP2ewX-im
https://openreview.net/pdf?id=8XWP2ewX-im
https://arxiv.org/pdf/2103.09177
https://arxiv.org/pdf/2309.00570
https://arxiv.org/pdf/2402.05271
https://arxiv.org/pdf/2402.13728
https://arxiv.org/pdf/2105.14368
https://arxiv.org/pdf/2105.14368
https://arxiv.org/pdf/2105.14368
https://arxiv.org/pdf/2206.15144
https://arxiv.org/abs/2303.06173
https://arxiv.org/abs/2406.03495
https://arxiv.org/pdf/2402.16726
https://ee.stanford.edu/~gray/toeplitz.pdf
https://ee.stanford.edu/~gray/toeplitz.pdf
https://ee.stanford.edu/~gray/toeplitz.pdf
https://arxiv.org/pdf/2301.02679

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Sre-438

bro. Implicit regularization in matrix factorization. Advances in neural information processing439

systems, 30, 2017.440

Judy Hoffman, Daniel A Roberts, and Sho Yaida. Robust learning with jacobian regularization.441

arXiv preprint arXiv:1908.02729, 5(6):7, 2019.442

Marian Hristache, Anatoli Juditsky, Jorg Polzehl, and Vladimir Spokoiny. Structure adaptive443

approach for dimension reduction. Annals of Statistics, pp. 1537–1566, 2001. URL https:444

//projecteuclid.org/journals/annals-of-statistics/volume-29/445

issue-6/Structure-Adaptive-Approach-for-Dimension-Reduction/10.446

1214/aos/1015345954.full.447

Neal Koblitz. A course in number theory and cryptography, volume 114. Springer Science &448

Business Media, 1994.449

Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the tran-450

sition from lazy to rich training dynamics. International Conference on Learning Representations451

(ICLR), 2024. URL https://openreview.net/pdf?id=vt5mnLVIVo.452

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. To-453

wards understanding grokking: An effective theory of representation learning. Advances in Neu-454

ral Information Processing Systems, 35:34651–34663, 2022.455

Ziming Liu, Eric J. Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic456

data. International Conference on Learning Representations (ICLR), 2023. URL https:457

//openreview.net/pdf?id=zDiHoIWa0q1.458

Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon Shaolei Du, Jason D Lee, and Wei Hu. Dichotomy of459

early and late phase implicit biases can provably induce grokking. In The Twelfth International460

Conference on Learning Representations (ICLR), 2023. URL https://openreview.net/461

forum?id=XsHqr9dEGH.462

Jack Miller, Charles O’Neill, and Thang Bui. Grokking beyond neural networks: An empirical463

exploration with model complexity. Transactions on Machine Learning Research (TMLR), 2024.464

URL https://openreview.net/pdf?id=ux9BrxPCl8.465

Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu, and Danica J. Sutherland. Why do you466

grok? a theoretical analysis on grokking modular addition. In Forty-first International Con-467

ference on Machine Learning (ICML), 2024. URL https://openreview.net/forum?468

id=ad5I6No9G1.469

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.470

MIT Press, 2018.471

Ankur Moitra. Algorithmic aspects of machine learning. Cambridge University Press, 2018.472

Depen Morwani, Benjamin L. Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham Kakade.473

Feature emergence via margin maximization: case studies in algebraic tasks. International474

Conference on Learning Representations (ICLR), 2024. URL https://openreview.net/475

pdf?id=i9wDX850jR.476

Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and Murat A Erdogdu.477

Neural networks efficiently learn low-dimensional representations with sgd. arXiv preprint478

arXiv:2209.14863, 2022. URL https://arxiv.org/pdf/2209.14863.479

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures480

for grokking via mechanistic interpretability. International Conference on Learning Representa-481

12

https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-6/Structure-Adaptive-Approach-for-Dimension-Reduction/10.1214/aos/1015345954.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-6/Structure-Adaptive-Approach-for-Dimension-Reduction/10.1214/aos/1015345954.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-6/Structure-Adaptive-Approach-for-Dimension-Reduction/10.1214/aos/1015345954.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-6/Structure-Adaptive-Approach-for-Dimension-Reduction/10.1214/aos/1015345954.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-6/Structure-Adaptive-Approach-for-Dimension-Reduction/10.1214/aos/1015345954.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-6/Structure-Adaptive-Approach-for-Dimension-Reduction/10.1214/aos/1015345954.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-6/Structure-Adaptive-Approach-for-Dimension-Reduction/10.1214/aos/1015345954.full
https://openreview.net/pdf?id=vt5mnLVIVo
https://openreview.net/pdf?id=zDiHoIWa0q1
https://openreview.net/pdf?id=zDiHoIWa0q1
https://openreview.net/pdf?id=zDiHoIWa0q1
https://openreview.net/forum?id=XsHqr9dEGH
https://openreview.net/forum?id=XsHqr9dEGH
https://openreview.net/forum?id=XsHqr9dEGH
https://openreview.net/pdf?id=ux9BrxPCl8
https://openreview.net/forum?id=ad5I6No9G1
https://openreview.net/forum?id=ad5I6No9G1
https://openreview.net/forum?id=ad5I6No9G1
https://openreview.net/pdf?id=i9wDX850jR
https://openreview.net/pdf?id=i9wDX850jR
https://openreview.net/pdf?id=i9wDX850jR
https://arxiv.org/pdf/2209.14863

tions (ICLR), 2023. URL https://openreview.net/pdf?id=9XFSbDPmdW.482

Suzanna Parkinson, Greg Ongie, and Rebecca Willett. Relu neural networks with linear layers are483

biased towards single- and multi-index models. arXiv preprint arXiv:2305.15598, 2023. URL484

https://arxiv.org/pdf/2305.15598.485

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-486

eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,487

2022.488

Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Mecha-489

nism of feature learning in deep fully connected networks and kernel machines that recursively490

learn features. arXiv preprint arXiv:2212.13881, 2022.491

Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Mecha-492

nism for feature learning in neural networks and backpropagation-free machine learning mod-493

els. Science, 383(6690):1461–1467, 2024a. doi: 10.1126/science.adi5639. URL https:494

//www.science.org/doi/abs/10.1126/science.adi5639.495

Adityanarayanan Radhakrishnan, Mikhail Belkin, and Dmitriy Drusvyatskiy. Linear recursive fea-496

ture machines provably recover low-rank matrices. arXiv preprint arXiv:2401.04553, 2024b.497

URL https://arxiv.org/pdf/2401.04553.498

Anna Rogers and Sasha Luccioni. Position: Key claims in llm research have a long tail of footnotes.499

In Forty-first International Conference on Machine Learning, 2023. URL https://arxiv.500

org/pdf/2308.07120.501

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language502

models a mirage? In Thirty-seventh Conference on Neural Information Processing Systems,503

2023. URL https://openreview.net/forum?id=ITw9edRDlD.504

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The505

slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.506

arXiv preprint arXiv:2206.04817, 2022. URL https://arxiv.org/abs/2206.04817.507

Shubhendu Trivedi, Jialei Wang, Samory Kpotufe, and Gregory Shakhnarovich. A consistent es-508

timator of the expected gradient outerproduct. In UAI, pp. 819–828, 2014. URL https:509

//www.columbia.edu/˜skk2175/Papers/GOP-UAI.pdf.510

Asher Trockman, Devin Willmott, and J Zico Kolter. Understanding the covariance structure of511

convolutional filters. arXiv preprint arXiv:2210.03651, 2022.512

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explain-513

ing grokking through circuit efficiency. International Conference on Learning Representations514

(ICLR), 2023. URL https://openreview.net/pdf?id=7Zbg38nA0J.515

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-516

gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol517

Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.518

Transactions on Machine Learning Research (TMLR), 2022. URL https://openreview.519

net/pdf?id=yzkSU5zdwD.520

Gan Yuan, Mingyue Xu, Samory Kpotufe, and Daniel Hsu. Efficient estimation of the central mean521

subspace via smoothed gradient outer products. arXiv preprint arXiv:2312.15469, 2023. URL522

https://arxiv.org/pdf/2312.15469.523

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two524

stories in mechanistic explanation of neural networks. Advances in Neural Information Processing525

13

https://openreview.net/pdf?id=9XFSbDPmdW
https://arxiv.org/pdf/2305.15598
https://www.science.org/doi/abs/10.1126/science.adi5639
https://www.science.org/doi/abs/10.1126/science.adi5639
https://www.science.org/doi/abs/10.1126/science.adi5639
https://arxiv.org/pdf/2401.04553
https://arxiv.org/pdf/2308.07120
https://arxiv.org/pdf/2308.07120
https://arxiv.org/pdf/2308.07120
https://openreview.net/forum?id=ITw9edRDlD
https://arxiv.org/abs/2206.04817
https://www.columbia.edu/~skk2175/Papers/GOP-UAI.pdf
https://www.columbia.edu/~skk2175/Papers/GOP-UAI.pdf
https://www.columbia.edu/~skk2175/Papers/GOP-UAI.pdf
https://openreview.net/pdf?id=7Zbg38nA0J
https://openreview.net/pdf?id=yzkSU5zdwD
https://openreview.net/pdf?id=yzkSU5zdwD
https://openreview.net/pdf?id=yzkSU5zdwD
https://arxiv.org/pdf/2312.15469

Systems, 36, 2024.526

Libin Zhu, Chaoyue Liu, Adityanarayanan Radhakrishnan, and Mikhail Belkin. Catapults in sgd:527

spikes in the training loss and their impact on generalization through feature learning. Interna-528

tional Conference on Machine Learning (ICML), 235, 2024.529

14

Algorithm 1 Recursive Feature Machine (RFM) (Radhakrishnan et al., 2024a)

Require: X, y, k, T, L ▷ Train data: (X, y), base kernel: k, iters.: T , matrix power: s, and
bandwidth: L
M0 = Id
for t = 0, . . . , T − 1 do

Solve α← k(X,X;Mt)
−1y ▷ f (t)(x) = k(x,X;Mt)α

Mt+1 ← [G(f (t))]s

end for
return α,MT−1 ▷ Solution to kernel regression: α, and feature matrix: MT−1

A Additional discussion530

Low rank learning. The problem of learning modular arithmetic can be viewed as a type of matrix531

completion – completing the p× p matrix (so-called Cayley table) representing modular operations,532

from partial observations. The best studied matrix completion problem is low rank matrix comple-533

tion, where the goal is to fill in missing entries of a low rank matrix from observing a subset of the534

entries (Moitra, 2018, Ch.8). While many specialized algorithms exist, it has been observed that535

neural networks can recover low rank matrix structures Gunasekar et al. (2017). Notably, in a devel-536

opment paralleling the results of this paper, low-rank matrix completion can provably be performed537

by linear RFMs using the same AGOP mechanism Radhakrishnan et al. (2024b).538

It is thus tempting to posit that grokking modular operations in neural networks or RFM can be539

explained as a low rank prediction problem. Indeed modular operations can be implemented by an540

index 4 model, i.e., a function of the form f = g(Ax), where x ∈ R2p and A is a rank 4 matrix (see541

Appendix L for the construction). It is a plausible conjecture as there is strong evidence, empirical542

and theoretical, that neural networks are capable of learning such multi-index models Damian et al.543

(2022); Mousavi-Hosseini et al. (2022) as well as low-rank matrix completion. Furthermore, a phe-544

nomenon similar to grokking was discussed in (Radhakrishnan et al., 2022, Fig. 5, 6) in the context545

of low rank feature learning for both neural networks and RFM. However, despite the existence of546

generalizeable low rank models, the actual circulant features learned by both Neural Networks and547

RFM are not low rank. Interestingly, this observation mirrors the problem of learning parity func-548

tions through neural network inspired minimum norm interpolation, which was analyzed in Ardeshir549

et al. (2023). While single-directional (index one) solutions exist in that setting, the authors show550

that the minimum norm solutions are all multi-dimensional.551

Explanations for deep learning Finally, this work adds to the growing body of evidence that552

the AGOP-based mechanisms of feature learning can account for some of the most interesting phe-553

nomena in deep learning. These include generalization with multi-index models (Parkinson et al.,554

2023), deep neural collapse (Beaglehole et al., 2024b), and the ability to perform low-rank matrix555

completion (Radhakrishnan et al., 2024b). Thus, RFM provides a framework that is both practically556

powerful and serves as a theoretically tractable model of deep learning.557

B Additional Preliminaries558

For completeness we replicate the algorithm definition for Recursive Feature Machines (RFM) pro-559

vided by Radhakrishnan et al. (2024a) in Algorithm 1. This procedure recursively fits a kernel560

estimator for a chosen base kernel, k, then updates the feature matrix, M , by computing a matrix561

power of the Average Gradient Outer Product (AGOP) for that estimator. The algorithm termi-562

nates after a total of T iterations. The final estimator and feature matrix are then returned by the563

algorithm.564

C Neural Feature Ansatz565

While the NFA has been observed generally across depths and architecture types (Radhakrishnan566

et al., 2024a; Beaglehole et al., 2023, 2024a), we restate this observation for fully-connected net-567

works with one hidden-layer of the form f(x) = a⊤ϕ(W1x).568

Ansatz 1 (Neural Feature Ansatz for one hidden layer). For a one hidden-layer neural network fNN569

and a matrix power α ∈ (0, 1], the following holds:570

W⊤
1 W1 ∝ G(fNN)s . (5)

15

Note that this statement implies that W⊤
1 W1 and G(fNN)s have a cosine similarity of ±1.571

In this work, we choose α = 1
2 , following the main results in Radhakrishnan et al. (2024a). While572

the absolute value of the cosine similarity is written in Eq. (5) to be 1, it is typically a high value less573

than 1, where the exact value depends on choices of initialization, architecture, dataset, and training574

procedure. For more understanding of these conditions, see Beaglehole et al. (2024a).575

D Model and training details576

Gaussian kernel: Throughout this work we take bandwidth L = 2.5 when using the Mahalanobis577

Gaussian kernel. We solve ridgeless kernel regression using NumPy on a standard CPU.578

Neural networks: Unless otherwise specified, we train one hidden layer neural networks with579

quadratic activation functions and no biases in PyTorch on a single A100 GPU. Models are trained580

using AdamW with hidden width 1024, batch size 32, learning rate of 10−3, weight decay 1.0, and581

standard PyTorch initialization. All models are trained using the Mean Squared Error loss function582

(square loss).583

For the experiments in Appendix Fig. 5, we train one hidden layer neural networks with quadratic584

activation and no biases on modular addition modulo p = 61. We use 40% training fraction, PyTorch585

standard initialization, hidden width of 512, weight decay 10−5, and AGOP regularizer weight 10−3.586

Models are trained with vanilla SGD, batch size 128, and learning rate 1.0.587

E Reordering feature matrices by group generators588

Our reordering procedure uses the standard fact of group theory that the multiplicative group Z∗
p is589

a cyclic group of order p − 1 Koblitz (1994). By definition of the cyclic group, there exists at least590

one element g ∈ Z∗
p, known as a generator, such that Z∗

p = {gi ; i ∈ {1, . . . , p− 1}}.591

Given a generator g ∈ Z∗
p, we reorder features according to the map, ϕg : Z∗

p → Z∗
p, where if h = gi,592

then ϕg(h) = i. In particular, given a matrix B ∈ Rp×p, we reorder the bottom right (p−1)×(p−1)593

sub-block of B as follows: we move the entry in coordinate (r, c) with r, c ∈ Z∗
p to coordinate594

(ϕg(r), ϕg(c)). For example if g = 2 in Z∗
5, then (2, 3) entry of the sub-block would be moved to595

coordinate (1, 3) since 21 = 2 and 23 mod5 = 3. In the setting of modular multiplication/division,596

the map ϕg defined above is known as the discrete logarithm base g (Koblitz, 1994, Ch.3). The597

discrete logarithm is analogous to the logarithm defined for positive real numbers in the sense that598

it converts modular multiplication/division into modular addition/subtraction. Lastly, in this setting,599

we note that we only reorder the bottom (p−1)×(p−1) sub-block of B as the first row and column600

are 0 (as multiplication by 0 results in 0).601

Upon re-ordering the p × p off-diagonal sub-blocks of the feature matrix by the map ϕg , the fea-602

ture matrix of RFM for multiplication/division tasks contains circulant blocks as shown in Fig. 3C.603

Thus, the reordered feature matrices for these tasks also exhibit the structure in Observation 1. As a604

remark, we note that there can exist several generators for a cyclic group, and thus far, we have not605

specified the generator g we use for re-ordering. For example, 2 and 3 are both generators of Z∗
5 since606

{2, 22, (23 mod5), (24 mod5)} = {3, (32 mod5), (33 mod5), (34 mod5)} = Z∗
5. Lemma K.1 im-607

plies that the choice of generator does not matter for observing circulant structure. As a convention,608

we simply reorder by the smallest generator.609

F Enforcing circulant structure in RFM610

We see that the structure in Observation 1 gives generalizing features on modular arithmetic when611

the circulant C is constructed from the RFM matrix. We observe that enforcing this structure at612

every iteration, and comparing to the standard RFM model at that iteration, improves test loss and613

accelerates grokking on e.g. addition (Appendix Fig. 2). The exact procedure to enforce this struc-614

ture is as follows. We first perform standard RFM to generate feature matrices M1, . . . ,MT . Then615

for each iteration of the standard RFM, we construct a new M̃t on which we solve ridgeless kernel616

regression for a new α and evaluate on the test set. To construct M̃ , we take D = diag (Mt) and617

first let M̃ = D−1/2MD−1/2, to ensure the rows and columns have equal scale. We then reset the618

top left and bottom right sub-matrices of M̃ as I − 1
p11

T , and replace the bottom-left and top-right619

16

blocks with C and C⊤, where C is an exactly circulant matrix constructed from Mt. Specifically,620

where c is the first column of the bottom-left sub-matrix of Mt, column ℓ of C is equal to σℓ(Mt).621

G Fourier multiplication algorithm from circulant features622

As stated in the main text, using certain circulant matrices, kernel regression will learn the Fourier623

Multiplication Algorithm (FMA). We state the FMA for modular addition/subtraction from Nanda624

et al. (2023) below. While these prior works write this algorithm in terms of cosines and sines, our625

presentation simplifies the statement by using the DFT.626

Complex inner product and Discrete Fourier Transform (DFT). In our theoretical analysis in627

Section 5, we will utilize the following notions of complex inner product and DFT. The complex628

inner product ⟨·, ·⟩C is a map from Cd × Cd → C of the form629

⟨u, v⟩C = u⊤v̄ , (6)

where v̄j is the complex conjugate of vj . Let i =
√
−1 and let ω = exp(−2πi

d). The DFT is the map630

F : Cd → Cd of the form F(u) = Fu, where F ∈ Cd×d is a unitary matrix with Fij = 1√
d
ωij . In631

matrix form, F is given as632

F =
1√
d

1 1 1 · · · 1
1 ω ω2 · · · ωd−1

1 ω2 ω4 · · · ω2(d−1)

...
...

...
. . .

...
1 ωd−1 ω2(d−1) · · · ω(d−1)(d−1)

 . (7)

Fourier Multiplication Algorithm for modular addition/subtraction. Consider the modular ad-633

dition task with f∗(a, b) = (a + b)mod p. For a given input x = x[1] ⊕ x[2] ∈ R2p, the FMA634

generates a value for output class ℓ, yadd(x; ℓ), through the following computation:635

1. Compute the Discrete Fourier Transform (DFT) for each digit vector x[1] and x[2], which636

we denote x̂[1] = Fx[1] and x̂[2] = Fx[2] where the matrix F is defined in Eq. (7).637

2. Compute the element-wise product x̂[1] ⊙ x̂[2].638

3. Return
√
p · ⟨x̂[1] ⊙ x̂[2], Feℓ⟩C where eℓ denotes ℓ-th standard basis vector and ⟨·, ·⟩C639

denotes the complex inner product (see Eq. (6)).640

This algorithmic process can be written concisely in the following equation:641

yadd(x; ℓ) =
√
p ·

〈
Fx[1] ⊙ Fx[2], Feℓ

〉
C . (8)

Note that for x = ea ⊕ eb, the second step of the FMA reduces to642

Fea ⊙ Feb =
1
√
p
Fe(a+b)mod p . (9)

Using the fact that F is a unitary matrix, the output of the FMA is given by643

√
p ·

〈
1
√
p
Fe(a+b)mod p, Feℓ

〉
C
= e⊤(a+b)mod pF

⊤F̄eℓ = e⊤(a+b)mod peℓ = 1{(a+b)mod p=ℓ} .

(10)

Thus, the output of the FMA is a vector e(a+b)mod p, which is equivalent to modular addition. We644

provide an example of this algorithm for p = 3 in Appendix J.645

Remarks. We note that our description of the FMA uses all entries of the DFT, referred to as fre-646

quencies, while the algorithm as proposed in prior works allows for utilizing a subset of frequencies.647

Also note that the FMA for subtraction, written ysub, is similar and given by648

ysub(x; ℓ) =
√
p ·

〈
Fx[1] ⊙ Fep−ℓ−1, Fx[2]

〉
C . (11)

Having described the FMA, we now state our theorem.649

17

Theorem G.1. Given all of the discrete data
{(

ea ⊕ eb, e(a−b)mod p

)}p−1

a,b=0
, for each output class650

ℓ ∈ {0, · · · , p − 1}, suppose we train a separate kernel predictor fℓ(x) = k(x,X;Mℓ)α
(ℓ) where651

k(·; ·;Mℓ) is a quadratic kernel with Mℓ =

(
0 Cℓ

(Cℓ)⊤ 0

)
and C ∈ Rp×p is a circulant matrix652

with first row e1. When α(ℓ) is the solution to kernel ridgeless regression for each ℓ, the kernel pre-653

dictor f = [f0, . . . , fp−1] is equivalent to Fourier Multiplication Algorithm for modular subtraction654

(Eq. (11)).655

As C is circulant, Cℓ is also circulant. Hence, each Mℓ has the structure described in Observation 1,656

where A = 0. Note our construction differs from RFM in that we use a different feature matrix657

Mℓ for each output coordinate, rather than a single feature matrix across all output coordinates.658

Nevertheless, Theorem G.1 provides support for the fact that block-circulant feature matrices can be659

used to solve modular arithmetic.660

We provide the proof for Theorem G.1 in Appendix K. The argument for the FMA for addition661

(Eq. (8)) is identical provided we replace Cℓ with CℓR and (Cℓ)⊤ with (CℓR)⊤ in each Mℓ, where662

R is the Hankel matrix that reverses the row order (i.e. ones along the main anti-diagonal, zero’s663

elsewhere), whose first row is ep−1. An analogous result follows for multiplication and division664

under re-ordering by a group element, as described in Section 3.665

Our proof uses the well-known fact that circulant matrices can be diagonalized using the DFT matrix666

(Gray et al., 2006) (see Lemma K.2 for a restatement of this fact). This fundamental relation intu-667

itively connects circulant features and the FMA. By using kernels with block-circulant Mahalanobis668

matrices, we effectively represent the one-hot encoded data in terms of their Fourier transforms. We669

conjecture that this implicit representation is what enables RFM to learn modular arithmetic with670

more general circulant matrices when training on just a fraction of the discrete data.671

H Grokking multiple tasks672

Throughout the main paper, we focused on modular arithmetic settings for a single task. In more673

general domains such as language, one may expect there to be many “skills” that need to be learned.674

In such settings, it is possible that these skills are grokked at different rates. While a full discussion675

is beyond the scope of this work, to illustrate this behavior, we performed additional experiments676

in here, where we train RFM on a pair of modular arithmetic tasks simultaneously and demonstrate677

that different tasks are indeed grokked at different points throughout training.678

We train RFM to simultaneously solve the following two modular polynomial tasks: (1) x+ymod p679

; (2) x2 + y2 mod p for modulus p = 61. We train RFM with the Mahalanobis Gaussian kernel680

using bandwidth parameter L = 2.5. Training data for both tasks is constructed from the same681

80% training fraction. In addition to concatenating the one-hot encodings for x, y, we also append682

an extra bit indicating which task to solve (0 indicating task (1) and 1 indicating task (2)). The683

classification head is shared for both tasks (e.g. output dimension is still Rp).684

In Appendix Fig. 3, we observe that there are two sharp transitions in the test loss and test accuracy.685

By decomposing the loss into the loss per task, we observe that RFM groks task (1) prior to grokking686

task (2). Overall, these results illustrate that grokking of different tasks can occur at different training687

iterations.688

I AGOP regularization and weight decay for grokking modular arithmetic.689

It has been argued in prior work that weight decay (ℓ2 regularization on network weights) is neces-690

sary for grokking to occur when training neural networks for modular arithmetic tasks (Varma et al.,691

2023; Davies et al., 2023; Nanda et al., 2023). Under the NFA (Eq. (5)), which states that W⊤
1 W1 is692

proportional to a matrix power of G(f), we expect that performing weight decay on the first layer,693

i.e., penalizing the loss by ∥W1∥2F = tr(W⊤
1 W1), should behave similarly to penalizing the trace of694

the AGOP, tr(G(f)), during training.3 To this end, we compare the impact of using (1) no regular-695

ization; (2) weight decay; and (3) AGOP regularization when training neural networks on modular696

arithmetic tasks. In Appendix Fig. 5, we find that, akin to weight decay, AGOP regularization leads697

3We note this regularizer been used prior work where AGOP is called the Gram matrix of the input-output
Jacobian Hoffman et al. (2019).

18

to grokking in cases where using no regularization results in no grokking and poor generalization.698

These results provide further evidence that neural networks solve modular arithmetic by using the699

AGOP to learn features.700

J FMA example for p = 3701

We now provide an example of the FMA for p = 3. Let x = e1 ⊕ e2. In this case, we expect the702

FMA to output the vector e0 since (1 + 2)mod 3 = 0. Following the first step of the FMA, we703

compute704

x̂[1] = Fe1 =
1√
3
[1, ω, ω2]⊤ ; x̂[2] = Fe2 =

1√
3
[1, ω2, ω4]⊤ , (12)

which are the first and second columns of F , respectively. Then their element-wise product is given705

by706

Fe1 ⊙ Fe2 =
1

3
[1, ω3, ω6]⊤ =

1

3
[1, 1, 1]⊤ =

1√
3
Fe0 , (13)

which is 1√
3

times the first column of the DFT matrix. Finally, we compute the outputs707

√
3
〈

1√
3
Fe0, Feℓ

〉
C

for each ℓ ∈ {0, 1, 2}. As F is unitary, yadd(e1 ⊕ e2; ℓ) = 1{1+2=ℓmod 3}, so708

that coordinate 0 of the output will have value 1, and all other coordinates have value 0.709

K Additional results and proofs710

Lemma K.1. Let C ∈ Rp×p with its first row and column entries all equal to 0. Let the (p −711

1)× (p− 1) sub-block starting at the second row and column be C×. Then, C× is either circulant712

after re-ordering by any generator q of Z∗
p, or C× is not circulant under re-ordering by any such713

generator.714

Proof of Lemma K.1. We prove the lemma by showing that for any two generators q1, q2 of Z∗
p, if715

C× is circulant re-ordering with q1, then it is also circulant when re-ordering by q2.716

Suppose C× is circulant re-ordering with q1. Let i, j ∈ {1, . . . , p − 1}. Note that by the circulant717

assumption, for all s ∈ Z,718

Cqi1,q
j
1
= Cqi+s

1 ,qi+s
1

, (14)

where we take each index modulo p.719

As q2 is a generator for Z∗
p, we can access all entries of C× by indexing with powers of q2. Further,720

as q1 is a generator, we can write q2 = qk1 , for some power k. Let a ∈ Z. Then,721

Cqi2,q
j
2
= Cqki

1 ,qkj
1

= Cqki+ka
1 ,qkj+ka

1

= C
q
k(i+a)
1 ,q

k(j+a)
1

= Cqi+a
2 ,qj+a

2
.

Therefore, C is constant on the diagonals under re-ordering by q2, concluding the proof.722

We next state Lemma K.2, which is used in the proof of Theorem G.1.723

Lemma K.2 (See, e.g., Gray et al. (2006)). Circulant matrices U can be written (diagonalized) as:724

U = FDF̄⊤ ,

where F is the DFT matrix, F̄⊤ is the element-wise complex conjugate of F⊤ (i.e. the Hermitian of725

F), and D is a diagonal matrix with diagonal
√
p · Fu, where u is the first row of U .726

We now present the proof of Theorem G.1, restating the theorem below for the reader’s convenience.727

19

Theorem. Given all of the discrete data
{(

ea ⊕ eb, e(a−b)mod p

)}p−1

a,b=0
in modular subtraction728

task, for each output class ℓ ∈ {0, · · · , p − 1}, we train a separate kernel predictor fℓ(x) =729

k(x,X;Mℓ)α
(ℓ). Here k(·, ·;Mℓ) is a quadratic kernel with Mℓ =

(
0 Cℓ

(Cℓ)⊤ 0

)
and C ∈ Rp×p730

is a circulant matrix with first row e1. When α(ℓ) is the solution to kernel ridgeless regression for731

each ℓ, the kernel predictor f = [f0, . . . , fp−1] is equivalent to Fourier Multiplication Algorithm732

for modular subtraction (Eq. (11)).733

Proof of Theorem G.1. We present the proof for modular subtraction as the proof for addition fol-734

lows analogously. We write the standard kernel predictor for class ℓ on input x = x[1] ⊕ x[2] ∈ R2p735

as,736

fℓ(x) =

p−1∑
a,b=0

α
(ℓ)
a,bk (x, ea ⊕ eb;Mℓ) ,

where we have re-written the index into kernel coefficients for class ℓ, α(ℓ) ∈ Rp×p, so that the737

coefficients are multi-indexed by the first and second digit. Specifically, now α
(ℓ)
a,b is the kernel738

coefficient corresponding to the representer k(·, x) for input point x = ea ⊕ eb. Recall we use a739

quadratic kernel, k(x, z;Mℓ) = (x⊤Mℓz)
2. In this case, the kernel predictor simplifies to,740

fℓ(x) =

p−1∑
a,b=0

α
(ℓ)
a,b

(
x⊤
[1]C

ℓeb + e⊤a C
ℓx[2]

)2

.

Then, the labels for each pair of input digits, written as a matrix Y (ℓ) ∈ Rp×p for the ℓ-th class741

where the row and column index the first and second digit respectively, are Y (ℓ) = C−ℓ.742

For x = ea′ ⊕ eb′ , i.e. x in the discrete dataset, we have,743

fℓ(x) =

p−1∑
a,b=0

α
(ℓ)
a,b

(
δ(a,b′−ℓ) + δ(a′,b−ℓ) + 2δ(a,b′−ℓ)δ(a′,b−ℓ)

)
= e⊤b′−ℓα

(ℓ)1+ 1⊤α(ℓ)ea′+ℓ + 2e⊤b′−ℓα
(ℓ)ea′+ℓ

= e⊤b′C
−ℓα(ℓ)1+ 1⊤α(ℓ)C−ℓea′ + 2e⊤b′C

−ℓα(ℓ)C−ℓea′

= e⊤b′
(
C−ℓα11⊤ + 11⊤αC−ℓ + 2C−ℓαC−ℓ

)
ea′ ,

where δ(u,v) = 1{u=v}. Let fℓ(X) ∈ Rp×p be the matrix of function values of fℓ, where744

[fℓ(X)]a,b = fℓ(ea ⊕ eb), and, therefore, fℓ(ea ⊕ eb) = e⊤a fℓ(X)eb. Then, to solve for α(ℓ),745

we need to solve the system of equations for α,746

fℓ(X) =
(
C−ℓα11⊤ + 11⊤αC−ℓ + 2C−ℓαC−ℓ

)⊤
= C−ℓ

⇐⇒ C−ℓα11⊤ + 11⊤αC−ℓ + 2C−ℓαC−ℓ = Cℓ

Note, by left-multiplying both sides by C−ℓ, we see this equation holds iff,747

C−2ℓα11⊤ + 11⊤αC−ℓ + 2C−2ℓαC−ℓ = I .

Note the solution is unique as the kernel matrix is full rank. We posit the solution α such that748

C−2ℓαC−ℓ = 1
2I + λ11⊤, which is α = 1

2C
3ℓ + λ11⊤. Then, solving for λ, we require,749

11⊤ + 2pλ11⊤ + 2λ11⊤ = 0 ,

which implies λ = − 2
2p+2 . Substituting this value of λ and simplifying, we see finally that750

fℓ(x) = x⊤
[1]C

−ℓx[2]. Therefore, using that circulant matrices are diagonalized by C =
√
pFDF̄⊤751

(Lemma K.2) and F̄⊤F = I , where D = diag (Fe1), we derive,752

fℓ(x) =
√
p · x⊤

[1]FD−ℓF̄⊤x[2]

=
√
p · x⊤

[1]Fdiag (Fep−ℓ−1) F̄
⊤x[2]

=
√
p ·

〈
Fx[1] ⊙ Fep−ℓ−1, Fx[2]

〉
C

which is the output of the FMA on modular subtraction.753

20

L Low rank solution to modular arithmetic754

Addition We present a solution to the modular addition task whose AGOP is low rank, in contrast755

to the full rank AGOP recovered by RFM and neural networks.756

We define the “encoding” map Φ : Rp → C as follows. For a vector a = [a0, . . . , ap−1],

Φ(a) =

p−1∑
k=0

ak exp

(
k2πi

p

)
.

Notice that Φ is a linear map such that Φ(ek) = exp
(

k2πi
p

)
. Notice also that Φ is partially invertible

with the “decoding” map Ψ : C→ Rp.

Ψ(z) = m̃ax

(〈
z, exp

(
0 · 2πi

p

)〉
, . . .

〈
z, exp

(
(p− 1) · 2πi

p

)〉)
.

Above m̃ax is a function that makes all entries zero except for the largest one and the inner product757

is the usual inner product in C considered as R2. Thus758

Ψ

(
exp

(
k · 2πi

p

))
= ek . (15)

Ψ is a nonlinear map C → Rp. While it is discontinuous but can easily be modified to make it759

differentiable.760

By slight abuse of notation, we will define Φ : Rp × Rp → C2 on pairs:

Φ(ej , ek) = (Φ(ej),Φ(ek)) .

This is still a linear map but now to C2.761

Consider now a quadratic map M on C2 → C given by complex multiplication:

M(z1, z2) = z1z2 .

It is clear that the composition ΨMΦ implements modular addition

ΨMΦ(ej , ek) = e(j+k)mod p

Furthermore, since Φ is a liner map to a four-dimensional space, the AGOP of the composition762

ΨMΦ is of rank 4.763

Multiplication The construction is for multiplication is very similar with modifications which we
sketch below. We first re-order the non-zero coordinates by the discrete logarithm with base equal
to a generator of the multiplicative group eg (see Appendix E), while keeping the order of index 0.
Then, we modify Φ to remove index a0 from the sum for inputs a. Thus for multiplication,

Φ(a) =

p−1∑
k=1

ak exp

(
k · 2πi
p− 1

)
,

Hence that Φ(e0) = 0, Φ(eg) = exp
(

2πi
p−1

)
and Φ(egk) = exp

(
k·2πi
p−1

)
. We extend Φ to Rp × Rp764

as in Eq. 15 above. Note that Φ and the re-ordering together are still a linear map of rank 4.765

Then, the “decoding” map, Ψ(z), will be modified to return 0, when z = 0, and otherwise,

Ψ(z) = gm̃ax(⟨z,exp(0·2πi
p−1)⟩,...⟨z,exp((p−2)·2πi

p−1)⟩) .

M is still defined as above. It is easy to check that the composition of ΨMΦ with reordering766

implements modular multiplication modulo p and furthermore, the AGOP will also be of rank 4.767

21

Iter 1 Iter 5 Iter 10 Iter 15

Mu
l

Mu
l
(r
eo
rd
er
ed
)

Appendix Figure 1: AGOP evolution for quadratic RFM trained on modular multiplication with
p = 61 before reordering (top row) and after reordering by the logarithm base 2 (bottom row).

RFM Iterations RFM Iterations

Te
st
 A
cc
ur
ac
y
(%
)

Te
st
 L
os
s

Appendix Figure 2: We train a Gaussian kernel-RFM on x+ymod97 and plot test loss and accuracy
versus RFM iterations. We also evaluate the performance of the same model upon modifying the M
matrix to have exact block-circulant structure stated in Observation 1.

22

RFM Iterations RFM Iterations RFM Iterations

Te
st

Lo
ss

Te
st

Ac
cu
ra
cy

Both Tasks:
x + y and x2 + y2

Task 1:
x2 + y2

Task 2:
x + y

Appendix Figure 3: RFM with the Gaussian kernel trained on two modular arithmetic tasks with
modulus p = 61. Task 1 is to learn x2 + y2 mod p and task 2 is to learn x+ ymod p.

Mul Mul (reordered) Div Div (reordered)

NN
AGOP

NFM

B

A

Appendix Figure 4: (A) We visualize the neural feature matrix (NFM) from a one hidden layer
neural network with quadratic activations trained on modular multiplication and division, before
and after reordering by the discrete logarithm. (B) We visualize the square root of the AGOP of the
neural network in (A) before and after reordering.

23

Epochs Epochs

Ac
cu
ra
cy

Ac
cu
ra
cy

Sq
ua
re
 L
os
s

Sq
ua
re
 L
os
s

Weight Decay AGOP Regularization

Epochs

Ac
cu
ra
cy

Sq
ua
re
 L
os
s

No Regularization

0.4 training fractionAppendix Figure 5: One hidden layer fully connected networks with quadratic activations trained
on modular addition with p = 61 with vanilla SGD. Without any regularization the test accuracy
does not go to 100% whereas using weight decay or regularizing using the trace of the AGOP result
in 100% test accuracy and grokking.

Te
st

 S
qu

ar
e

Lo
ss

Te
st

 A
cc

ur
ac

y
(%

) AG
OP

Al
ig

nm
en

t

Training Fraction (%)Training Fraction (%)Training Fraction (%)

Appendix Figure 6: We train kernel-RFMs for 30 iterations using the Mahalanobis Gaussian kernel
for x+ymod97. We plot test accuracy, test loss, and AGOP alignment versus percentage of training
data used (denoted training fraction). All models reach convergence (i.e., both the test loss and test
accuracy no longer change) after 30 iterations. We observe a sharp transition in test accuracy with
respect to the training fraction, but we observe gradual change in test loss and AGOP alignment with
respect to the training data fraction.

24

	Introduction
	Preliminaries
	Emergence with Recursive Feature Machines
	Emergence in neural networks through AGOP
	Fourier multiplication algorithm from circulant features
	Discussion and Conclusions
	Additional discussion
	Additional Preliminaries
	Neural Feature Ansatz
	Model and training details
	Reordering feature matrices by group generators
	Enforcing circulant structure in RFM
	Fourier multiplication algorithm from circulant features
	Grokking multiple tasks
	AGOP regularization and weight decay for grokking modular arithmetic.
	FMA example for p = 3
	Additional results and proofs
	Low rank solution to modular arithmetic

