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IPdb: A High-Precision IP Level Industry Categorization of Web
Services

Paper #1896, 8 pages body, 12 pages total
ABSTRACT
IP addresses with web services are crucial in the Internet ecosys-
tem. Classifying these addresses by industry and organization offers
valuable insights into the entities utilizing them, enabling more
efficient network management and enhanced security. Previous
work in website classification and Internet management struggles
to offer an IP-level perspective of the industries of web services
due to their limited industry categories or potential industry in-
consistencies between IP address owners and AS owners. To this
end, we present IPdb, an IP-level industry categorization dataset.
To construct the dataset, we developed LLMIC, a Large Language
Model-based Industry Categorization framework with a precision
of nearly 96%. IPdb serves as a labeled database for future endeavors
in developing IP-level industry classifiers, encompassing over 200
million IP addresses. Furthermore, our study indicates that 30% ∼
50% of organizations within critical infrastructure industries de-
ploy web servers across multiple ASes. Our study also validates
the problem of mismatched granularity in industry categorization
at the AS level with 87.83% ASes in IPv4 and 72.96% ASes in IPv6
containing IP addresses from different industries.
ACM Reference Format:
Paper #1896, 12 pages. 2024. IPdb: A High-Precision IP Level Industry
Categorization of Web Services. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
IP addresses form a foundational element of cyberspace, with those
hosting web services playing a particularly critical role. Identifying
which organizations and industries manage these IP addresses sheds
light on the roles they play within the broader Internet ecosystem
and provides opportunities to analyze their traffic patterns [6, 11, 20,
23, 41]. Furthermore, web servers linked to critical infrastructure
industries are often prime targets for cyberattacks [1, 24, 28, 35, 51],
making the accurate identification of these servers essential for
assessing and strengthening the security measures.

Previous studies have often concentrated on a limited set of
specific organizations [6, 11, 20, 24, 41], a scope insufficient for
conducting industry analysis across a broader range of web servers.
Alternatively, some research has relied on Autonomous Systems
(ASes), which represent collections of IP addresses managed by a
single entity, to infer IP address ownership [23, 40, 46]. Research
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focused on AS ownership [3, 5, 10, 15, 16, 57] has yielded valuable
insights into the Internet ecosystem at the AS level by addressing
issues such as BGP instability across industries. However, there
are instances where organizations lease IP addresses from network
providers to host their web servers. For example, as indicated by
its disclosed IP range list [2], Amazon AWS hosts some of its web
services on AS6167, owned by Verizon. Therefore, focusing solely
on the AS owner is inadequate for answering critical questions
about IP addresses, such as "Which industry has vulnerable web
services on its IP addresses?" or "Which organizations deploy web
services across multiple ASes to mitigate cross-AS traffic costs?"
A comprehensive understanding of IP address ownership within
AS boundaries is crucial for accurately addressing these questions.
Nevertheless, the lack of annotated IP-level datasets remains a
significant barrier, hindering researchers from conducting detailed
analyses of the industry-specific distribution and security posture
of web services at this granular level.

In this study, we introduce IPdb, an IP-level industry catego-
rization dataset that includes both IPv4 and IPv6 addresses. The
dataset is constructed using IP addresses as input, with reverse DNS
queries employed to retrieve the associated domains. The organiza-
tions operating these domains are identified throughWhois records
and certificates. For industry classification, information extracted
from the Web, specifically Wikipedia [54], is consulted to gather
information on the primary business of each organization. Given
the demonstrated proficiency of Large Language Models (LLMs) in
handling complex Natural Language Processing tasks [8, 17, 39], we
leverage these models to classify organizations by industry based on
the Wikipedia descriptions. However, due to issues like hallucina-
tion, LLMs can sometimes produce uncertain and incorrect results.
To address this, we propose a Large Language Model-based Indus-
try Categorization framework (LLMIC) to improve the accuracy
of categorizations. This framework integrates multiple LLMs, fine-
tuning their combination weights on a manually labeled dataset
to enhance performance through the complementarity of different
models. Our system achieves outstanding results, with a precision
of nearly 96% on the manually labeled Gold Standard dataset of
organizational records. Using this system, we have expanded the
dataset to include over 200 million IP addresses associated with web
servers. This annotated dataset provides researchers with valuable
data for web measurements analyzing the industry affiliations of
IP addresses, aiding in Internet management and security efforts.

Our contribution can be summarized as follows:
• We developed an LLM-based industry categorization frame-
work that achieves a precision rate of nearly 96% using a
limited set of annotated data.

• We built IPdb, an IP-level industry classification dataset
containing more than 200 million IP addresses, to provide
comprehensive support for IP-level industry classification.1

1The dataset and code are available at github.com/IPLevelIndustryDB/IPdb.
1
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• Our study indicates that 30% to 50% of organizations within
critical infrastructure industries deploy web services across
multiple ASes to optimize service delivery to end-users.

• Our analysis reveals a significant discrepancy between IP-
level and AS-level industry categorization, with 87.83% of
IPv4 ASes and 72.96% of IPv6 ASes hosting web servers
from industries outside the AS owner’s designated industry.
This cross-industry phenomenon is widespread across ASes
owned by organizations in various industries.

2 CATEGORIZATION STANDARD
Previous efforts [15, 16] about AS-level industry categorization offer
a rudimentary system with a limited number of categories, such as
Internet Service Providers and Universities. Critical infrastructure
industries like Energy, are often omitted from these classifications.
Despite the introduction of the more inclusive NAICSlite system
by ASdb [57], based on the North American Industry Classification
System [4], this system introduces redundancy by including non-
critical industries. This issue is encountered in most commercial
categorization standards [4, 32, 50], as they concentrate on assessing
economy and commerce rather than network management.

Motivated by the need to capture critical industries for Inter-
net management, we introduce our novel categorization standard,
denoted as GICSmod, to mitigate the shortcomings of current clas-
sification standards. This system is a modification of the Global
Industry Classification Standard (GICS) [32], focusing more on the
importance of critical industries and decreasing the emphasis on
non-critical industries as appropriate for Internet management. For
example, in GICS, Financials, a level-1 category, is subdivided into
18 categories based on distinct production processes. While the
level-1 category holds significance in Internet management, the
further subdivision into subcategories holds lesser relevance, hence
we maintain only the Financials category without further division.
Conversely, as for the Information Technology category of GICS,
encompassing Software, Internet Service & Infrastructure, and other
sub-sectors with indispensable roles in Internet management, we
retain these critical sub-industries and extend the Cybersecurity
category within the GICSmod to emphasize their importance.

GICSmod is a streamlined, one-layer approach comprising 23
categories, significantly fewer than those offered in NAICSlite [57].
This redundancy reduction facilitates categorization while retaining
essential categories for Internet management. Similar to previous
categorization standards, the categories are defined to be mutually
exclusive to avoid ambiguity, ensuring that a particular business
practice does not fall into multiple categories. For instance, the Ser-
vice category, following the GICS definition, includes only services
not classified under other categories, such as human resources and
legal services. Services that fall under other critical infrastructure
industries, like IT and educational services, are excluded from the
Service category. It is important to note that these definitions do
not restrict an organization to a single category; for example, if an
organization provides both legal and IT services, it should be clas-
sified under both the Service and IT Services categories. A detailed
description of GICSmod is provided in Appendix B.

3 METHODOLOGY OF CATEGORIZATION
In this section, we outline our methodology for IP-level industry
categorization. Since categorization essentially involves categoriz-
ing the organizations that own them, we begin by identifying the
organizations managing web services on the IP addresses. These
organizations are then classified into industries. The framework of
our methodology is outlined in Figure 1. First, we use reverse DNS
queries (i.e., DNS PTR records) to establish correspondences be-
tween IP addresses and their associated domains. Next, we identify
the organizations that own these domains by performing domain
WHOIS lookups and examining the subject fields in the domains’
certificates. Then, we scrape descriptions about the owner organiza-
tions from Wikipedia [54]. Lastly, we introduce LLMIC, combining
LLMs to classify these organizations into their respective industries.

3.1 IP to Domain
Reverse DNS lookups are used to query DNS servers for domain
names associated with specific IP addresses. This process relies on
DNS PTR (Pointer) records, which are configured by the IP address
owner and stored in the DNS reverse zone file. The reliability of PTR
records in determining IP address ownership has been proved by
previous studies [29, 38]. To avoid redundant Internet scanning, we
utilize the comprehensive IPv4 reverse DNS data provided monthly
by the ipsniper project [25]. For IPv6 addresses, however, due to the
limited availability of reverse DNS data on Internet measurement
platforms during our research, we actively performed lookups us-
ing our own probers. Given the vast IPv6 address space, scanning
it entirely was impractical, so we focused on IP addresses from
published IPv6 hitlists [19, 44, 45, 56] for our reverse DNS lookups.

Although the forward DNS lookup is also commonly used to
determine the associations between domains and IP addresses, they
are not suitable for our research due to the potential discordance
between the domain owner and the IP address owner. In cases
where organizations provide Content Delivery Networks (CDNs)
or shared hosting services, this discordance becomes apparent. As
illustrated in Figure 2, while the IP address should be attributed to
the CDN vendor, a forward DNS lookup may incorrectly associate
it with the domain owned by the user. Although these IP addresses
provide web services for users, they are highly variable and not
under the control of the domain owners. In this case, we consider
these IP addresses as assets of the CDN vendors, since they are
effectively controlled by the CDN vendors, who decide the domain
under service. Conversely, DNS PTR records, configured by the IP
owner, correctly point to the domain owned by the CDN vendor,
thereby accurately reflecting this ownership.

3.2 Organization Identification
The domain retrieved from DNS PTR records is the fully qualified
domain name (FQDN), which represents the complete domain name
for a specific host. Since identifying the organization for each FQDN
is challenging and labor-intensive, we extract themain domain from
the FQDN. A main domain (e.g., example.co.uk) contains a suffix
under which Internet users can directly register names, including
top-level domains (e.g., .co) and country code second-level domains
(e.g., .co.uk), prepended by the name registered by the user. With
the assistance of the public suffix list [27, 31], we identify the suffix
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d) Industry Categorization

IP Address

e.g.192.0.2.1

e.g.2001:0DB8::1

Organization

c) Scrape Organization 

Description from Wikipedia

Industry

a) Reverse DNS

b) Organization Identification

Organization

Description

DNS PTR Records

PTR

domain

Certificate
1.Organization (O) : DigiCert, Inc.

2.CommonName (CN) : digicert.com

3.Subject Alternative Name (SAN): 

DNS:digicert.com,

DNS:content.digicert.com, ……

Internet Infrastructure

Software

IT Service

Technological hardware

Cyber Security

Fully Connected Layer

e.g. Internet 

Infrastructure

e.g.1 O:  DigiCert, Inc.
e.g.2domain : google.com →google

e.g.3 Whois: Meta Platforms, Inc.

Organization Description
DigiCert, Inc. is a digital security 

company headquartered in Lehi,  Utah. 

As a certificate authority (CA) and 

trusted third party, DigiCert provides 

public key infrastructure (PKI)…….

e.g. 192.0.2.1.

example.com

Industry

Definition

Internet

Infrastructure

Software

IT Service

Technological 

hardware

Cybersecurity

Internet

Infrastructure

Software

IT Service

Technological 

hardware

Cybersecurity

Internet

Infrastructure

Software

IT Service

Technological 

hardware

Cybersecurity

Internet
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Software
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hardware

Cybersecurity
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Avnet, Inc. description: ……

Summarize: Avnet Inc is a 
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Industry and reason:

positive: Retail & Distribution, …..

negative: Technological Hardware,

distributor instead of manufacturer

Chain-of-Thought 

Prompting

Internet

Infrastructure

Software

IT Service

Technological 

hardware

CybersecurityCybersecurity…… Cybersecurity…… Cybersecurity…… Cybersecurity…… Cybersecurity……

Cyber Security

……

domain

Main Domain

e.g.

example.com

WhoisCertificate

Figure 1: Methodology for Categorizing IP Addresses into Industries

userdomain.com userdomain.cdn.com IP address owned by CDN

Forward DNS Lookup

Reverse DNS Lookup

Figure 2: The process of forward DNS lookup and reverse
DNS lookup in a case where IP addresses provide CDN service

and the main domain of FQDNs. We then identify the organization
at the main domain level.

Since publicly available domain WHOIS data is maintained by
domain registries recording the registrants’ organizations, we use
this data to determine the owner organization of the main domains.

Due to privacy concerns and the General Data Protection Regu-
lation [49], some organization information in WHOIS data may be
withheld or concealed. Consequently, SSL certificates are used to ob-
tain the owner organization in cases where WHOIS data lacks regis-
trant information. We query port 443 of the www subdomain under
the main domain to obtain SSL certificates, which contain essential
information about the domain’s controlling organization. The Or-
ganization field in the subject indicates the organization holding
the issued certificate. This information is validated in organization-
validated and extended validation certificates, ensuring its reliability
and trustworthiness. However, some domains hosted on CDNs may
use certificates held by the CDN vendor, leading to a misalignment
between the certificate owner (CDN vendor) and the domain owner
(CDN user). To address this issue, we manually identify CDN and
cloud vendors using descriptions from Wikipedia [54]. Given the
large number of organizations, judgments from large language mod-
els (LLMs) are used as a reference to support manual work. If the
Organization field in a certificate matches entries on a blacklist, it
is ignored. Otherwise, the information is extracted as the domain’s
owner organization. Other fields, like the Common Name field and
the Subject Alternative Name field, provide the domains authorized
by the certificate. These fields can also provide information about

the owner organization. However, due to the use of shared certifi-
cates by CDN users, these fields may include domains belonging
to the CDN vendor or other users, making the information they
provide less reliable than the requested domain name itself. For
certificates where the Organization field is vacant or ignored, the
main domain is used as the identifier of the organization for further
organization information retrieval.

3.3 Organization Information Retrieval
After identifying the organizations, we search for their descriptions
on Wikipedia [54] via search engines. To ensure that the search re-
sults correspond accurately to the queried organization, we extract
keywords from the organization’s name, omitting common suffixes
like LLC. Results that do not contain the keyword in their text are
filtered out. Among the remaining results, we prioritize English
Wikipedia entries. If no English Wikipedia entry is found, the top
search result is selected and translated into English [22].

3.4 Industry Categorization
While some Wikipedia descriptions directly suggest the pertaining
industry, most merely outline the principal business activity. The
complexity of natural language processing tasks makes it infeasi-
ble to handle large amounts of data manually, necessitating the
development of a categorization system to determine the industry.

Challenges: Firstly, the scarcity of available annotated data
poses a significant barrier. Despite previous studies [5, 15, 16, 57]
considering the industry of an AS, the resulting annotated data
remains inadequate and imbalanced for IP-level categorization. Sec-
ondly, the inherent ambiguity of natural language and the inconsis-
tencies in the writing styles further complicate the categorization
process. Finally, the diverse principal business practices among
organizations within the same industry introduce additional chal-
lenges. The scarcity of annotated data impedes training a deep
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neural network from scratch, as they require a substantial quan-
tity of annotated data. Conventional machine learning algorithms
like Support Vector Machines and Random Forest also exhibit poor
performance on this specific task, because of the ambiguity and
semantic divergence of the input descriptive texts.

Large Language Models (LLMs) offer promising results in han-
dling such complexity. The pretraining process on extensive general
corpora and the supervised fine-tuning process with human an-
notations enable the acquisition of natural language processing
capabilities. These models can then adapt to our specific task using
only a small amount of annotated data for few-shot learning. How-
ever, LLMs can sometimes produce unsatisfactory outcomes due to
issues such as hallucination, where the model generates incorrect
or fabricated information.

To mitigate the problems, we propose an LLM-based Industry
Categorization framework, referred to as LLMIC, which enhances
the ability of individual models and leverages the capabilities of mul-
tiple LLMs to determine the industry of organizations. The LLMs
integrated into the framework can be substituted to improve per-
formance or meet specific requirements. Organization descriptions
sourced from Wikipedia, along with industry definitions within
GICSmod, are input into the integrated LLMs. For LLMs that sup-
port multiple languages, the original information fromWikipedia is
provided regardless of its source language. For LLMs that only sup-
port a limited number of languages, including English, the English-
translated descriptions are supplied.

Previous work [53] has demonstrated the effectiveness of the
Chain-of-Thought prompting technique in enhancing the reasoning
and problem-solving capabilities of LLMs. This technique involves
breaking down a task into smaller, sequential steps, guiding the
model to think through the problem methodically. In the context of
industry categorization, the complex task is decomposed into sub-
tasks such as summarizing the organization description, identifying
the primary business activity, verifying the industry definition, and
providing reasoning for whether the organization matches or does
not match the industry. Examples of the chain-of-thought process
are also provided in prompting to guide the model. In our trials, we
found that including negative examples (illustrating why an organi-
zation does not match a particular industry) significantly improves
performance compared to offering only positive examples.

To address the potential uncertainty and inconsistency of LLM
predictions, we introduce a dual confirmation mechanism. Initially,
the LLMs are prompted to select from all categories in the GICSmod
and propose potential categories to which the organization may
belong. Subsequently, the LLMs are asked multiple times to verify
whether the organization indeed fits into the potential category
it has suggested. If a potential category is confirmed at least once
during the second stage, it will be retained in the final result.

In our trials, relying on a single LLM may yield unsatisfactory
outcomes, while combining the results from multiple LLMs leads
to more reliable results. A detailed comparison between individual
LLMs and combined LLMs can be found in Section 4.2. As a result,
the outcomes generated by all LLMs are encoded as vectors and then
combined to produce the final industry label. Due to performance
variations among the selected LLMs across different categories,
distinct weights are assigned to each model’s output during the
combination process. This combination is performed by a two-layer

fully connected neural network, with the weights automatically
determined through backpropagation during training on a small,
manually annotated dataset.

4 EVALUATION OF CATEGORIZATION
FRAMEWORK

4.1 Gold Standard
We manually constructed a Gold Standard dataset as the ground
truth for training and evaluating the system. To build a comprehen-
sive dataset, especially when a specific industry is underrepresented,
providing candidate categories is essential. Initially, we labeled a
sample of 5,000 organizations using five independent LLMs, with
the union outputs from these models forming the pool of candidate
categories. To ensure a comprehensive representation of all cate-
gories, we proportionally sampled one-third of the data from each
of these candidates to construct a dataset of 1,500 entries.

Six volunteers were enlisted to label the sampled dataset, with
each assigned 500 entries, ensuring that each organization was
labeled independently by two volunteers. While the disjoint def-
initions of GICSmod minimize the chances of a business practice
falling intomultiple categories, large organizations operating across
diverse sectors may still span multiple categories. In such cases, all
relevant categories are treated as true labels for the organization,
ensuring an accurate reflection of their multi-sector presence.

To minimize the volunteers’ workload, they were tasked with
verifying the accuracy of the candidate categories rather than select-
ing from the entire GICSmod. Since most candidate labels consisted
of no more than five categories, this approach significantly reduced
the effort required compared to manually labeling all 23 categories.
In cases of conflicting labels—where one volunteer judged a label as
true and another as false—volunteers discussed the disagreement
in pairs, with a third volunteer providing adjudication if necessary.

Although this method may overlook certain industries, merging
the results from five independent LLMs rarely fails to capture likely
industries. The identification of CDN and cloud vendors in Section
3.2 provides insight into these oversights. 97 out of 98 organiza-
tions are identified by at least one LLM. The missing sample is
Microsoft, which is due to the brief mention of "Microsoft Azure" in
the description. Missed categories typically correspond to business
aspects that are not prominently mentioned in the description.

Ultimately, we successfully compiled an annotated dataset of
1,328 entries after removing ambiguous descriptions that were
insufficient for volunteers to accurately determine the industry. 188
organizations span multiple categories. Each category contains a
minimum of 20 organization entries, with the Education category
having the highest number at 186.

4.2 Evaluation of LLMs and LLMIC
Settings: We select distinguished open-source (Llama-2 7B [48],
ChatGLM-3 6B [17, 55], Mistral 7B [26]) and close-source (ChatGPT
3.5 [8, 36], Gemini 1.0 [21, 47]) LLMs, publicly available prior to
2024-04, to integrate into the proposed framework. The models
are evaluated on the manually labeled gold standard dataset in
Section 4.1. For the evaluation of LLMIC, we employ the approach
of leave-20%-out cross-validation on the gold standard dataset.
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Table 1: Precision of LLMs and LLMIC on Gold Standard

Category ChatGPT Gemini ChatGLM Llama Mistral LLMIC*
Fossil Energy 15/15(1.00) 15/18(0.83) 4/5(0.80) 4/6(0.67) 10/11(0.91) 16/16(1.00)
Medical 58/60(0.97) 56/59(0.95) 18/18(1.00) 35/36(0.97) 36/38(0.95) 60/61(0.98)
Finance 46/47(0.98) 70/73(0.96) 41/43(0.95) 68/71(0.96) 35/38(0.92) 80/80(1.00)
Services 21/22(0.95) 19/20(0.95) 11/16(0.69) 0/0(0.00) 13/15(0.87) 22/22(1.00)
Utilities 22/22(1.00) 29/30(0.97) 11/13(0.85) 19/30(0.63) 11/13(0.85) 26/27(0.96)
Internet Infrastructure 23/23(1.00) 37/40(0.93) 2/3(0.67) 26/44(0.59) 27/34(0.79) 42/45(0.93)
Technological Hardware 42/43(0.98) 58/64(0.91) 3/3(1.00) 55/105(0.52) 35/38(0.92) 65/68(0.96)
Media 59/60(0.98) 95/95(1.00) 17/17(1.00) 110/161(0.68) 66/66(1.00) 120/132(0.91)
Transportation 51/52(0.98) 62/66(0.94) 13/15(0.87) 36/40(0.90) 33/35(0.94) 61/63(0.97)
Defense Manufacturer 13/13(1.00) 17/17(1.00) 2/2(1.00) 12/18(0.67) 13/13(1.00) 16/16(1.00)
Fundamental Materials 19/20(0.95) 28/30(0.93) 3/4(0.75) 1/1(1.00) 24/29(0.83) 31/33(0.94)
Software 65/74(0.88) 73/83(0.88) 56/99(0.57) 85/116(0.73) 56/62(0.90) 83/88(0.94)
Education 140/143(0.98) 170/176(0.97) 93/97(0.96) 146/147(0.99) 100/105(0.95) 182/188(0.97)
Capital Goods 20/21(0.95) 31/39(0.79) 22/29(0.76) 6/7(0.86) 24/25(0.96) 37/39(0.95)
ISP 61/64(0.95) 96/106(0.91) 76/92(0.83) 48/53(0.91) 59/69(0.86) 94/101(0.93)
Government 120/132(0.91) 95/101(0.94) 40/41(0.98) 51/58(0.88) 76/86(0.88) 131/138(0.95)
IT Services 19/20(0.95) 24/31(0.77) 2/2(1.00) 9/12(0.75) 23/32(0.72) 28/30(0.93)
Automotive 27/28(0.96) 29/30(0.97) 0/1(0.00) 25/25(1.00) 21/21(1.00) 27/28(0.96)
Real Estate 23/24(0.96) 23/24(0.96) 9/9(1.00) 24/42(0.57) 13/17(0.76) 26/26(1.00)
Retail & Distribution 28/33(0.85) 36/43(0.84) 22/27(0.81) 29/36(0.81) 23/40(0.57) 35/36(0.97)
Hotels & Food & Leisure 19/20(0.95) 25/29(0.86) 10/12(0.83) 3/3(1.00) 22/23(0.96) 24/24(1.00)
Research 38/52(0.73) 41/50(0.82) 11/11(1.00) 28/32(0.88) 28/37(0.76) 45/49(0.92)
Cybersecurity 25/25(1.00) 17/17(1.00) 4/4(1.00) 10/11(0.91) 18/20(0.90) 21/21(1.00)
overall 954/1013(0.94) 1146/1241(0.92) 470/563(0.83) 830/1054(0.79) 766/867(0.88) 1272/1331(0.96)

*cross-validated with 20% data left out
Table 2: The number and proportion of correct samples of LLMs and LLMIC

Model Perfectly labeled samples Samples with at most
one missing label

Samples with at most
one incorrect label

Total number of samples
with at least one label

ChatGPT 773 (0.83) 864 (0.93) 897 (0.96) 931
Gemini 930 (0.81) 1054 (0.92) 1086 (0.95) 1146
ChaGLM 388 (0.71) 456 (0.83) 460 (0.84) 549
Llama 617 (0.67) 710 (0.77) 794 (0.86) 925
Mistral 587 (0.76) 671 (0.87) 718 (0.93) 773
LLMIC 1051 (0.85) 1166 (0.94) 1198 (0.97) 1235

The precision results are presented in Table 1. In calculating pre-
cision, the task is treated as 23 independent binary classifications,
with the precision rate defined as the proportion of correct results
among the retrieved predictions. Among the evaluated LLMs, Chat-
GPT exhibits the highest overall precision rate of 94%, followed by
Gemini, Mistral, ChatGLM, and Llama. However, an observation
is that even with a high precision rate, there remains a significant
amount of unlabeled data points. As for the number of accurate
results, Gemini ranks first with 1,146 accurate results, followed
by ChatGPT, Llama, Mistral, and ChatGLM. Moreover, the table
indicates that each LLM delivers varied performance in various
categories, and their ability can complement each other. For ex-
ample, the performance of ChatGPT in the Research category is
suboptimal with only 73% precision, while other models exhibit
better results in this category. The observation provides insight
into how a combination can capitalize on the unique strengths of
all LLMs and augment the overall performance.

By leveraging the capabilities of LLMs in categorizing various
industries, LLMIC achieves an overall precision of nearly 96%, accu-
rately classifying 1,272 out of 1,331 samples, surpassing the perfor-
mance of any individual LLM. The precision across all categories
exceeds 90%, with most categories approaching 100%. The system’s
recall rate stands at 83%, also outperforming individual LLMs. De-
tailed recall rate results are provided in D.

Since this is a multi-label classification task, we also evaluate
the number of correctly labeled samples and their proportion, as
summarized in Table 2. The total number of samples refers to those
where the model has assigned at least one label, as samples with-
out assigned labels are excluded from further analysis. As shown,
LLMIC achieves the best performance by integrating multiple LLMs.
97% of labeled samples have at most one extra or missing label, 94%
are fundamentally correct with at most one missing label, and 85%
exactly match the ground truth labels.The above results demonstrate
the system’s ability to accurately capture diverse industry categories,
confirming its reliability for the subsequent analysis.
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Figure 3: Industry distribution of labeled IP addresses and
organizations. A log scale is applied to the left y-axis.

Table 3: The size and distribution of the dataset

Source #IPs #ASes #BGP Prefixes
IPv4 253,218,506 12,318 90,528
IPv6 74,6210 1,698 3,723

Moreover, the findings validate the effectiveness of LLMs in
expanding datasets from a limited number of annotated samples
and offer a flexible framework for leveraging LLMs’ strengths in
categorizing various categories. The choice of LLMs can be tailored
to specific needs. In our experiment, using only closed-source LLMs
(i.e., ChatGPT combined with Gemini) resulted in a 5% decrease
in correctly labeled entries and a 1% drop in overall precision. By
comparison, using only open-source LLMs (i.e., ChatGLM combined
with Llama and Mistral) led to a 13% decrease in correctly labeled
entries and a 5% drop in overall precision. Thus, while closed-source
LLMs offer greater efficiency in terms of the number of models and
inference time, open-source LLMs remain a viable option when
local deployment is necessary. Detailed results of the ablation study
are provided in Appendix C.

5 FOOTPRINTS OF WEB SERVICES
5.1 Distribution of the Dataset
With the assistance of LLMIC, we have acquired industry categoriza-
tion for a total of over 200 million IP addresses, encompassing both
IPv4 and IPv6. As illustrated in Table 3, these IPv4 addresses are
under 12,318 ASes, and 90,528 BGP Prefixes, while IPv6 addresses
are under 1,698 ASes and 3,723 BGP Prefixes.

The industry distribution is illustrated in Figure 3, showing that
all industries are represented, with the ISP and Internet Infras-
tructure sectors controlling the majority of identified IP addresses
hosting web services. A total of 25,852 organizations were labeled,
with the Media industry accounting for the largest number of 7,234
organizations, and the Fossil Energy industry having the fewest of
89. While this method labels organizations with Wikipedia entries,
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Figure 4: The proportion of organizations that host web ser-
vices within a single AS/ multiple ASes.

it remains representative of the broader industry landscape, as these
organizations encompass well-known players within each sector.

5.2 Collection of AS information
To further analyze the AS distribution of web services, the data from
RouteViews [34] is utilized to discern the AS affiliated with each IP
address. To investigate the owner entity of these ASes, we refer to
the practices used in ASdb [57] to identify the owner organization.
Specifically, we first query RIR records using AS numbers to obtain
the associated email addresses and domain names into a domain
pool. Then, we remove common email domains (e.g., outlook.com)
from the domain pool and eliminate domain names that appear in
more than 100 ASes. From the remaining domain names, we identify
the organization via the same approach mentioned in 3.2. Finally,
we select the most similar organization that is the one with the
highest similarity to the AS name using cosine similarity between
the embeddings encoded by all-MiniLM-L6-v2 [33, 42, 52]. Themost
similar organization is considered as the owner organization of the
AS. After the organization is identified, we use the same approach
in 3.3 and 3.4 to get the organization information and to determine
the industry of the AS owners.

5.3 AS Distribution of Web Services
Gigis Petros et al. [20] revealed that Hypergiant companies may
deploy services outside their own ASes to minimize the costs as-
sociated with crossing network boundaries. Building on this, we
further analyze the prevalence of this strategy among organizations
across different industries. As illustrated in Figure 4, a significant
proportion of organizations across various industries have adopted
the strategy of deploying web services across multiple ASes, with
the highest rates observed in Finance where around 56% of orga-
nizations deploy web services in more than one AS. The Media
industry has the lowest proportion of organizations deploying web
services across multiple ASes, with 70% of Media organizations us-
ing only one AS for their web services. Additionally, a considerable
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Figure 6: The proportion of organizations with each domain
in a single AS/ one of its domains in multiple ASes.

number of organizations across various industries have deployed
their web services in more than ten ASes.

Considering the owners of these ASes, as illustrated in Figure 5,
a significant proportion of organizations host web services within
ASes managed by multiple owners. This proportion is comparable
to that shown in Figure 4. This observation suggests that organi-
zations do not solely deploy services in multiple ASes owned by a
single entity; instead, driven by business needs, they intentionally
utilize ASes provided by various providers. Notably, in the ISP and
Internet infrastructure sectors, approximately 45% of organizations
deploy web services across ASes owned by more than one entity.
Given that many organizations in these sectors are also AS owners,
this phenomenon corroborates the practice of registered AS orga-
nizations renting addresses from other ASes to fulfill user service

requirements. The frequent traffic interactions between addresses
within these organizations’ own ASes and those external to them
offer valuable insights for understanding the Internet ecosystem
and modeling cross-AS traffic.

As illustrated in Figure 6, the proportion of organizations with
one of its main domains in multiple ASes is also significant across all
industries. The slice difference between the proportion in Figure 4
and Figure 6 indicates that the majority of organizations deploying
web services across multiple ASes involves not only multiple main
domains hosted in different ASes but also a single main domain on
multiple IP addresses located in various ASes.

For example, we identified that the well-known automotive com-
pany BMW provides web services on 1,944 IP addresses, distributed
across 76 ASes managed by 69 AS owners. These IP addresses
correspond to 59 main domains, 24 of which have IP addresses
spread across multiple ASes. Most domains are registered under
the country code top-level domains (ccTLD). According to data
from SimilarWeb [43], an established market research platform that
provides website traffic analysis, the majority of traffic to these
domains originates from the countries or regions to which the
ccTLD belongs. Therefore, these domains were registered to serve
customers in their respective regions. For ASes hosting these do-
mains, we manually analyzed the countries of the AS owners and
found that they generally align with the countries indicated by
the domains. For example, bmw.com.cn is registered under China’s
top-level domain (.cn), and the IP addresses hosting this domain
are distributed across six ASes operated by Chinese ISPs. Hosting
domains that serve users from a specific country on ASes owned by
organizations within that country may aim to enhance service for
local users or comply with regulatory requirements. However, con-
sidering that the IP addresses for the same domain are distributed
across multiple ASes operated by different organizations, it is more
likely that it is out of the need to improve user experience.

Combining the data illustrated in Figure 4, 5, and 6, we can infer
that the strategy of deploying web services across ASes to reduce
cross-border traffic costs and improve user experience is followed
by a significant number of organizations across various industries.

5.4 Measurement of Cross Industry ASes
As illustrated in Figure 7, when examining the industry of AS own-
ers where critical infrastructure organizations deploy their web
services, it becomes clear that, across all industries, web services
are sometimes hosted in ASes managed by organizations outside
their industry. The Fossil Energy sector exhibits the lowest propor-
tion of web services deployed in ASes owned by other industries,
followed by ISP and Internet Infrastructure. Furthermore, when
organizations from most industries host their web services in ASes
outside their industry, they tend to favor ASes owned by ISPs.

From an AS-level perspective, the results reveal a widespread
occurrence of ASes hosting web services from industries different
from those of the AS owners. Specifically, 87.83% of IPv4 ASes and
72.96% of IPv6 ASes host web services from industries that are not
reflected in the AS owner’s industry label, as shown in Figure 8.

For example, AS 28760, owned by Infotech EDV-Systeme GmbH,
an IT service provider in Austria, is identified as hosting 15,733
IP addresses for web services belonging to the same organization,
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Figure 8: The proportion of ASes that host web services of
other industries

along with 6 IP addresses hosting services for three other organi-
zations. These include an international automotive manufacturer,
an aerospace design company headquartered in Austria, and an
Austrian lighting studio. The domains associated with these IP
addresses are registered under Austria’s country code top-level
domain (.at), and for two of these domains, the AS owner is also the
registrar, as indicated by domainWHOIS records. According to Sim-
ilarweb statistics [43], the majority of traffic to these three domains
originates from Austria (87%–100%). This example illustrates how
hosting other organizations’ web services within an AS can pro-
vide support for smaller organizations or those lacking their own
AS infrastructure, helping them bring web services online, while

also enhancing the quality of service distribution by considering
the geographic location of users. Although deploying web services
within their own AS fosters a mutually beneficial web ecosystem
for both web service providers and AS owners, it also introduces
challenges for regulatory compliance and security management, as
the true end-user of the IP addresses becomes difficult to identify.

Figure 8 highlights the widespread presence of cross-industry
phenomenon across ASes owned by all industries. The Defense
Manufacturer sector shows the lowest occurrence of this phenome-
non, while ASes owned by IT services exhibit the highest proportion
of cross-industry web hosting. Most sectors, except for Finance,
Fossil Energy, and Defense manufacturers, show that over 50% of
their ASes host web services from industries other than their own.
The analysis further reveals that ASes managed by all industries,
including those in critical infrastructure, frequently host web ser-
vices from different sectors. Consequently, relying solely on the AS
owner to infer the ownership of IP addresses, particularly when
identifying entities behind risky or malicious addresses, can lead
to significant inaccuracies in IP address security research.

6 RELATEDWORK
AS to Industry. Dimitropoulos et al. [16] categorize AS owners
into six groups, such as Large ISPs, Small ISPs, and Universities,
using organization description and topology. Dhamdhere et al. [15]
classify ASes based on their topology. Baumann et al. [5] employ
keyword analysis ofWHOIS data to sort ASes into 10 categories. Ziv
et al. [57] introduce NAICSlite with 95 categories, utilizing business
intelligence databases and machine learning for classification.

Website to Industry. There are existing efforts in Artificial
Intelligence to classify websites into industries. For instance, López-
Sánchez et al. [30] categorize web pages by visual content. Bruni et
al. [9] utilize machine learning approaches to identify e-commerce
websites. As they do not focus on Internet management, the key
problem lies in the acquisition of data for adapting their methods.

Organization to Industry. Established business intelligence
databases [7, 12, 13] have been evaluated for network classifica-
tion [57]. However, these databases primarily focus on commercial
aspects rather than network management, leaving a noticeable gap
for application. Moreover, their relatively low accuracy in catego-
rizing technological entities [57] presents further challenges.

7 CONCLUSION
In this paper, we propose an LLM-based industry categorization
system with a precision rate of nearly 96%. Using this system, we
built an IP-level industry categorization dataset, IPdb, which encom-
passes 200 million IP addresses from 12,318 IPv4 ASes and 1,698
IPv6 ASes. Through IPdb, we analyze how organizations across
various industries strategically deploy web services across mul-
tiple ASes to enhance service delivery. Our findings also reveal
cross-industry phenomena within ASes, underscoring the value of
IP-level categorization in gaining deeper insights into the Internet
ecosystem. While IPdb’s organization-based approach has some
limitations in fully categorizing all web service-related IP addresses,
it provides crucial annotated data for more granular categorization
across the network.
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A ETHICS
For active scanning to get certificates and PTRRecords, and scraping
to get information from Wikipedia, we took care to scan at a low
rate to minimize the potential harm to the routers, networks, and
destination websites. Following the best current practices [14, 18,

37], we configure our prober to run a website on 80 port, with
experiment information. It provides a contact e-mail address to
request exclusion from scans. We did not receive any complaints
or requests during our study. For external data, we applied for
research accounts to Censys. The accounts allowed us to query and
download the data.
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Table 4: Description of GICSmod

Category Description

Medical Medical care institutions, biotechnology, pharmaceuticals, life sciences and healthcare technology.
Excluding drug retail, health insurance, medical magazines

Finance Finance institutions, including banks, insurance, investment, mortgage REITs,
and other financial business. Excluding managed care

Fossil Energy Fossil energy companies, including coal, oil & gas drilling,
exploration, production and refining

Utilities Companies that produce or distribute electricity, natural, manufactured gas,
and water to end consumers. exclude petrochemicals.

Internet Infrastructure Internet infrastructure & services, including data centers, storage infrastructure, web hosting,
cloud servers, content delivery network, domain name registrar, public key infrastructure.

Media
Company involved in content creation and distribution including

advertising, publishing, producers of movies, television, music, or games or
broadcast programs, as well as online platforms like social media.

Transportation Transportation companies and transportation infrastructure operators
Defense Manufacturer Defense industry companies.exclude military, government agencies, security companies.

Education Schools, colleges, universities, and other educational organizations or services
Research Research and development organizations

ISP Internet service providers
Government Government and regulatory agencies, administrations, departments, and military

Real Estate Real estate operating, development & services,
and real estate investment trusts (REITs), excluding mortgage REITs

Retail & Distribution Retailers, distributors, e-commerce, and internet retail

Services
Services including human resources and employment, consulting services, information vendor,

administrative, support, waste management and remediation services, legal, accounting, tax preparation,
bookkeeping, payroll, design services, commercial printing, management, etc

Technological Hardware

Manufacturers of communication equipment (routers, switches), storage (hard drives, memory),
and peripheral devices (mice, keyboards), mobile phones,

computers, instruments, semiconductors, photovoltaic materials,
also including electronic product manufacturing services

Fundamental Materials

Materials and chemical companies, including chemicals, industrial gases,
construction materials, building products, forest products, home furnishings,

metal, glass & plastic containers, paper & plastic packaging products & materials,
paper products, housewares & specialties, metals & mining

Software

Software developers. Exclude games (Media), data centers, storage infrastructure, web hosting,
cloud servers, content delivery network, domain name registrar,

public key infrastructure (Internet Infrastructure), cyber security services (Cybersecurity), data recovery,
system integration services, data processing and outsourcing services(IT Services)

Capital Goods

manufacturers of machinery, equipment, and components, building products, aerospace, construction,
engineering, electrical components, heavy electrical equipment, construction machinery,

heavy transportation equipment, agricultural and farm machinery, and industrial machinery.
include industrial automation

Automotive Manufacturers of automobiles, motorcycles, and its accessories

Hotels & Food & Leisure Recreation & accommodation & food services,
including casinos & gaming, hotels, resorts, restaurants, leisure facilities

IT Services

Computer systems design and related services, including
computer facilities management services, custom computer programming services,
computer systems integration design services, computer hardware or software

consulting services, software installation services
Cybersecurity computer, network and cyberspace security services and software companies

Other Other industries not listed above
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Table 5: Ablation Study of integrated LLMs in the LLMIC Framework

Category non-ChatGPT non-Gemini non-ChatGLM non-Llama non-Mistral Open-source Close-source
Fossil Energy 12/13(0.92) 14/14(1.00) 17/17(1.00) 15/16(0.94) 14/14(1.00) 9/9(1.00) 13/14(0.93)
Medical 57/57(1.00) 59/62(0.95) 61/63(0.97) 62/64(0.97) 62/62(1.00) 45/47(0.96) 61/62(0.98)
Finance 80/83(0.96) 75/78(0.96) 80/82(0.98) 76/79(0.96) 79/81(0.98) 75/78(0.96) 72/76(0.95)
Services 19/20(0.95) 22/23(0.96) 21/21(1.00) 24/25(0.96) 25/28(0.89) 15/17(0.88) 25/27(0.93)
Utilities 26/27(0.96) 26/27(0.96) 27/28(0.96) 25/25(1.00) 26/26(1.00) 22/26(0.85) 27/27(1.00)
Internet Infrastructure 41/47(0.87) 40/44(0.91) 44/47(0.94) 43/46(0.93) 43/45(0.96) 34/41(0.83) 43/45(0.96)
Technological Hardware 59/63(0.94) 66/67(0.99) 63/66(0.95) 64/67(0.96) 64/69(0.93) 56/68(0.82) 61/67(0.91)
Media 118/129(0.91) 115/125(0.92) 120/127(0.94) 106/106(1.00) 115/127(0.91) 116/132(0.88) 101/102(0.99)
Transportation 60/63(0.95) 56/59(0.95) 62/66(0.94) 62/65(0.95) 59/64(0.92) 49/54(0.91) 59/61(0.97)
Defense Manufacturer 15/15(1.00) 15/15(1.00) 16/16(1.00) 16/16(1.00) 16/16(1.00) 13/13(1.00) 14/14(1.00)
Fundamental Materials 28/32(0.88) 28/30(0.93) 32/35(0.91) 31/34(0.91) 27/29(0.93) 21/26(0.81) 30/32(0.94)
Software 79/86(0.92) 82/87(0.94) 80/84(0.95) 77/85(0.91) 80/90(0.89) 81/92(0.88) 76/83(0.92)
Education 181/187(0.97) 177/182(0.97) 180/184(0.98) 179/188(0.95) 183/188(0.97) 177/182(0.97) 181/188(0.96)
Capital Goods 35/39(0.90) 35/40(0.88) 35/39(0.90) 36/38(0.95) 32/40(0.80) 32/37(0.86) 31/35(0.89)
ISP 96/102(0.94) 86/92(0.93) 90/97(0.93) 96/102(0.94) 96/102(0.94) 89/101(0.88) 92/100(0.92)
Government 118/128(0.92) 123/131(0.94) 132/141(0.94) 130/137(0.95) 126/130(0.97) 102/110(0.93) 127/132(0.96)
IT Services 21/23(0.91) 23/28(0.82) 25/30(0.83) 26/29(0.90) 25/28(0.89) 17/19(0.89) 23/27(0.85)
Automotive 30/30(1.00) 29/29(1.00) 29/29(1.00) 29/29(1.00) 29/29(1.00) 29/29(1.00) 30/31(0.97)
Real Estate 22/22(1.00) 24/25(0.96) 24/25(0.96) 24/24(1.00) 26/26(1.00) 16/17(0.94) 25/26(0.96)
Retail & Distribution 34/35(0.97) 30/31(0.97) 31/35(0.89) 32/37(0.86) 32/33(0.97) 30/31(0.97) 32/37(0.86)
Hotels & Food & Leisure 24/24(1.00) 25/26(0.96) 25/25(1.00) 25/25(1.00) 25/26(0.96) 23/23(1.00) 26/26(1.00)
Research 42/46(0.91) 42/46(0.91) 45/52(0.87) 47/51(0.92) 40/44(0.91) 35/38(0.92) 37/40(0.93)
Cybersecurity 18/21(0.86) 21/22(0.95) 26/26(1.00) 24/24(1.00) 23/23(1.00) 16/18(0.89) 23/23(1.00)
overall 1215/1292(0.94) 1213/1283(0.95) 1265/1335(0.95) 1249/1312(0.95) 1247/1320(0.94) 1102/1208(0.91) 1209/1275(0.95)

Table 6: Recall of LLMs and LLMIC on Gold Standard

Category ChatGPT Gemini ChatGLM Llama Mistral LLMIC*
Fossil Energy 15/20(0.75) 15/20(0.75) 4/20(0.20) 4/20(0.20) 10/20(0.50) 16/20(0.80)
Medical 58/79(0.73) 56/79(0.71) 18/79(0.23) 35/79(0.44) 36/79(0.46) 60/79(0.76)
Finance 46/90(0.51) 70/90(0.78) 41/90(0.46) 68/90(0.76) 35/90(0.39) 80/90(0.89)
Services 21/33(0.64) 19/33(0.58) 11/33(0.33) 0/33(0.00) 13/33(0.39) 22/33(0.67)
Utilities 22/34(0.65) 29/34(0.85) 11/34(0.32) 19/34(0.56) 11/34(0.32) 26/34(0.76)
Internet Infrastructure 23/61(0.38) 37/61(0.61) 2/61(0.03) 26/61(0.43) 27/61(0.44) 42/61(0.69)
Technological Hardware 42/82(0.51) 58/82(0.71) 3/82(0.04) 55/82(0.67) 35/82(0.43) 65/82(0.79)
Media 59/139(0.42) 95/139(0.68) 17/139(0.12) 110/139(0.79) 66/139(0.47) 120/139(0.86)
Transportation 51/77(0.66) 62/77(0.81) 13/77(0.17) 36/77(0.47) 33/77(0.43) 61/77(0.79)
Defense Manufacturer 13/22(0.59) 17/22(0.77) 2/22(0.09) 12/22(0.55) 13/22(0.59) 16/22(0.73)
Fundamental Materials 19/42(0.45) 28/42(0.67) 3/42(0.07) 1/42(0.02) 24/42(0.57) 31/42(0.74)
Software 65/102(0.64) 73/102(0.72) 56/102(0.55) 85/102(0.83) 56/102(0.55) 83/102(0.81)
Education 140/186(0.75) 170/186(0.91) 93/186(0.50) 146/186(0.78) 100/186(0.54) 182/186(0.98)
Capital Goods 20/58(0.34) 31/58(0.53) 22/58(0.38) 6/58(0.10) 24/58(0.41) 37/58(0.64)
ISP 61/110(0.55) 96/110(0.87) 76/110(0.69) 48/110(0.44) 59/110(0.54) 94/110(0.85)
Government 120/148(0.81) 95/148(0.64) 40/148(0.27) 51/148(0.34) 76/148(0.51) 131/148(0.89)
IT Services 19/37(0.51) 24/37(0.65) 2/37(0.05) 9/37(0.24) 23/37(0.62) 28/37(0.76)
Automotive 27/37(0.73) 29/37(0.78) 0/37(0.00) 25/37(0.68) 21/37(0.57) 27/37(0.73)
Real Estate 23/27(0.85) 23/27(0.85) 9/27(0.33) 24/27(0.89) 13/27(0.48) 26/27(0.96)
Retail & Distribution 28/38(0.74) 36/38(0.95) 22/38(0.58) 29/38(0.76) 23/38(0.61) 35/38(0.92)
Hotels & Food & Leisure 19/28(0.68) 25/28(0.89) 10/28(0.36) 3/28(0.11) 22/28(0.79) 24/28(0.86)
Research 38/58(0.66) 41/58(0.71) 11/58(0.19) 28/58(0.48) 28/58(0.48) 45/58(0.78)
Cybersecurity 25/28(0.89) 17/28(0.61) 4/28(0.14) 10/28(0.36) 18/28(0.64) 21/28(0.75)
overall 954/1536(0.62) 1146/1536(0.75) 470/1536(0.31) 830/1536(0.54) 766/1536(0.50) 1272/1536(0.83)

*cross-validated with 20% data left out
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