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ABSTRACT

Autoregressive models (ARMs) are widely regarded as the cornerstone of large
language models (LLMs). We challenge this notion by introducing LLaDA, a dif-
fusion model trained from scratch under the pre-training and supervised fine-tuning
(SFT) paradigm. LLaDA models distributions through a forward data masking
process and a reverse process, parameterized by a vanilla Transformer to predict
masked tokens. By optimizing a likelihood bound, it provides a principled genera-
tive approach for probabilistic inference. Across extensive benchmarks, LLaDA
demonstrates strong scalability, outperforming our self-constructed ARM baselines.
Remarkably, LLaDA 8B is competitive with strong LLMs like LLaMA3 8B in
in-context learning and, after SFT, exhibits impressive instruction-following abili-
ties in case studies such as multi-turn dialogue. Moreover, LLaDA addresses the
reversal curse, surpassing GPT-4o in a reversal poem completion task. Our findings
establish diffusion models as a viable and promising alternative to ARMs, chal-
lenging the assumption that key LLM capabilities discussed above are inherently
tied to ARMs.

1 INTRODUCTION

What is now proved was once only imagined. —William Blake

Large language models (LLMs) (Zhao et al., 2023) fall entirely within the framework of generative
modeling. Specifically, LLMs aim to capture the true but unknown language distribution pdata(·) by
optimizing a model distribution pθ(·) through maximum likelihood estimation, or equivalently KL
divergence minimization between the two distributions:

max
θ

Epdata(x) log pθ(x)⇔ min
θ

KL(pdata(x)||pθ(x))︸ ︷︷ ︸
Generative modeling principles

. (1)

The predominant approach relies on the autoregressive modeling (ARM)—commonly referred to as
the next-token prediction paradigm—to define the model distribution:

pθ(x) = pθ(x
1)

L∏
i=2

pθ(x
i | x1, . . . , xi−1)︸ ︷︷ ︸

Autoregressive formulation

, (2)

where x is a sequence of length L, and xi is the i-th token. This paradigm has proven remarkably
effective (Radford, 2018; Radford et al., 2019; Brown, 2020; OpenAI, 2022) and has become the
foundation of current LLMs. Despite its widespread adoption, a fundamental question remains
unanswered: Is the autoregressive paradigm the only viable path to achieving the intelligence
exhibited by LLMs?

We argue that the answer is not a simple “yes”. The key insight overlooked previously is: it is the
generative modeling principles (i.e., Eq. (1)), rather than the autoregressive formulation (i.e., Eq.

∗Equal contribution.
†Work done during an internship at Ant Group.
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(2)) itself, that fundamentally underpin the essential properties of LLMs, as detailed below. However,
certain inherent limitations of LLMs can be directly traced to their autoregressive nature.

In particular, we argue that scalability is primarily a consequence of the interplay between Trans-
formers (Vaswani, 2017), model and data size, and Fisher consistency1 (Fisher, 1922) induced by
the generative principles in Eq. (1), rather than a unique result of ARM. The success of diffusion
transformers (Bao et al., 2023; Peebles & Xie, 2023) on visual data supports this claim.

Furthermore, the capabilities of instruction-following and in-context learning (Brown, 2020) appear to
be intrinsic properties of all proper conditional generative models on structurally consistent linguistic
tasks, rather than exclusive advantages of ARMs. In addition, while ARMs can be interpreted
as a lossless data compressor (Deletang et al.; Huang et al., 2024b), any sufficiently expressive
probabilistic model can achieve similar capabilities (Shannon, 1948).

Nevertheless, the autoregressive nature of LLMs presents notable challenges. For example, sequential
token-by-token generation incurs high computational costs, and the left-to-right modeling limits
effectiveness in reversal reasoning tasks (Berglund et al., 2023). These inherent limitations constrain
LLMs in handling longer and more complex tasks.

Motivated by these insights, we introduce LLaDA, a Large Language Diffusion with mAsking,
to investigate whether the capabilities exhibited by LLMs can emerge from generative modeling
principles beyond ARMs in Eq. (2), thereby addressing the fundamental question posed earlier. In
contrast to traditional ARMs, LLaDA leverages a masked diffusion model (MDM) (Austin et al.,
2021a; Ou et al., 2024), which incorporates a discrete random masking process and trains a mask
predictor to approximate its reverse process. This design enables LLaDA to construct a model
distribution with bidirectional dependencies and optimize a lower bound of its log-likelihood, offering
an unexplored and principled alternative to existing LLMs.

We adopt the standard pipeline of data preparation, pre-training, supervised fine-tuning (SFT), and
evaluation, scaling LLaDA to an unprecedented language diffusion of size 8B. In particular, LLaDA
8B was pre-trained from scratch on 2.3 trillion tokens using 0.13 million H800 GPU hours, followed
by SFT on 4.5 million pairs. Across diverse tasks, including language understanding, math, code,
and Chinese, LLaDA demonstrates the following contributions:

Scalability. LLaDA scales effectively up to a computational budget of 1023 FLOPs, achieving
comparable results to self-constructed ARM baselines trained on the same data across six tasks, e.g.,
MMLU and GSM8K.

In-Context Learning. Remarkably, LLaDA 8B surpasses LLaMA2 7B on nearly all 15 standard
zero/few-shot learning tasks while performing on par with LLaMA3 8B.

Instruction-Following. LLaDA significantly enhances the ability to follow instructions after SFT, as
demonstrated in case studies such as multi-turn dialogue.

Reversal Reasoning. LLaDA effectively breaks the reversal curse (Berglund et al., 2023) with
consistent performance across forward and reversal tasks. Notably, it outperforms GPT-4o in a
reversal poem completion task.

2 APPROACH

In this section, we introduce the probabilistic formulation2, along with the pre-training, supervised
fine-tuning, and inference procedures for LLaDA, as illustrated in Fig. 1.

2.1 PROBABILISTIC FORMULATION

Unlike ARMs in Eq. (2), LLaDA defines a model distribution pθ(x0) through a forward process and
a reverse process (Austin et al., 2021a; Ou et al., 2024). The forward process gradually masks tokens
independently in x0 until the sequence is fully masked at t = 1. For t ∈ (0, 1), the sequence xt is

1It suggests the ability to recover the true data distribution with infinite data, a sufficiently large network and
optimal training.

2Here, we focus on the approach of LLaDA. A rigorous formulation of MDM is provided in Appendix B for
interested readers.
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Figure 1: A Conceptual Overview of LLaDA. (a) Pre-training. LLaDA is trained on text with
random masks applied independently to all tokens at the same ratio t ∼ U [0, 1]. (b) SFT. Only
response tokens are possibly masked. (c) Sampling. LLaDA simulates a diffusion process from t = 1
(fully masked) to t = 0 (unmasked), predicting all masks simultaneously at each step with flexible
remask strategies.

partially masked, with each being masked with probability t or remaining unmasked with probability
1− t. The reverse process recovers the data distribution by iteratively predicting masked tokens as t
moves from 1 to 0.

The core of LLaDA is a mask predictor, a parametric model pθ(·|xt) that takes xt as input and
predicts all masked tokens (denoted M) simultaneously. It is trained using a cross-entropy loss
computed only on the masked tokens:

L(θ) ≜ −Et,x0,xt

[
1

t

L∑
i=1

1[xi
t = M] log pθ(x

i
0|xt)

]
, (3)

where x0 is sampled from the training data, t is sampled uniformly from [0, 1], and xt is sampled
from the forward process. The indicator function 1[·] ensures that the loss is computed only for
masked tokens.

Once trained, we can simulate a reverse process (see Sec. 2.4 for details) parameterized by the
mask predictor and define the model distribution pθ(x0) as the marginal distribution induced at
t = 0. Notably, the loss function in Eq. (3) has been proven to be an upper bound on the negative
log-likelihood of the model distribution (Ou et al., 2024):

−Epdata(x0) [log pθ(x0)] ≤ L(θ), (4)
making it a principled objective for generative modeling. Notably, LLaDA employs a masking ratio
that varies randomly between 0 and 1 while masked language models (Devlin, 2018) use a fixed ratio.
The subtly differences have significant implications, especially at scale: as shown in Eq. (4), LLaDA
is a principled generative model with the potential to perform in-context learning naturally, akin to
LLMs. Moreover, its generative perspective ensures Fisher consistency (Fisher, 1922) in extreme
cases, suggesting strong scalability with large data and models.

2.2 PRE-TRAINING

LLaDA employs a Transformer (Vaswani, 2017) as the mask predictor, whose architecture is similar
to existing LLMs. However, LLaDA does not use a causal mask, as its formulation allows it to see
the entire input for predictions.

We trained two variants of LLaDA with different sizes: 1 billion (B) and 8B. We summarize the model
architecture of LLaDA 8B and LLaMA3 8B (Dubey et al., 2024) here and details are provided in
Appendix C.4. We have ensured consistency in most hyperparameters while making several necessary
modifications. We use vanilla multi-head attention instead of grouped query attention (Ainslie et al.,
2023) for simplicity, as LLaDA is incompatible with KV caching, resulting in a different number of
key and value heads. Consequently, the attention layer has more parameters, and we reduce the FFN
dimension to maintain a comparable model size. Additionally, the vocabulary size differs slightly due
to a tokenizer (Brown, 2020) adapted on our data.

The LLaDA model is pre-trained on a dataset comprising 2.3 trillion (T) tokens, adhering to a
data protocol that aligns closely with existing large language models (LLMs) (Touvron et al., 2023;
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Chu et al., 2024), without the incorporation of any special techniques. The data are derived from
online corpora, with low-quality content filtered through manually designed rules and LLM-based
approaches. Beyond general text, the dataset encompasses high-quality code, math, and multilingual
data. The mixing of data sources and domains is guided by scaled-down ARMs. The pre-training
process utilizes a fixed sequence length of 4096 tokens, incurring a total computational cost of 0.13
million H800 GPU hours, similar to ARMs of the same scale and dataset size.

For a training sequence x0, we randomly sample t ∈ [0, 1], mask each token independently with the
same probability t to obtain xt (see Fig. 1 (a)) and estimate Eq. (3) via the Monte Carlo method for
stochastic gradient descent training. In addition, following Nie et al. (2024), to enhance the ability of
LLaDA to handle variable-length data, we set 1% of the pre-training data to a random length that is
uniformly sampled from the range [1, 4096]. For optimizer settings, please refer to Appendix C.1.

2.3 SUPERVISED FINE-TUNING

We enhance the capability of LLaDA to follow instructions by supervised fine-tuning (SFT) with
paired data (p0, r0), where p0 is the prompt and r0 denotes the response. This is the simplest and most
basic post-training method for LLMs. Technically, this requires to model the conditional distribution
pθ(r0|p0) instead of pθ(x0) in pre-training.

The implementation is similar to pre-training. As shown in Fig. 1 (b), we leave the prompt unchanged
and mask the tokens in the response independently, as done for x0. Then, we feed both the prompt
and the masked response rt to the pre-trained mask predictor to compute the loss for SFT:

−Et,p0,r0,rt

1

t

L′∑
i=1

1[rit = M] log pθ(r
i
0|p0, rt)

 , (5)

where L′ denotes a dynamic length specified later, and all other notations remain the same as before.

Note that this approach is fully compatible with pre-training. Essentially, the concatenation of p0
and r0 can be treated as clean pre-training data x0, while the concatenation of p0 and rt serves as the
masked version xt. The process is identical to pre-training, with the only difference being that all
masked tokens happen to appear in the r0 portion.

The LLaDA 8B model undergoes SFT on a dataset comprising 4.5 million pairs. Consistent with
the pre-training process, both data preparation and training follow the SFT protocols utilized in
existing LLMs (Chu et al., 2024; Yang et al., 2024), without introducing any additional techniques to
optimize LLaDA’s performance. The dataset spans multiple domains, including code, mathematics,
instruction-following, and structured data understanding. We append |EOS| tokens to the end of
short pairs in each mini-batch to ensure equal lengths across all data. We treat |EOS| as a normal
token during training and remove it during sampling, enabling LLaDA to control the response length
automatically. Please refer to Appendix C.2 for more details.

2.4 INFERENCE

As a generative model, LLaDA is capable of both sampling new text and evaluating the likelihood of
candidate text.

We begin with the sampling. As illustrated in Fig. 1 (c), given a prompt p0, we discretize the reverse
process to sample from the model distribution pθ(r0|p0), starting from a fully masked response. The
total number of sampling steps is a hyperparameter, which naturally provides LLaDA with a trade-off
between efficiency and sample quality, as analyzed in Sec. 3.3. We employ uniformly distributed
timesteps by default. In addition, the generation length is also treated as a hyperparameter, specifying
the length of the fully masked sentence at the beginning of the sampling process. As detailed in
Appendix C.6, since both pre-training and SFT are conducted using datasets with variable lengths,
the final results are insensitive to this length hyperparameter.

At an intermediate step from time t ∈ (0, 1] to s ∈ [0, t), we feed both p0 and rt into the mask
predictor and predict all masked tokens simultaneously. Subsequently, we remask s

t of the predicted
tokens in expectation to obtain rs, ensuring that the transition of the reverse process aligns with the
forward process for accurate sampling (Austin et al., 2021a).
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Figure 2: Scalability of LLaDA. We evaluate the performance of LLaDA and our ARM baselines
trained on the same data across increasing computational FLOPs. LLaDA exhibits strong scalability,
matching the overall performance of ARMs on six tasks.

In principle, the remasking strategy should be purely random. However, inspired by the annealing
tricks of sampling in LLMs (Holtzman et al., 2019; Brown, 2020), we explore two deterministic
yet effective remasking strategies. Specifically, similarly to Chang et al. (2022), we remask the
s
t of predicted tokens with the lowest confidence based on the predictions, called low-confidence
remasking. Additionally, for LLaDA after SFT, we can divide the sequence into several blocks
and generate them from left to right, called semi-autoregressive remasking. Within each block, we
apply the reverse process to perform sampling. We provide more details and ablation studies in
Appendix. C.5.

For conditional likelihood evaluation, we can naturally utilize the upper bound in Eq. (5). However,
we find that the other equivalent form (as detailed in Appendex B.2) exhibits lower variance and is
more stable for evaluation.

We present the training, sampling, and likelihood evaluation algorithms and theoretical details in
Appendix B. Moreover, we present more related works in Appendex A.

3 EXPERIMENTS

We evaluate the scalability, instruction-following, and in-context learning capabilities of LLaDA on
standard benchmarks, followed by analyses and case studies on more controlled datasets to provide a
comprehensive assessment.

3.1 SCALABILITY OF LLADA ON LANGUAGE TASKS

We first investigate the scalability of LLaDA on downstream tasks in comparison with the ARM
baselines we constructed. Specifically, at the 1B scale, we ensured that LLaDA and ARM shared
the same architecture, data, and all other configurations. At larger scales, we also report results for
LLaDA and ARM models of slightly different sizes trained on the same data due to resource limit, as
detailed in Appendix C.4. We use the computational cost as a unified scaling metric. For evaluation,
we focused on six standard and diverse tasks.

As shown in Fig. 2, LLaDA demonstrates impressive scalability, with its overall trend being highly
competitive with that of ARM. Notably, in tasks such as MMLU and GSM8K, LLaDA exhibits even
stronger scalability. Even on tasks like PIQA, where performance lags, LLaDA narrows the gap
with ARMs at larger scales. To account for the significant influence of outliers, we opted not to fit
quantitative scaling curves, avoiding potential misinterpretation. Nevertheless, the results clearly
demonstrate the scalability of LLaDA.
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Table 1: Benchmark Results of Pre-trained LLMs. ∗ indicates that LLaDA 8B Base, LLaMA2
7B Base, and LLaMA3 8B Base are evaluated under the same protocol, detailed in Appendix C.7.
Results indicated by † and ¶ are sourced from Chu et al. (2024); Yang et al. (2024) and Bi et al.
(2024) respectively. The numbers in parentheses represent the number of shots used for evaluation.
“-” indicates unknown data.

LLaDA 8B∗ LLaMA3 8B∗ LLaMA2 7B∗ Qwen2 7B† Qwen2.5 7B† Mistral 7B† Deepseek 7B¶

Model Diffusion AR AR AR AR AR AR
Training tokens 2.3T 15T 2T 7T 18T - 2T

General Tasks

MMLU 65.9 (5) 65.4 (5) 45.9 (5) 70.3 (5) 74.2 (5) 64.2 (5) 48.2 (5)
BBH 49.8 (3) 57.6 (3) 37.3 (3) 62.3 (3) 70.4 (3) 56.1 (3) 39.5 (3)
ARC-C 47.9 (0) 53.1 (0) 46.3 (0) 60.6 (25) 63.7 (25) 60.0 (25) 48.1 (0)
Hellaswag 72.5 (0) 79.1 (0) 76.0 (0) 80.7 (10) 80.2 (10) 83.3 (10) 75.4 (0)
TruthfulQA 46.4 (0) 44.0 (0) 39.0 (0) 54.2 (0) 56.4 (0) 42.2 (0) -
WinoGrande 74.8 (5) 77.3 (5) 72.5 (5) 77.0 (5) 75.9 (5) 78.4 (5) 70.5 (0)
PIQA 74.4 (0) 80.6 (0) 79.1 (0) - - - 79.2 (0)

Mathematics & Science

GSM8K 70.7 (4) 53.1 (4) 14.3 (4) 80.2 (4) 85.4 (4) 36.2 (4) 17.4 (8)
Math 27.3 (4) 15.1 (4) 3.2 (4) 43.5 (4) 49.8 (4) 10.2 (4) 6.0 (4)
GPQA 26.1 (5) 25.9 (5) 25.7 (5) 30.8 (5) 36.4 (5) 24.7 (5) -

Code

HumanEval 33.5 (0) 34.2 (0) 12.8 (0) 51.2 (0) 57.9 (0) 29.3 (0) 26.2 (0)
HumanEval-FIM 73.8 (2) 73.3 (2) 26.9 (2) - - - -
MBPP 38.2 (4) 47.4 (4) 18.4 (4) 64.2 (0) 74.9 (0) 51.1 (0) 39.0 (3)

Chinese

CMMLU 69.9 (5) 50.7 (5) 32.5 (5) 83.9 (5) - - 47.2 (5)
C-Eval 70.5 (5) 51.7 (5) 34.0 (5) 83.2 (5) - - 45.0 (5)

Nie et al. (2024) suggests that MDM requires 16 times more computation than ARM to achieve
the same likelihood. However, there are key differences that make the conclusions of this study
more broadly applicable. In particular, likelihood is a relatively indirect metric for downstream task
performance, and diffusion optimizes a bound of the likelihood, making it not directly comparable
to ARM. Additionally, we extended the scaling range from 1018 ∼ 1020 in Nie et al. (2024) to
1020 ∼ 1023 in this work.

3.2 BENCHMARK RESULTS

To comprehensively evaluate the in-context learning and instruction-following capabilities of LLaDA
8B, we conducted detailed comparisons with existing LLMs (Touvron et al., 2023; Dubey et al.,
2024; Chu et al., 2024; Yang et al., 2024; Bi et al., 2024; Jiang et al., 2023) of similar scale. The
selection of tasks and evaluation protocols was aligned with existing studies, encompassing 15
popular benchmarks in general tasks, mathematics, code, and Chinese. Further details are provided in
Appendix C.7. For a more direct comparison, we re-evaluated representative LLMs (Touvron et al.,
2023; Dubey et al., 2024) in our implementation.

As shown in Tab. 1, after pretraining on 2.3T tokens, LLaDA 8B demonstrates remarkable perfor-
mance, surpassing LLaMA2 7B on nearly all tasks, and is overall competitive with LLaMA3 8B.
LLaDA shows advantages in math and Chinese tasks. We conjecture that the strengths stem from
the same factors as its relatively weaker performance in some tasks—differences in data quality and
distribution, largely due to the closed-source situation of LLM datasets.

Notably, we have carefully ruled out the possibility of data leakage by taking GSM8K as an example.
First, as shown in Fig. 2, LLaDA outperformed ARM baselines regarding GSM8K. Moreover, the
conclusion remains on a fully unseen GSM8K-like task (Ye et al., 2024) in Appendix C.9.

Further, Tab. 4 compares the performance of LLaDA 8B Instruct with existing LLMs. We observed
that SFT improved LLaDA’s performance on most downstream tasks. A few metrics, such as MMLU,
showed declines, and we conjecture may be due to the suboptimal quality of the SFT data. Overall,
since we did not perform alignment with reinforcement learning (RL), our results are slightly behind
LLaMA3 8B Instruct, though the gaps in many metrics remain small. Notably, even with only SFT,
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Table 2: Comparison in the Poem Completion Task.

Forward Reversal

GPT-4o (2024-08-06) 82.7 34.3
Qwen2.5 7B Instruct 75.9 38.0
LLaDA 8B Instruct 48.8 42.4

LLaDA demonstrates impressive instruction-following abilities, as detailed in Sec. 3.4. We leave
RL-based alignment for future work.

Overall, despite the lack of data transparency, we have made every effort to adopt standardized
procedures and introduce diverse tasks, we believe they sufficiently demonstrate the extraordinary
capabilities of LLaDA, which is the only competitive non-autoregressive model to our knowledge.

3.3 REVERSAL REASONING AND ANALYSES

To quantify the reversal reasoning ability of models (Berglund et al., 2023), we follow the protocol
established in Allen-Zhu & Li (2023). Specifically, we construct a dataset of 496 famous Chinese
poem sentence pairs. Given a sentence from a poem, models are tasked with generating the subsequent
line (forward) or the preceding line (reversal) without additional fine-tuning. Examples can be found
in Appendix C.10. This setting provides a straightforward and more realistic evaluation compared to
previous studies (Nie et al., 2024; Kitouni et al., 2024).

As shown in Tab. 2, LLaDA effectively addresses the reversal curse (Berglund et al., 2023), demon-
strating consistent zero-shot performance across both forward and reversal tasks. In contrast, both
Qwen 2.5 and GPT-4o exhibit a significant gap between the two. The results on forward generation
confirm that both ARMs are strong, benefiting from significantly greater computational resources
than LLaDA. However, LLaDA outperforms both by a large margin in the reversal task.

We emphasize that we did not design anything special for reversal tasks. Intuitively, LLaDA treats
tokens uniformly without inductive bias, leading to balanced performance. See more details in
Appendix B.2.

We also analyze the effect of remasking strategies and sampling steps, as detailed in Appendix C.5
and Appendix C.8.

3.4 CASE STUDIES

We present samples generated by LLaDA 8B Instruct in Tab. 3, showcasing its instruction-following
capabilities. First, the table illustrates LLaDA’s ability to generate coherent, fluent, and extended
text in a non-autoregressive manner. Second, it highlights the model’s multi-turn dialogue capability,
effectively retaining conversation history and producing contextually appropriate responses across
multiple languages. Such chat capabilities of LLaDA are impressive, as it departs from conventional
ARMs for the first time, to the best of our knowledge. See more case studies on remasking and
reasoning tasks in Appendix C.11.

4 CONCLUSION AND DISCUSSION

In the middle of difficulty lies opportunity. —Albert Einstein

We introduce LLaDA, a principled and previously unexplored approach to large language model-
ing based on diffusion models. LLaDA demonstrates strong capabilities in scalability, in-context
learning, and instruction-following, achieving performance comparable to strong LLMs. In addition,
LLaDA offers unique advantages such as bidirectional modeling and enhanced robustness, effectively
addressing several inherent limitations of existing LLMs. Our findings not only establish diffusion
models as a viable and promising alternative but also challenge the prevailing assumption that these
essential capabilities are inherently tied to ARMs.
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Table 3: Visualization of the Sampling Process and a Generated Multi-round Dialogue. In the
response of LLaDA, darker colors indicate tokens predicted in the later stages of sampling, while
lighter colors correspond to earlier predictions.

Sampling Process

User Lily can run 12 kilometers per hour for 4 hours. After that, she runs 6
kilometers per hour. How many kilometers can she run in 8 hours?

LLaDA

Multi-round Dialogue Case

User Could you please share with me what the initial two lines of the renowned
poem ‘The Road Not Taken’?

LLaDA Certainly! The initial two lines of the renowned poem “The Road Not Taken”
by Robert Frost are: “Two roads diverged in a yellow wood, And sorry I
could not travel both.” These lines set the stage for the poem, introducing
the idea of a speaker facing a choice between two paths.

User Please help me translate into Chinese.
LLaDA Sure! The first two lines of “The Road Not Taken” by Robert Frost can be

translated into Chinese as: “两条路分岔在黄色的树林中，遗憾我不能
同时走”

User Please translate into German.
LLaDA Sure! The first two lines of “The Road Not Taken” by Robert Frost can be

translated into German as: “Zwei Wege trennten sich im gelben Wald, und
leider konnte ich nicht beide tun.”

User Please also write a poem about life choices. I require 5 sentences, and the
first word of each sentence starts with C as the first letter.

LLaDA Certainly! Here’s a poem about life choices, with each sentence starting with
the letter “C”: Choices cascade through life’s journey, Creating connections
with each decision, Careful consideration leads to better paths, Courageous
choices shape our destiny, Choosing wisely guides us through the years.

While promising, the full potential of diffusion models remains to be fully explored. Several
limitations of this work present significant opportunities for future research.

Due to computational constraints, direct comparisons between LLaDA and ARMs—such as training
on identical datasets—were restricted to a computational budget of less than 1023 FLOPs. To allocate
resources for training the largest possible LLaDA model and showcasing its potential, we were unable
to scale the ARM baseline to the same extent. Moreover, no specialized attention mechanisms or
position embeddings were designed for LLaDA, nor were any system-level architectural optimizations
applied. On the inference side, our exploration of guidance mechanisms (Dhariwal & Nichol,
2021; Ho & Salimans, 2022) remains preliminary, and LLaDA currently exhibits sensitivity to
inference hyperparameters. Furthermore, LLaDA has yet to undergo alignment with reinforcement
learning (Ouyang et al., 2022; Rafailov et al., 2024), which is crucial for improving its performance
and alignment with human intent.

Looking forward, the scale of LLaDA is still smaller than leading counterparts (Achiam et al., 2023;
Dubey et al., 2024; Google, 2024; Anthropic, 2024; Yang et al., 2024; Liu et al., 2024), highlighting
the need for further scaling to fully assess its capabilities. In addition, LLaDA’s ability to handle
multi-modal data remains unexplored. The impact of LLaDA on prompt tuning techniques (Wei et al.,
2022) and its integration into agent-based systems (Park et al., 2023; Wang et al., 2024) is yet to be
fully understood. Finally, a systematic investigation into post-training for LLaDA could facilitate the
development of O1-like systems (OpenAI, 2024; Guo et al., 2025).
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A RELATED WORK

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) have excelled in
visual domains but remain unverified for LLMs despite extensive efforts.

A simple approach is to continuousize text data and apply diffusion models directly (Li et al., 2022;
Gong et al., 2022; Han et al., 2022; Strudel et al., 2022; Chen et al., 2022; Dieleman et al., 2022;
Richemond et al., 2022; Wu et al., 2023; Mahabadi et al., 2024). Alternatively, some methods model
continuous parameters of discrete distributions instead (Lou & Ermon, 2023; Graves et al., 2023;
Lin et al., 2023; Xue et al., 2024). However, scalability remains a challenge, as a 1B parameter
model requires 64 times the compute of an ARM to achieve comparable performance (Gulrajani &
Hashimoto, 2024).

Another approach replaces continuous diffusion with discrete processes featuring new forward and
reverse dynamics (Austin et al., 2021a), leading to numerous variants (Hoogeboom et al., 2021b;a;
He et al., 2022; Campbell et al., 2022; Meng et al., 2022; Reid et al., 2022; Sun et al., 2022; Zheng
et al., 2023; Chen et al., 2023; Gat et al., 2024; Zheng et al., 2024; Sahoo et al., 2024; Shi et al.,
2024). Notably, Lou et al. (2023) showed that masked diffusion, as a special case of discrete diffusion,
achieves perplexity comparable to or surpassing ARMs at GPT-2 scale. Ou et al. (2024) established
fundamental theoretical results, which motivated our model design, training, and inference (see
Appendix B). Nie et al. (2024) explored how MDM can be leveraged for language tasks such as
question answering at GPT-2 scale. Gong et al. (2024) fine-tune ARMs in the MDM formulation.
However, improvements are confined to certain metrics, and it remains unclear whether this approach
can yield a foundation model comparable to strong LLMs under a comprehensive evaluation.

In comparison, this study scales MDM to an unprecedented size of 8B parameters from scratch,
achieving performance comparable to leading LLMs such as LLaMA 3.

Notably, a parallel line of work on image generation (Chang et al., 2022; 2023) aligns with MDMs
applied to text data.

B FORMULATION OF MASKED DIFFUSION MODELS

B.1 TRAINING

Masked diffusion models (MDMs) (Austin et al., 2021a; Lou et al., 2023; Ou et al., 2024) define the
model distribution pθ(x0) in a manner distinct from autoregressive models.

These models introduce a forward process {xt} indexed by a time t ∈ [0, 1]. This process gradually
and independently masks all tokens in the sequence x0. At time t = 0, the data point x0 is fully
observed with no masks, while for t ∈ (0, 1], xt represents latent variables with varying mask ratios
in expectation.

Formally, the conditional distribution of xt given x0 is defined by a fully factorized form:

qt|0(xt|x0) =

L∏
i=1

qt|0(x
i
t|xi

0), (6)

where the conditional distribution for each token is given by:

qt|0(x
i
t|xi

0) =

{
1− t, xi

t = xi
0,

t, xi
t = M.

(7)

Here, M denotes the mask token. Intuitively, each token either remains unchanged or is masked,
with the probability of being masked increasing linearly as t progresses from 0 to 1. At t = 1, all
tokens are guaranteed to be masked, meaning that x1 follows a Dirac distribution concentrated on a
sequence of fully masked tokens. Notably, the linear masking probability is analogous to but distinct
from, the noise schedule in continuous diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2020). This linearity is motivated by the assumption that the information in the text is
proportional to the number of tokens on average, making it reasonable to lose information linearly
during the forward process.
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Algorithm 1 Pre-training of LLaDA

Require: mask predictor pθ, data distribution pdata
1: repeat
2: x0 ∼ pdata, t ∼ U(0, 1] # with a probability of 1%, the sequence length of x0 follows

U[1, 4096]
3: xt ∼ qt|0(xt|x0) # qt|0 is defined in Eq. (6)
4: Calculate L = − 1

t∗L
∑L

i=1 1[xi
t = M] log pθ(x

i
0|xt) # L is the sequence length of x0

5: Calculate∇θL and run optimizer.
6: until Converged
7: Return pθ

Algorithm 2 Supervised Fine-Tuning of LLaDA

Require: mask predictor pθ, pair data distribution pdata
1: repeat
2: p0, r0 ∼ pdata, t ∼ U(0, 1] # please refer to Appendix C.2 for details on the SFT data

processing.
3: rt ∼ qt|0(rt|r0) # qt|0 is defined in Eq. (6)

4: Calculate L = − 1
t∗L′

∑L′

i=1 1[rit = M] log pθ(r
i
0|p0, rt) # L′ is the sequence length of r0

5: Calculate∇θL and run optimizer.
6: until Converged
7: Return pθ

Algorithm 3 Conditional Log-likelihood Evaluation of LLaDA

Require: mask predictor pθ, prompt p0, response r0, the number of Monte Carlo estimations nmc

1: log likelihood = 0
2: for i← 1 to nmc do
3: l ∼ {1, 2, . . . , L} # L is the sequence length of r0
4: Obtain rl by uniformly sampling l tokens from r0 without replacement for masking
5: log likelihood = log likelihood + L

l

∑L
i=1 1[ril = M] log pθ(r

i
0|p0, rl)

6: end for
7: log likelihood = log likelihood/nmc

8: Return log likelihood

The forward process is not only reversible but also corresponds to a reverse process that is fully
factorized across all tokens (Austin et al., 2021a). The reverse process, from time t = 1 to 0, generates
new data from sequences of fully masked tokens. The conditional distribution for the reverse process,
for 0 ≤ s < t ≤ 1, is factorized as:

qs|t(xs|xt) =

L∏
i=1

qs|t(x
i
s|xt), (8)

where the conditional distribution for each token is:

qs|t(x
i
s|xt) =


1, xi

t ̸= M, xi
s = xi

t,
s
t , xi

t = M, xi
s = M,

t−s
t q0|t(x

i
s|xt), xi

t = M, xi
s ̸= M,

0, otherwise.

(9)

Thus, the key function to estimate is the conditional distribution q0|t(x
i
s|xt), which predicts the

original token if it is masked in the input xt. This is analogous to the data prediction form in
continuous diffusion models.

As proven in (Ou et al., 2024), an equivalent yet time-free parameterization can be derived as:

q0|t(x
i
s|xt) = pdata(x

i
0|xUM

t ), ∀i such that xi
t = M, (10)

17



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Algorithm 4 Reverse Process of LLaDA

Require: mask predictor pθ, prompt p0, answer length L, sampling steps N
1: Set r1 is a fully masked sequence of length L.
2: for t← 1 down to 1

N step 1
N do

3: s = t− 1
N

4: r0 = argmaxr0 pθ(r0|p0, rt) # we employ greedy sampling when predicting masked tokens
5: for i← 1 to L do
6: if rt ̸= M then
7: ri0 = rit
8: else
9: With probability s

t , ri0 is set to M
10: end if
11: end for
12: rs = r0
13: end for
14: Return r0

where xUM
t denotes the collection of unmasked tokens in xt, which is identical to the corresponding

tokens in the original data x0 since unmasked tokens are solely determined by x0 and are independent
of time t. Intuitively, this implies that estimating the data prediction function is equivalent to
estimating the conditional distributions on clean data, which is time-invariant. Consequently, the time
t need not be provided as input to the parametric model.

Although the development of masked diffusion is nontrivial, the implementation is straightforward.
We first introduce the mask predictor, a parametric model pθ(·|xt) (e.g., a Transformer without a
causal mask), which takes xt for any t as input and predict all masked tokens simultaneously. Then,
we define the model distribution pθ(x0) as follows: starting with x1 as a sequence of fully masked
tokens, we simulate an approximate reverse process parameterized by pθ(·|xt) from t = 1 to 0. The
marginal distribution induced at t = 0 then represents the model distribution pθ(x0).

Formally, the mask predictor is trained using a cross-entropy loss with masking:

L(θ) ≜ −Et,x0,xt

[
1

t

L∑
i=1

1[xi
t = M] log pθ(x

i
0|xt)

]
, (11)

where x0 is sampled from the training data, t is sampled uniformly from [0, 1], and xt is sampled
from qt|0(xt|x0). The indicator function 1[·] ensures that the cross-entropy loss is computed only for
masked tokens. In Ou et al. (2024), it has been proven that the loss function L(θ) is an upper bound
on the negative log-likelihood of the model distribution:

−Ex0∼pdata(x0)
[log pθ(x0)] ≤ L(θ). (12)

In summary, this principled approach trains a generative model by progressively masking tokens
during a forward process and learning to recover the data distribution during a reverse process, all
under the (approximate) maximum likelihood estimation framework.

B.2 INFERENCE

The cross-entropy loss in Eq. (11) has several equivalent forms (Ou et al., 2024). The first one is
given by

−El∼{1,2,...,L},x0,xl

[
L

l

L∑
i=1

1[xi
l = M] log pθ(x

i
0|xl)

]
, (13)

where l is uniformly sampled from {1, 2, . . . , L}, and xl is obtained by uniformly sampling l tokens
from x0 without replacement for masking. Despite masking exactly l tokens is different from masking
each token independently with probability t, these two masking methods lead to equivalent results in
expectation (Ou et al., 2024).
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Algorithm 5 Low-confidence Remasking Strategy of LLaDA

Require: mask predictor pθ, prompt p0, answer length L, sampling steps N
1: Set r1 is a fully masked sequence of length L.
2: for t← 1 down to 1

N step 1
N do

3: s = t− 1
N

4: for i← 1 to L do
5: if rit ̸= M then
6: ri0 = rit, c

i = 1
7: else
8: ri0 = argmaxri0 pθ(r

i
0|p0, rt)

9: ci = pθ(r
i
0|p0, rt)ri0

10: end if
11: end for
12: nun = ⌊L(1− s)⌋ # the number of unmasked tokens is nun in timestep s
13: for i← 1 to L do
14: if ci ∈ Lowest− nun

(
{ci}L1

)
then

15: ri0 = M # the nun positions with the least confidence are selected for remasking.
16: end if
17: end for
18: rs = r0
19: end for
20: Return r0

While Eq. (11) and Eq. (13) share the same expectation, their variances differ. Intuitively, in Eq. (11),
we expect xt to have a fraction of t tokens masked. However, the randomness of the forward process
(i.e., Eq. (6)) often causes deviations, especially when xt contains few tokens. In contrast, in Eq. (13),
the fraction of masked tokens in xl is deterministically l

L . While a theoretical analysis depends on
the data distribution, empirical results show that Eq. (11) requires over 1000 Monte Carlo estimates
for stable results, whereas Eq. (13) achieves stability with only 128 estimates. In addition, we can
simply modify Eq. (13) to its conditional version based on Eq. (5).

Any-order autoregressive models (AO-ARM) (Uria et al., 2014; Hoogeboom et al., 2021a; Shih et al.,
2022) characterize the joint distribution autoregressively for all possible orders π of the L variables.
To learn such a distribution, an AO-ARM utilizes a weight-sharing neural network to model all
univariate conditionals and employs mask tokens to represent absent variables. During training, the
expected negative log-likelihood over the uniform distribution of all orders Uπ is minimized:

−Ex0,π∼Uπ

[
L∑

i=1

log pθ(x
π(i)
0 |xπ(<i)

0 ;π)

]
. (14)

Intuitively, xπ(<i)
0 can be understood as a masked token xt with index in π(≥ i) being masked. It can

be further proved that Eq. (14) is equivalent to Eq. (11). This connection explains the bidirectional
reasoning capabilities of LLaDA, even though it was never used explicitly in the inference procedure.

Nie et al. (2024) introduce unsupervised classifier-free guidance, a plug-and-play technique that
balances alignment with prompts and text diversity. Specifically, unsupervised classifier-free guidance
employs the following modified mask predictor for inference:

p̃θ(r0|p0, rt) ∝
pθ(r0|p0, rt)1+w

pθ(r0|m, rt)w
, (15)

where m is a mask sequence of the same length as p0 and w is a hyperparameter that controls the
strength of p0. We employ unsupervised classifier-free guidance in the downstream tasks, as detailed
in Appendix C.7.

B.3 ALGORITHMS

In this section, we present the training and inference algorithms. Specifically, we introduce the
pre-training and supervised fine-tuning algorithms in Algorithm 1 and Algorithm 2, respectively.
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Figure 3: A Conceptual Overview of the Semi-autoregressive Sampling.

In addition, the likelihood evaluation algorithm is provided in Algorithm 3. Finally, we present
the sampling algorithms in Algorithm 4 and Algorithm 5, which correspond to the original reverse
process (i.e., random remasking) and the low-confidence remasking strategy (Chang et al., 2022) of
LLaDA, respectively.

Furthermore, we apply a semi-autoregressive remasking strategy for the instruct model. Specifically,
the sequence is divided into several blocks and generated from left to right. Within each block, we
apply the random remasking or the low-confidence remasking strategy for sampling. For clarity and
better visualization, we illustrate the semi-autoregressive sampling process in Fig. 3.

Our semi-autoregressive remasking strategy is inspired by the prior work of Anonymous (2025).
However, it is important to note that Anonymous (2025) and LLaDA have entirely different training
objectives and network architectures. Specifically, the pre-training objective of Anonymous (2025)
differs from Eq. (3). Moreover, their approach incorporates a causal mask in the Transformer attention
block, whereas LLaDA employs a bidirectional Transformer.

C EXPERIMENTS

C.1 OPTIMIZER SETTINGS FOR PRE-TRAINING

We adopted the Warmup-Stable-Decay (Hu et al., 2024) learning rate scheduler to monitor the training
progress without interrupting continuous training. Specifically, we linearly increased the learning
rate from 0 to 4× 10−4 over the first 2000 iterations and maintained it at 4× 10−4. After processing
1.2T tokens, we decayed the learning rate to 1× 10−4 and held it constant for the next 0.8T tokens
to ensure stable training. Finally, we linearly reduced the learning rate from 1× 10−4 to 1× 10−5

for the last 0.3T tokens. Furthermore, we utilized the AdamW optimizer (Loshchilov, 2017) with a
weight decay of 0.1, a batch size of 1280, and a local batch size of 4 per GPU. The 8B experiment
was executed once, without any hyperparameter tuning.

C.2 EXPERIMENTAL DETAILS ON SFT

In this section, we first describe the processing of SFT data, followed by the optimizer settings for
SFT experiments.

A dynamic sequence length is employed during supervised SFT, where |EOS| tokens are appended to
the end of short pairs to ensure equal sequence lengths across all data in each mini-batch. Notably,
the padding |EOS| tokens are treated as part of the response, i.e., masked and included in the training
objective. The |EOS| tokens are removed from the generated outputs during sampling. This strategy
is crucial for LLaDA and ensures that the model learns to control the length of its responses by
generating |EOS|, enabling the response length to align effectively with the given prompt.

In addition, for n-turn dialogues (p00, r
0
0, p

1
0, r

1
0, . . . , p

n−1
0 , rn−1

0 ), we treat it as n single-turn dialogue
pairs, i.e., (p00, r

0
0), (p

0
0r

0
0p

1
0, r

1
0), . . . , (p

0
0r

0
0p

1
0r

1
0 . . . p

n−1
0 , rn−1

0 ) and randomly sample one. This data
partitioning strategy not only equips LLaDA with multi-turn dialogue capabilities but also aligns with
the padding strategy.
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Table 4: Benchmark Results of Post-trained LLMs. LLaDA only employs an SFT procedure while
other models have extra reinforcement learning (RL) alignment. ∗ indicates that LLaDA 8B Instruct,
LLaMA2 7B Instruct, and LLaMA3 8B Instruct are evaluated under the same protocol, detailed in
Appendix C.7. Results indicated by † and ¶ are sourced from Yang et al. (2024) and Bi et al. (2024)
respectively. The numbers in parentheses represent the number of shots used for in-context learning.
“-” indicates unknown data.

LLaDA 8B∗ LLaMA3 8B∗ LLaMA2 7B∗ Qwen2 7B† Qwen2.5 7B† Gemma2 9B† Deepseek 7B¶

Model Diffusion AR AR AR AR AR AR
Training tokens 2.3T 15T 2T 7T 18T 8T 2T

Post-training SFT SFT+RL SFT+RL SFT+RL SFT+RL SFT+RL SFT+RL
Alignment pairs 4.5M - - 0.5M + - 1M + 0.15M - 1.5M + -

General Tasks

MMLU 65.5 (5) 68.4 (5) 44.1 (5) - - - 49.4 (0)
MMLU-pro 37.0 (0) 41.9 (0) 4.6 (0) 44.1 (5) 56.3 (5) 52.1 (5) -
Hellaswag 74.6 (0) 75.5 (0) 51.5 (0) - - - 68.5 (-)
ARC-C 88.5 (0) 82.4 (0) 57.3 (0) - - - 49.4 (-)

Mathematics & Science

GSM8K 78.6 (4) 78.3 (4) 29.0 (4) 85.7 (0) 91.6 (0) 76.7 (0) 63.0 (0)
Math 26.6 (0) 29.6 (0) 3.8 (0) 52.9 (0) 75.5 (0) 44.3 (0) 15.8 (0)
GPQA 31.8 (5) 31.9 (5) 28.4 (5) 34.3 (0) 36.4 (0) 32.8 (0) -

Code

HumanEval 47.6 (0) 59.8 (0) 16.5 (0) 79.9 (0) 84.8 (0) 68.9 (0) 48.2 (-)
MBPP 34.2 (4) 57.6 (4) 20.6 (4) 67.2 (0) 79.2 (0) 74.9 (0) 35.2 (-)

We train for 3 epochs on the SFT data using a similar schedule to the pre-training phase. The learning
rate is linearly increased from 0 to 2.5 × 10−5 over the first 50 iterations and then kept constant.
During the final 10% of iterations, it is linearly reduced to 2.5 × 10−6. Additionally, we set the
weight decay to 0.1, the global batch size to 256, and the local batch size to 2 per GPU. The SFT
experiment was executed once, without any hyperparameter tuning.

C.3 BENCHMARK RESULTS OF LLADA 8B INSTRUCT

We present the the performance of LLaDA 8B Instruct with existing LLMs in Tab. 4.

C.4 ARCHITECTURES AND SCALING EXPERIMENTS

This section provides detailed information about the models we trained and the scalability experiments
described in Sec. 3.1.

Firstly, for efficiency, we trained an ARM and a MDM, both with 1.5B parameters and identical
architectures. Additionally, we scaled the MDM to 8B parameters. Due to computational resource
constraints, we did not train an 8B autoregressive model with the same architecture. Instead, we
utilized our previously trained 7B autoregressive model for comparison. These four models are
utilized in the scalability analysis in Sec. 3.1.

We adopted a Transformer architecture similar to LLaMA (Touvron et al., 2023; Dubey et al., 2024)
for the ARMs and MDMs we trained. Specifically, we employ RMSNorm (Zhang & Sennrich, 2019)
to stabilize training, used SwiGLU (Shazeer, 2020) as the activation function to enhance non-linearity,
and integrate RoPE (Su et al., 2024) for more expressive positional encoding. Tab. 5 provides an
overview of the model architectures.

Additionally, we employ the widely used 6ND formulation (Kaplan et al., 2020; Hoffmann et al.,
2022) to calculate the training FLOPs in Fig. 2, where N represents the number of non-embedding
parameters, and D denotes the total number of training tokens.

C.5 DETAILS AND ABLATION ON REMASKING

This section first explains the inference methods in detail, followed by ablation studies on various
remasking strategies.
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Table 5: Model Architecture. We provide the configurations of our 1B and 7B ARM baselines, as
well as the 1B and 8B LLaDA and the 8B LLaMA3 models.

Our ARM Baseline 1B LLaDA 1B Our ARM Baseline 7B LLaDA 8B LLaMA3 8B

Layers 22 22 28 32 32

Model dimension 2048 2048 4096 4096 4096

Attention heads 32 32 32 32 32

Vocabulary size 126,464 126,464 126,464 126,464 128,000

FFN dimension 5634 5634 13,440 12,288 14,336

Key/Value heads 4 4 8 32 8

Total parameters 1.49 B 1.49 B 6.83 B 8.02 B 8.03 B

Non-embedding parameters 0.97 B 0.97 B 5.80 B 6.98 B 6.98 B

Table 6: Ablation on Remasking. We use GSM8K accuracy as the evaluation metric. The lowest-
confidence & semi-autoregressive remasking strategy refers to generating each block from left to
right, while applying the lowest-confidence remasking strategy within each block.

LLaDA 8B Base LLaDA 8B Instruct

Randomly remasking 52.3 72.0
Lowest confidence remasking 64.7 12.9
Lowest confidence & semi-autoregressive remasking 64.4 73.8

For instruct model, since our training includes a large number of |EOS| tokens, directly applying the
lowest confidence remasking strategy would result in an excessively high and unnatural occurrence
of |EOS| tokens in the generated sentences. Therefore, we divide the entire generation length into
several blocks. Each block is generated from left to right, and within each block, we apply the reverse
process to perform sampling. However, for the base model, since |EOS| tokens are not padded during
training, using the semi-autoregressive remasking strategy makes little difference in the results.

For efficiency, we set the answer length to 512 and the number of sampling steps to 256 in our ablation
studies. For the semi-autoregressive remasking strategy, we set the block length to 32. To simplify
the evaluation, we use GSM8K accuracy as the performance metric. As shown in Table 6, for the
base model, applying the lowest confidence remasking strategy significantly improves performance,
whereas the semi-autoregressive remasking strategy does not yield any noticeable benefits. In
contrast, for the instruct model, directly applying the lowest confidence remasking strategy leads to a
substantial performance drop. However, combining the lowest confidence remasking strategy with
the semi-autoregressive remasking strategy results in the best performance for the instruct model.

We provide the specific remasking strategies and hyperparameters used for each benchmark in
Appendix C.7.

C.6 ABLATION ON GENERATED LENGTH

In this section, we conduct ablation studies on the generated length. For simplicity, we use GSM8K
as the evaluation metric. To ensure efficiency and fairness, for each setting, we set the number of
sampling steps to half of the generated length, ensuring that in each sampling step, two tokens are
transferred from the mask to the text.

For the LLaDA 8B Base model, we employ the lowest-confidence remasking strategy (i.e., Algo-
rithm 5). For the LLaDA 8B Instruct model, we adopt semi-autoregressive sampling with a block
length of 32.

As reported in Tab. 7, both the Base model and the Instruct model exhibit minimal sensitivity to the
length hyperparameter.
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Table 7: Ablation on Generated Length. We use the GSM8K accuracy as the evaluation metric and
set the number of sampling steps to half of the generated length.

Length LLaDA 8B Base LLaDA 8B Instruct

256 62.5 75.3
512 64.7 73.8
1024 65.9 75.3

Table 8: Inference Configuration for LLaDA 8B Instruct. We apply the low-confidence remasking
strategy across all datasets. A block length smaller than the answer length indicates the use of the
semi-autoregressive remasking strategy; otherwise, it is not applied. The shorter answer lengths for
MMLU and HellaSwag result from their requirement to generate only a single token (i.e., A, B, C, or
D) and two special end tokens (i.e., end of the model response and end of the sentence).

Answer length Block length

MMLU 3 3
Hellaswag 3 3
GPQA 128 64
GSM8K 256 8
HumanEval 512 32
MBPP 512 32
Math 256 256
MMLU-pro 256 256
ARC-C 512 512

C.7 STANDARD BENCHMARKS AND EVALUATION

In this section, we briefly introduce the benchmarks used in our study and describe the details of our
evaluation process.

Following standard LLM (Chu et al., 2024; Yang et al., 2024) evaluation practices, we assess LLaDA
across four dimensions:

General ability: MMLU (Hendrycks et al., 2020), BBH (Suzgun et al., 2022), ARC-C (Clark et al.,
2018), Hellaswag (Zellers et al., 2019), TruthfulQA (Lin et al., 2021), WinoGrande (Sakaguchi et al.,
2021) and PIQA (Bisk et al., 2020).

Math and science ability: GSM8K (Cobbe et al., 2021), Math (Hendrycks et al., 2021) and
GPQA (Rein et al., 2023).

Code generation: HumanEval (Chen et al., 2021), HumanEval-FIM (Bavarian et al., 2022) and
MBPP (Austin et al., 2021b).

Chinese understanding: CMMLU (Li et al., 2023) and C-Eval (Huang et al., 2024a).

For all the aforementioned benchmarks, we follow the widely adopted evaluation process (Gao
et al., 2024) used in LLM assessments, primarily employing conditional likelihood estimation and
conditional generation. Specifically, for certain benchmarks, a prompt and multiple candidate answers
are provided, and the model is required to compute each candidate’s conditional likelihood. The
candidate with the highest likelihood is then selected as the model’s final answer, and accuracy is
used as the evaluation metric. For the remaining benchmarks, the model generates responses based on
the given prompt, and performance is evaluated using metrics such as exact match and other relevant
criteria.

For the base model, we use conditional likelihood estimation for MMLU, CMMLU, C-Eval, ARC-C,
Hellaswag, TruthfulQA, WinoGrande, PIQA, and GPQA, while the remaining benchmarks are
evaluated using conditional generation. For the instruct model, we evaluate all benchmarks using
conditional generation. For datasets evaluated with conditional likelihood estimation, we adopt the
widely used lm-evaluation-harness (Gao et al., 2024) framework. However, for datasets evaluated
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Table 9: Comparison on iGSM Dataset.

4 steps 5 steps 6 steps

LLaMA3 8B Base 38.0 35.0 34.0
LLaDA 8B Base 64.0 41.0 44.0

with conditional generation, we rely on an internal library for evaluation, as lm-evaluation-harness
lacks implementations for certain key metrics (e.g., HumanEval-FIM).

For benchmarks evaluated using conditional likelihood estimation, we use Monte Carlo estimation to
approximate Eq. (13) for conditional likelihood estimation. Since MMLU, CMMLU, and C-EVAL
only require the likelihood of a single token, a single Monte Carlo estimate is sufficient for these
benchmarks. For all other benchmarks, we find that 128 Monte Carlo samples are adequate to produce
stable results. For ARC-C, Hellaswag, TruthfulQA, WinoGrande, PIQA, and GPQA, we report the
results with the optimal unsupervised classifier-free guidance scale searched in {0, 0.5, 1, 1.5, 2}.
For benchmarks evaluated using conditional generation, we apply the lowest confidence remasking
strategy to the base model, setting both the response length and the number of sampling steps to
1024. For the instruct model, we set the sampling steps equal to the answer length and provide the
inference hyperparameters in Table 8. Due to computational resource constraints, we do not use the
unsupervised classifier-free guidance for these benchmarks evaluated using conditional generation.

C.8 ANALYSIS OF SAMPLING STEPS

In this section, we analyze the impact of sampling steps. For simplicity, we use the LLaDA 8B Base
model and evaluate it on the GSM8K and HumanEval datasets. Additionally, we fix the answer length
at 1024. As shown in Fig. 4, as the number of sampling steps increases to match the answer length,
the model’s accuracy improves accordingly.
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Figure 4: Analysis of Sampling Steps.

C.9 EVALUATION ON IGSM DATASET

To further assess the mathematical capabilities of LLaDA, we test its performance on iGSM (Ye
et al., 2024), an infinite, synthetic GSM8K-like dataset. iGSM is generated via specific rules, with
parameters that control the difficulty of problems (i.e., the number of solution steps). For evaluation
consistency, we append ”#### $answer” to the final solution, adhering to the GSM8K format. Below
is an example with solution steps set to 4:

(Question) The number of each North Star Elementary’s Cultural Studies Classroom equals 1.
The number of each Westridge Elementary’s Dance Studio equals 3 times as much as the sum
of each North Star Elementary’s Classroom and each North Star Elementary’s Cultural Studies
Classroom. How many Dance Studio does Westridge Elementary have?
(Solution) Define North Star Elementary’s Cultural Studies Classroom as x; so x = 1.
Define North Star Elementary’s Classroom as m; so m = x = 1.
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Define Westridge Elementary’s Dance Studio as n; w = m + x = 1 + 1 = 2;
so n = 3 * w = 3 * 2 = 1 #### 1

Since there are slight differences between GSM8K and iGSM (e.g., the use of a mod 5 algorithmic
system), we follow (Ye et al., 2024) and provide a system prompt along with four-shot question-
answer pairs for each problem.

(Prompt) You’re an expert at solving elementary math problems involving addition, subtraction,
and multiplication. You solve all the problems in a uniform format. All calculations are done
modulo 5. For example, 4 + 4 equals 3, 2 + 4 equals 1, 3 + 3 + 3 equals 4, 3 * 3 equals 4, and
2 * 2 equals 4. When providing your solution, please end with ’#### x.’ where x is your final
answer, an integer between 0 and 4. You must solve all the problems using the same solution
format. Our scenarios involve up to four categories of objects: schools, classrooms, backpacks
and stationeries. Each school may contain classrooms, each classroom may contain backpacks,
and each backpack may contain stationeries. We can specify quantities, such as ẗhe number
of dance studios at each Lakeshore High.Ässume that every entity with the same name has an
identical configuration; for example, each Lakeshore High contains the same number of dance
studios. Another guiding principle is that what is not mentioned does not exist: when we refer to
classrooms at Lakeshore High, we are only discussing the classrooms explicitly mentioned in
our scenario. Furthermore, if Lakeshore High is not even mentioned, any classroom within it is
automatically considered to be non-existent (i.e. 0).

For solution steps ranging from 4 to 6, we generate 100 questions for each case and report the
corresponding accuracy in Table 9. As shown in the table, LLaDA Base demonstrates significant and
consistent advantages over LLaMA3 on unseen mathematical problems, aligning with the results in
Table 1.

C.10 POEM COMPLETION TASKS

In this section, we present examples from our poem completion dataset as follows.

Example 1:
Prompt: 窈窕淑女的下一句是什么？直接输出句子即可。
Answer: 君子好逑。

Example 2:
Prompt: 不拘一格降人才的上一句是什么？直接输出句子即可。
Answer: 我劝天公重抖擞。

C.11 MORE CASE STUDIES

In this section, we present additional case studies of LLaDA 8B Instruct. First, Tab. 10 illustrates
the sampling process of semi-autoregressive remasking, while Tab. 11 depicts the sampling process
for multi-turn dialogues with random remasking. Additionally, Tab. 12 and Tab. 13 provide further
examples of single-turn and multi-turn dialogues. Finally, Tab. 14 presents examples of poem reversal
completions where the LLaDA 8B Instruct model succeeds, in contrast to the failure of GPT-4o.
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Table 10: Visualization of the Semi-Autoregressive Sampling Process. In the response of LLaDA,
darker colors indicate tokens predicted in the later stages of sampling, while lighter colors correspond
to earlier predictions.

User What are the benefits of regular exercise for physical and mental health?
LLaDA

Table 11: Visualization of the Multi-turn Dialogue. We employ random remasking strategy. In the
response of LLaDA, darker colors indicate tokens predicted in the later stages of sampling, while
lighter colors correspond to earlier predictions.

User I want to have a pet, but I don’t know whether to get a cat or a dog. Do you have any
suggestions?

LLaDA

User I’m very busy at work, so it seems like a cat would be a more suitable option. Do you have
any suggestions for getting a cat?

LLaDA
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Table 12: Single-turn Dialogue Cases of LLaDA 8B Instruct.

Daily life
User What’s a piece of advice you’ve received that you’ve found helpful?
LLaDA One helpful piece of advice I’ve received is to always be open to learning and growth.

I’ve found that being willing to explore new ideas and experiences has helped me become
more resilient and adaptable. By embracing a growth mindset, I’ve been able to identify
opportunities for improvement and development, both personally and professionally.

Daily life
User Please recommend me three famous movies
LLaDA Certainly! Here are three famous movies that have achieved widespread popularity and

critical acclaim:
1. **The Shawshank Redemption** (1994) - Inspired by a novella and directed by Frank
Darabont, this film tells the story of Andy Dufresne, a man convicted of murdering his
wife, dealing with his harsh life in Shawshank Prison and forming an unlikely friendship
with a fellow inmate.
2. **The Godfather** (1972) - Directed by Francis Ford Coppola, this film is based
on Mario Puzo’s novel of the same name. It follows the story of the Corleone family,
particularly Michael Corleone, who rises to power and takes over the family’s criminal
empire.
3. **The Empire Strikes Back** (1980) - Directed by George Lucas, this film continues
the story of a young Skywalker in the Star Wars saga. It follows Luke Skywalker as
he helps the Rebel Alliance fight against the Galactic Empire and destroy the powerful
weapon, the Death Star.
All of these films are celebrated for their cinematic achievements, powerful storytelling,
and memorable characters.

Translation
User Please help me translate into Chinese: ‘What is now proved was once only imagined’
LLaDA 现在被证明的曾经只是想象

Translation
User Please help me translate into German: ‘What is now proved was once only imagined’
LLaDA Wer heute bestätigt ist, war einst nur immaginiert.

Math
User Emma decides to run 4 sprints 5 times a week. She runs 75 meters each sprint. How many

total meters does she run a week?
LLaDA Emma runs 4 sprints each time, so she runs a total of 4 x 5 = 20 sprints a week. Each sprint

is 75 meters long, so Emma runs a total of 20 x 75 = 1500 meters a week. The final result
is 1500

Code
User I am writing python code, I have an array, please help me sort it from largest to smallest
LLaDA Certainly! You can sort an array from the largest to smallest in Python using the ‘sort()’

method or the ‘sorted()‘ function. Here’s an example:
### Using ‘sort()’ method:
my array = [3, 1, 4, 1, 5, 2]
my array.sort(reverse=True)
print(my array)
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Table 13: Multi-turn Dialogue Cases of LLaDA 8B Instruct.

Daily life
User How do I prepare for a job interview?
LLaDA To prepare for a job interview, you should research the company and the job, practice

common interview questions, and dress appropriately.
User What are some common interview questions?
LLaDA Some common interview questions include “Tell me about yourself” and “Why do you

want to work for us”?

Daily life
User How do I start learning programming?
LLaDA To learn programming, you can start by choosing a programming language that you are

interested in. Some popular languages include Python, Java, and C++.
User Which programming language should I learn first?
LLaDA It depends on your interests and goals. Python is a great language for beginners for its

simplicity and versatility.
User How long does it take to learn Python?
LLaDA It can take anywhere from a few weeks to several months to learn Python.
User What are some good Python projects for beginners?
LLaDA Some good Python projects for beginners include building a simple calculator, a game, and

a web application.

Math
User Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May.

How many clips did Natalia sell altogether in April and May?
LLaDA Natalia sold clips to 48 friends in April. She sold half as many clips in May, so she sold

48/2 = 24 clips in May. Altogether, Natalia sold 48 + 24 = 72 clips in April and May. The
final result is 72.

User Natalia sold three times as many items in June as she did in May. How many clips did
Natalia sell altogether in these three months?

LLaDA Natalia sold clips to 48 friends in April. She sold half as many clips in May, so she sold
48/2 = 24 clips in May. Natalia sold three times as many items in June as she did in May,
so she sold 24 * 3 = 72 clips in June. Altogether, Natalia sold 48 + 24 + 72 = 144 clips in
these three months. The final result is 144.

Table 14: Poem Reversal Completion Cases where LLaDA 8B Instruct Succeeds but GPT-4o
Fails.

Question1
User ‘但闻人语响’的上一句是什么?
GPT-4o “但闻人语响”的上一句是“无可奈何花落去”,这两句出自唐代词人李清照的（武陵

春，春晚:无可奈何花落去，但闻人语响。这首词表达了作者在春天时节的孤独与
感伤，借花落和人语声的描写，反映出词人内心的无亲与失落。

LLaDA “但闻人语响”的上一句是“空山不见人”

Question2
User ‘夜静春山空’的上一句是什么?
GPT-4o “夜静春山空”的上一句是“空山新雨后”.这两句出自唐代诗人王维的（山居秋

膜）:空山新雨后，夜静春山空。这首诗描绘了春天山中雨后的寂静与空灵，
表现出自然的宁静与和谐美。

LLaDA “夜静春山空”的上一句是“人闲桂花落”
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