
Published as a conference paper at ICLR 2025

NATURAL LANGUAGE REINFORCEMENT LEARNING

Xidong Feng1∗ †, Bo Liu2∗ †, Ziyu Wan3†, Haotian Fu4†,
Mengyue Yang5, Girish A. Koushik6, Zhiyuan Hu2, Ying Wen3, Jun Wang1
1University College London, 2National University of Singapore,
3Shanghai Jiao Tong University, 4Brown University, 5University of Bristol, 6University of Surrey
{fengxidongwh}@gmail.com

ABSTRACT

Reinforcement Learning (RL) mathematically formulates decision-making with
Markov Decision Process (MDP). With MDPs, researchers have achieved remark-
able breakthroughs across various domains, including games, robotics, and lan-
guage models. This paper seeks a new possibility, Natural Language Reinforce-
ment Learning (NLRL), by extending traditional MDP to natural language-based
representation space. Specifically, NLRL innovatively redefines RL principles,
including task objectives, policy, value function, Bellman equation, and policy it-
eration, into their language counterparts. With recent advancements in Large Lan-
guage Models (LLMs), NLRL can be practically implemented to achieve RL-like
policy and value improvement by either pure prompting or gradient-based train-
ing. Experiments over Maze, Breakthrough, and Tic-tac-toe games demonstrate
the effectiveness, efficiency, and interpretability of the NLRL framework among
diverse use cases.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton & Barto, 2018) provides a rigorous framework – Markov De-
cision Process (MDP) for solving general decision-making problems. It transforms the policy learn-
ing problem into a mathematical optimization task. While RL has achieved breakthroughs across
various domains, several challenges remain. For example, traditional RL algorithms generally lack
task-specific prior knowledge, requiring extensive sampling to approximate environment dynamics.
RL policy also lacks interpretability. Even in superhuman-performing models like AlphaZero (Sil-
ver et al., 2017), strategic reasoning remains elusive, even to professional players. RL training is
also unstable (Zheng et al., 2023; Andrychowicz et al., 2020) due to its reliance on scalar rewards
as the sole supervision signal. This one-dimensional feedback is particularly limiting in real-world
scenarios where richer, multi-modal signals are naturally available, such as textual feedback (Bai
et al., 2022; Madaan et al., 2024), visual demonstrations (Bousmalis et al., 2023; Xu et al., 2024).

To tackle these challenges, we seek for a new RL paradigm shift, inspired by language-centric
decision-making. Unlike traditional RL, which relies heavily on formalized mathematical model-
ing, humans can leverage natural language to interpret tasks, devise strategies, and communicate
their reasoning. This language-driven approach enables rapid generalization using text-based prior
knowledge, enhances interpretability through explicit reasoning, and provides access to rich, infor-
mative signals from linguistic data. Thus, natural language represents a largely untapped resource
for improving the efficiency, stability, and interoperability of RL systems. The recent success of
language-based transformers (Vaswani, 2017) further opens new avenues to integrate language into
the RL framework. Trained in a vast corpus of text data, Large Language Models (LLMs) have
demonstrated unprecedented proficiency in generating, understanding, and processing language-
based information.

Building upon language-centric decision-making and advancement of LLMs, we introduce Natural
Language Reinforcement Learning (NLRL), a novel RL paradigm that combines RL’s mathe-
matical rigor with the representational richness of natural language. In NLRL, core RL compo-

*Equal contribution, correspondence to fengxidongwh@gmail.com
†Core contributors.

1

Published as a conference paper at ICLR 2025

nents—such as task objectives, policies, value functions, and the Bellman equation—are reinter-
preted as language-based constructs. The medium of natural language largely facilitates the integra-
tion of prior knowledge stored in LLMs, and effectively translates decision-making processes into a
form that is both intuitive and interpretable. NLRL also provides a systematic solution for leverag-
ing rich textual feedback in sequential decision-making tasks, enabling stable training. Specifically,
our key contributions are three-folded:

Framework. NLRL framework enables LLMs to learn language policy and critic purely from
environment feedback, requiring no labeled data from humans or advanced models.

Algorithms. Under the NLRL framework, We present three algorithms, to show how LLM cri-
tique and planning ability can be boosted through pure prompting (Sec. 4.1), natural language value
function training (Sec. 4.2) or natural language actor-critic training (Sec. 4.3).

Experiments. We empirically validate these three algorithm instances in Maze, Breakthrough, and
Tic-tac-toe environments (Sec. 5), demonstrating NLRL’s interpretability, effectiveness, and superi-
ority over traditional RL.

2 PRELIMINARY OF REINFORCEMENT LEARNING

Reinforcement Learning models the decision-making problem as a Markov Decision Process
(MDP), defined by the state space S, action space A, probabilistic transition function 𝑃 :
S × A × S → [0, 1], discount factor 𝛾 ∈ [0, 1) and reward function 𝑟 : S × A →
[−𝑅max, 𝑅max]. The goal of RL aims to learn a policy 𝜋 : S × A → [0, 1], which mea-
sures the action 𝑎’s probability given the state 𝑠: 𝜋(𝑎 |𝑠) = Pr (𝐴𝑡 = 𝑎 | 𝑆𝑡 = 𝑠). In decision-
making tasks, the optimal policy tends to maximize the expected discounted cumulative re-
ward: 𝜋∗ (𝑎 |𝑠) = arg max𝜋 𝔼𝜋

[∑∞
𝑡=0 𝛾

𝑡𝑟 (s𝑡 , a𝑡)
]
. The state-action and state value functions

are two key concepts that evaluate states or state-action pairs by measuring the cumulative re-
ward starting from them: 𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡) = 𝔼(𝑠,𝑎)𝑡+1:∞∼𝑃𝜋

[∑∞
𝑖=𝑡 𝛾

𝑖−𝑡𝑟 (𝑠𝑖 , 𝑎𝑖) | 𝑠𝑡 , 𝑎𝑡
]
, 𝑉𝜋 (𝑠𝑡) =

𝔼𝑎𝑡 , (𝑠,𝑎)𝑡+1:∞∼𝑃𝜋

[∑∞
𝑖=𝑡 𝛾

𝑖−𝑡𝑟 (𝑠𝑖 , 𝑎𝑖) | 𝑠𝑡
]
, where 𝑃𝜋 is the trajectory distribution given 𝜋 and 𝑃.

Given the definition of𝑉𝜋 (𝑠𝑡), the relationship between temporally adjacent state’s value (e.g.,𝑉 (𝑠𝑡)
and 𝑉 (𝑠𝑡+1)) forms the Bellman expectation equation (Bellman et al., 1965). An one-step Bellman
expectation equation can be:

𝑉𝜋 (𝑠𝑡) = 𝔼𝑎𝑡

[
𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾𝔼𝑠𝑡+1∼𝑝 (𝑠𝑡+1 |𝑠𝑡 ,𝑎𝑡) [𝑉𝜋 (𝑠𝑡+1)]

]
, (1)

Given these basic RL definitions and equations, many RL algorithms fall in the scope of generalized
policy iteration (GPI) (Sutton & Barto, 2018). GPI is an iterative process over policy evaluation and
policy improvement.

Policy Evaluation. The target of the policy evaluation process is to estimate 𝑉𝜋 (𝑠) or 𝑄 𝜋 (𝑠, 𝑎)
for a given policy 𝜋. For simplicity, we only utilize 𝑉𝜋 (𝑠) in the following illustration. Two
common value function estimation methods are the Monte Carlo (MC) estimate and the Tempo-
ral Difference (TD) estimate (Sutton, 1988). Starting from the definition of 𝑉𝜋 (𝑠𝑡), the Monte Carlo
(MC) estimate uses sampling over complete trajectories to calculate an unbiased estimate: 𝑉𝜋 (𝑠𝑡) ≈
1
𝐾

∑𝐾
𝑛=1

[∑∞
𝑖=𝑡 𝛾

𝑖−𝑡𝑟 (𝑠𝑛
𝑖
, 𝑎𝑛
𝑖
)
]

where we average the cumulative rewards over multiple full paths start-
ing from 𝑠𝑡 . The Temporal Difference (TD) estimate, on the other hand, builds on the temporal re-
lationship between states without requiring complete trajectories. It estimates 𝑉𝜋 (𝑠𝑡) using the im-
mediate reward and the estimated value of the next state: 𝑉𝜋 (𝑠𝑡) ≈ 1

𝐾

∑𝐾
𝑛=1

[
𝑟 (𝑠𝑡 , 𝑎𝑛𝑡) + 𝛾𝑉𝜋 (𝑠𝑛𝑡+1)

]
.

This approach effectively uses a ”bootstrap” by depending on the estimated value of the next state
to approximate 𝑉𝜋 (𝑠𝑡).
Policy Improvement. The policy improvement process aims to update and improve policy accord-
ing to policy evaluation results. Specifically, it updates the old policy 𝜋old to the new one 𝜋new to
increase the expected return: 𝑉𝜋new (𝑠𝑡) ≥ 𝑉𝜋old (𝑠𝑡). In the environment with small, discrete ac-
tion spaces, such improvements can be achieved by greedily choosing the action that maximizes
𝑄 𝜋old (𝑠𝑡 , 𝑎): 𝜋new (· | 𝑠𝑡) = arg max

�̄� (· |𝑠𝑡) ∈P (A)
𝔼𝑎∼ �̄�

[
𝑄 𝜋old (𝑠𝑡 , 𝑎)

]
.

Another improvement method involves applying policy gradient ascent (Sutton et al., 1999). It pa-
rameterizes the policy 𝜋𝜃 with 𝜃 and we can derive the analytical policy gradient: ∇𝜃𝑉𝜋𝜃 (𝑠𝑡) =

2

Published as a conference paper at ICLR 2025

𝔼𝑎∼𝜋𝜃
[
∇𝜃 log 𝜋𝜃 (𝑎 |𝑠𝑡)𝑄 𝜋𝜃 (𝑠𝑡 , 𝑎)

]
, By choosing a small step-size 𝛼 > 0 to conduct gradient as-

cent: 𝜃new = 𝜃 + 𝛼∇𝜃𝑉𝜋𝜃 (𝑠𝑡)
��
𝜃=𝜃old

, we have the policy improvement: 𝑉𝜋new (𝑠𝑡) ≥ 𝑉𝜋old (𝑠𝑡).

You are the player 'O' in tic-tac-toe,
given current board state,

 to win the game, what's
 your next move?

LLMs as Language Policy1

Response:
{
 "Thought": The 'O' should block xxxxx,
 "Action": 1 (top middle square)
}

Query:
You are the player 'O' in tic-tac-toe,
given current board state,

You next move is action 2,
what's your assessment
about this move?

LLMs as Language Value
Function Approximator

2

Response:
{
 "Thought": The action 2 (top right) xxxxx,
 "Final Evaluation": xxxxx
}

board board

Query:
You are the player 'O' in tic-tac-toe, given
variations and subsequent evals, generate the
evaluation for current state-action pair:

Response:
{
 "Thought": By reviewing and aggregating
these variations and subsequent evals, xxxx
 "Final Evaluation": action 2 seems good xxxx
}

......

Move

One-step Lookahead

{
"Variation": 'X' plays 7.
"Thought": xxxxx,
"Final Evaluation":
 'O' can win in one step.
}

{
"Variation": 'X' plays 0.
"Thought": xxxxx,
"Final Evaluation":
 'O' needs to block 'x'.
}

3

3

LLMs as Language Monte-Carlo Or Temporal Difference operator

Query:

Query:
You are the player 'O' in tic-tac-toe, given
current board state and move, evaluate the
state-action by aggregating the trajectories:

Response:

......

Move

Rollout to the End

{
 "Thought": By reviewing and aggregating
these trajectories after taking move 2, xxxx
 "Final Evaluation": action 2 is good xxx
}

You are the player 'O' in
tic-tac-toe, given current
board state, candidate
moves and their evaluations,
what is the best move?

5

Response:

Query:

{
"Thought":

xxxxx,
"Final Evaluation":

good
}

{
"Thought":

xxxxx,
"Final Evaluation":

bad
}

{
"Thought":

xxxxx,
"Final Evaluation":

bad
}

LLMs as Policy Improvement Operator

{
 "Thought": By comparing these action candidates, xxxx
 "Final action": 2 (top right square)
}

4 Distilling to Train Language
Value function and Policy

6

Language Policy

Language Value
Function

Response:
{
 "Thought": The 'O' should block 'X' xxxx
 "Action": 2 (top right square)
 "Evaluation": action 2 is a good move while
in other cases 'X' wins
}

3
Buffer D

5

Figure 1: Practical pipeline for implementing NLRL in the Tic-tac-toe game. LLMs can serve as the
language policy ①, the language-based value function approximator ②, the language Monte Carlo
or Temporal Difference operator ③, and the language policy improvement operator ⑤. By distilling
(④, ⑥) the improved evaluations from ② and the enhanced actions from ⑤, the NLRL agent can
iteratively refine its language policy and evaluation capabilities.

3 NATURAL LANGUAGE REINFORCEMENT LEARNING

In contrast to the precise statistical models used in traditional RL, NLRL frames all ele-
ments—including task objectives, value evaluations, and strategic policies—within the form of nat-
ural language. In this section, we demonstrate:

• How to navigate decision-making tasks using natural language, aligning it with traditional RL
concepts, definitions, and equations. Due to the inherent ambiguity of natural language, the
equations presented are analogical and based on empirical insights from original RL concepts. We
leave rigorous definitions and analysis for future work.

• How to effectively implement NLRL components. We utilize LLMs—models adept at under-
standing, processing, and generating language—to emulate human behavior and simulate NLRL
language-based algorithmic components.

We provide visualizations in Fig 1 to illustrate these concepts (① to ⑥) and implementations.

3.1 RL CONCEPT ANALOGIES

We start with concept analogies in RL to model NLRL.

Text-based MDP: To conduct RL in natural language space, we convert traditional MDP to the
text-based one, which leverages text descriptions to represent MDP’s basic concepts, including state
𝑠, action 𝑎, and environment feedback (state transitions 𝑃 and reward 𝑟).

Language Task instruction: For decision-making tasks, NLRL defines a natural language task
instruction 𝑇𝐿 , like “reaching the goal” or “opening the door”. Then, we denote a metric by 𝐹 that
measures the completeness of the task instruction given the trajectory description 𝐷𝐿 (𝜏𝜋), where

3

Published as a conference paper at ICLR 2025

𝐷𝐿 is a language descriptor that can transform the trajectory distribution 𝜏𝜋 into its corresponding
language description 𝐷𝐿 (𝜏𝜋). The objective of NLRL is reformulated as

max
𝜋
𝐹 (𝐷𝐿 (𝜏𝜋), 𝑇𝐿) (2)

That is, NLRL is trying to optimize the policy so that the language description of the trajectory
distribution 𝜏𝜋 can show high completeness of the task instruction.

Language Policy ①: Instead of directly modeling action probability, NLRL determines the action
with chain-of-thought process (Wei et al., 2022b), including strategic thoughts, logical reasoning,
and planning. Thus, we represent the policy on language as 𝜋𝐿 (𝑎, 𝑐 |𝑠) = 𝜋𝐿 (𝑐 |𝑠)𝜋𝐿 (𝑎 |𝑐, 𝑠), which
will first generate such thought process 𝜋𝐿 (𝑐 |𝑠), then output the final action probability 𝜋𝐿 (𝑎 |𝑐, 𝑠).
A straightforward way to achieve such language policy is to leverage LLMs as language policy
(𝜋𝐿). Many works adopted LLMs as the decision-making agent (Wang et al., 2023a; Feng et al.,
2023a; Christianos et al., 2023; Yao et al., 2022) with Chain-of-thought process (Wei et al., 2022b).
By setting proper instructions, LLMs can leverage natural language to describe their underlying
thought for determining the action, akin to human strategic thinking.

Language Value Function ②: Similar to the definition of 𝑄 and 𝑉 in traditional RL, NLRL lever-
ages language value function, relying on natural language evaluation to assess the policy. The lan-
guage state value function 𝑉𝐿𝜋 and language state-action value function 𝑄𝐿𝜋 are defined as:

𝑄𝐿𝜋 (𝑠𝑡 , 𝑎𝑡) = 𝐷
(
(𝑠, 𝑎)𝑡+1:∞ ∼ 𝑃𝜋 | 𝑠𝑡 , 𝑎𝑡 , 𝑇𝐿

)
, (3)

𝑉𝐿𝜋 (𝑠𝑡) = 𝐷
(
𝑎𝑡 , (𝑠, 𝑎)𝑡+1:∞ ∼ 𝑃𝜋 | 𝑠𝑡 , 𝑇𝐿

)
(4)

Given the current state 𝑠𝑡 or state-action (𝑠𝑡 , 𝑎𝑡), 𝑄𝐿𝜋 and 𝑉𝐿𝜋 leverage language descriptions instead
of scalar value to demonstrate the effectiveness of policy for achieving the task objective 𝑇𝐿 . The
language value functions are intuitively information-rich compared with the traditional scalar-based
value. It can represent the evaluation results from different perspectives, consisting of the underlying
logic/thoughts, prediction/analysis of future outcomes, comparison among different actions, etc.

To practically implement it, we utilize LLMs as language value function approximator ②
(𝑄𝐿 , 𝑉𝐿). The original idea of value function approximation (Sutton et al., 1999) is to use a pa-
rameterized one-dimensional output function to replace the big value table and serve as a value
function approximator. Such design largely helps RL to handle high-dimensional and large-scale
decision-making problems. Similarly, in NLRL, we can leverage (multi-modal) LLMs, to evaluate
the state 𝑠 or state-action pair (𝑠, 𝑎), and serve as the language value function approximator for
𝑄𝐿 , 𝑉𝐿 . This exactly corresponds to what (multi-modal) LLMs are capable of – they are designed
to take in the features from the task state, such as low-dimension statistics, text, or images, and out-
put the corresponding language understanding. By further prompting or fine-tuning over evaluation
dataset, LLMs can generate language assessment.

Language Bellman Equation: In the traditional Bellman equation (Equ. 1), the state evaluation
value 𝑉𝜋 (𝑠𝑡), can be decomposed into two parts: : (1) the intermediate transition, which include
immediate 𝑎𝑡 , reward 𝑟𝑡 , and next state 𝑠𝑡+1. (2) the next state evaluation 𝑉𝜋 (𝑠𝑡+1). Based on such
decomposition intuition, we argue that the language value function 𝑉𝐿𝜋 should analogically satisfy
the language Bellman equation Equ.5 for all states 𝑠𝑡 ∈ S:

𝑉𝐿𝜋 (𝑠𝑡) = 𝐺
𝑎𝑡 ,𝑠𝑡+1∼𝑃𝜋

1

(
𝐺2

(
𝑑 (𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) , 𝑉𝐿𝜋 (𝑠𝑡+1

))
, (5)

where 𝑑 (𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)) depicts the language description of intermediate transition, while 𝐺1 and 𝐺2
serves as two information aggregation functions. By drawing an analogy to Equ. 1, 𝐺2 mimics the
add the summation operation ‘+’ in the original Bellman equation, aggregating information from
intermediate transition’s description 𝑑 and future evaluation 𝑉𝐿𝜋 (𝑠𝑡+1). Meanwhile, 𝐺1 serves the
role of the expectation operator 𝔼, aggregating information accross different (𝑎𝑡 , 𝑠𝑡+1) pairs from
the transition distribution 𝑃𝜋 .

3.2 LANGUAGE GENERALIZED POLICY ITERATION

In this part, we introduce how language GPI is conducted. Similar to traditional GPI, language GPI
also consists of language policy evaluation and language policy improvement.

4

Published as a conference paper at ICLR 2025

3.2.1 LANGUAGE POLICY EVALUATION

Language policy evaluation aims to estimate language value function 𝑉𝐿𝜋 and 𝑄𝐿𝜋 for each state. We
present how MC and TD estimate work in language policy evaluation.

Language Monte Carlo Estimate ③. Starting from the state 𝑠𝑡 , MC estimate is conducted over text
rollouts (i.e. 𝐾𝑀𝐶 full trajectories {𝑎𝑡 , (𝑠, 𝑎)𝑡+1:∞}) given the policy 𝜋. Since we cannot take the av-
erage operation in language space, we instead leverage language aggregator 𝐺1 to fuse information,
approximating the expected evaluation:

𝑉𝐿𝜋 (𝑠𝑡) ≈ 𝐺1
({

an
t , (s, a)

𝑛
𝑡+1:∞

}𝐾𝑀𝐶

𝑛=1

)
, (6)

0.5

Get Reward Values
1

Reinforcement Learning (RL)

Traditional
Agent

World

Natural

Value function in RL

“Not ab

Go s

Yo

State
[0.5]

[T

Human-

HuPolicy:

Monte-Carlo Estimate

Aggregating evaluation
from multi trajectories

Aggregating all steps in
one trajectory

Intermediate changes over
action, reward and next state

Reward decay

Temporal Difference Estimate
Aggregating evaluation from

multi one-step samples

Aggregating intermediate
changes and future evaluation

Intermediate changes over
action, reward and next state

Future evaluation over
next state

Future evaluation decayLanguage Temporal Difference Estimate ③. Lan-
guage TD estimate mainly relies on the one-
step language Bellman equation illustrated in Equ.
5. Similar to the language MC estimate, we
aggregate 𝐾𝑇𝐷 one-step samples to approximate
the expected evaluation for all states 𝑠𝑡 ∈ S:

𝑉𝐿𝜋 (𝑠𝑡) ≈ 𝐺1
({
𝐺2

(
𝑑 (𝑠𝑡 , 𝑎𝑛𝑡 , 𝑟𝑛𝑡 , 𝑠𝑛𝑡+1), 𝑉

𝐿
𝜋 (𝑠𝑛𝑡+1)

)}𝐾𝑇𝐷

𝑛=1

)
, (7)

0.5

Get Reward Values
1

Reinforcement Learning (RL)

Traditional
Agent

World

Natural

Value function in RL

“Not ab

Go s

Yo

State
[0.5]

[T

Human-

HuPolicy:

Monte-Carlo Estimate

Aggregating evaluation
from multi trajectories

Aggregating all steps in
one trajectory

Intermediate changes over
action, reward and next state

Reward decay

Temporal Difference Estimate
Aggregating evaluation from

multi one-step samples
Aggregating intermediate

changes and future evaluation

Intermediate changes over
action, reward and next state

Future evaluation over
next state

Future evaluation decay

where 𝑑, 𝐺1 and 𝐺2 has the same
meaning for that in Equ. 5. We pro-
vide two illustrations to show how
language MC and TD operator corre-
spond to traditional MC and TD op-
erator. Also Check Appendix E for
more discussions.

Language MC estimate is free from
estimation “bias” * as it directly utilizes samples from complete trajectories. However, the MC
method is prone to high “variance” considering the significant number of variations (Large 𝐾) in
the long-term future steps. Such variability poses a challenge for the language aggregator 𝐺1 in
Equ. 6 to effectively extract crucial information from long-context and diverse trajectories. On the
contrary, while the inaccuracy of the next state evaluation 𝑉𝐿𝜋 (𝑠𝑡+1) can bring estimation “bias”
to TD estimate, they effectively reduce “variance” and aggregation difficulty by discarding future
variations. 𝐺1 and 𝐺2 are only required to conduct simple one-step information aggregation with
limited variations.

LLM’s summarization (Zhang et al., 2023), extraction (Xu et al., 2023), reflection (Shinn et al.,
2024) and aggregation ability make it a perfect match for the language Monte Carlo and TD
operator ③. Specifically, LLMs can serve as 𝐺1, 𝐺2 by prompting them to summarize and aggre-
gate multiple rollout trajectories (language MC), or multiple few-step transitions and future states’
evaluation (language TD).

In addition, ③ provides an unsupervised and scalable way to generate language evaluation data
through environment interaction, which can be further leveraged to train our language value func-
tion approximator in ②. We can distill language value estimation into language value function
approximator. (④ in Fig. 1) This corresponds to traditional critic training for value-based RL, e.g,
DQN (Mnih et al., 2015), or actor-critic algorithms, e.g, PPO (Schulman et al., 2017), but happens
in natural language space.

3.2.2 LANGUAGE POLICY IMPROVEMENT

Similar to traditional policy improvement, language policy improvement also aims to select actions
that maximize the task completeness function 𝐹 for all states 𝑠𝑡 ∈ S:

𝜋new (· | 𝑠) = arg max
�̄� (· |𝑠) ∈P (A)

𝐹 (𝑄𝐿𝜋old
(𝑠, 𝑎), 𝑇𝐿), (8)

*We use quotes for “bias” and “variance” to indicate that we draw on their concepts, not their strict statistical
definitions

5

Published as a conference paper at ICLR 2025

The task completeness 𝐹 is difficult to quantify for general language-based tasks, as it largely relies
on human textual prior knowledge. Given this complexity, instead of mathematically optimizing 𝐹,
we also refer to the chain-of-thought process–NLRL leverages a language analysis process 𝐼 that
can generate the thought process 𝑐 to guide policy optimization and action selection for all states
𝑠𝑡 ∈ S.

𝜋new (· | 𝑠), 𝑐 = 𝐼 (𝑄𝐿𝜋old
(𝑠, 𝑎), 𝑇𝐿), �̄�(· | 𝑠) ∈ P(A), (9)

Language policy improvement conducts strategic analysis 𝑐 to determine the most promising action
for task completion as the new policy 𝜋new (· | 𝑠). Ideally, this analysis is mainly based on the
correlation judgment between the language evaluation 𝑄𝐿𝜋old

(𝑠, 𝑎) and task objective 𝑇𝐿 .

With the chain-of-thought process and prior knowledge about the world, LLMs can serve policy
improvement operator 𝐼 (⑤ in Fig. 1) to determine the most promising action 𝜋new (· | 𝑠) by taking
language analysis 𝑐 over the correlation of language evaluation 𝑄𝐿𝜋old

(𝑠, 𝑎) and task objective 𝑇𝐿 .
The underlying idea also aligns with some recent works (Kwon et al., 2023a; Rocamonde et al.,
2023) that leverage LLMs or Vision-language models as the reward–they can accurately model the
correlation. Specifically, for a given state 𝑠, we prompt the LLM with several action candidates and
their corresponding language evaluations 𝑄𝐿 , to obtain the improved action with a chain-of-thought
process analyzing different actions’ evaluations.

Similar to distillation in ④, we can train our language policy in ① by supervised-finetuning (⑥ in
Fig. 1) over the improved chain-of-thought based language policy data from ⑤. This corresponds to
the traditional policy training in policy-based RL, e.g, REINFORCE (Williams, 1992) or actor-critic
algorithms, e.g, PPO (Schulman et al., 2017).

4 NLRL ALGORITHMS

Building upon these components and procedures, we can create various NLRL applications. Here
we illustrate three algorithms, though many more possibilities exist beyond.

4.1 LANGUAGE GPI BOOSTS LLM’S CRITIC AND POLICY BY PROMPTING (COMBINING ①,
②, ③, ⑤)

Our first case utilizes language GPI to enhance LLM’s critic and policy solely through prompt-
ing, which can be particularly beneficial for improving proprietary models such as GPT-4 (OpenAI,
2023) or Gemini (Team et al., 2023). Specifically, we first combine ①, ②, ③ to build a language
policy evaluation pipeline. Take language TD shown in Equ. 7 as an example. We prompt LLMs
to (1) evaluate the subsequent state’s value 𝑉𝐿𝜋 (𝑠𝑡+1) (②) (2) serve as the TD operator 𝐺1, 𝐺2 (③).
By performing a one-step look-ahead with 𝑎𝑡 ∼ 𝜋 (①) and leveraging 𝐺1, 𝐺2 to aggregate infor-
mation from intermediate transition 𝑑 alongside the subsequent evaluation 𝑉𝐿𝜋 (𝑠𝑡+1), language TD
can generate new and improved language evaluation, 𝑉𝐿𝜋 (𝑠𝑡)new. Building upon this new evaluation,
LLM-based policy improvement operator 𝐼 (⑤) converts the evaluation into a better policy 𝜋new.
Refer to Algorithm 1 for detailed procedures.

4.2 TRAINING NATURAL LANGUAGE VALUE FUNCTION FOR A GIVEN POLICY (COMBINING
②, ③, ④)

Our second case aims to train an LLM critic capable of evaluating any given state with natural
language explanations, similar to a chess annotator who provides insightful commentary on boards,
moves, and strategies. For example, we can build an iterative language TD pipeline by combining
②, ③, and ④. First, we leverage a tunable LLM 𝐴 and prompt it to become a language value function
approximator ②. Combined with the look-ahead transitions (𝑎𝑡 , 𝑠𝑡+1) ∼ 𝑃𝜋 by taking rollouts with
policy 𝜋, and the subsequent state evaluation 𝑉𝐿𝜋 (𝑠𝑡+1) generated by 𝐴, we prompt LLM 𝐵 for the
language TD estimate (③), similar to Sec 4.1. The model 𝐴 is further finetuned by such language
TD estimates (④) and will be plugged back for 𝑉𝐿𝜋 (𝑠𝑡+1)new in a new iteration. Iteratively, we can
obtain the final converged natural language value function. Check Algorithm 2 for more details.
4.3 NATURAL LANGUAGE ACTOR-CRITIC LEARNING (COMBINING ①, ②, ③, ④, ⑤, ⑥)

Last, we combine all these procedures and build the full natural language actor-critic pipeline. Simi-
lar to traditional actor-critic (Barto et al., 1983; Sutton et al., 1999), our natural language actor-critic

6

Published as a conference paper at ICLR 2025

Table 1: Language GPI (LGPI) results with ablations on look-ahead steps 𝑁 and variations number
𝐾𝑇𝐷 on Double-T and Medium Maze. We include language Policy (①) and language value function
(LVF) + policy Improvement I (②,⑤) baselines.

Avg Reward Double-T Medium

Language Policy 𝜋𝐿 (𝑠) (①) −27.3 ± 4.4 −27.1 ± 5.3
LVF 𝑄𝐿 (𝑠, 𝑎) + 𝐼 (②,⑤) −18.3 ± 6.1 −33.6 ± 14.4

LGPI (K=1, N=3) (②, ③, ⑤) −17.9 ± 3.7 −20.9 ± 7.6
LGPI (K=4, N=1) (②, ③, ⑤) −17.5 ± 4.5 −12.7 ± 4.7
LGPI (K=4, N=3) (②, ③, ⑤) −12.7 ± 4.5 −15.1 ± 4.4
LGPI (K=6, N=3) (②, ③, ⑤) −12.2 ± 3.0 −15.4 ± 5.0
LGPI (K=8, N=3) (②, ③, ⑤) −11.20 ± 2.9 −12.2 ± 4.5

framework simultaneously learns both a language policy and a language critic through unsupervised
environment interactions. For each iteration, we first use language policy ① to take rollouts in the
environment. With new trajectories, we update our language value model ② by language MC or TD
③ and train it with supervised-finetuning loss (④). For language policy improvement, we query our
updated language value to evaluate action candidates for states extracted from the rollout trajecto-
ries. Further LLM-based improvement operator ⑤ brings us a stronger policy, which will be used to
train our language policy (⑥). Check Algorithm 3 for more details.

5 EXPERIMENTS

5.1 LANGUAGE GPI BY PROMPTING (SEC 4.1)

Our first experiments explore Sec 4.1 and leverage language GPI to improve LLM capability with
pure prompting. Specifically, we choose the maze games of LMRL (Abdulhai et al., 2023), aiming
to validate that Language TD Estimate and Language Policy Improvement can benefit the evalu-
ation and further improve policy. We use the original settings of LMRL Gym Maze, where the agent
is required to navigate to a goal position in a “Double T” or “Medium” maze. We consider the fully-
observable setting, where the agent’s observation (described by text) includes the agent’s current
position in the maze, the agent’s action history, the walls’ position around the agent (if any), and the
goal position. The action space is discrete, including moving up / down / right / left. We evaluate the
performance on 30 different initial positions, each with 3 random seeds. Refer to Appendix C.1.2
for more details and visualizations.

For language TD estimate in Equ. 7, we prompt gpt-4o-mini-2024-07-18 as the language aggregator
𝐺1, language state-action value aggregator 𝐺2, and language state value function 𝑉𝐿𝜋 respectively.
Specifically, given an environment state, for each candidate action, we use a fully random policy to
rollout 𝑁 steps into the future and use the language state value function𝑉𝐿𝜋 to evaluate the look-ahead
state. For each state we repeat this process for 𝐾 times and use 𝐺2 to aggregate into a state-action
value estimation. For language policy improvement in Equ. 9, the same GPI-4o-mini is leveraged as
the improvement operator 𝐼.

We compare Language GPI with a few different baselines, including prompt-based language policy
𝜋𝐿 (①), as well as prompt-based language value function 𝑄𝐿 (𝑠, 𝑎) + language policy improvement
𝐼. As shown in Table 1, Language TD produces better performance than the prompt-based language
value in both mazes, and more variations & look ahead steps can have even better results. Language
policy improvement can only benefit stably for language-TD-enhanced language value (② and ③).

5.2 TRAINING NATURAL LANGUAGE VALUE FUNCTION WITH LANGUAGE TD (SEC 4.2)

Our second experiment aims to train a language value function with language TD in the 5x5 break-
through board game (Fig 5). Breakthrough is a turn-based board game for white and black players.
Each player has a few lines of pawns. Black moves first and in each turn, the player chooses one
piece to move one square forward (straight or diagonal) onto empty squares or capture diagonally.
The goal is to break through the opponent’s line and reach their home row.

As mentioned in Sec 4.2, this value function can serve as a reliable board evaluator/annotator. How-
ever, evaluating board states in this game is challenging for LLMs. First, the 5x5 breakthrough

7

Published as a conference paper at ICLR 2025

0 10 20 30 40 50
Iteration

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ev
al

ua
tio

n
Ac

cu
ra

cy

(a) Performance vs Baselines

Best LVF
GPT4o
LLaMA3.1-70B
LLaMA3.1-8B

0 10 20 30 40 50
Iteration

0.60

0.65

0.70

0.75

0.80

0.85

Ev
al

ua
tio

n
Ac

cu
ra

cy

(b.1) Variation Number (Train set)

Variation=1
Variation=2
Variation=4

0 10 20 30 40 50
Iteration

0.60

0.65

0.70

0.75

0.80

Ev
al

ua
tio

n
Ac

cu
ra

cy

(b.2) Variation Number (Test set)

Variation=1
Variation=2
Variation=4

0 10 20 30 40 50
Iteration

0.60

0.65

0.70

0.75

0.80

0.85

Ev
al

ua
tio

n
Ac

cu
ra

cy
(c) State Scaling Law (Test set)

Size=0.4k
Size=2k
Size=10k
Size=45k

0 10 20 30 40 50
Iteration

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ev
al

ua
tio

n
Ac

cu
ra

cy

(d.1) Look-ahead Step Number (Train set)

Step=2
Step=4
Step=8

0 10 20 30 40 50
Iteration

0.60

0.65

0.70

0.75

0.80

Ev
al

ua
tio

n
Ac

cu
ra

cy

(d.2) Look-ahead Step Number (Test set)

Step=2
Step=4
Step=8

Figure 2: Breakthrough experiment results. (a) Performance comparison with baselines. (b,d) Abla-
tion study on look-ahead step number and variation number 𝐾𝑇𝐷 . (c) Results for scaling state size.

variant is niche, leading to sparse pre-training data on board evaluations. Most LLMs have minimal
knowledge of it. Second, despite the small board size, its state space complexity can reach 108

(Saffidine et al., 2012), making natural language assessments significantly more difficult. Refer to
Appendix C.2 for more experimental details and result visualizations.

5.2.1 EXPERIMENT SETUP AND METHODS

Text-Breakthrough. As mentioned in the text-based MDP, we textualize the game, including board,
pieces, moves, positions, and information about capturing or termination.

Policy 𝜋 in 𝑉𝐿𝜋 (𝑠). Our first task is to determine the 𝜋 in 𝑉𝐿𝜋 (𝑠) since 𝑉𝐿𝜋 (𝑠) measures the value for
a specific policy, according to Equ 3. To train a reliable board annotator, we select a strong or near-
optimal policy—analogous to the way we place greater trust in a grandmaster’s annotations. In our
experiment, our 𝜋 is the Monte-Carlo tree search (MCTS) algorithm (Kocsis & Szepesvári, 2006)
from OpenSpiel (Lanctot et al., 2019), with a high number of simulations and rollouts to ensure an
extensive search.

Building State Dataset 𝑠 ∼ 𝑃(𝑠). Since 𝑉𝐿𝜋 (𝑠) is over state 𝑠, our second step is to build a state
dataset 𝐷𝑠–the distribution 𝑃(𝑠) that our𝑉𝐿𝜋 works on. To ensure that𝑉𝐿𝜋 can assess positions across
diverse levels of gameplay, we build a mixed-state dataset by collecting rollouts between different
MCTs configurations. Then we can easily split 𝐷𝑠 to build training state set 𝐷𝑡𝑟𝑎𝑖𝑛𝑠 and test state set
𝐷𝑡𝑒𝑠𝑡𝑠 .

Building TD training dataset. The TD training dataset is built on 𝐷𝑡𝑟𝑎𝑖𝑛𝑠 by conducting look-ahead
expansion with rollout policy 𝜋. For each state 𝑠𝑡 , we take a few times 𝑙-step look-ahead rollout and
deduplicate to 𝐾 distinct variations: {(𝑠𝑡+𝑖 , 𝑎𝑡+𝑖 , 𝑟𝑡+𝑖 , 𝑠𝑡+𝑖+1)𝑙−1

𝑖=0 }𝐾 .

Models. For the language TD operator (𝐺1, 𝐺2), we prompt the large LLaMA-3.1-70B-Instruct
(Dubey et al., 2024) model since it preserves stronger aggregation and reasoning ability. The lan-
guage value function 𝑉𝐿𝜋 (𝑠) is trained from the small LLaMA-3.1-8B-Instruct model.

Evaluation. An automatic evaluation metric is challenging even for advanced LLMs like GPT-4o,
given their limited domain knowledge. We adopt a coarser metric—judging which side has the
advantage. For any given state, we estimate win rates using Monte Carlo simulations to the game
outcome. The ground-truth label is assigned to the side with a win rate exceeding a predefined
threshold.

5.2.2 EXPERIMENTAL RESULTS

Performance vs Baselines. Our Fig 2.a shows the evaluation accuracy comparison on 𝐷𝑡𝑒𝑠𝑡𝑠 , be-
tween our best language value function’s training curve and prompting-based LLMs (LLaMA-3.1-
70B, LLaMA-3.1-8B and GPT-4o-08-06), which clearly demonstrates the necessity of language TD
training. Due to the lack of domain knowledge, all prompting-based LLMs perform poorly. The
best accuracy (0.61) is only slightly higher than the random guess (0.5), while our trained language
value function dominates the task and the accuracy reaches 0.87 on the test set 𝐷𝑡𝑒𝑠𝑡𝑠 .

8

Published as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

W
in

R
at

e

+0.50

(a) Random-Move Opponent

Natural Language Actor Critic

PPO

GPT-4o as Policy

LLaMA-3.1-70B-Instruct as Policy

LLaMA-3.1-8B-Instruct as Policy

0 5 10 15 20 25 30
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

W
in

R
at

e

(b) Ablations on Components

w/o KMC w/o Kbuffer w/o Action Selection Mask

w/o KMC w/o Kbuffer w Action Selection Mask

w/o KMC w Kbuffer w Action Selection Mask

w KMC w Kbuffer w Action Selection Mask

0 5 10 15 20 25 30
Iteration

0.4

0.5

0.6

0.7

0.8

W
in

R
at

e

(c) Ablations on Number of Training Epochs

Train Epoch = 1

Train Epoch = 2

Train Epoch = 3

0 5 10 15 20 25 30
Iteration

0.5

0.6

0.7

0.8

0.9

W
in

R
at

e

(d) Ablations on KMC

KMC = 1

KMC = 5

KMC = 10

0 5 10 15 20 25 30
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

W
in

R
at

e

(e) Ablations on Rollout

Rollout = 128

Rollout = 256

Rollout = 512

Figure 3: Natural Language Actor Critic Pipeline training results. (a) Training results against the
Random-Move Opponent. (b) Ablation study on components (𝐾𝑀𝐶 , 𝐾𝑏𝑢 𝑓 𝑓 𝑒𝑟 , and Action Selection
Mask). These results demonstrate that our proposed Natural Language Actor Critic pipeline
can stably improve under stochastic dynamics. (c) - (e) Ablation studies on number of training
epochs, Monte Carlo sample size 𝐾𝑀𝐶 , and number of rollout trajectories.

Look-ahead Ablation. Fig 2.b and Fig 2 shows further ablation study over variation number (𝑚)
and look-ahead steps 𝑘 . The test set performance is shown in Fig 2.b.2 and Fig 2.d.2, while Fig 2.b.1
and Fig 2.d.1 present a subset of in-training state evaluations. The ablation study indicates that
determining the appropriate 𝑚 and 𝑘 is crucial for optimal performance. Notably, in Fig 2.d.1
and Fig 2.d.2, using 8 steps resulted in significantly higher in-training accuracy but lower test set
accuracy compared with 4. This suggests that longer look-ahead steps may lead to overfitting,
potentially hindering generalization to novel states evaluation.

State Scaling Law. We also examine how scaling the training state size affects performance in
Fig 2.c, with datasets sizes 0.4k, 2k, 10k, and 45k. The results demonstrate robust scalability of our
algorithm, with consistent improvements in test set performance as the training set size increases.

5.3 NATURAL LANGUAGE ACTOR-CRITIC LEARNING (SEC 4.3)

For validating Sec 4.3, we implement the natural language actor-critic in a model-free setting (Sutton
& Barto, 2018) in the Tic-tac-toe game (Ju, 2024), where the system learns purely from sampled
trajectories without access to dynamics. As a supplement to language TD in Sec. 5.1 and 5.2, we
utilize the language MC (Equ. 6) for the policy evaluation.

5.3.1 EXPERIMENT SETUP AND METHODS

Text-Tic-tac-toe. Similar to text-breakthrough, we textualize all information in the Tic-tac-toe.

Model Architecture. Our implementation uses three language models: one LLaMA-3.1-70B-
Instruct and two LLaMA-3.1-8B-Instruct models. The 70B model is for language aggregator (𝐺1)
and policy improvement operator 𝐼. The two 8B models implement our trainable components: lan-
guage policy 𝜋𝐿 that generates actions through chain-of-thought reasoning, and language value func-
tion 𝑄𝐿𝜋 that evaluates state-action pairs.

Evaluation. To thoroughly evaluate our approach, we test against two different types of opponents.
The results against a deterministic opponent that always takes the first available action can be found
in Appendix C.3.5. For our main experiments, we focus on a stochastic opponent that plays ran-
domly, presenting a more challenging case for policy evaluation. We measure performance through
metrics including win/loss/tie rates.

5.3.2 STABILIZING LANGUAGE VALUE FUNCTION

Despite the soundness of Sec 4.3, we identify training instability during initial experiments. We ob-
served that 𝑉𝐿𝜋 can easily hallucinate when evaluating unseen state-action pairs, leading to incorrect
language policy improvement.

We take two techniques to mitigate it. First, we enlarge the value training data size by merging the
most recent 𝐾𝑏𝑢 𝑓 𝑓 𝑒𝑟 iteration’s value data buffers, which helps stabilize value training. Second, we
add an action selection mask to restrict language policy improvement only to moves that are likely
to be chosen by the language policy 𝜋𝐿 during rollout. We sample the language policy 𝑁𝑠𝑎𝑚𝑝𝑙𝑒
times and build an action candidate list. The language policy improvement is conducted from the
list’s top-𝑚 moves. Such action selection mask can help constrain policy updates within a limited
range where language value function can be more reliable.

9

Published as a conference paper at ICLR 2025

5.3.3 EXPERIMENTAL RESULTS

Performance vs Baselines. The learning curves in Fig. 3(a) demonstrate our system’s superiority
in the random-move opponent setting. Our algorithm outperforms all other baselines (prompting-
based method using GPT-4o-08-06, LLaMA-3.1-8B/70B-Instruct with chain-of-thought reasoning),
including the PPO (Schulman et al., 2017) fine-tuned LLaMA-3.1-8B-Instruct baseline, which helps
verify the effectiveness and efficiency brought by NLRL. The improvement is substantial (0.4 to
0.9), demonstrating NLRL’s robustness despite the stochastic dynamics. As shown in Fig. 3(b),
each component (Monte Carlo sampling number 𝐾𝑀𝐶 , buffer merging size 𝐾𝑏𝑢 𝑓 𝑓 𝑒𝑟 , and action
selection mask) enhances the system’s performance, with the full system incorporating all three
components achieving the highest and most stable win rate.

Ablation Studies We conduct comprehensive ablation studies to investigate key hyperparameters.
First, training with 128 trajectories per iteration shows that increasing from 1 to 3 epochs signifi-
cantly improves stability and adaptation, as shown in Fig. 3(c). Second, our investigation of Monte
Carlo sampling with 𝐾𝑀𝐶 values of 1, 5, and 10 shows in Fig. 3(d) that increased sampling with
512 trajectories leads to more stable training. Finally, Fig. 3(e) shows how the number of rollout tra-
jectories affects training, with 512 trajectories per iteration yielding the most robust learning curve.
Additional ablation studies on action selection mask parameter top-𝑚 and effect of experience buffer
size 𝐾𝑏𝑢 𝑓 𝑓 𝑒𝑟 can be found in Appendix C.3.6, where we demonstrate that larger 𝑚 values enhance
exploration while maintaining stable learning and 𝐾𝑏𝑢 𝑓 𝑓 𝑒𝑟 = 3 helps maintain consistent perfor-
mance by preserving past experiences. Refer to Appendix C.3 for more experimental details and
result visualizations.

6 RELATED WORK

Language Model Based Autonomous Agent. We are inspired by the strong emergent capabilities
of LLMs in complex reasoning and planning scenarios (Brown et al., 2020; Anil et al., 2023; Ope-
nAI, 2023; Feng et al., 2023b; Yao et al., 2022). The field of language model-based autonomous
agents (Feng et al., 2023a; Christianos et al., 2023; Zhang et al., 2024) has witnessed a growing trend
of leveraging LLMs for high-level planning purposes. Reflexion (Shinn et al., 2023) is built upon
ReAct (Yao et al., 2022) with self-reflection, to generate tips given online feedback. (Zhong et al.,
2024) proposes to distill such reflection ability from the large model to train a small policy feed-
back model that can guide the policy. Their underlying ideas share similarities with language MC,
while NLRL formally formulates it–we extract core information by sampling multiple trajectories
and leverage them to train our language value function.

Learning from Language Feedback. Our work is also related to research on learning from lan-
guage feedback. While Cheng et al. (2023) focuses on benchmarking algorithms, we aim to propose
a new algorithmic framework. Studies such as (Yang et al., 2023; Yuksekgonul et al., 2024; Cheng
et al., 2024) introduce an LLM-based optimization paradigm that leverages natural language to rep-
resent optimization operators like gradients and backpropagation, achieving end-to-end generative
optimization. NLRL, on the other hand, represents a parallel approach, offering a generative frame-
work specifically designed for RL optimization problems.

LLMs as evaluation function. Our language value function aligns with recent efforts in NLP that
leverage LLMs as generative evaluators or verifiers, as seen in (Wang et al., 2023b; Li et al., 2023;
Jiang et al., 2023; Gao et al., 2024; Zhang et al., 2024; Mahan et al., 2024), or that utilize LLMs’ self-
evaluation capabilities to enhance task-solving performance (Putta et al., 2024; Yao et al., 2023; Hao
et al., 2023). These approaches often rely on the LLM’s self-assessment (which can be unreliable),
or distill on stable supervision signals like human annotations or guidance from stronger LLMs. In
contrast, NLRL’s training of a language value function offers a novel unsupervised approach.

7 CONCLUSION

We propose NLRL to open a new door for implementing RL algorithms in natural language space,
improving agent’s effectiveness, efficiency, and interpretability. NLRL is also compatible with the
current language model and LLM agent, offering potential ways to generate high-quality language
synthetic data for policy and critic. We leave discussions of limitation and future work in Ap-
pendix F.

10

Published as a conference paper at ICLR 2025

REFERENCES

Marwa Abdulhai, Isadora White, Charlie Snell, Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu,
and Sergey Levine. Lmrl gym: Benchmarks for multi-turn reinforcement learning with language
models. arXiv preprint arXiv:2311.18232, 2023.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael
Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What
matters in on-policy reinforcement learning? a large-scale empirical study. arXiv preprint
arXiv:2006.05990, 2020.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics,
(5):834–846, 1983.

Richard Bellman, Robert E Kalaba, et al. Dynamic programming and modern control theory, vol-
ume 81. Citeseer, 1965.

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Manon Devin, Alex X Lee,
Maria Bauza Villalonga, Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, et al. Robocat:
A self-improving generalist agent for robotic manipulation. Transactions on Machine Learning
Research, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Ching-An Cheng, Andrey Kolobov, Dipendra Misra, Allen Nie, and Adith Swaminathan. Llf-bench:
Benchmark for interactive learning from language feedback. arXiv preprint arXiv:2312.06853,
2023.

Ching-An Cheng, Allen Nie, and Adith Swaminathan. Trace is the next autodiff: Generative opti-
mization with rich feedback, execution traces, and llms. arXiv preprint arXiv:2406.16218, 2024.

Filippos Christianos, Georgios Papoudakis, Matthieu Zimmer, Thomas Coste, Zhihao Wu, Jingxuan
Chen, Khyati Khandelwal, James Doran, Xidong Feng, Jiacheng Liu, et al. Pangu-agent: A
fine-tunable generalist agent with structured reasoning. arXiv preprint arXiv:2312.14878, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Devleena Das, Sonia Chernova, and Been Kim. State2explanation: Concept-based explanations to
benefit agent learning and user understanding. arXiv preprint arXiv:2309.12482, 2023.

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural computation, 5(4):613–624, 1993.

11

Published as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, David Mguni,
Yali Du, and Jun Wang. Chessgpt: Bridging policy learning and language modeling. arXiv
preprint arXiv:2306.09200, 2023a.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-
like tree-search can guide large language model decoding and training. arXiv preprint
arXiv:2309.17179, 2023b.

Mingqi Gao, Xinyu Hu, Jie Ruan, Xiao Pu, and Xiaojun Wan. Llm-based nlg evaluation: Current
status and challenges. arXiv preprint arXiv:2402.01383, 2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Bradley Hayes and Julie A Shah. Improving robot controller transparency through autonomous
policy explanation. In Proceedings of the 2017 ACM/IEEE international conference on human-
robot interaction, pp. 303–312, 2017.

Ying Ji, Yu Wang, and Jien Kato. Spatial-temporal concept based explanation of 3d convnets.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15444–15453, 2023.

Dongfu Jiang, Yishan Li, Ge Zhang, Wenhao Huang, Bill Yuchen Lin, and Wenhu Chen. Tiger-
score: Towards building explainable metric for all text generation tasks. arXiv preprint
arXiv:2310.00752, 2023.

Kim Jeong Ju. gym-tictactoe: A tic tac toe environment for openai gym, 2024. URL https:
//github.com/haje01/gym-tictactoe. GitHub repository.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023a.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023b.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel
Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De
Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian
Schrittwieser, Thomas Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis. Open-
Spiel: A framework for reinforcement learning in games. CoRR, abs/1908.09453, 2019. URL
http://arxiv.org/abs/1908.09453.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. Generative judge
for evaluating alignment. arXiv preprint arXiv:2310.05470, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models. arXiv preprint
arXiv:2410.12832, 2024.

12

https://github.com/haje01/gym-tictactoe
https://github.com/haje01/gym-tictactoe
http://arxiv.org/abs/1908.09453

Published as a conference paper at ICLR 2025

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. arXiv preprint
arXiv:2310.12921, 2023.

Abdallah Saffidine, Nicolas Jouandeau, and Tristan Cazenave. Solving breakthrough with race pat-
terns and job-level proof number search. In Advances in Computer Games: 13th International
Conference, ACG 2011, Tilburg, The Netherlands, November 20-22, 2011, Revised Selected Pa-
pers 13, pp. 196–207. Springer, 2012.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Sarath Sreedharan, Utkarsh Soni, Mudit Verma, Siddharth Srivastava, and Subbarao Kambham-
pati. Bridging the gap: Providing post-hoc symbolic explanations for sequential decision-making
problems with inscrutable representations. arXiv preprint arXiv:2002.01080, 2020.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang,
Rui Xie, Jindong Wang, Xing Xie, et al. Pandalm: An automatic evaluation benchmark for llm
instruction tuning optimization. arXiv preprint arXiv:2306.05087, 2023b.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022a.

13

Published as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022b.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong Xu, Xiangyu Zhao, Xian Wu, Yefeng
Zheng, and Enhong Chen. Large language models for generative information extraction: A sur-
vey. arXiv preprint arXiv:2312.17617, 2023.

Jie Xu, Hanbo Zhang, Xinghang Li, Huaping Liu, Xuguang Lan, and Tao Kong. Sinvig: A self-
evolving interactive visual agent for human-robot interaction. arXiv preprint arXiv:2402.11792,
2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic” differentiation” via text. arXiv preprint arXiv:2406.07496,
2024.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. arXiv preprint
arXiv:2301.13848, 2023.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
Qin Liu, Yuhao Zhou, et al. Secrets of rlhf in large language models part i: Ppo. arXiv preprint
arXiv:2307.04964, 2023.

Victor Zhong, Dipendra Misra, Xingdi Yuan, and Marc-Alexandre Côté. Policy improvement using
language feedback models. arXiv preprint arXiv:2402.07876, 2024.

14

Published as a conference paper at ICLR 2025

CONTENTS

A Detailed Related work 16

B Algorithms 16

B.1 Language GPI by prompting . 16

B.2 Train natural language language value function with language TD 17

B.3 Natural language actor critic . 18

C Experimental details 19

C.1 Maze Experiment . 19

C.1.1 Experiment Details . 19

C.1.2 Language GPI Visualization . 19

C.1.3 The effect of Language TD on the Value function 22

C.2 Breakthrough Experiment . 22

C.2.1 Experiment Details . 22

C.2.2 Language TD Visualization . 24

C.2.3 Comparison of language value function 28

C.3 Tic-tac-toe Experiment . 29

C.3.1 Training Infrastructure . 30

C.3.2 Algorithm Implementation Details . 30

C.3.3 Visualization . 31

C.3.4 Baseline Implementation Details . 41

C.3.5 Additional Experiments . 42

C.3.6 Additional Ablation Studies . 42

D Prompts 43

D.1 Maze experiment . 43

D.2 Breakthrough Experiment . 45

D.3 Tic-tac-toe Experiment . 46

E Analogy 49

E.1 Language MC . 49

E.2 Language TD . 50

F Limitation and future work 50

15

Published as a conference paper at ICLR 2025

A DETAILED RELATED WORK

Language Model Based Autonomous Agent. Inspired by the strong emergent capabilities of LLMs
in complex reasoning and planning scenarios (Brown et al., 2020; Wei et al., 2022a; Anil et al.,
2023; OpenAI, 2023; Feng et al., 2023b). The field of language model-based autonomous agents
(Feng et al., 2023a; Christianos et al., 2023; Zhang et al., 2024) has witnessed a growing trend
of leveraging LLMs for high-level planning purposes. For text agents, ReAct(Yao et al., 2022)
leverages chain-of-thought planning about the intermediate goals and task-specific generation via
few-shot prompting. Reflexion (Shinn et al., 2023) is built upon ReAct (Yao et al., 2022) with self-
reflection, named verbal reinforcement learning, to generate tips given online feedback. Such tips
strengthen agent’s capability through in-context learning. (Zhong et al., 2024) proposes to distill
such reflection ability from the large model to train a small policy feedback model that can guide
the policy. Their underlying ideas share similarities with NLRL’s language Monte Carlo estimate,
while NLRL formulates this process more formally and incorporates it into training–we extract
core information/concepts by sampling multiple trajectories and leverage them to train our natural
language value function. Another line of work like Zhang et al. (2023); Xu et al. (2023) leverages
Large Language Models to summarize and extract information to help fuse intermediate changes.
They are related to the ”aggregation” idea of language value function training.

Interpretable Reinforcement Learning. One of the major purposes of interpretable RL is to au-
tomatically seek explanations from non-AI experts. For instance, methods of concept-based expla-
nations for sequential decision-making tasks. Ji et al. (2023) provide a concept-based explanation
for 3D action recognition CovNets by clustering learned human interpretable features. Sreedharan
et al. (2020) formulates concept-based explanations upon state preconditions and action costs, rep-
resenting any factual statement a user associates with a given state. Similarly, Hayes & Shah (2017)
uses logical formulas to summarize policies. Additionally, Das et al. (2023) trains a joint embedding
model for state-action pairs and concept-based explanations.

Learning from Language Feedback. Our work is also related to research on learning from lan-
guage feedback. While Cheng et al. (2023) focuses on benchmarking algorithms, we aim to propose
a new algorithmic framework. Studies such as (Yang et al., 2023; Yuksekgonul et al., 2024; Cheng
et al., 2024) introduce an LLM-based optimization paradigm that leverages natural language to rep-
resent optimization operators like gradients and backpropagation, achieving end-to-end generative
optimization. NLRL, on the other hand, represents a parallel approach, offering a generative frame-
work specifically designed for RL optimization problems.

LLMs as evaluation function. Our language value function aligns with recent efforts in NLP that
leverage LLMs as generative evaluators or verifiers, as seen in (Wang et al., 2023b; Li et al., 2023;
Jiang et al., 2023; Gao et al., 2024; Zhang et al., 2024; Mahan et al., 2024), or that utilize LLMs’ self-
evaluation capabilities to enhance task-solving performance (Putta et al., 2024; Yao et al., 2023; Hao
et al., 2023). These approaches often rely on the LLM’s self-assessment (which can be unreliable),
or distill on stable supervision signals like human annotations or guidance from stronger LLMs. In
contrast, NLRL’s training of a language value function offers a novel unsupervised approach: we can
train a generative evaluator solely by aggregating language feedback from the environment, without
distilling any strong model–experimental results in Sec. 5.2 show that our language value function’s
performance is much better than any LLMs we utilize during the training.

Successor Features. Successor features (Dayan, 1993; Barreto et al., 2017) aim to learn a high-
dimensional value function representation, where each component captures the expected future oc-
currence of all state representations under a fixed policy. As shown in (Barreto et al., 2017), succes-
sor features help decouple the environment dynamics from the rewards, facilitating transfer learning
in RL. The language value function in NLRL is conceptually similar to successor features since it
also represents state values in a high-dimensional space and satisfies the language Bellman equation.

B ALGORITHMS

In this section, we provide the full pseudo-code for three cases mentioned in Sec. 4.1, 4.2, and 4.3.

B.1 LANGUAGE GPI BY PROMPTING

16

Published as a conference paper at ICLR 2025

Algorithm 1 Language GPI by Prompting

Require: Initial language policy 𝜋, language value function 𝑉𝐿𝜋 , LLM implementing operators 𝐺1,
𝐺2, policy improvement operator 𝐼, number of lookahead steps 𝑁 , number of variations 𝐾

1: for each state 𝑠𝑡 do
2: // Language TD estimation
3: for 𝑖 = 1 to 𝐾 do
4: Sample action 𝑎 (𝑖)𝑡 (①)
5: Simulate 𝑁 steps ahead to get trajectory 𝜏 (𝑖)

6: Prompt LLM to evaluate 𝑉𝐿𝜋 (𝑠
(𝑖)
𝑡+𝑁) (②)

7: Generate intermediate description 𝑑 (𝑖) = 𝑑 (𝑎 (𝑖)𝑡 , 𝑟
(𝑖)
𝑡 , 𝑠

(𝑖)
𝑡+1)

8: Compute value estimate 𝑉 (𝑖) = 𝐺2 (𝑑 (𝑖) , 𝑉𝐿𝜋 (𝑠
(𝑖)
𝑡+𝑁)) (③)

9: end for
10: Aggregate value estimates 𝑉𝐿𝜋 (𝑠𝑡) = 𝐺1 ({𝑉 (𝑖) }𝐾𝑖=1) (③)
11: // Policy improvement
12: Use 𝑉𝐿𝜋 (𝑠𝑡) and prompt LLM as operator 𝐼 to select the optimal action 𝑎𝑡 (⑤)
13: end for

B.2 TRAIN NATURAL LANGUAGE LANGUAGE VALUE FUNCTION WITH LANGUAGE TD

Algorithm 2 Train natural language language value function with language TD

Require: Pre-defined policy 𝜋, LLM-based language value model 𝑉𝐿𝜋 , language descriptor 𝑑, lan-
guage aggregator 𝐺1, 𝐺2, state buffer 𝐷𝑠 , number of iterations 𝑇 , number of trajectories 𝑁 ,
number of MC trajectories 𝐾

1: // Collect few-step rollout data using fixed policy for TD data buffer
2: Initialize TD data buffer B ← {}
3: for state 𝑠𝑡 in state buffer 𝐷𝑠 do
4: Starting from 𝑠𝑡 , run policy 𝜋 for a few 𝑙-step look-ahead rollouts and collect 𝐾 distinct

variations: 𝑉𝑠𝑡 = {(𝑠𝑡+𝑖 , 𝑎𝑡+𝑖 , 𝑟𝑡+𝑖 , 𝑠𝑡+𝑖+1)𝑙−1
𝑖=0 }𝐾

5: B ← B ∪𝑉𝑠𝑡
6: end for
7: // Language TD learning
8: for iteration 𝑡 = 1 to 𝑇 do
9: // Language TD estimate ②, ③

10: D𝑉 ← {} {Value training data}
11: for each look-ahead data (𝑠𝑡 , 𝑉𝑠𝑡) in B do
12: For each variation 𝑛, generate the final state evaluation 𝑉𝐿𝜋 (𝑠𝑛𝑡+𝑙) with 𝑉𝐿𝜋 , and utilize 𝑑 to

describe intermediate transitions 𝑑𝑛 = 𝑑 (𝑠𝑡 , 𝑎𝑛𝑡 , 𝑟𝑛𝑡 , 𝑠𝑛𝑡+1, ..., 𝑠
𝑛
𝑡+𝑙−1, 𝑎

𝑛
𝑡+𝑙−1, 𝑟

𝑛
𝑡+𝑙−1)

13: 𝑉𝐿𝜋 (𝑠𝑡)𝑛𝑒𝑤 ← 𝐺1

({
𝐺2

(
𝑑𝑛, 𝑉

𝐿
𝜋 (𝑠𝑛𝑡+1)

)}𝐾
𝑛=1

)
{l-step, k-variation Language TD}

14: D𝑉 ← D𝑉 ∪𝑉𝐿𝜋 (𝑠𝑡)𝑛𝑒𝑤
15: end for
16: // Update value function ④
17: Train 𝑉𝐿𝜋 using language TD estimate dataset D𝑉 with supervised loss
18: end for

17

Published as a conference paper at ICLR 2025

B.3 NATURAL LANGUAGE ACTOR CRITIC

Algorithm 3 Natural Language Actor-Critic Learning

Require: Initial language policy model 𝜋𝐿 , language value model 𝑉𝐿𝜋 , large language model for
evaluation 𝐺1/𝐺1,𝐺2, improvement operator 𝐼

Require: Number of iterations 𝑇 , number of trajectories 𝑁 , number of MC trajectories 𝐾
1: Initialize replay buffer history B ← {}
2: for iteration 𝑡 = 1 to 𝑇 do
3: // Collect trajectories using language policy ①
4: 𝜏 ← {} {Initialize trajectory buffer}
5: for 𝑖 = 1 to 𝑁 do
6: Run policy 𝜋𝐿 to collect trajectory: 𝜏𝑖 ← {(𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1)𝐻𝑖

𝑗=0}
7: 𝜏 ← 𝜏 ∪ {𝜏𝑖}
8: end for
9: // Language value estimation ②, ③

10: D𝑉 ← {} {Value training data}
11: for each state-action pair (𝑠, 𝑎) in 𝜏 do
12: if using MC estimate then
13: Sample 𝐾𝑀𝐶 trajectories starting from (𝑠, 𝑎): {𝜏𝑘}𝐾𝑀𝐶

𝑘=1
14: 𝑣 ← 𝐺1 ({𝜏𝑘}𝐾𝑀𝐶

𝑘=1) {Language MC estimate}
15: else if using TD estimate then
16: Sample 𝐾𝑇𝐷 transitions starting from (𝑠, 𝑎): {(𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠′𝑘)}

𝐾𝑇𝐷

𝑘=1
17: 𝑣 ← 𝐺1 ({𝐺2 (𝑑 (𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠′𝑘), 𝑉

𝐿
𝜋 (𝑠′𝑘))}

𝐾𝑇𝐷

𝑘=1) {Language TD estimate}
18: end if
19: D𝑉 ← D𝑉 ∪ {(𝑠, 𝑎, 𝑣)}
20: end for
21: // Update value function ④
22: B ← B ∪ {D𝑉 } {Add to buffer history}
23: Train 𝑉𝐿𝜋 on merged data from last 𝐾𝑏𝑢 𝑓 𝑓 𝑒𝑟 buffers in B with supervised loss
24: // Language policy improvement ⑤
25: D𝜋 ← {} {Policy training data}
26: for each state 𝑠 in 𝜏 do
27: Sample actions {𝑎𝑖}

𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑖=1 from 𝜋𝐿 (𝑠)
28: Select top-𝑚 actions A𝑘 based on sampling frequency
29: Query value estimates: 𝑄𝐿 ← {𝑉𝐿𝜋 (𝑠, 𝑎) |𝑎 ∈ A𝑘}
30: 𝜋𝑛𝑒𝑤 , 𝑐← 𝐼 (𝑄𝐿 , 𝑇𝐿) {Language improvement operator}
31: D𝜋 ← D𝜋 ∪ {(𝑠, 𝜋𝑛𝑒𝑤 , 𝑐)}
32: end for
33: // Update policy ⑥
34: Train 𝜋𝐿 on D𝜋 with supervised loss
35: end for

18

Published as a conference paper at ICLR 2025

C EXPERIMENTAL DETAILS

C.1 MAZE EXPERIMENT

C.1.1 EXPERIMENT DETAILS

Figure 4: The “double T” maze and
the “medium” maze. At the be-
ginning of each test, the agent ran-
domly respawns in white space.

Our Maze experiment is conducted using LMRL Gym (Ab-
dulhai et al., 2023). We use the original codebase for the envi-
ronment. We consider the fully-observable setting, where the
agent’s observation (described by text) includes the agent’s
current position in the maze, the agent’s action history, the
walls’ position around the agent (if any), and the goal posi-
tion. The action space is discrete, including moving up / down
/ right / left. We evaluate the performance on 30 different ini-
tial positions, each with 3 random seeds.

We prompt gpt-4o-mini-2024-07-18 (temperature = 0.7) as
the language aggregator 𝐺1, language state-action value ag-
gregator 𝐺2, and language state value function 𝑉𝐿𝜋 respectively.

C.1.2 LANGUAGE GPI VISUALIZATION

We present the language GPI’s prompt and response visualization for language state value function
𝑉𝐿𝜋 and language state-action value aggregator 𝐺2 in the LMRL Maze experiment.

Maze prompts

Role Content
SYSTEM You are an expert maze solver. You only respond in

json.
USER (𝑉𝐿𝜋) You are playing a simple maze game. An agent is moving

in the maze and the objective is to reach the goal in
as few steps as possible.
The possible actions are "move up", "move down", "move
left", "move right".
You are a highly skilled evaluator in this game and is
expected to function similar to state value function in
reinforcement learning. At each step I will provide
you with the move history of the agent (from old
to new), including where the goal is, your current
position, the walls that surround the agent. Your
output evaluation should be a json array that includes
the following concepts:
- "thoughts": Let’s think step by step. Generate your
detailed thought process and evaluation of the agent’s
position and the distance towards the goal.
- "final evaluation": Concisely judge how good the
agent’s current position is compared to all the
possible positions in the maze, in terms of reaching
the goal.
Let’s start a new game. Now, please give your
evaluation of the current state given the move history
of the agent:
The goal is at position 8, 6. Your current position
is at position 5, 7. There are walls above you, below
you.
move up
The goal is at position 8, 6. Your current position
is at position 5, 7. There are walls above you, below
you.
move down

19

Published as a conference paper at ICLR 2025

The goal is at position 8, 6. Your current position
is at position 5, 7. There are walls above you, below
you.
move right
The goal is at position 8, 6. Your current position
is at position 5, 8. There are walls above you, below
you.
move right
The goal is at position 8, 6. Your current position is
at position 5, 9. There are walls to your right, below
you.

ASSISTANT ’thoughts’: ["The goal is located at (8, 6) and the
agent’s current position is (5, 9).", ’To evaluate the
distance to the goal, I will calculate the Manhattan
distance, which is the sum of the absolute differences
of the coordinates: |8 - 5| + |6 - 9| = 3 + 3 =
6.’, "The agent’s current position (5, 9) has walls
directly below (6, 9) and to the right (5, 10). This
limits movement options.", ’The possible actions for
the agent are to move left to (5, 8) or move up to
(4, 9). Moving down or right is not possible due to
walls.’, ’Moving left to (5, 8) would bring the agent
back to a previous position, while moving up to (4,
9) opens potential new pathways.’, ’Overall, the agent
is relatively far from the goal, with limited movement
options due to surrounding walls.’],
’final evaluation’: "The agent’s current position (5,
9) is not ideal as it is 6 steps away from the goal and
has limited movement options. Moving up to (4, 9) is
the best immediate option to explore new paths."

20

Published as a conference paper at ICLR 2025

Role Content
SYSTEM You are an expert maze solver. You only respond in

json.
USER (𝐺2) You are playing a simple maze game. An agent is moving

in the maze and the objective is to reach the goal in
as few steps as possible.
The possible actions are "move up", "move down", "move
left", "move right".
You are a highly skilled evaluator in this game,
particularly adept at making accurate assessments
through look-ahead of the current maze position after
taking the given action. At each step I will provide
you with the move history of the agent (from old
to new), including where the goal is, your current
position, the walls that surround the agent, the
action that the agent is going to take, *along with
several key variations of trajectory pieces after
taking this action (and the corresponding natural
language evaluations of the trajectory pieces)*. Your
task is to understand these look-ahead information
and summarize, derive non-trivial analysis and
understanding the *the agent’s position after taking
the action*. Your output evaluation should be a json
array with the following *two* concepts:
"thoughts": Let’s think step by step. Summarize the
look-ahead information of the variations after taking
action move down.
"final evaluation": Now Concisely judge how good the
chosen action is, in terms of reaching the goal.
Now, please give your evaluation given action move
down, the *current environment state*:
The goal is at position 8, 6. Your current position is
at position 5, 7. There are walls above you, below you
and the look-ahead information of different variations
after taking action move down:
AGGREGATION OF VALUE ESTIMATES FOR ALL VARIATIONS

ASSISTANT ’thoughts’: ["The goal is located at (8, 6), which
is three rows down and one column to the left of the
current position (5, 7).", "The agent attempts to
move up from (5, 7) but cannot because there is a wall
above.", "Each variation shows the agent getting stuck
in a loop of ineffective moves after trying to move up,
consistently returning to (5, 7) or moving to (5, 9),
which is still not closer to the goal.", "The walls
surrounding the agent restrict movement, making it
impossible to progress toward the goal efficiently.",
"In all variations, the agent finds itself either
returning to previous positions or moving to areas
blocked by walls.", "The agentś progression towards
the goal becomes increasingly limited as it cannot move
up, down, or directly toward the goal from its current
position."],
’final evaluation’: "{ "current position": "(5, 7)",
"goal position": "(8, 6)", "manhattan distance": 6,
"possible moves": ["move down", "move left"], "blocked
moves": ["move up", "move right"], "evaluation": "The
chosen action ḿove upı́s ineffective as it does not
change the agentś position, and the surrounding walls
create a dead end, making it impossible to reach the
goal efficiently."}"

21

Published as a conference paper at ICLR 2025

C.1.3 THE EFFECT OF LANGUAGE TD ON THE VALUE FUNCTION

Below we show a comparison of the Language state-action values with/without Language TD. Com-
paring the two Language State-action Value, we can see that by analyzing various potential out-
comes, Language TD identifies both immediate and future benefits or drawbacks of actions, which
is reflected in its more detailed thoughts and final evaluation. The inclusion of varied trajectory
information allows Language TD to provide a more balanced and informed assessment, mitigating
over-reliance on immediate next-step evaluations.

Language State-action Value (Language TD)

For action "move down", {"thoughts": ["The agent’s current position
is (5, 7) with the goal at (8, 6).", "After attempting to move
down, the agent remains at (5, 7) due to walls above and below.",
"In Variation 1, the agent eventually moves to (6, 6), which is
one step away from the goal at (8, 6).", "Variation 2 shows that
moving down leads to blocked paths, necessitating lateral movement,
but ultimately keeps the agent away from the goal.", "Variation 3
allows the agent to successfully reach (7, 6), positioning it just
one step away from the goal.", "Variation 4 also confirms that moving
down to (6, 6) is effective, placing the agent two steps away from
the goal.", "Overall, the evaluations indicate that while the agent
faces wall constraints, moving down leads to favorable outcomes that
progress toward the goal."], "final_evaluation": {"current_position":
"(5, 7)", "distance_to_goal": 3, "proposed_action": "move down",
"evaluation": "Although the move down is initially blocked,
subsequent evaluations indicate that this action can lead to optimal
positions in the following moves. The agent can reach the goal within
two more steps if it navigates correctly."}}

Language State-action Value (without Language TD)

For action "move down", {
"thoughts": [
"The agent’s current position is (5, 7) and the goal is at (8,

6).",
"The possible action is to move down to (6, 7).",
"There are walls above (4, 7) and below (6, 7), which means the

agent can only move down if it is not blocked.",
"Moving down to (6, 7) is valid since there is no wall at that

position.",
"After moving down, the new position will be (6, 7).",
"The distance to the goal can be calculated as follows: the

horizontal distance is |8 - 6| = 2 and the vertical distance is |6
- 7| = 1.",

"The total distance to the goal after moving down would be 2 + 1
= 3."
], "final_evaluation": {
"current_position": "(6, 7)",
"distance_to_goal": 3,
"evaluation": "The agent’s position after moving down is better

than the previous one, as it moves closer to the goal. There are no
walls blocking further movement towards the goal from this position."
}

}

C.2 BREAKTHROUGH EXPERIMENT

C.2.1 EXPERIMENT DETAILS

Figure 5: 5x5 Breakthrough.

Our breakthrough experiment is conducted with Openspiel (Lanctot
et al., 2019) 5x5 breakthrough game and MCTS policy. We slightly

22

Published as a conference paper at ICLR 2025

modified Openspiel’s codebase so the 5x5 breakthrough game sup-
ports two lines of pieces for each side.

For the policy 𝜋, as mentioned in the paper, we choose an MCTS
policy with 𝑢𝑐𝑡𝑐 = 1, 1000 simulations for search, and 100 rollouts
for the random rollout evaluator. For the state dataset, we define the
MCTS policies using a grid of configurations based on the num-
ber of simulations and rollouts. Specifically, we use the following
values for these parameters:

• Simulation numbers: 2, 10, 100, 1000

• Rollout numbers: 1, 10, 100, 1000

This results in 4×4 = 16 unique MCTS policies, each characterized
by a specific combination of simulation and rollout numbers. To generate the mixed state dataset, we
pair every possible combination of these 16 policies (including self-pairing), leading to 16×16 = 256
policy pairs.

For each pair of policies, we perform the same number of rollouts where both policies interact within
the environment. The states encountered during these rollouts are recorded, ensuring that the dataset
captures a diverse distribution of positions. By merging the data from all policy pairs, we create
the final mixed state dataset 𝐷𝑠 , which is designed to represent states arising from a wide range of
gameplay strategies and skill levels.

We use vLLM (Kwon et al., 2023b) for any LLM inference used in the experiment, including lan-
guage value function inference and aggregation inference.

We sample 3000 states from the state dataset for evaluation to serve as the 𝐷𝑠𝑡𝑒𝑠𝑡 . When computing
prediction accuracy, we only count state evaluation which can pass our rule-based parser to extract
the advantageous side judgment.

Here we present the hyperparameters used in our experiment:

Rollout

Parameter Value
Parallel Environments 192
Lookahead Step 4
Lookahead Rollout Number 4
Deduplicate State True

Table 4: Rollout Parameters

Prompting

LLM Sampling Parameter Value
Temperature 1.0
Top K 50
Top P 0.95
Max Tokens 512

Table 5: LLM sampling parameters for prompting.

Training

23

Published as a conference paper at ICLR 2025

Parameter Value
Max Sequence Length 1024
Warmup Ratio 0.03
Learning Rate 2e-5
Learning Rate Scheduler Constant
Dtype bfloat16
Per Device Train Batch Size 4
Gradient Accumulation Step 8
Training Epoch 2
Number of GPUs 4
Distributed Framework FSDP

Table 6: Data Collection Parameters

Evaluation. We use the same LLM sampling parameters as the prompting process.

C.2.2 LANGUAGE TD VISUALIZATION

Here we present an example of how language TD works for query and response.

Language State-action Value (Before)

Role Content
SYSTEM Here is the rule for the Breakthrough board game:

The game is played on an 5x5 board for 2 players (white
and black), with each player starting with 10 pawns.
white pawns are on the first two rows and black pawns
are on the last two rows.
Black moves first. In each turn, players can move one
of their pieces one square forward, diagonally forward
if the target square is empty. Or it can capture an
opponent’s piece if that square is one step diagonally
forward.
The game ends when one player successfully break
through the opponent lines -- either move a piece to
the opposite last row of the board or captures all of
the opponent’s pieces.

For board representation, we use b for black pieces,
w for white pieces, and . for empty squares. (1-5)
and (a-e) are used to show the rows and columns index
respectively.

You are a highly skilled evaluator in this game,
particularly adept at making accurate assessments
through look-ahead analysis of the current board
position.
I will provide you with current board representation,
*along with several key variations starting from this
position (and their corresponding natural language
evaluations of the subsequent positions)*.

Your task is to aggregate and compare these look-ahead
information, to summarize, derive non-trivial analysis
about the *current board*. Your output should include
the following concepts:
1. *Tactical Considerations*: Any immediate threats,
potential tactics, or vulnerabilities in the position.

24

Published as a conference paper at ICLR 2025

2. *Positional Evaluation*: Consideration of pawn
structure, piece activity, control of key squares, and
game safety.
3. *Suggested Moves*: One or two strong candidate
moves for the side to move, along with a brief
rationale for comparing different moves.
4. *Advantage*: Based on all previous rationale,
determine if white or black takes advantage. Use
<white> or <black> to represent the winning side.

Your response should be informative and concise.
USER "*The board you need to evaluate:*

5bb.b.
4b..b.
3..bw.
2w.w..
1wwwww
abcde

It is White’s turn.
White pieces are at: d3, a2, c2, a1, b1, c1, d1, e1.
Black pieces are at: a5, b5, d5, a4, d4, c3.

Here are the look-ahead variations from the current
board position:
Key Variations and Subsequent Evaluation::

Variation 1:
Description of variation’s move sequence:
The action sequence is: d3e4,d5e4*,a2b3,a4b3*.
Move 1:White moves piece from d3 (Column d, Row 3) to
e4 (Column e, Row 4).
Move 2:Black moves piece from d5 (Column d, Row 5) to
e4 (Column e, Row 4), capturing White piece.
Move 3:White moves piece from a2 (Column a, Row 2) to
b3 (Column b, Row 3).
Move 4:Black moves piece from a4 (Column a, Row 4) to
b3 (Column b, Row 3), capturing White piece.

Subsequent position evaluation:
The subsequent board is:

5bb...
4...bb
3.bb..
2..w..
1wwwww
abcde

It is White’s turn.
White pieces are at: c2, a1, b1, c1, d1, e1.
Black pieces are at: a5, b5, d4, e4, b3, c3.

The evaluation of this subsequent board is:

Current Board Analysis:

Tactical Considerations:

25

Published as a conference paper at ICLR 2025

White’s most significant tactical consideration is
the potential to capture Black’s pieces on d4 and e4,
which would gain a significant advantage. White’s
pieces are well-positioned to launch a decisive attack.
Black’s pieces on a5 and b5 are somewhat isolated and
vulnerable to potential attacks.

Positional Evaluation:
The current position slightly favors White due to their
piece activity, control of key squares, and potential
to create a strong pawn center. White’s pawns on a1
and d1 provide potential support for the central pawns.
Black’s pawns are somewhat isolated, but they still
have a chance to reorganize.

Suggested Moves:
Based on the look-ahead analysis, two strong candidate
moves for White are:

1. **e1-d2**: This move captures Black’s potential
piece on d2 (in case Black plays d4-d2) and creates a
strong initiative.
2. **c2-b3**: This move attacks Black’s position and
prepares to break through to the opposite side, gaining
a strong initiative.

Advantage:
<white>

Overall, White has a slight advantage in this position,
with multiple ways to break through Black’s lines
and gain a significant advantage. However, Black’s
position is not yet critical, and they can still
reorganize their pieces to defend. White’s advantage
is mainly due to their piece activity, control of key
squares, and potential to create a strong pawn center.

Variation 2:
Description of variation’s move sequence:
The action sequence is: c1b2,c3d2,e1d2*,d4e3.
Move 1:White moves piece from c1 (Column c, Row 1) to
b2 (Column b, Row 2).
Move 2:Black moves piece from c3 (Column c, Row 3) to
d2 (Column d, Row 2).
Move 3:White moves piece from e1 (Column e, Row 1) to
d2 (Column d, Row 2), capturing Black piece.
Move 4:Black moves piece from d4 (Column d, Row 4) to
e3 (Column e, Row 3).

Subsequent position evaluation:
The subsequent board is:

5bb.b.
4b....
3...wb
2wwww.
1ww.w.
abcde

It is White’s turn.
White pieces are at: d3, a2, b2, c2, d2, a1, b1, d1.
Black pieces are at: a5, b5, d5, a4, e3.

26

Published as a conference paper at ICLR 2025

The evaluation of this subsequent board is:

Tactical Considerations:
The current position presents a strong opportunity
for White to create a breakthrough on the ’d’ file,
as demonstrated by the two variations. Black’s pawn
structure is somewhat disjointed, making it difficult
to respond to White’s advances on the ’d’ and ’e’
files.

Positional Evaluation:
White’s pawn structure is more compact and cohesive,
controlling key central squares. The pawns on ’a’ and
’b’ files provide additional support for the potential
breakthrough on ’d’ and ’e’. Black’s pieces on ’a5’
and ’d5’ are somewhat isolated, making it difficult to
coordinate a defense.

Suggested Moves:
Considering the look-ahead variations, the strongest
candidate move for White is **d3d4**. This move puts
pressure on Black’s position and sets up the potential
breakthrough on the ’d’ and ’e’ files. The rationale
for this move is that it creates an immediate threat
and forces Black to respond, potentially weakening
their position.

Another possible move could be **d2d3**, but it is less
aggressive and does not put as much pressure on Black.

Advantage:
Based on the analysis, the advantage is **<white>**.
The two variations demonstrate a clear path to victory
for White, and Black’s position appears to be under
significant pressure.

Please provide your analysis and understanding of the
current board position based on the provided look-ahead
information.
Your response should be informative and concise.

ASSISTANT "**Current Board Analysis:**

Tactical Considerations:
The primary tactical consideration for White is
to utilize the pawns on the ’d’ file to create a
breakthrough, potentially capturing Black’s pieces
on d4 and e4. Additionally, White should focus on
controlling the key squares and putting pressure on
Black’s somewhat isolated pieces on a5 and b5. Black
needs to reorganize their pawns and pieces to defend
against White’s central pawn advance.

Positional Evaluation:
The position slightly favors White due to their more
compact and cohesive pawn structure, piece activity,
and control of key central squares. White’s pawns
on the ’a’ and ’b’ files provide additional support
for the potential breakthrough on the ’d’ and ’e’
files. Black’s pawns are somewhat isolated, making
it challenging to coordinate a defense.

Suggested Moves:

27

Published as a conference paper at ICLR 2025

Based on the look-ahead analysis, two strong candidate
moves for White are:

1. **d3d4**: This move puts pressure on Black’s
position, sets up a potential breakthrough on the ’d’
and ’e’ files, and forces Black to respond.
2. **e1-d2**: This move captures Black’s potential
piece on d2 and creates a strong initiative.

Advantage:
<white>

Overall, White has a slight advantage in this position,
with multiple ways to break through Black’s lines and
gain a significant advantage. The two variations
demonstrate a clear path to victory for White, and
Black’s position appears to be under significant
pressure. White’s advantage is mainly due to their
piece activity, control of key squares, and potential
to create a strong pawn center.

The provided look-ahead information suggests that White
should prioritize controlling the central squares,
putting pressure on Black’s position, and utilizing
the pawns on the ’d’ file to create a breakthrough."

C.2.3 COMPARISON OF LANGUAGE VALUE FUNCTION

Here we present another visualization comparison between the initial LLaMA-3.1-8B-Instruct Model
and our trained model. The evaluation is conducted on the board 5..b.b 4.bb.. 3.w... 2.w... 1ww..w
abcde, where white takes large advantage in this place. By our language TD training, the language
value function can accurately evaluate this board and generate insightful annotation, largely decreas-
ing the hallucination.

Language State Value (Before)

Board: 5..b.b 4.bb.. 3.w... 2.w... 1ww..w abcde, white turn

Based on the current board position, here’s the evaluation for
White’s turn:

Tactical Considerations:

- Black has an opportunity to attack White’s pawn at e1 with a pawn
from e5 or c5, which might put White in a difficult position.
- White’s pawn at b3 and b2 is a target for Black’s pawns at b4 and
c4.
- White needs to focus on safely advancing their pawns and creating a
barrier for Black’s pieces.

Positional Evaluation:

- White has a relatively weak pawn structure, with some pawns on the
first row.
- The center is somewhat controlled by White, but Black has a solid
presence on the fifth row.
- Black has a strategic advantage in pawn structure, but White has
the opportunity to influence the game with proper planning.

Suggested Moves:

1. Move the pawn from b2 to b3. This move has the goal of preparing
to defend and possibly create a barrier against Black’s pieces.

28

Published as a conference paper at ICLR 2025

2. Move the pawn from a1 to a2. This move aims to create more space
and put pressure on Black’s pieces, which will make it harder for
them to maneuver.

Advantage:
Based on the current board position, <black> is favored.

Language State Value (After training)

Board: 5..b.b 4.bb.. 3.w... 2.w... 1ww..w abcde, white turn

Analysis and Evaluation of the Current Board Position

Tactical Considerations:
The key variation shows an immediate threat of White breaking through
Black’s lines. White’s piece on b3 is strategically positioned to
capture Black’s piece on c4, which creates an opportunity for a
decisive push.

Positional Evaluation:
White has a significant advantage in terms of piece activity and
control of key squares. With pieces on the third and second rows,
White is poised to push forward and break through Black’s lines.
Black’s pieces are concentrated on the fifth and fourth rows, which
limits their mobility and ability to respond to White’s attack.

Suggested Moves:
Two strong candidate moves for White are:

1. b3-c4*: This move captures Black’s piece and creates a weakness in
Black’s position, allowing White to potentially break through.
2. b2-c3: This move develops another White piece and prepares to
support the potential breakthrough on the c-file.

However, given the look-ahead variations, the most promising move is
b3-c4*, as it leads to a terminal state where White wins.

Advantage:
Based on the analysis, White has a decisive advantage. The ability
to capture Black’s piece on c4 and break through Black’s lines gives
White a strong initiative and a clear path to victory. Therefore,
<white> is the winning side.

C.3 TIC-TAC-TOE EXPERIMENT

Our experiments are conducted on the Tic-tac-toe environment (Ju, 2024), a standard two-
player game environment that provides a clear testbed for evaluating sequential decision-
making. The implementation uses several key components: https://github.com/haje01/
gym-tictactoe for the Tic-tac-toe environment, FSDP (Fully Sharded Data Parallel) for dis-
tributed model training, vLLM (Kwon et al., 2023b) for efficient language model inference, and a
custom parallel framework for trajectory collection. The environment is wrapped with a parallel
execution layer to enable efficient batch processing of multiple games simultaneously.

For policy evaluation, we employ Monte Carlo sampling to estimate state-action values, requiring
complete game trajectories until terminal states. Policy improvement utilizes a structured sampling
approach with temperature-controlled exploration and frequency-based action selection.

To manage computational resources efficiently, we employ gradient checkpointing and use the FSDP
strategy across our GPU cluster. This configuration allows us to train larger language models while
maintaining reasonable memory requirements and training speed.

29

https://github.com/haje01/gym-tictactoe
https://github.com/haje01/gym-tictactoe

Published as a conference paper at ICLR 2025

The parallel data collection framework is designed to maximize GPU utilization during training. It
maintains a queue of active environments and processes state-action transitions in batches, signifi-
cantly reducing the overall training time compared to sequential execution.

C.3.1 TRAINING INFRASTRUCTURE

Data Collection Pipeline

For each training iteration, we collect data using the following configuration:

Parameter Value
Parallel Environments 64
Trajectories per Iteration 512
Monte Carlo Samples (𝐾𝑀𝐶) 5
Policy Samples per State (𝑁𝑠𝑎𝑚𝑝𝑙𝑒) 10
Top-k Actions 10

Table 8: Data Collection Parameters

Model Architecture and Training

Both policy and value networks are trained from LLaMA-3.1-8B-Instruct using the following pa-
rameters:

Hyperparameter Value
Learning Rate 1e-5
Learning Rate Schedule Constant
Training Epochs per Iteration 2
FSDP Configuration Full Sharding
Gradient Checkpointing Enabled
Batch Size 8
Max Sequence Length 1024
Training Hardware 4 × H100 GPUs

Table 9: Model Training Hyperparameters

Value Function Buffer Management

To prevent catastrophic forgetting, we maintain experience buffers with the following configuration:

Parameter Value
Buffer History Length (𝐾𝑏𝑢 𝑓 𝑓 𝑒𝑟) 3 iterations
Merging Strategy Equal sampling
Buffer Content State-action pairs with MC estimates

Table 10: Buffer Management Configuration

C.3.2 ALGORITHM IMPLEMENTATION DETAILS

Policy Evaluation Details

For Monte Carlo evaluation, we use the following configuration:

30

Published as a conference paper at ICLR 2025

Parameter Value
MC Trajectories per State-Action 5
Trajectory Completion Full game
Value Aggregation Average over returns
Sampling Temperature 0.7
Action Space Size 9 positions (0-8)

Table 11: Policy Evaluation Configuration

C.3.3 VISUALIZATION

Below we show a comparison of the Language state-action values before and after Language MC
estimation. The evaluation is conducted on the following board:

O X 3
4 O O
7 X 9

Through analyzing multiple complete game trajectories, Language MC helps the value function
develop a comprehensive understanding of long-term consequences of actions, rather than just im-
mediate rewards. This is particularly evident in the enhanced evaluation quality after MC estimation,
where the model provides more strategic insights and nuanced assessment of game positions.

Language State-action Value (Before)

Role Content
SYSTEM You are a player of the game of Tic Tac Toe. The game

goal is to get multiple of one’s own symbols in a row,
either horizontally, vertically, or diagonally, before
the opponent does. If all nine squares are filled and
no player has three in a row, the game is a draw.
The board consists of "O", "X" and grid numbers. The
grid number indicates an empty grid. You are learning
how to evaluate a (board, action) pair in the Tic Tac
Toe game by playing the game given the (board, action)
pair and reflecting on the playing history.
The playing history depicts a game in progress with a
final result. Your answer consists of two elements:
- "thought": Let’s think step by step. Generate your
detailed evaluation over the (board, action) pair
by merely reflecting the playing history after this
pair from different perspectives. You should only
rely on the playing history as context and shouldn’t
evaluate the game with your own judgment. Your
evaluation should contain the following elements: Win
probability, Threat, and Potential strategies.
- "final evaluation": After all of your thoughts,
judge which side takes advantage. 1 means you think
’O’ takes advantage, -1 means you think ’X’ takes
advantage, and 0 means you think the game will be a
draw.
You should output your answer in the JSON format.
EXAMPLE:
user: The (board, action) to evaluate is O’s turn:
Board:
O | O | X

4 | X | 6

31

Published as a conference paper at ICLR 2025

7 | 8 | 9
Action: The O’s move is 4.
Below is the rollout sequence after this (board,
action):
After O’s move 4, the board position is:
O | O | X

O | X | 6

7 | 8 | 9
After X’s move 7, the board position is:
O | O | X

O | X | 6

X | 8 | 9
The game is over. X wins. X wins by occupying the
positions 3, 5, 7.
assistant:
{
"thought": {
"Reflection": "It appears that the initial board
position
O | O | X

4 | X | 6

7 | 8 | 9
and action 4 were not favorable for O, as X was able to
block on O’s moves and ultimately win the game.",
"Win probability": "The win probability for X is
large, while the win probability for O is low.",
"Threat": "X has played center 5 and corner 3. X can
win by playing corner 7. O was able to occupy 1, 4, 7
and create a potential winning opportunity.",
"Potential strategies": "Potential strategies for O
include playing the corner 7 to block X as opposite
corner and win by occupying 1, 4, 7. X could have
occupied 3, 5, 7 to win the game. X has already
occupied 3, 5, and there is 1 step to complete the
plan."
},
"final evaluation": -0.9
}

USER The board to evaluate is O’s turn:
Board:
O | X | 3

4 | O | 6

7 | X | 9
Action: The O’s move is 3.
Below is the rollout sequence 1 after this (board,
action):
After O taking action 3, the board position is:
O | X | O

4 | O | 6

7 | X | 9.
After X taking action 4, the board position is:
O | X | O

32

Published as a conference paper at ICLR 2025

X | O | 6

7 | X | 9.
After O taking action 7, the board position is:
O | X | O

X | O | 6

O | X | 9.
The game is over. O wins. O wins by occupying the
positions [3, 5, 7].
Now generate your evaluation for the (board, action)
pair.

ASSISTANT {
"thought": {
"Reflection": "The initial board position
O | X | 3

4 | O | 6

7 | X | 9
and action 3 were favorable for O, as O was able to
occupy a strategic position and ultimately win the
game.",
"Win probability": "The win probability for O is high,
while the win probability for X is low.",
"Threat": "O has played center 5 and corner 3. O
can win by playing corner 7. X has played center
5’s opposite corner 9 but failed to block O’s winning
line.",
"Potential strategies": "Potential strategies for O
include playing the corner 7 to win by occupying 3, 5,
7. X could have occupied 4, 6, 9 to block O’s winning
line but failed to do so."
},
"final evaluation": 0.9
}

Language State-action Value (After)

Role Content
SYSTEM You are a player of the game of Tic Tac Toe. The game

goal is to get multiple of one’s own symbols in a row,
either horizontally, vertically, or diagonally, before
the opponent does. If all nine squares are filled and
no player has three in a row, the game is a draw.
The board consists of "O", "X" and grid numbers. The
grid number indicates an empty grid. You are learning
how to evaluate a (board, action) pair in the Tic Tac
Toe game by playing the game given the (board, action)
pair and reflecting on the playing history.
The playing history depicts a game in progress with a
final result. Your answer consists of two elements:
- "thought": let’s think step by step. Generate your
detailed evaluation over the (board, action) pair by
merely reflecting the playing history after this pair
from different perspectives. You should only rely on
the playing history as context and don’t evaluate the
game with your own judgment. Your evaluation should
contain the following elements: Win probability,
Threat, and Potential strategies.

33

Published as a conference paper at ICLR 2025

- "final evaluation": After all of your thoughts,
judge which side takes advantage. 1 means you think
’O’ takes advantage, -1 means you think ’X’ takes
advantage, and 0 means you think the game will be a
draw.
You should output your answer in the JSON format.
EXAMPLE:
user: The (board, action) to evaluate is O’s turn:
Board:
O | O | X

4 | X | 6

7 | 8 | 9
Action: The O’s move is 4.
Below is the rollout sequence after this (board,
action):
After O’s move 4, the board position is:
O | O | X

O | X | 6

7 | 8 | 9
After X’s move 7, the board position is:
O | O | X

O | X | 6

X | 8 | 9
The game is over. X wins. X wins by occupying the
positions 3, 5, 7.
assistant: {
"thought": {
"Reflection": "It appears that the initial board
position
O | O | X

4 | X | 6

7 | 8 | 9
and action 4 were not favorable for O, as X was able to
block on O’s moves and ultimately win the game.",
"Win probability": "The win probability for X is
large, while the win probability for O is low.",
"Threat": "X has played center 5 and corner 3. X can
win by playing corner 7. O was able to occupy 1, 4, 7
and create a potential winning opportunity.",
"Potential strategies": "Potential strategies for O
include playing the corner 7 to block X as opposite
corner and win by occupying 1, 4, 7. X could have
occupied 3, 5, 7 to win the game. X has already
occupied 3, 5, and there is 1 step to complete the
plan."
},
"final evaluation": -0.9
}

USER The board to evaluate is O’s turn:
Board:
O | X | 3

4 | O | 6

7 | X | 9

34

Published as a conference paper at ICLR 2025

Action: The O’s move is 9.

Below is the rollout sequence 1 after this (board,
action):
After O taking action 9, the board position is:
O | X | 3

4 | O | 6

7 | X | O.
The game is over. O wins. O wins by occupying the
positions [1, 5, 9].

Below is the rollout sequence 2 after this (board,
action):
After O taking action 9, the board position is:
O | X | 3

4 | O | 6

7 | X | O.
The game is over. O wins. O wins by occupying the
positions [1, 5, 9].

Below is the rollout sequence 3 after this (board,
action):
After O taking action 9, the board position is:
O | X | 3

4 | O | 6

7 | X | O.
The game is over. O wins. O wins by occupying the
positions [1, 5, 9].

Below is the rollout sequence 4 after this (board,
action):
After O taking action 9, the board position is:
O | X | 3

4 | O | 6

7 | X | O.
The game is over. O wins. O wins by occupying the
positions [1, 5, 9].

Below is the rollout sequence 5 after this (board,
action):
After O taking action 9, the board position is:
O | X | 3

4 | O | 6

7 | X | O.
The game is over. O wins. O wins by occupying the
positions [1, 5, 9].

Now generate your evaluation for the (board, action)
pair.

ASSISTANT {
"thought": {
"Reflection": "It appears that the initial board
position

35

Published as a conference paper at ICLR 2025

O | X | 3

4 | O | 6

7 | X | 9
and action 9 were highly favorable for O, as O was able
to win the game immediately after taking action 9 in
all rollout sequences.",
"Win probability": "The win probability for O is
extremely high, while the win probability for X is
extremely low.",
"Threat": "There were no threats from X in any of
the rollout sequences, as O was able to win the game
immediately after taking action 9.",
"Potential strategies": "The potential strategy for O
was to occupy the corner 9 to win the game by occupying
the positions [1, 5, 9]. This strategy was successful
in all rollout sequences."
},
"final evaluation": 1
}

Policy Improvement Details

Below we show a comparison of the Language Policy Improvement procedure at the beginning of
training and at the end. The evaluation is conducted on the following board:

O X 3
4 O 6
7 X 9

The evolution in policy quality demonstrates how our framework effectively leverages value function
assessments to enhance decision-making. The improved policy shows more sophisticated strategic
reasoning, considering not just immediate moves but also their implications for future game states.
This transformation is achieved while maintaining our restriction against using the model’s pre-
trained game knowledge, instead relying purely on learned evaluation capabilities.

Language Policy Improvement (Beginning)

Role Content
SYSTEM You are playing the game tic-tac-toe on a 3*3 board.

Tic Tac Toe is a two-player game played on a grid.
Players take turns marking a space with their
respective symbol. The goal is to get multiple of
one’s own symbols in a row, either horizontally,
vertically, or diagonally, before the opponent does.
If all nine squares are filled and no player has three
in a row, the game is a draw.
The board consists of "O", "X" and grid number. The
grid number indicates an empty grid.
Your task is to determine the best move for the next
player based on the given board position and the next
player.
The evaluations of (board, action) pairs after possible
moves are given.
DO NOT judge the board based on your knowledge, only
use the evaluations to determine the best move.
The evaluation for the next board is in the format of a
JSON, consisting of two elements:
- "thought": Evaluation of the board and action pair.

36

Published as a conference paper at ICLR 2025

- "final evaluation": Judge which side takes advantage.
1 means ’O’ takes advantage, -1 means ’X’ takes
advantage, and 0 means the game will be a draw.

USER Here is the board position and the next player is O:
Board:
O | X | 3

4 | O | 6

7 | X | 9.
The possible moves are [3, 7, 4, 9].
The following are the boards after each possible move:
Evaluation for taking action 3:
{
"thought": {
"Reflection": "The initial board position
O | X | 3

4 | O | 6

7 | X | 9
and action 3 were favorable for O, as O was able to win
the game in all rollout sequences.",
"Win probability": "The win probability for O is high,
while the win probability for X is low.",
"Threat": "O has played corner 1 and center 5. O
can win by playing corner 3, 4, 7 or 9. X has played
corner 2 and 8 but failed to block O’s winning lines.",
"Potential strategies": "Potential strategies for O
include playing the corner 3 to create a potential
winning opportunity. O could have occupied 1, 4, 7
or 1, 5, 9 or 3, 5, 7 to win the game. X could have
blocked O’s winning lines by playing 4 or 7 but failed
to do so."
},
"final evaluation": 0.9
}
Evaluation for taking action 7:
{
"thought": {
"Reflection": "The initial board position
O | X | 3

4 | O | 6

7 | X | 9
and action 7 were favorable for O, as O was able to win
the game in all rollout sequences.",
"Win probability": "The win probability for O is high,
while the win probability for X is low.",
"Threat": "O has played corner 1 and center 5. O can
win by playing corner 7 and then 9, or 4 and then 7.
X has played corner 3 and 8 but failed to block O’s
winning lines.",
"Potential strategies": "Potential strategies for O
include playing the corner 7 to create a potential
winning opportunity and then playing 9 or 4 to win
the game. X could have occupied 3, 6, 9 to block O’s
winning lines but failed to do so."
},
"final evaluation": 0.9
}
Evaluation for taking action 4:

37

Published as a conference paper at ICLR 2025

{
"thought": {
"Reflection": "The initial board position
O | X | 3

4 | O | 6

7 | X | 9
and action 4 were favorable for O, as O was able to win
the game in all rollout sequences.",
"Win probability": "The win probability for O is high,
while the win probability for X is low.",
"Threat": "O has played center 5 and corner 1. O can
win by playing corner 7 or 9. X has played center 6
and corner 3 but failed to block O’s winning lines.",
"Potential strategies": "Potential strategies for O
include playing the corner 7 or 9 to win the game. X
could have occupied 3, 6, 9 to block O’s winning lines
but failed to do so."
},
"final evaluation": 0.9
}
Evaluation for taking action 9:
{
"thought": {
"Reflection": "It appears that the initial board
position
O | X | 3

4 | O | 6

7 | X | 9
and action 9 were favorable for O, as O was able to win
the game in both rollout sequences.",
"Win probability": "The win probability for O is high,
while the win probability for X is low.",
"Threat": "O has played center 5 and corner 1. O
can win by playing corner 9. X has played corner 3
and center 6 is empty, but X was not able to block O’s
moves and ultimately lost the game.",
"Potential strategies": "Potential strategies for O
include playing the corner 9 to create a potential
winning opportunity and then playing 3 or 7 to win
the game. X could have occupied 3, 6, 7 to block O’s
winning opportunity, but X was not able to do so."
},
"final evaluation": 0.9
}
Now, please give your evaluation and the best move for
O based on the given board position:
O | X | 3

4 | O | 6

7 | X | 9.
You should output your answer in the JSON format. Your
answer consists of two elements:
- "thought": Let’s think step by step. Generate
your detailed reflection by analyzing the next board
positions and their evaluations.

38

Published as a conference paper at ICLR 2025

- "best move": The best move for the next player. The
move should be in the format of a number from 1 to 9,
indicating the position on the board. And the move
should be in the available positions [3, 7, 4, 9].
Don’t output extra information except for the JSON
format.

ASSISTANT {
"thought": "Analyzing the given board position
O | X | 3

4 | O | 6

7 | X | 9 and the evaluations of the possible moves, we
can see that all four moves (3, 7, 4, 9) have the same
final evaluation of 0.9, indicating that O has a high
chance of winning with any of these moves. However,
we should consider the potential strategies and threats
for each move.
Move 3 and 7 allow O to create a potential winning
opportunity by playing the corner, while move 4 allows
O to play the center and create a potential winning
opportunity by playing the corner 7 or 9. Move 9
allows O to play the corner and create a potential
winning opportunity by playing 3 or 7.
Considering the potential strategies, all four moves
seem to have similar advantages. However, move 7 seems
to have a slight advantage as it allows O to create a
potential winning opportunity and then play 9 to win
the game, while also putting pressure on X to block the
winning line.
Therefore, the best move for O is 7.",
"best move": 7
}

Language Policy Improvement (End)

Role Content
SYSTEM You are playing the game tic-tac-toe on a 3*3 board.

Tic Tac Toe is a two-player game played on a grid.
Players take turns marking a space with their
respective symbol. The goal is to get multiple of
one’s own symbols in a row, either horizontally,
vertically, or diagonally, before the opponent does.
If all nine squares are filled and no player has three
in a row, the game is a draw.
The board consists of "O", "X" and grid numbers. The
grid number indicates an empty grid.
Your task is to determine the best move for the next
player based on the given board position and the next
player.
The evaluations of (board, action) pairs after possible
moves are given.
DO NOT judge the board based on your knowledge, only
use the evaluations to determine the best move.
The evaluation for the next board is in the format of a
JSON, consisting of two elements:
- "thought": Evaluation of the board and action pair.
- "final evaluation": Judge which side takes advantage.
1 means ’O’ takes advantage, -1 means ’X’ takes
advantage, and 0 means the game will be a draw.

USER Here is the board position and the next player is O:
Board:

39

Published as a conference paper at ICLR 2025

O | X | 3

4 | O | 6

7 | X | 9.
The possible moves are [9].
The following are the boards after each possible move:
Evaluation for taking action 9:
{
"thought": {
"Reflection": "It appears that the initial board
position
O | X | 3

4 | O | 6

7 | X | 9
and action 9 were highly favorable for O, as O was able
to win the game immediately after taking action 9 in
all rollout sequences.",
"Win probability": "The win probability for O is
extremely high, while the win probability for X is
extremely low.",
"Threat": "There were no threats from X in any of
the rollout sequences, as O was able to win the game
immediately after taking action 9.",
"Potential strategies": "The potential strategy for O
was to occupy the corner 9 to win the game by occupying
the positions [1, 5, 9]. This strategy was successful
in all rollout sequences."
},
"final evaluation": 1
}
Now, please give your evaluation and the best move for
O based on the given board position:
O | X | 3

4 | O | 6

7 | X | 9.
You should output your answer in the JSON format. Your
answer consists of two elements:
- "thought": Let’s think step by step. Generate
your detailed reflection by analyzing the next board
positions and their evaluations.
- "best move": The best move for the next player. The
move should be in the format of a number from 1 to 9,
indicating the position on the board. And the move
should be in the available positions [9].
Don’t output extra information except for the JSON
format.

ASSISTANT {
"thought": "Based on the evaluation of the board
position after taking action 9, it appears that this
move is highly favorable for O. The win probability
for O is extremely high, while the win probability
for X is extremely low. There were no threats from
X in any of the rollout sequences, as O was able to
win the game immediately after taking action 9. The
potential strategy for O was to occupy the corner 9
to win the game by occupying the positions [1, 5, 9].
This strategy was successful in all rollout sequences.
Therefore, taking action 9 is the best move for O.",

40

Published as a conference paper at ICLR 2025

"best move": 9
}

C.3.4 BASELINE IMPLEMENTATION DETAILS

For our PPO baseline, we implement a custom PPO agent adapted for language models. The agent
consists of two key components: an actor network based on LLaMA-3.1-8B-Instruct for action
selection, and a critic network for value estimation.

Architecture Details The actor network uses LLaMA-3.1-8B-Instruct’s architecture with added
special tokens for moves 1-9. The critic network consists of a two-layer MLP (Multi-Layer Percep-
tron) that takes the last hidden state from the actor as input:

• Input dimension: LLaMA-3.1-8B hidden size

• Hidden layer: ReLU activation

• Output layer: Single value with Tanh activation

Training Configuration The PPO training uses the following hyperparameters:

Parameter Value
Learning Rate (Actor) 1e-5
Learning Rate (Critic) 1e-5
PPO Epochs 1
Batch Size 16
Gradient Accumulation Steps 2
Value Loss Coefficient 0.5
Entropy Coefficient 0.01
PPO Clip Range 0.2
Discount Factor (𝛾) 0.99
GAE Parameter (𝜆) 0.95

Table 16: PPO Training Hyperparameters

Implementation Details For each training iteration:

• We collect 512 complete game trajectories using 8 parallel environments

• Actions are selected using a temperature-controlled sampling (𝑇 = 0.7) over the logits

• The policy proposes 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 = 1 candidate actions per state and selects top-𝑘 (𝑘 = 1)
based on sampling frequency

• We use 1 A100 GPU for training

• Gradient checkpointing is enabled to optimize memory usage

Both networks are trained using AdamW optimizer with weight decay of 0.01. We maintain experi-
ence buffers with a history length of 1 iterations for on-policy optimization.

41

Published as a conference paper at ICLR 2025

C.3.5 ADDITIONAL EXPERIMENTS

0 2 4 6 8 10
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
W

in
R

at
e

+0.46

(a) First-Move Opponent

Natural Language Actor Critic

Natural Language Actor Critic w/o Action Selection Mask

PPO

GPT-4o as Policy

LLaMA-3.1-70B-Instruct as Policy

LLaMA-3.1-8B-Instruct as Policy

Figure 6: Training results against the deterministic first-move opponent.

C.3.6 ADDITIONAL ABLATION STUDIES

Experience Buffer Size 𝐾𝑏𝑢 𝑓 𝑓 𝑒𝑟 Study We examine the effect of experience buffer size 𝐾𝑏𝑢 𝑓 𝑓 𝑒𝑟 on
learning in Fig. 3(c), demonstrating that when 𝐾𝑏𝑢 𝑓 𝑓 𝑒𝑟 = 3 helps maintain consistent performance
by preserving past experiences.

0 5 10 15 20 25 30
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

W
in

R
at

e

(b) Kbuffer

Kbuffer = 1

Kbuffer = 3

Kbuffer = 5

Figure 7: Ablation studies on experience buffer size 𝐾𝑏𝑢 𝑓 𝑓 𝑒𝑟 .

Action Selection Mask Parameter Study To complement the main ablation studies presented in
Section 5.3.3, we conduct additional experiments on the action selection parameter top-𝑚. Our re-
sults demonstrate that increasing𝑚 from 2 to 10 enhances exploration capabilities while maintaining
training stability. Specifically, larger 𝑚 value (10) show more stable training compared to smaller
values (2-5).

42

Published as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Iteration

0.5

0.6

0.7

0.8
W

in
R

at
e

(a) top-m

top-m=2

top-m=5

top-m=10

Figure 8: Ablation studies on action selection parameter top-𝑚.

D PROMPTS

Here we provide all the prompt templates in three experiments.

D.1 MAZE EXPERIMENT

Language Value/Evaluation Prompt

EVAL_USER_PROMPT_S_V = f"""\
You are playing a simple maze game. An agent is moving in the maze
and the objective is to reach the goal in as few steps as possible.

The possible actions are "move up\n", "move down\n", "move left\n",
"move right\n".

You are a highly skilled evaluator in this game and is expected to
function similar to state value function in reinforcement learning.
At each step I will provide you with the move history of the
agent (from old to new), including where the goal is, your current
position, the walls that surround the agent. Your output evaluation
should be a json array that includes the following concepts:
- "thoughts": Let’s think step by step. Generate your detailed
thought process and evaluation of the agent’s position and the
distance towards the goal.
- "final_evaluation": Concisely judge how good the agent’s current
position is compared to all the possible positions in the maze, in
terms of reaching the goal.

Let’s start a new game. Now, please give your evaluation of the
current state given the move history of the agent:
‘‘‘
{{game_content}}
‘‘‘

"""

43

Published as a conference paper at ICLR 2025

Language TD Prompt

EVAL_USER_PROMPT_S_TD_G2_new = f"""\
You are playing a simple maze game. An agent is moving in the maze
and the objective is to reach the goal in as few steps as possible.

The possible actions are "move up\n", "move down\n", "move left\n",
"move right\n".

You are a highly skilled evaluator in this game, particularly adept
at making accurate assessments through look-ahead of the current maze
position after taking the given action. At each step I will provide
you with the move history of the agent (from old to new), including
where the goal is, your current position, the walls that surround
the agent, the action that the agent is going to take, *along with
several key variations of trajectory pieces after taking this action
(and the corresponding natural language evaluations of the trajectory
pieces)*.
Your task is to understand these look-ahead information and
summarize, derive non-trivial analysis and understanding the *the
agent’s position after taking the action*. Your output evaluation
should be a json array with the following *two* concepts:
- "thoughts": Let’s think step by step. Summarize the look-ahead
information of the variations after taking action {{chosen_action}}.
- "final_evaluation": Now Concisely judge how good the chosen action
is, in terms of reaching the goal.

Now, please give your evaluation given action {{chosen_action}}, the
current environment state:
‘‘‘
{{game_content}}
‘‘‘

and the look-ahead information of different variations after taking
action {{chosen_action}}:
"""

Policy Improvement Prompt

POLICY_IMPROVEMENT_PROMPT_TD = f"""\
You are playing a simple maze game. An agent is moving in the maze
and the objective is to reach the goal in as few steps as possible.

Your task is to determine the best action for the next time step
given the current state (the move history of the agent (from old to
new), including where the goal is, your current position, the walls
that surround the agent).

Your possible actions are "move up\n", "move down\n", "move left\n",
"move right\n".

The evaluations of the agent after possible actions are given. Each
of them consists of two elements:
- "thoughts": Summarization of the look-ahead information of the
variations after taking the chosen action.
- "final_evaluation": Judge how good the chosen action is, in terms
of reaching the goal.

DO NOT judge the action based on your exterior knowledge, only use
the given evaluations to determine the best move.

Here are the evaluations of each possible action:

44

Published as a conference paper at ICLR 2025

For action "move up", {{evaluations_up}}
,
For action "move down", {{evaluations_down}}
,
For action "move left", {{evaluations_left}}
,
For action "move right", {{evaluations_right}}

Return the best action (choose only one from the possible actions)
given the evaluations in a json array with a key "action".
"""

D.2 BREAKTHROUGH EXPERIMENT

Language Value/Evaluation Prompt

GAME_RULE_PROMPT = """Here is the rule for the Breakthrough board
game:
The game is played on an 5x5 board for 2 players (white and black),
with each player starting with 10 pawns. white pawns are on the first
two rows and black pawns are on the last two rows.
Black moves first. In each turn, players can move one of their pieces
one square forward, diagonally forward if the target square is empty.
Or it can capture an opponent’s piece if that square is one step
diagonally forward.
The game ends when one player successfully break through the opponent
lines -- either move a piece to the opposite last row of the board or
captures all of the opponent’s pieces.

For board representation, we use b for black pieces, w for white
pieces, and . for empty squares. (1-5) and (a-e) are used to show
the rows and columns index respectively."""

EVAL_SYSTEM_PROMPT = f"""{GAME_RULE_PROMPT}

You are a highly skilled evaluator in this game. I will provide you
with specific board information representing the current board. Your
output should include the following concepts:
1. *Tactical Considerations*: Any immediate threats, potential
tactics, or vulnerabilities in the position.
2. *Positional Evaluation*: Consideration of pawn structure, piece
activity, control of key squares, and game safety.
3. *Suggested Moves*: One or two strong candidate moves for the side
to move, along with a brief rationale for comparing different moves.
4. *Advantage*: Based on all previous rationale, determine if white
or black takes advantage. Use <white> or <black> to represent the
winning side.

Your response should be informative and concise."""

EVAL_USER_PROMPT = """*The board you need to evaluate:*
{board}"""

Language TD Prompt

TD_SYSTEM_PROMPT = f"""{GAME_RULE_PROMPT}

You are a highly skilled evaluator in this game, particularly adept
at making accurate assessments through look-ahead analysis of the
current board position.
I will provide you with current board representation, *along with
several key variations starting from this position (and their

45

Published as a conference paper at ICLR 2025

corresponding natural language evaluations of the subsequent
positions)*.

Your task is to aggregate and compare these look-ahead information,
to summarize, derive non-trivial analysis about the *current board*.
Your output should include the following concepts:
1. *Tactical Considerations*: Any immediate threats, potential
tactics, or vulnerabilities in the position.
2. *Positional Evaluation*: Consideration of pawn structure, piece
activity, control of key squares, and game safety.
3. *Suggested Moves*: One or two strong candidate moves for the side
to move, along with a brief rationale for comparing different moves.
4. *Advantage*: Based on all previous rationale, determine if white
or black takes advantage. Use <white> or <black> to represent the
winning side.

Your response should be informative and concise."""

TD_USER_PROMPT = """*The board you need to evaluate:*

{board}

Here are the look-ahead variations from the current board position:
Key Variations and Subsequent Evaluation::

{variations}

Please provide your analysis and understanding of the current board
position based on the provided look-ahead information.
Your response should be informative and concise."""

VARIATION_PROMPT = """*Variation {i}:*
Description of variation’s move sequence:
{move_desc}

Subsequent position evaluation:
{subsequent_eval}"""

SUBSEQUENT_PROMPT = """The subsequent board is:

{sub_board}

The evaluation of this subsequent board is:

{sub_eval}"""

D.3 TIC-TAC-TOE EXPERIMENT

Policy Inference Prompt

POLICY_INFERENCE_SYSTEM_PROMPT = """\
You are an expert agent at playing the game tic-tac-toe on a 3*3
board. Tic Tac Toe is a two-player game played on a grid.
Players take turns marking a space with their respective symbol.
The goal is to get multiple of one’s own symbols in a row, either
horizontally, vertically, or diagonally, before the opponent does.
If all nine squares are filled and no player has three in a row, the
game is a draw.

Your task is to choose the best move given board position.
The board consists of "O", "X" and grid number. The grid number
indicates empty grid.
You should output your answer in the json format. Your answer
consists of two elements:

46

Published as a conference paper at ICLR 2025

- "thought": let’s think step by step. Generate your detailed thought
process and plan for the next move.
- "best_move": the best move for the next player. The move should be
in the format of a number from 1 to 9, indicating the position on the
board. And the move should be in the available positions."""

POLICY_INFERENCE_EXAMPLE_USER_PROMPT = """\
Here is the board position and the next player is O:
O | O | X

4 | X | 6

7 | 8 | 9
The available move positions are 4, 6, 7, 8, 9.
"""

POLICY_INFERENCE_EXAMPLE_ASSISTANT_PROMPT = """\
{"thought": "It appears that the initial board position
O | O | X

4 | X | 6

7 | 8 | 9 was favorable for X, as X has occupied the positions 3,
5 and X can win by occupying the position 7. O has occupied the
positions 1, 2. Therefore, the best move for O is to occupy the
position 7 to block X and create a potential winning opportunity by
occupying the positions 1, 4, 7.", "best_move": 7}
"""

POLICY_INFERENCE_USER_PROMPT = """\
Here is the board position and the next player is {next_player}:
{state}. The available move positions are {available_positions}.
"""

Policy Improvement Prompt

POLICY_IMPROVEMENT_SYSTEM_PROMPT = """\
You are playing the game tic-tac-toe on a 3*3 board. Tic Tac Toe is a
two-player game played on a grid.
Players take turns marking a space with their respective symbol.
The goal is to get multiple of one’s own symbols in a row, either
horizontally, vertically, or diagonally, before the opponent does.
If all nine squares are filled and no player has three in a row, the
game is a draw.
The board consists of "O", "X" and grid number. The grid number
indicates empty grid.
Your task is to determine the best move for the next player based on
the given board position and the next player.
The evaluations of (board, action) pairs after possible moves are
given.
DO NOT judge the board based on your knowledge, only use the
evaluations to determine the best move.
The evaluation for the next board is in the format of a json format,
consisting of two elements:
- "thought": evaluation of the the board and action pair.
- "final_evaluation": Judge which side takes advantage. 1 means ’O’
takes advantage, -1 means ’X’ takes advantage, and 0 means the game
will be a draw.
"""

POLICY_IMPROVEMENT_USER_PROMPT = """\
Here is the board position and the next player is {next_player}:
{state}. The possible moves are {available_positions}.

47

Published as a conference paper at ICLR 2025

The following are the boards after each possible move:
{next_states}

Now, please give your evaluation and the best move for {next_player}
based on the given board position {state}.
You should output your answer in the json format. Your answer
consists of two elements:
- "thought": let’s think step by step. Generate your detailed
reflection by analyzing the next board positions and their
evaluations.
- "best_move": the best move for the next player. The move should
be in the format of a number from 1 to 9, indicating the position
on the board. And the move should be in the available positions
{available_positions}.
Don’t output extra information except for the json format.
"""

Policy Evaluation Prompt

POLICY_EVALUATION_SYSTEM_PROMPT = """You are a player of the game of
Tic Tac Toe. \nThe game goal is to get multiple of one’s own symbols
in a row, either horizontally, vertically, or diagonally, before the
opponent does. If all nine squares are filled and no player has three
in a row, the game is a draw. \nThe board consists of \"O\", \"X\"
and grid number. The grid number indicates empty grid. \nYou are
learning how to evaluate a (board, action) pair in the tic tac toe
by playing the game given the (board, action) pair and reflect the
playing history. \nThe playing history depicts a game in progress
with a final result. Your answer consists of two elements:
- "thought": let’s think step by step. Generate your detailed
evaluation over the (board, action) pair by merely reflecting the
playing history after this pair from different perspectives. You
should only rely on the playing history as context and don’t evaluate
game with your own judgement. Your evaluation should contain the
following elements: Win probability, Threat, Potential strategies.
- "final_evaluation": After all of your thoughts, judge which side
takes advantage. 1 means you think ’O’ takes advantage, -1 means you
think ’X’ takes advantage, and 0 means you think the game will be a
draw.
You should output your answer in the json format."""

POLICY_EVALUATION_EXAMPLE_USER_PROMPT = """The (board, action) to
evaluate is O’s turn:
Board:
O | O | X

4 | X | 6

7 | 8 | 9
Action:
The O’s move is 4.

Below is the rollout sequence after this (board, action):
After O’s move 4, the board position is:
O | O | X

O | X | 6

7 | 8 | 9
After X’s move 7, the board position is:
O | O | X

O | X | 6

48

Published as a conference paper at ICLR 2025

X | 8 | 9
The game is over. X wins. X wins by occupying the positions 3, 5, 7.
"""

POLICY_EVALUATION_EXAMPLE_ASSISTANT_PROMPT = """
{"thought": {"Reflection": "It appears that the initial board
position
O | O | X

4 | X | 6

7 | 8 | 9
and O’s move 4 were not favorable for O, as X was able to block on
O’s move at 7 and ultimately win the game.", "Win probability": "The
win probability for X is large, while the win probability for O is
low.", "Threat": "X has played at 5 and 3. X can win by move 7. O
can occupy 1, 4, 7, and create a potential winning opportunity. X
occupies 5, which is a key position to win the game.", "Potential
strategies": "Potential strategies for O include playing at 7 to
block X and create a potential win by occupying 1, 4, 7. X could have
occupied 3, 5, 7 to win the game. X has already occupied 3, 5, and
needs only 1 move to complete the win."}
"final_evaluation": -0.8}
"""

POLICY_EVALUATION_USER_PROMPT = """The board to evaluate is
{player}’s turn:
Board:
{board}
Action: The {player}’s move is {action}.

Below is the rollout sequence 1 after this (board, action):
After {player} taking action {action}, the board position is:
{rollout_board_1}
The game is over. {winner_1} wins. {winner_1} wins by occupying the
positions {positions_1}.

...

Below is the rollout sequence N after this (board, action):
After {player} taking action {action}, the board position is:
{rollout_board_N}
The game is over. {winner_N} wins. {winner_N} wins by occupying the
positions {positions_N}.

Now generate your evaluation for the (board, action) pair."""

E ANALOGY

E.1 LANGUAGE MC

As mentioned in the main paper and figure, language MC is an analogy of traditional MC. Specif-
ically, the mean and sum operation in traditional MC estimate can be replaced by the new lew
language aggregator 𝐺1. 𝑟 can correspond to the intermediate transition for action, reward, and next
state. The discount factor 𝛾 can also have an interesting analogy in 𝐺1 if 𝐺1 acts as a lossy infor-
mation compressor. Specifically, just as the discount factor reduces the weight of future rewards,
𝐺1 can perform a lossy compression of future information, selectively retaining only the recent and
most relevant aspects.

49

Published as a conference paper at ICLR 2025

E.2 LANGUAGE TD

Most Analogies between language TD and traditional TD share similarities with that in the language
MC setting. 𝐺1 is a language aggregator over multiple lookahead variations, corresponding to the
trajectory mean operation, while 𝐺2 combines immediate change/intermediate transition and future
value evaluation, akin to the sum operation.

F LIMITATION AND FUTURE WORK

Limitations. Currently, NLRL still faces several limitations. First, our experiments demonstrate
its effectiveness primarily in environments with discrete action spaces and low-dimensional (tex-
tualisable) states. Its performance in environments involving continuous action spaces and high-
dimensional states (e.g., low-level robotic control tasks) remains largely unexplored. Second, our
experiments are primarily conducted in small-scale settings due to the substantial computational
cost associated with invoking Large Language Models. The time efficiency of the current NLRL
approach is significantly lower than that of traditional RL methods using smaller networks.

Future work. Given NLRL’s potential, there are several promising directions for future research.
First, a theoretical foundation for the entire framework in the language space is needed to move
beyond analogical reasoning towards a more robust, principled basis. This would help formalise the
framework and enhance its generalisability. Another important direction is exploring how NLRL can
be integrated more organically with existing research on self-evaluation, self-improvement, LLM
agent framework, and LLM’s planning. Such integration could unlock new capabilities and effi-
ciency improvements. Additionally, in terms of application domains, there is significant potential to
extend NLRL beyond the current setups–we are actively exploring extending NLRL to general do-
mains beyond games, such as reasoning tasks (Cobbe et al., 2021; Xin et al., 2024) and code (Chen
et al., 2021).

50

	Introduction
	Preliminary of Reinforcement Learning
	Natural Language Reinforcement Learning
	RL Concept Analogies
	Language Generalized Policy Iteration
	Language Policy Evaluation
	Language Policy Improvement

	NLRL Algorithms
	Language GPI boosts LLM's critic and policy by prompting (Combining ①, ②, ③, ⑤)
	Training natural language value function for a given policy (Combining ②, ③, ④)
	Natural Language Actor-Critic Learning (Combining ①, ②, ③, ④, ⑤, ⑥)

	Experiments
	Language GPI by prompting (Sec 4.1)
	Training Natural Language Value Function with language TD (Sec 4.2)
	Experiment Setup and Methods
	Experimental Results

	Natural Language Actor-Critic Learning (Sec 4.3)
	Experiment Setup and Methods
	Stabilizing language value function
	Experimental Results

	Related work
	Conclusion
	Detailed Related work
	Algorithms
	Language GPI by prompting
	Train natural language language value function with language TD
	Natural language actor critic

	Experimental details
	Maze Experiment
	Experiment Details
	Language GPI Visualization
	The effect of Language TD on the Value function

	Breakthrough Experiment
	Experiment Details
	Language TD Visualization
	Comparison of language value function

	Tic-tac-toe Experiment
	Training Infrastructure
	Algorithm Implementation Details
	Visualization
	Baseline Implementation Details
	Additional Experiments
	Additional Ablation Studies

	Prompts
	Maze experiment
	Breakthrough Experiment
	Tic-tac-toe Experiment

	Analogy
	Language MC
	Language TD

	Limitation and future work

