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Abstract

Deploying deep neural networks for risk-sensitive tasks necessitates an uncertainty
estimation mechanism. This paper introduces hierarchical selective classification
(HSC), extending selective classification to a hierarchical setting. Our approach
leverages the inherent structure of class relationships, enabling models to reduce the
specificity of their predictions when faced with uncertainty. In this paper, we first
formalize hierarchical risk and coverage, and introduce hierarchical risk-coverage
curves. Next, we develop algorithms for performing HSC (which we refer to as “in-
ference rules”), and propose an efficient algorithm that guarantees a target accuracy
constraint with high probability. We also introduce Calibration-Coverage curves,
which analyze the effect of hierarchical selective classification on calibration. Our
extensive empirical studies on over a thousand ImageNet classifiers reveal that train-
ing regimes such as CLIP, pretraining on ImageNet21k, and knowledge distillation
boost hierarchical selective performance. Lastly, we show that HSC improves both
selective performance and confidence calibration. Code is available at https://
github.com/shanigoren/Hierarchical-Selective-Classification.

1 Introduction

Deep neural networks (DNNs) have achieved incredible success across various domains, including
computer vision and natural language processing. To ensure the reliability of models intended for
real-world applications we must incorporate an uncertainty estimation mechanism, such as selective
classification [19], which allows a model to abstain from classifying samples when it is uncertain
about their predictions. Standard selective classification, however, has an inherent shortcoming:
for any given sample, it is limited to either making a prediction or rejecting it, thereby ignoring
potentially useful information about the sample, in case of rejection.
To illustrate the potential consequences of this limitation, consider a model trained for classifying
different types of brain tumors from MRI scans, including both benign and malignant tumors. If
a malignant tumor is identified with high confidence, immediate action is needed. For a particular
hypothetical scan, suppose the model struggles to distinguish between 3 subtypes of malignant tumors,
assigning a confidence score of 0.33 to each of them (assuming those estimates are well-calibrated
and sum to 1). In the traditional selective classification framework, if the confidence threshold is
higher than 0.33, the model will reject the sample, failing to provide valuable information to alert
healthcare professionals about the patient’s condition, even though the model has enough information
to conclude that the tumor is malignant with high certainty. This could potentially result in delayed
diagnosis and treatment, posing a significant risk to the patient’s life. However, a hierarchically-aware
selective model with an identical confidence threshold would classify the tumor as malignant with
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99% confidence. Although this prediction is less specific, it remains highly valuable as it can promptly
notify healthcare professionals, leading to early diagnosis and life-saving treatment for the patient.
This motivates us to propose hierarchical selective classification (HSC), an extension of selective
classification to a setting where the classes are organized in a hierarchical structure. Such hierarchies
are typically represented by a tree-like structure, where each node represents a class, and the
edges reflect a semantic relationship between the classes, most commonly an ’is-a’ relationship.
Datasets with an existing hierarchy are fairly common, as there are many well-established predefined
hierarchies available, such as WordNet [33] and taxonomic data for plants and animals. Consequently,
popular datasets like ImageNet [11], which is widely used in computer vision tasks, and iNaturalist
[24], have been built upon these hierarchical structures, providing ready-to-use trees. The ImageNet
dataset, for example, is organized according to the WordNet hierarchy. A visualization of a small
portion of the ImageNet hierarchy is shown in Figure 1. In cases where a hierarchical tree structure is
not provided with the dataset, it can be automatically generated using methods such as leveraging
LLMs [7, 17, 28, 57].
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Figure 1: A detailed example of HSC for the output of ViT-L/16-384 on a specific sample. The base
classifier outputs leaf softmax scores, with internal node scores being the sum of their descendant
leaves’ scores, displayed in parentheses next to each node. The base classifier incorrectly classifies
the image as a ’Golden Retriever’ with low confidence. A selective classifier can either make the
same incorrect leaf prediction if the confidence threshold is below 0.29, or reject the sample. A
hierarchical selective classifier with the Climbing inference rule (see Section 3) climbs the path from
the predicted leaf to the root until the confidence threshold θ is met. Setting θ above 0.29 yields a
hierarchically correct prediction, with smaller θ values increasing the coverage. An Algorithm for
determining the optimal threshold is introduced in Section 4.

The key contributions of this paper are as follows:
(1) We extend selective classification to a hierarchical setting. We define hierarchical selective
risk and hierarchical coverage, leading us to introduce hierarchical risk-coverage curves.
(2) We introduce hierarchical selective inference rules, i.e., algorithms used to hierarchically
reduce the information in predictions based on their uncertainty estimates, improving hierarchical
selective performance compared to existing baselines. We also identify and define useful properties
of inference rules.
(3) We propose a novel algorithm to find the optimal confidence threshold compatible with any
base classifier without requiring any fine-tuning, that achieves a user-defined target accuracy with
high probability, which can also be set by the user, greatly improving over the existing baseline.
(4) We conduct a comprehensive empirical study evaluating HSC on more than 1,000 ImageNet
classifiers. We present numerous previously unknown observations, most notably that training
approaches such as pretraining on larger datasets, contrastive language-image pretraining (CLIP) [35],
and knowledge distillation significantly boost selective hierarchical performance. Furthermore, we
define hierarchical calibration and discover that HSC consistently improves confidence calibration.

2 Problem Setup

Selective Classification: Let X be the input space, and Y be the label space. Samples are drawn
from an unknown joint distribution P (X × Y) over X × Y . A classifier f is a prediction function
f : X → Y , and ŷ = f(x) is the model’s prediction for x. The true risk of a classifier f w.r.t. P
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is defined as: R(f |P ) = EP [ℓ(f(X), Y )], where ℓ : Y × Y → R+ is a given loss function, for
instance, the 0/1 loss. Given a set of labeled samples Sm = {(xi, yi)}mi=1, the empirical risk of
f is: R̂(f |Sm) = 1

m

∑m
i=1 ℓ(f(xi), yi). Following the notation of [21], we use a confidence score

function κ(x, ŷ|f) to quantify prediction confidence. We require κ to induce a partial order over
instances in X . In this work, we focus on the most common and well-known κ function, softmax
response [10, 40]. For a classifier f with softmax as its last layer: κ(x, ŷ|f) = fŷ(x). Softmax
response has been shown to be a reliable confidence score in the context of selective classification
[18, 19] as well as in hierarchical classification [46], consistently achieving solid performance.
A selective model [9, 13] is a pair (f, g) where f is a classifier and g : X → {0, 1} is a selection
function, which serves as a binary selector for f . The selective model abstains from predicting
instance x if and only if g(x) = 0. The selection function g can be defined by a confidence threshold
θ: gθ(x|κ, f)= 1[κ(x, ŷ|f) > θ]. The performance of a selective model is measured using selective
risk and coverage. Coverage is defined as the probability mass of the non-rejected instances in X :
ϕ(f, g) = EP [g(X)]. The selective risk of (f, g) is: R(f, g) = EP [ℓ(f(X),Y )g(X)]

ϕ(f,g) .

Risk and coverage can be evaluated over a labeled set Sm, with the empirical coverage de-
fined as: ϕ̂(f, g|Sm) = 1

m

∑m
i=1 g(xi), and the empirical selective risk: R̂(f, g|Sm) =

1
m

∑m
i=1 ℓ(f(xi),yi)g(xi)

ϕ̂(f,g|Sm)
. The performance profile of a selective classifier can be visualized by a

risk-coverage curve (RC curve) [13], a curve showing the risk as a function of coverage, measured
on a set of samples. The area under the RC curve, namely AURC, was defined by [21] for quantifying
selective performance via a single scalar. See Figure 2a for an example of an RC Curve.

Hierarchical Classification: Following the notations of [12] and [46], a hierarchy H = (V,E) is
defined by a tree, with nodes V and edges E, the root of the tree is denoted r ∈ V . Each node v ∈ V
represents a semantic class: the leaf nodes L ⊆ V are mutually exclusive ground-truth classes, and
the internal nodes are unions of leaf nodes determined by the hierarchy. The root represents the
semantic class containing all other objects. A sample x that belongs to class y also belongs to the
ancestors of y. Each node has exactly one parent and one unique path to it from the root node. The
set of leaf descendants of node v is denoted by L(v), and the set of ancestors of node v, including
v itself, is denoted by A(v). A hierarchical classifier f : X → V labels a sample x ∈ X as a node
v ∈ V , at any level of the hierarchy, as opposed to a flat classifier, that only predicts leaves.
Given the hierarchy, it is correct to label an image as either its ground truth leaf node or any of its
ancestors. For instance, a Labrador is also a dog, a canine, a mammal, and an animal. While any
of these labels is technically correct for classifying a Labrador, the most specific label is clearly
preferable as it contains the most information. Thus, it is crucial to observe that the definition
of hierarchical correctness is incomplete without considering the amount of information held by
the predictions. The correctness of a hierarchical classifier f on a set of samples Sm is defined
by: 1

m

∑m
i=1 1[f(xi) ∈ A(yi)]. Note that when H is flat and does not contain internal nodes,

the hierarchical accuracy reduces to the accuracy of a standard leaf classifier. In the context of
classification tasks, the goal is usually to maximize accuracy. However, a trivial way to achieve 100%
hierarchical accuracy would be to simply classify all samples as the root node. For this reason, a
mechanism that penalizes the model for predicting less specific nodes must be present as well. In
section 3 we define coverage, which quantifies prediction specificity. We aim for a trade-off between
the accuracy and information gained by the prediction, which can be controlled according to a user’s
requirements. A review of related work involving hierarchical classification can be found in section 6.

Hierarchical Selective Classification: Selective classification offers a binary choice: either to predict
or completely reject a sample. We propose hierarchical selective classification (HSC), a hierarchical
extension of selective classification, which allows the model to retreat to less specific nodes in the
hierarchy in case of uncertainty. Instead of rejecting the whole prediction, the model can now partially
reject a sample, and the degree of the rejection is determined by the model’s confidence. For example,
if the model is uncertain about the specific dog breed of an image of a Labrador but is confident
enough to determine that it is a dog, the safest choice by a classic selective framework would be to
reject it. In our setting, however, the model can still provide useful information that the object in the
image is a dog (see Figure 1).
A hierarchical selective classifier fH ≜ (f, gHθ ) consists of f , a base classifier, and gHθ : X → V , a
hierarchical selection function with a confidence threshold θ. gHθ determines the degree of partial
rejection by selecting a node in the hierarchy with confidence higher than θ. Defining gHθ now
becomes non-trivial. For instance, gHθ can traverse the hierarchy tree, directly choose a single node,
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or follow any other algorithm, as long as the predicted node has sufficient confidence. For this reason,
we refer to gHθ as a hierarchical inference rule. In section 3 we introduce several inference rules and
discuss their properties.
Hierarchical selective classifiers differ from the previously discussed hierarchical classifiers by requir-
ing a hierarchical selection function. In contrast to non-selective hierarchical classifiers, which may
produce predictions at internal nodes without a selection function, a hierarchical selective classifier
can handle uncertainty by gradually trading off risk and coverage, controlled by gHθ . This distinction
is crucial because hierarchical selective classifiers provide control over the full trade-off between risk
and coverage, which is not always attainable with non-selective hierarchical classifiers.
To our knowledge, controlling the trade-off between accuracy and specificity was only previously
explored by [12], who proposed the Dual Accuracy Reward Trade-off Search (DARTS) algorithm,
which aims to obtain the most specific classifier for a user-specified accuracy constraint. Our approach
differs from theirs in that we guarantee control over the full trade-off, while some coverages cannot
be achieved by DARTS.
As mentioned in section 2, it is considered correct to label an image as either its ground truth leaf
node or any of its ancestors. Thus, we employ a natural extension of the 0/1 loss to define the true
risk of a hierarchical classifier fH with regard to P : RH(fH |P ) = EP [f

H(X) /∈ A(Y )], and the
empirical risk over a labeled set of samples Sm: R̂H(fH |Sm) = 1

m

∑m
i=1 1[f

H(xi) /∈ A(yi)]. An
additional risk penalizing hierarchical mistake severity is discussed in Appendix A.
To ensure that specific labels are preferred, it is necessary to consider the specificity of predic-
tions. Hierarchical selective coverage, which we propose as a hierarchical extension of selec-
tive coverage, measures the amount of information present in the model’s predictions. A natural
quantity for that is entropy, which measures the uncertainty associated with the classes beneath
a given node. Assuming a uniform prior on the leaf nodes, the entropy of a node v ∈ V is
H(v) = −

∑
v′∈L(v)

1
|L(v)| log(

1
|L(v)| ) = log(|L(v)|). At the root, the entropy reaches its maximum

value, H(r) = log(|L|), while at the leaves the entropy is minimized, with H(y) = 0 for any leaf
node y ∈ L. This allows us to define coverage for a single node v, regardless of gHθ . We define
hierarchical coverage (from now on referred to as coverage) as the entropy of v relative to the
entropy of the root node: ϕH(v) = 1− H(v)

H(r) . The root node has zero coverage, as it does not contain
any information. The coverage gradually increases until it reaches 1 at the leaves. We can also
define true coverage for a hierarchical selective model: ϕH(fH) = EP [ϕ(f

H(X)]. The empirical
coverage of a classifier over a labeled set of samples Sm is defined as the mean coverage over its
predictions: ϕ̂H(fH |Sm) = 1

m

∑m
i=1 ϕ(f

H(xi)). For a hierarchy comprised of leaves and a root
node, hierarchical coverage reduces to selective coverage, where classifying a sample as the root
corresponds with rejection.
The hierarchical selective performance of a model can be visualized with a hierarchical RC curve. The
area under the hierarchical RC curve, which we term hAURC, extends the non-hierarchical AURC,
by using the hierarchical extensions of selective risk and coverage. For examples of hierarchical RC
curves see Figure 2a and Figure 2b.

Hierarchical Calibration: Confidence calibration refers to the task of predicting probability esti-
mates that accurately reflect the true likelihood of correctness. As reducing hierarchical coverage
may improve accuracy, it may also improve calibration over the samples the model has not abstained
from. To capture this relationship, we introduce the concept of Calibration-Coverage Curves (CC
curves), which, analogous to RC curves, plot the Expected Calibration Error (ECE) [34] as a function
of coverage. see Figure 5 for an example.

3 Hierarchical Selective Inference Rules

To define a hierarchical selective model fH = (f, gHθ ) given a base classifier f , an explicit definition
of gHθ is required. gHθ determines the internal node in the hierarchy fH retreats to when the leaf
prediction of f is uncertain. gHθ requires obtaining confidence for internal nodes in the hierarchy.
Since most modern classification models only assign probabilities to leaf nodes, we follow [12]
by setting the probability of an internal node to be the sum of its leaf descendant probabilities:
fH
v (x) =

∑
y∈L(v) fy(x). Unlike other works that assign the sum of leaf descendant probabilities to

internal nodes, our algorithm first calibrates leaf probabilities through temperature scaling. Since
the probabilities of internal nodes heavily rely on the leaf probabilities supplied by f , calibration is
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Algorithm 1 Climbing Inference Rule

Input: Classifier f , class hierarchy H = (V,E), sample xi ∈ X , confidence threshold θ.
Output: Predicted node v̂.

Perform temperature scaling [23]
Obtain fv(xi) ∀v ∈ V
v̂ ← argmax

y∈L
fy(xi)

while fv̂(xi) < θ do
v̂ ← parent(v̂)

end while

beneficial for obtaining more reliable leaf probabilities, and since the internal nodes probabilities are
sums of leaf probabilities, this cumulative effect is even more pronounced. Further, [18] found that
applying temperature scaling also improves ranking and selective performance, which is beneficial
to our objective. In this section, we introduce several inference rules, along with useful theoretical
properties. We propose the Climbing inference rule (Algorithm 1), which starts at the most likely leaf
and climbs the path to the root, until reaching an ancestor with confidence above the threshold. A
visualization of the Climbing inference rule is shown in Figure 1.
We compare our proposed inference rules to the following baselines: The first is the selective
inference rule, which predicts ’root’ for every uncertain sample (this approach is identical to standard
“hierarchically-ignorant” selective classification). The second hierarchical baseline, proposed by [46],
selects the node with the highest coverage among those with confidence above the threshold. We
refer to this rule as “Max-Coverage” (MC), and its algorithm is detailed in Appendix B.

Certain tasks might require guarantees on inference rules. For example, it can be useful to ensure that
an inference rule does not turn a correct prediction into an incorrect one. Therefore, for an inference
rule gHθ we define:
1. Monotonicity in Correctness: For any θ1 ≤ θ2, base classifier f and labeled sample (x, y):
(f, gHθ1)(x) ∈ A(y) ⇒ (f, gHθ2)(x) ∈ A(y). Increasing the threshold will never cause a correct
prediction to become incorrect.
2. Monotonicity in Coverage: For any θ1 ≤ θ2, base classifier f and labeled sample (x, y):
ϕH [(f, gHθ1)(x)] ≥ ϕH [(f, gHθ2)(x)]. Increasing the threshold will never increase the coverage.

The Climbing inference rule outlined in Algorithm 1 satisfies both monotonicity properties. MC
satisfies monotonicity in coverage, but not in correctness. An additional algorithm that does not
satisfy any of the properties is discussed in Appendix C.
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Figure 2: (a) hierarchical RC curve of a ViT-L/16-384 model trained on ImageNet1k, evaluated with
the 0/1 loss as the risk and softmax response as its confidence function κ. The purple shaded area
represents the area under the RC curve (hAURC). Full coverage occurs when the model accepts all
leaf predictions, for which the risk is 0.13. Increasing the confidence threshold leads to the rejection
of more samples. For example, when the threshold is 0.77 the the risk is 0.04, with coverage 0.8.
(b) hierarchical RC curves of different inference rules with EVA-L/14-196 [14] as the base classi-
fier. When the coverage is 1.0, all inference rules predict leaves. Each inference rule achieves a
different trade-off, resulting in distinct curves. This example represents the prevalent case, where the
“hierarchically-ignorant” selective inference rule performs the worst and Climbing outperforms MC.
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Algorithm 2 Optimal Hierarchical Selective Threshold

Input: Hierarchical selective classifier fH = (f, gH), hierarchy H = (V,E), calibration set
Sn = {(xi, yi)}ni=1, target accuracy 1− α ∈ (0, 1), confidence level 1− δ.

Output: Optimal threshold θ̂, and ϵ s.t. P (|C(n, α) − (1 − α)| ≤ ϵ) ≥ 1 − δ, where C(n, α) =

P (θn+1 ≤ θ̂|Sn)
1: Based on α, n, δ, calculate ϵ ▷ See Appendix E
2: for (xi, yi) in Sn do
3: Obtain fH

v (xi), ∀v ∈ V
4: θi ← (gHθ )−1(xi|κ, f) ▷ See Algorithm 5 in Appendix D
5: end for
6: Sort {θi}ni=1 in ascending order
7: θ̂ ← θ⌈(n+1)(1−α)⌉

When comparing hierarchical selective models, we find it useful to measure the performance improve-
ment gained by using hierarchical selective inference. We propose a new metric: hierarchical gain,
defined as the improvement in hAURC between (f, gθ), a “hierarchically-ignorant” selective model,
and (f, gH

θ ), the same base classifier with a hierarchical inference rule. This metric might also point
to which models have a better hierarchical understanding, as it directly measures the improvement
gained by allowing models to leverage hierarchical knowledge. Note that if the selective inference
rule is better than the hierarchical inference rule being assessed, the hierarchical gain will be negative.
An illustrative individual example of RC curves comparison for one model is shown in Figure 2b.

4 Optimal Selective Threshold Algorithm

In Section 3, we defined several inference rules that, given a confidence threshold, return a predicted
node in the hierarchy. In this section, we propose an algorithm that efficiently finds the optimal thresh-
old for a user-defined target accuracy and confidence level. The algorithm, outlined in Algorithm 2,
receives as input a hierarchical selective classifier fH , an accuracy target 1− α, a confidence level
1− δ (which refers to the interval around 1− α, not to be confused with the model’s confidence),
and a calibration set. It outputs the optimal threshold θ̂ that ensures the classifier’s accuracy on an
unseen test set falls within a 1− δ confidence interval around 1− α, with a resulting error margin of
ϵ. The threshold is calculated once on the calibration set and then used statically during inference.
The algorithm does not require any retraining or fine-tuning of the model’s weights. For each sample
(xi, yi) in the calibration set, the algorithm first calculates θi, the minimal threshold that would have
made the prediction fH(xi) hierarchically correct. Then θ̂, the optimal threshold, is calculated in a
method inspired by split conformal prediction [48].

Theorem 1 Suppose the calibration set Sn = {(xi, yi)}ni=1 and a given test sample (xn+1, yn+1)

are exchangeable. For any target accuracy α ∈ (0, 1) and δ, define θn+1, θ̂ and ϵ as in Algorithm 2,
and C(n, α) = P (θn+1 ≤ θ̂|Sn). Then:P (|C(n, α)− (1− α)| ≤ ϵ) ≥ 1− δ.
Proof: See Appendix E.
Remark on Theorem 1: our algorithm can provide an even greater degree of flexibility: the user
may choose to set the values of any three parameters out of α, n, ϵ, δ. With the three parameters
fixed, we can compute the remaining parameter. The size of the calibration set is of particular interest.
Although increasing n yields more stable results, our guarantees hold for calibration sets of any size.
Even for a small calibration set, our algorithm provides users with the flexibility to set the other
parameters according to their requirements and constraints. For example: a user with a low budget for
a calibration set who may be, perhaps, more interested in controlling δ can still achieve a reasonable
constraint by relaxing ϵ instead of increasing the calibration set size. See Appendix E for details.

5 Experiments

In this section we evaluate the methods introduced in Section 3 and Section 4. The evaluation was
performed on 1,115 vision models pretrained on ImageNet1k [11], and 6 models pretrained on
iNat-21 [24] (available in timm 0.9.16 [49] and torchvision 0.15.1 [32]). The reported results were
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Table 1: Comparison of mean hAURC and hierarchical gain results for the selective, Max-Coverage
(MC) and Climbing inference rules applied to 1,115 models trained on ImageNet1k, and 6 models
trained on iNat21.

ImageNet-1k (1,115 models) iNat21 (6 models)

Inference Rule hAURC Hier. Gain hAURC Hier. Gain
(× 1000) (%) (× 1000) (%)

Selective 42.27±0.46 - 13.35±0.50 -
MC 39.99±0.53 6.92±0.26 11.96±0.45 10.45±0.46
Climbing 36.51±0.47 14.94±0.22 10.15±0.41 23.94±1.24

obtained on the corresponding validation sets (ImageNet1k and iNat-21). The complete results and
source code necessary for reproducing the experiments are provided in the Supplementary Material.

Inference Rules: Table 1 compares the mean results of the Climbing inference rule to both hierarchi-
cal and non-hierarchical baselines. The evaluation is based on RC curves generated for 1,115 models
pretrained on ImageNet1k and 6 models pretrained on iNat21 with each inference rule applied to
their output. These aggregated results show the effect of different hierarchical selective inference
rules, independent of the properties or output of a specific model. Compared to the non-hierarchical
selective baseline, hierarchical inference has a clear benefit. Allowing models to handle uncertainty
by partially rejecting a prediction instead of rejecting it as a whole, proves to be advantageous; the
average model is capable of leveraging the hierarchy to predict internal nodes that reduce risk while
preserving coverage. Nonetheless, the differences remain stark when comparing the hierarchical
inference rules. Climbing, achieving almost 15% hierarchical gain, outperforms MC, with more than
double the gain of the latter. These results highlight the fact that the approach taken by inference rules
to leverage the hierarchy can have a significant impact. A possible explanation for Climbing’s superior
performance could stem from the fact that most models are trained to optimize leaf classification. By
starting from the most likely leaf, Climbing utilizes the prior knowledge embedded in models for leaf
classification, while MC ignores it.

Optimal Threshold Algorithm: We compare our algorithm to DARTS [12]. We evaluate the
performance of both algorithms on 1,115 vision models trained on ImageNet1k, for a set of target
accuracies. For each model and target accuracy the algorithm was run 1000 times, each with a
randomly drawn calibration set. We also evaluate both algorithms on 6 models trained on the iNat21
dataset. We compare the algorithms based on two metrics: (1) target accuracy error, i.e., the mean
distance between the target accuracy and the accuracy measured on the test set; (2) coverage achieved
by using the algorithms’ output on the test set. The results presented in Table 2, and Table 5 in
Appendix G, show that our algorithm consistently achieves substantially lower target accuracy errors,
indicating that our algorithm succeeds in nearing the target accuracy more precisely. This property
allows the model to provide a better balance between risk and coverage. Our algorithm is more
inclined towards this trade-off, as it almost always achieves higher coverage than DARTS. This is
particularly noteworthy when the target accuracy is high: while DARTS loses coverage quickly, our
algorithm maintains coverage that is up to twice as high. Importantly, DARTS does not capture the
whole risk-coverage trade-off. Specifically, at the extreme point in the trade-off when it aims to
maximize specificity, it still falls short of providing full coverage, and its predictions do not reduce to
a flat classifier’s predictions, i.e. it may still predict internal nodes.

Table 2: Results (mean scores) comparing the hierarchical selective threshold algorithm (Algorithm
2) with DARTS, repeated 1000 times for each model and target accuracy with a randomly drawn
calibration set of 5,000 samples, applied to 1,115 models trained on ImageNet1k (meaning we
evaluated each algorithm 1,115,000 times). 1− δ is set at 0.9.

Target Accuracy (%) Target Accuracy Error (%) Coverage
DARTS Ours DARTS Ours

70 14.52±1.3e-03 10.79±3.1e-03 0.97±1.4e-05 1.00±5.0e-05
80 4.86±5.2e-03 2.19±7.0e-03 0.96±5.8e-05 0.98±1.0e-04
90 0.73±9.6e-03 0.02±4.0e-04 0.88±9.9e-04 0.87±2.9e-05
95 0.69±1.4e-02 0.02±2.2e-04 0.74±2.6e-03 0.76±7.4e-05
99 0.63±4.2e-03 0.02±1.1e-04 0.22±2.0e-03 0.40±3.2e-04

99.5 0.40±1.9e-03 0.02±7.5e-05 0.13±9.8e-04 0.26±2.5e-04
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Our algorithm offers additional flexibility to the user by allowing the tuning of the confidence interval
(1− δ), while DARTS does not offer such control. Figure 3 illustrates the superiority of our technique
over DARTS in detail. Appendix H compares the results of an additional baseline, conformal risk
control [3]. The results show that the conformal risk control algorithm exhibits a significantly higher
mean accuracy error than both our algorithm and DARTS.
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Figure 3: Individual model examples comparing the hierarchical selective threshold algorithm against
DARTS, with each algorithm repeated 1000 times. The mean and median results are shown in dark
green. The light green area shows the ϵ interval around the target accuracy, and the remaining area
is marked in red (i.e., each repetition has a 1 − δ probability of being in the green area and a δ
probability of being in the red area). The target accuracy is 95% and 1− δ = 0.9. In both examples,
the target accuracy error of DARTS is high, and the entirety of its accuracy distribution lies outside of
the confidence interval. Left: EVA-Giant/14 [14]. DARTS fails to meet the constraint, whereas our
algorithm’s mean accuracy is very close to the target. Right: ResNet-152 [50]. While our algorithm
has a near-perfect mean accuracy, DARTS rejects all samples, resulting in zero coverage.

Empirical Study of Training Regimes: Inspired by [18], which demonstrated that training methods
such as knowledge distillation significantly impact selective performance, we aimed to investigate
whether training regimes could also contribute to hierarchical selective performance. The goal of this
experimental section is to provide practitioners with valuable insights for selecting effective training
regimes or pretrained models for HSC.
We evaluated the hAURC of models trained with several training regimes: (a) Knowledge Distillation
(KD) [42, 1, 37]; (b) Pretraining: models pretrained either on ImageNet21k [41, 43, 56, 29, 37] or on
ImageNet12k, a 11,821 class subset of the full ImageNet21k [49]; (c) Contrastive Language-Image
pretraining (CLIP) [35]: CLIP models equipped with linear-probes, pretrained on WIT-400M image-
text pairs by OpenAI, as well as models pretrained with OpenCLIP on LAION-2B [39, 8], fine-tuned
either on ImageNet1k or on ImageNet12k and then ImageNet1k. Note that zero-shot CLIP models
(i.e., CLIP models without linear-probes) were not included in this evaluation, and are discussed later
in this section. (d) Adversarial Training [53, 44]; (e) various forms of Weakly-Supervised [30] or
Semi-Supervised Learning [55, 54]. To ensure a fair comparison, we only compare pairs of models
that share identical architectures, except for the method being assessed (e.g., a model trained with
KD is compared to its vanilla counterpart without KD). Sample sizes vary according to the number
of available models for each method. The hAURC results of all models were obtained by using the
Climbing inference rule.

(1) CLIP exceptionally improves hierarchical selective performance, compared to other train-
ing regimes. Out of the methods mentioned above, CLIP (orange box), when equipped with a
“linear-probe”, improves hierarchical performance the most by a large margin. As seen in Figure 4,
the improvement is measured by the relative improvement in hAURC between the vanilla version
of the model and the model itself. CLIP achieves an exceptional improvement surpassing 40%.
Further, its median improvement is almost double the next best methods, pretraining (purple box) and
semi-supervised learning (light blue box). One possible explanation for this improvement is that the
rich representations learned by CLIP lead to improved hierarchical understanding. The image-text
alignment of CLIP can express semantic concepts that may not be present when learning exclusively
from images. Alternatively, it could be the result of the vast amount of pertaining data.
(2) Pretraining on larger ImageNet datasets benefits hierarchical selective performance, with
certain models achieving up to a 40% improvement. However, the improvement rates vary signifi-
cantly: not all models experience the same benefit from pretraining. Semi-supervised learning also
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Figure 4: Comparison of different methods by their improvement in hAURC, relative to the same
model’s performance without the method. The number of models evaluated for each method:
knowledge distillation: 42, pretraining: 61, CLIP: 16, semi-supervised learning: 11, adversarial
training: 8.

shows a noticeable improvement in hierarchical selective performance.
(3) Knowledge Distillation achieves a notable improvement, with a median improvement of around
10%. Although not as substantial as the dramatic increase seen with CLIP, it still offers a solid
improvement. This observation aligns with [18], who found that knowledge distillation improves
selective prediction performance as well as ranking and calibration.
(4) Linear-probe CLIP significantly outperforms zero-shot CLIP in HSC: We compared pairs
of models with identical backbones, where one is the original zero-shot model, and the other was
equipped with a linear-probe, that is, it uses the same frozen feature extractor but has an added head
trained to classify ImageNet1k. The zero-shot models evaluated are the publicly available models
released by OpenAI. The mean relative improvement from zero-shot CLIP to linear-probe CLIP is
45%, with improvement rates ranging from 32% to 53%. We hypothesize that the hierarchical selec-
tive performance boost may be related to better calibration or ranking abilities. Specifically, all CLIP
models with linear-probes showed significantly higher AUROC than their zero-shot counterparts,
indicating superior ranking. Figure 7 in Appendix I shows these results in more detail.

Since hAURC is closely related to accuracy, we sought to determine whether its improvement could
be attributed solely to gains in predictive performance from the training regimes. Our analysis,
detailed in Appendix J, suggests this is not the case. Additionally, we explored a training regime
specifically aimed at enhancing HSC performance. Our approach is described in Appendix K.

HSC Improves Confidence Calibration: We plotted the Calibration-Coverage (CC) Curves (defined
in Section 2 for 1,115 ImageNet models and compared the curves produced by the Selective inference
rule to those from Climbing. Figure 5 presents the aggregated CC curve for all 1,115 models across
the two inference rules. The results indicate that HSC not only improves risk, but also improves
calibration, with the Climbing inference rule nearly always outperforming Selective.
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Figure 5: Aggregated (mean and SEM) CC curves of 1,115 ImageNet models.
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6 Related Work

In selective classification, several alternative methods for confidence thresholding have been devel-
oped [5, 31, 38]. However, these methods generally necessitate some form of training. This work is
focused on post-hoc methods that are compatible with any pretrained classifier, which is particularly
advantageous for practitioners. Furthermore, despite the availability of other options, threshold-based
rejection even with the popular Softmax confidence score continues to be widely used [18, 21], and
can be readily enhanced with temperature scaling or other techniques [6, 15, 18].
Various works leverage a hierarchy of classes to improve leaf predictions of flat classifiers [51, 4, 26]
but comparatively fewer works explore hierarchical classifiers. [51] optimized a “win” metric com-
prising a weighted combination of likelihoods on the path from the root to the leaf. [4] focused
on reducing leaf mistake severity, measured by graph distance. They introduced a hierarchical
cross-entropy loss, as well as a soft label loss that generalizes label smoothing. [26] claimed that
both methods in [4] result in poorly calibrated models, and proposed an alternative inference method.
[12] proposed the Dual Accuracy Reward Trade-off Search (DARTS) algorithm, which attempted to
obtain the most specific classifier for a user-specified accuracy constraint. They used information
gain and hierarchical accuracy as two competing factors, which are integrated into a generalized
Lagrange function to effectively obtain multi-granularity decisions. Additional approaches include
the Level Selector network, trained by self-supervision to predict the appropriate level in the hierarchy
[25]. [46] proposed a loss based on [52] and performed inference using a threshold-based infer-
ence rule. Other works allow non-mandatory leaf node prediction, although not directly addressing
the accuracy-specificity trade-off [36, 52]. The evaluation of hierarchical classifiers has received
relatively little attention previous to our research. The performance profile of a classifier could be
inferred from either the average value of a metric across the operating range or by observing operating
curves that compare correctness and exactness or information precision and recall [46], or measuring
information gain [12, 52]. Set-valued prediction [22] and hierarchical multi-label classification [45]
tackle a similar problem to hierarchical classification by allowing a classifier to predict a set of classes.
Although both approaches handle uncertainty by predicting a set of classes, the HSC framework
hard-codes the sets as nodes in the hierarchy. This way, HSC injects additional world knowledge
contained in the hierarchical relations between the classes, yielding a more interpretable prediction.
Conformal risk control [3] is of particular interest because it constrains the prediction sets to be
hierarchical. Appendix H shows a comparison of this baseline to our method.
Calibration is another important aspect of uncertainty estimation [27, 58, 18, 16]. Fisch et al. [16]
demonstrate that selectively abstaining from uncertain predictions may improve calibration.

7 Concluding Remarks

This paper presents HSC, an extension of selective classification to a hierarchical setting, allowing
models to reduce the information in predictions by retreating to internal nodes in the hierarchy when
faced with uncertainty. The key contributions of this work include the formalization of hierarchical
risk and coverage, hierarchical calibration, the introduction of hierarchical risk-coverage curves
and hierarchical calibration-coverage curves, the development of hierarchical selective inference
rules, and an efficient algorithm to find the optimal confidence threshold for a given target accuracy.
Extensive empirical studies on over a thousand ImageNet classifiers demonstrate the advantages
of the proposed algorithms over existing baselines and reveal new findings on training methods
that boost hierarchical selective performance. However, there are a few aspects of this work that
present opportunities for further investigation and improvement: (1) Our approach utilizes softmax-
based confidence scores. exploring alternative confidence functions and their impact on hierarchical
selective classification could provide further insights; (2) While we have identified certain training
methods that boost hierarchical selective performance, the training regimes were not optimized for
hierarchical selective classification. Future research could focus on optimizing selective hierarchical
performance. (3) Although our threshold algorithm is effective, it could be beneficial to train
models to guarantee specific risk or coverage constraints supplied by users, in essence constructing a
hierarchical “SelectiveNet” [20].
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A Hierarchical Severity Risk

The presence of a hierarchy allows us to measure the severity of incorrect predictions, instead of
treating all mistakes as equal. For instance, classifying a Labrador as a Golden Retriever is a much
milder mistake compared to classifying it as a snake. We use the coverage of the Lowest Common
Ancestor (LCA) of the predicted node v̂ and the label v to define a novel loss function that accounts
for mistake severity: lH(v̂, y) = 1− ϕ(LCA(v̂,v))

ϕ(v̂) .

Building upon the above example, the LCA of Labrador Retriever and Golden Retriever is the node
’Retriever’, which has significantly higher coverage relative to the prediction ’Golden Retriever’,
in contrast to ’Vertebrate’, the LCA of Labrador Retriever and Snake, resulting in the former
misclassification having lower risk compared to the latter.

We provide below the results of our experiments on ImageNet, complementing Table 1:

Table 3: Comparison of mean hAURC and hierarchical gain results for the selective, Max-Coverage
(MC) and Climbing inference rules applied to 1,115 models trained on ImageNet1k, using the
hierarchical severity risk.

ImageNet-1k (1,115 models)

Inference Rule hAURC Hier. Gain hAURC Hier. Gain
(× 1000) (%) (× 1000) (%)

Selective 24.98±0.29
MC 24.50±0.34 3.31±0.30
Climbing 24.04±0.31 4.71±0.22

The results align with those presented in the main body of the paper, where the risk is the the 0/1 loss.
Climbing remains the inference rule with the best (lowest) hAURC and the highest hierarchical gain.
In practice, the results of both losses are highly correlated.

B Max-Coverage Inference Rule Algorithm

Algorithm 3 Max-Coverage Inference Rule [46]

Input: Classifier f , class hierarchy H = (V,E), sample xi ∈ X , confidence threshold θ.
Output: Predicted node v̂.

Obtain fv(xi) ∀v ∈ V
v̂ ← argmax

v
{ϕ(v)| fv(xi) ≥ θ, v ∈ V } ▷ Break ties by confidence rate

C Jumping Inference Rule

The Jumping inference rule (Algorithm 4) traverses the most likely nodes at each level of the
hierarchy, until reaching θ. Unlike Climbing, jumping is not confined to a single path from the root
to a leaf. Although it performed better than a “hierarchically-ignorant” selective inference, it still
underperformed by the other algorithms.
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Algorithm 4 Jumping Inference Rule

Input: Classifier f , class hierarchy H = (V,E), sample xi ∈ X , confidence threshold θ.
Output: Predicted node v̂.

Perform temperature scaling
Obtain fv(xi) ∀v ∈ V
v̂ ← argmax

y∈L
fy(xi)

while fv̂(xi) < θ do
v̂ ← argmax

v
{fv(xi)|v ∈ V, height(v) = h}

h← h+ 1
end while

(*) If the leaves in H are not all at the same depth, pad the hierarchy with dummy nodes

D Hierarchy Traversal for Threshold Finding

We demonstrate an example algorithm for the Climbing inference rule that obtains θi for a single
instance (xi, yi).

Algorithm 5 Hierarchy Traversal - Climbing

Input: Calibration sample (xi, yi), classifier f , class hierarchy H = (V,E), tightness coefficient ϵ.
Output: θi - the minimal threshold that would have made the prediction correct.

1: θi ← 0
2: vi ← argmax

y∈L
fy(xi)

3: while vi /∈ A(yi) do
4: θi ← fvi(xi) + ϵ · fparent(vi)(xi)
5: vi ← parent(vi)
6: end while

E Proof of Theorem 1

Recall that for each sample (xi, yi), θi is the minimal threshold that would have made the prediction
fH(xi) hierarchically correct.

The following is based on [2]:
To avoid handling ties, we assume {θi}ni are distinct, and without loss of generality that the calibration
thresholds are sorted: 0 ≤ θ1 < ... < θn ≤ 1.

To keep indexing inside the array limits: θ̂ ∆
=

{
θ⌈(n+1)(1−α), α ≥ 1

n+1

1, otherwise
.

We also assume the samples (x1, y1), ..., (xn+1, yn+1) are exchangeable. Therefore, for any integer
k ∈ [1, n], we have:

P (θn+1 ≤ θk) =
k

n+ 1
.

That is, θn+1 is equally likely to fall in anywhere between the calibration points. By setting
k = ⌈(n+ 1)(1− α)⌉:

P (θn+1 ≤ θ⌈(n+1)(1−α)⌉) =
⌈(n+ 1)(1− α)⌉

n+ 1
≥ 1− α.

In conformal prediction, the probability P (θn+1 ≤ θ̂) is called “marginal coverage” (not to be
confused with the hierarchical selective definition of coverage in section 2). The analytic form of
marginal coverage given a fixed calibration set, for a sufficiently large test set, is shown by [47] to be

C(n, α) = P (θn+1 ≤ θ̂|{(Xi, Yi)}ni=1) ∼ Beta(n+ 1− l, l),
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where l = ⌊(n+ 1)α⌋
From here, the CDF of the Beta distribution paves the way to calculating the size n of the calibration
set needed in order to achieve coverage of 1− α± ϵ with probability 1− δ:

P (|C(n, α)− (1− α)| ≤ ϵ) ≥ 1− δ.

Remarks on theorem 1:

1. To simplify, we made an implicit assumption that users can usually allocate a limited number
of samples to the calibration set, and thus would prefer the threshold’s optimality guarantee
to hold without imposing additional requirements on the data. However, our algorithm can
provide an even greater degree of flexibility: the user may choose to set the values of any
three parameters out of: α, n, ϵ, δ. With the three parameters fixed, the CDF of the Beta
distribution can be used to compute the remaining parameter. For instance, a certain user
may have an unlimited budget of calibration samples, while they require a specific error
margin. In that case, the using the Beta distribution, the algorithm computes the calibration
set size required for Theorem 1 to hold.

2. The output of the algorithm holds for a calibration set of any size n. Following the previous
point, increasing n does yield more stable results.

3. In the context of conformal prediction, the property stated in Theorem 1 is referred to as
marginal coverage, not to be confused with the previous definition of coverage in section 2.
This property is called marginal coverage, since the probability is marginal (averaged) over
the randomness in the calibration and test points.

F Comparison of Inference Rules Without Temperature Scaling

Table 4: hAURC and gain results for each inference rule. Mean results of 1,115 pretrained ImageNet1k
models.

Inference Rule hAURC (×1000) Hierarchical Gain (%)

No Temp.
Scaling

Selective 42.27±0.46 -
Max-Coverage [46] 39.99±0.53 6.92±0.26
Climbing (Ours) 39.24±0.49 8.26±0.19

Temp.
Scaling

Selective 41.16±0.46 -
Max-Coverage 37.21±0.52 11.09±0.47
Climbing (Ours) 36.51±0.47 12.51±0.16
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G Threshold Algorithm Results on iNat21

Table 5: Comparison of hierarchical selective threshold algorithm (Algorithm 2) with DARTS,
repeated 100 times for each model and target accuracy with a randomly drawn calibration set of
10,000 samples, applied to 6 models trained on iNat21. 1− δ is set at 0.9.

Target Accuracy (%) Target Accuracy Error (%) Coverage
DARTS Ours DARTS Ours

70 24.64 ± 7.9e-04 21.22 ± 7.3e-04 0.98 ± 5.73e-06 1.000 ± 0.00e+00
80 14.64 ± 8.5e-04 11.22 ± 1.2e-03 0.98 ± 1.87e-06 1.000 ± 0.00e+00
90 4.64 ± 2.4e-04 1.22 ± 2.9e-03 0.98 ± 3.46e-06 1.000 ± 6.57e-05
95 0.32 ± 2.9e-02 0.02 ± 8.7e-03 0.97 ± 4.75e-04 0.951 ± 2.41e-04
99 0.49 ± 3.0e-02 0.01 ± 1.3e-03 0.39 ± 2.20e-02 0.687 ± 2.49e-03

99.5 0.42 ± 2.9e-02 0.01 ± 2.5e-03 0.06 ± 2.42e-02 0.413 ± 2.02e-03

H Conformal Risk Control Results

Figure 6 shows the mean accuracy error of the threshold algorithms introduced in section 4 compared
to the additional conformal risk control (CRC) algorithm [3]. The mean accuracy error of CRC is
strikingly higher than the other algorithms, reaching a climax when the target accuracy is set to 95%.
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Figure 6: Mean accuracy error comparison between the hierarchical selective threshold algorithm
(Algorithm 2), conformal risk control (CRC) and DARTS, repeated 1000 times for each model and
target accuracy with a randomly drawn calibration set of 5,000 samples, applied to 1,115 models
trained on ImageNet1k (meaning we evaluated each algorithm 1,115,000 times). 1− δ is set at 0.9.

I CLIP Zero Shot VS Linear Probe

Figure 7 compares the improvement in hAURC and AUROC between zero-shot CLIP models and
their linear-probe counterparts. It can be easily observed that for all the tested backbones the linear-
probe models have significantly better hAURC and AUROC. We encourage follow-up research to
explore further the possible connection between ranking and HSC.
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Figure 7: Comparison between zero-shot and linear-probe CLIP models sharing the same backbone.
The round markers represent the zero-shot models, and the star markers represent their respective
linear-probes.

J Training Regimes Improvement in hAURC VS Accuracy

In Table 6 we compare the relative improvement in hAURC to the relative improvement in accuracy.
It can be seen that although the training regimes with the highest and lowest improvement in hAURC
have the highest and lowest improvement in accuracy, the improvement in hAURC does not determine
the rate of improvement in accuracy.

Table 6: Relative improvement in Accuracy compared to relative improvement in hAURC.
Training Regime Median Accuracy Improvement (%) Median hAURC Improvement (%)

CLIP 7.90 38.14
Pretraining 1.96 19.47

SSL 4.12 18.97
Distillation 1.48 11.73
Adversarial 0.85 5.92

K Training Regime to Optimize HSC Performance

Since hAURC cannot be optimized directly, we developed an alternative that could be optimized.
Our best-performing method entailed training models to predict the lowest common ancestor (LCA)
of pairs of samples, including identical pairs (intended for testing). To achieve this, we fine-tuned
models using the hierarchical loss we proposed in Appendix A.

All models were fine-tuned on the ImageNet validation set for 20 epochs using the SGD optimizer
with a warmup scheduler and a batch size of 2048 on a single NVIDIA A40 GPU. After fine-tuning
models of various architectures (including ResNet50, ViTs, EfficientNet, and others) with this loss
function and utilizing various other configurations, such as leveraging in-batch negatives for a richer
training signal and multiple classification heads to prevent deterioration in the model’s accuracy, the
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improvement in hAURC we observed ranged from 3% to 5% compared to the pretrained baseline.
We encourage future work to explore this direction further.

L Technical Details

Most experiments consider image classification on the ImageNet1k [11] validation set, containing
50 examples each for 1,000 classes. Additional evaluations were performed on the iNat21-Mini
dataset [24], containing 50 examples each for 10,000 biological species in a seven-level taxonomy.
For experiments requiring calibration set, it was sampled randomly from the validation set.

The evaluation was performed on 1,115 vision models pretrained on ImageNet1k [11], and 6 models
pretrained on iNat-21 [24] (available in timm 0.9.16 [49] and torchvision 0.15.1 [32]), both available
under the MIT license.

All experiments were conducted on a single machine with one Nvidia A4000 GPU. The evaluation of
all experiments on a single GPU took approximately two weeks.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: the details are provided in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports error bars and confidence intervals for the experimental
results, as shown in the relevant figures and tables.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 5 and Appendix L detail all necessary compute information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to ethical guidelines, including the responsible use of
datasets and consideration of potential societal impacts of the work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: An example of societal impact was provided in the introduction, where an
example of tumor classification demonstrates the works’ impact, both positive and negative
where hierarchical granularity is not used.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The necessary details are included in Appendix L.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The source code provided in the supplementary material is properly docu-
mented to facilitate faithful reproduction.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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