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ABSTRACT

Large language models show strong potential for molecular editing, but progress
has been constrained by the limited scale and quality of available training data.
To address this, we introduce MEGA, a family of large-scale datasets compris-
ing 31M molecule pairs, each representing a single property-improving chemical
edit annotated with an explicit action: Replace, Insert, or Delete. We demon-
strate MEGA’s utility in a controlled supervised fine-tuning (SFT) setting, where
a model trained on MEGA outperforms models trained on existing datasets by up
to +21.47 percentage points in hit ratio. Furthermore, we show that Group Rel-
ative Policy Optimization (GRPO) post-training with a similarity-aware reward
achieves state-of-the-art performance and a remarkable ∼ 36× improvement in
data efficiency, while also preserving edit locality. We release MEGA in open ac-
cess to the community to enable data-centric benchmarks and accelerate progress
in molecular editing with generative models.

1 INTRODUCTION

Molecular optimization is critical to drug discovery, guiding chemists in turning initial molecular
hits into drug-like candidates. Unlike unconstrained molecule generation Gómez-Bombarelli et al.
(2018); Jin et al. (2019), molecular editing involves targeted modifications, such as scaffold dec-
oration, fragment substitutions, or precise structural refinements, that carefully balance therapeutic
properties with chemical feasibility and synthetic practicality Seo et al. (2023); Jinsong et al. (2024).

To assist chemists in this iterative lead optimization process, recent approaches leverage large lan-
guage models (LLMs), either through fine-tuning or by using them as reasoning agents capable
of interpreting textual prompts (e.g. “increase solubility”) and proposing relevant molecular edits
Zimmermann et al. (2025); Mirza et al. (2025a). Additionally, reinforcement learning (RL)-based
post-training can align these models even more closely with practical constraints, improving both
chemical plausibility and edit precision Dai et al. (2025); Liu et al. (2025). Progress, however, is
limited by data. Training and evaluating editing models requires goal-aligned edit datasets that pair
a parent molecule with a proposed child and standardized outcomes, at a scale that supports both su-
pervised fine-tuning and post-training Polykovskiy et al. (2020); Huang et al. (2021). Nevertheless,
existing corpora either lack the scale required for robust training or omit explicit edit annotations
needed for guided policy learning.

To close this gap, we curate MEGA (Molecular Editing with Guided Action), a large-scale, molecule
editing dataset of (parent, child) molecule pairs spanning 28 tasks. The dataset is offered in in
two scales, the primary MEGA dataset, containing 522 thousand successful edits, and an expanded
version, MEGA-Large, with 31.4 million positive samples. We also release an additional 41 million
valid and chemically close negative examples to enable contrastive learning and Reinforcement
Learning (RL) reward shaping Robinson et al. (2021); Shen et al. (2024).

Using a fixed LLM and a shared evaluation protocol, we first quantify the effect of data alone by
fine-tuning on MEGA versus other public datasets. We then show that post-training with GRPO
Shao et al. (2024), using a composite reward that combines a thresholded property gain term and a
Tanimoto similarity term Bajusz et al. (2015), yields further gains with reduced number of training
samples.
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Figure 1: Morgan-fingerprint t-SNE for a parent SMILES and child molecules generated by frag-
ment edits, delete, replace, insert. Colors encode the applied edit, highlighting neighborhood explo-
ration under the given task.

Concretely, this work introduces the following contributions:

1. We release MEGA, a family of molecular editing datasets with fragment-level Replace,
Insert, and Delete annotations. It contains two variants: MEGA (522K pairs) for resource-
constrained regimes, and MEGA-Large (31.4M pairs) for scaling studies. MEGA-Large is
over an order of magnitude larger than any existing dataset for molecular editing.

2. We demonstrate that under fixed model and training protocol, fine-tuning on MEGA in-
creases hit ratios by up to +21.47 percentage points over established datasets on shared
tasks, while its explicit edit labels enable per-action supervision and diagnostics.

3. We show that GRPO post-training on MEGA with a similarity-aware reward improves
property alignment and edit minimality, while also achieving state-of-the-art performance
on established benchmarks. With only 14K training examples, the GRPO post-trained
model matches the performance of the SFT model trained on the full MEGA set, corre-
sponding to a ∼ 36× improvement in data efficiency.

2 RELATED WORK

2.1 DATASETS FOR MOLECULAR EDITING

Public corpora vary in task formulation and scale. MoleculeSTM Liu et al. (2023a) trains a multi-
modal structure–text model on hundreds of thousands of molecule–caption pairs through contrastive
learning and proposes instruction-guided retrieval and editing tasks, establishing a text-based bench-
mark for property-aware modification. Another example is MolOpt-Instructions Ye et al. (2025), re-
leased alongside DrugAssist, which compiles a large instruction dataset to fine-tune language mod-
els for molecule optimization from natural language goals. Furthermore, MolEdit-Instruct Zhuang
et al. (2025) scales property-conditioned edits by pairing each parent molecule with an explicit edit
instruction and target property change. The dataset is used to evaluate diffusion and RL models
under joint constraints on molecular similarity and property improvement, reflecting a shift toward
instruction-plus-constraint benchmarks. Together, these datasets illustrate the available range for
training and evaluating molecular editing models, despite differences in construction, supervision
signals, and scale.

2.2 LLMS FOR CHEMISTRY

General-purpose language models trained on broad text data already exhibit useful zero-shot
chemistry skills answering property prediction questions, translating line notations, or suggesting
functional-group swaps straight out of the box Liu et al. (2023b); Bran et al. (2025); Mirza et al.
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Figure 2: t-SNE projection of Morgan fingerprints showing chemical space coverage of statistical
significant subsets of MEGA, MolEdit-Instruct, and MolOpt-Instructions.

(2025b). When wrapped in a tool-calling framework, the same models can act as agents: ChemCrow,
for example, prompts an off-the-shelf LLM to invoke cheminformatics utilities (parsers, property
predictors, similarity search) and carry out multi-step design tasks from natural language instruc-
tions M. Bran et al. (2024).

Researchers also adapt these open language models to chemistry via domain fine-tuning and task-
specific supervision. For instance, LlamoLe trains on ∼128k USPTO reactions with textual de-
scriptions to strengthen reasoning and route identification Lowe (2017); Liu et al. (2024), while
DrugAssist uses MolOpt-Instructions to instruction-tune models for property-directed optimization
from text in a single-shot fashion Ye et al. (2025).

A further layer of refinement uses reinforcement learning such as with Ether0, trained on 640k
experimentally-grounded chemistry problems across 375 tasks, to excel at tasks like retrosynthe-
sis and solubility editing Narayanan et al. (2025). Another example is MolEditRL, which pairs
property-conditioned prompts with structure-preserving edit operators and reinforcement-style ob-
jectives to promote local, similarity-respecting modifications Zhuang et al. (2025).

2.3 EDITORS BEYOND LLMS FOR LEAD OPTIMIZATION

While LLM-based editors are comparatively recent, lead optimization has a long history of non-
LLM approaches that emphasize local, property-directed modifications to a given scaffold. Earlier
rule-based strategies, such as matched molecular pairs (MMPs) Yang et al. (2023) and fixed reaction
templates, encoded medicinal-chemistry heuristics for systematic substitution. More recent machine
learning methods operate directly on strings or graphs to propose minimal edits, including JT-VAE
Jin et al. (2019), GCPN You et al. (2019), and MARS Xie et al. (2021); Loeffler et al. (2024). In par-
allel, diffusion models adapt continuous generative dynamics to discrete molecular modifications:
DiffLink designs linkers between fixed fragments Igashov et al. (2024), while DiffHop performs
constrained scaffold hopping Torge et al. (2023). Taken together, these approaches chart a progres-
sion from rules to learned editors to diffusion frameworks, all aimed at controllable, chemically
plausible edits central to lead optimization.

3 MEGA DATASET

3.1 DATASET CONSTRUCTION OVERVIEW

MEGA is a family of large-scale datasets with a total of 31.4M parent–child SMILES pairs. Each
child comes from applying a single functional-group edit to a ZINC250K parent, without a con-
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Table 1: Comparison of molecular editing datasets used in this study. Reported sizes count only suc-
cessful (positive) parent-child pairs. Unique molecules counts distinct SMILES across both parents
and children. Action provided indicates whether a dataset records the edit label.

Dataset Size Unique Molecules # Tasks Action Provided
MoleculeSTM 280K 250K 34 No
MolEdit-Instruct 3.03M 967K 20 No
MolOpt-Instructions 1.24M 1.596M 16 No

MEGA 522K 372K 28 Yes
MEGA-Large 31.4M 22.126M 28 Yes

straint to preserve the scaffold Irwin & Shoichet (2005). Candidate modification sites are located
with established retrosynthetic slicing rules (BRICS Degen et al. (2008), Hussain–Rea (HR) Hus-
sain & Rea (2010) and RECAP Lewell et al. (1998)) and exactly one action is applied at a chosen
site: Delete, Insert, or Replace a functional group. The child is rebuilt and sanitized in RDKit
Landrum & Contributors (2025), and task properties are computed deterministically. We adopt the
MoleculeSTM protocol for task labeling: for each objective (e.g. “increase solubility”), we use
RDKit to verify whether the child clears the threshold for that task. Each record includes parent
SMILES, child SMILES, a coarse action tag (Insert/Delete/Replace), the task identifier and thresh-
old level, and the parent/child property vectors. The computational budget for MEGA amounted to
approximately 184k CPU-hours on a 128-core cluster.

For efficient training, we define MEGA as a uniformly sampled subset of 522K positive examples
drawn from the full 31M-pair dataset, which we refer to as MEGA-Large. MEGA mirrors the
action distribution of MEGA-Large (3.1% Delete, 43.6% Insert, 53.3% Replace), making it suitable
for resource-constrained settings while retaining the statistical properties of the full collection. In
addition to the positives, we also provide 41 million valid but chemically close negative pairs that,
while not meeting the improvement threshold, offer valuable hard negatives for contrastive learning
or reinforcement learning setups.

To emphasize drug discovery relevance, our tasks target widely used objectives including aqueous
solubility, drug-likeness (QED), H-bond donors/acceptors, permeability proxies and topological po-
lar surface area (TPSA). Each one evaluated at two thresholds, loose and strict. Restricting edits to a
single modification per pair enables controlled exploration of the parent’s local chemical neighbor-
hood. A parent molecule may appear in multiple pairs if it contains eligible sites for several actions
across tasks. For each edit–task combination, we retain up to five successful and five near-miss chil-
dren, ranked to maximize diversity while avoiding redundancy. Further details on tasks and dataset
composition are provided in Appendix A.

3.2 DATASET COVERAGE

Figure 1 shows a representative parent alongside three children, one per action. The edits are local
and chemically rational: removing an atom (Delete), adding a small moiety (Insert) or swapping
one group for another (Replace). Together they illustrate the targeted nature of MEGA’s pairs. In
this example, all children satisfy the “increase aqueous solubility” objective.

Figure 2 visualizes a statistically significant subset of MEGA in the 2048-bit Morgan-fingerprint
space Morgan (1965) using t-SNE van der Maaten & Hinton (2008). The overlay shows that MEGA
occupies the shared high-density core with existing molecular editing datasets and also reaches be-
yond it, consistent with its scale and edit policy. Moreover, Table 1 quantifies this comparison:
in terms of successful (positive) edits, the full set is roughly an order of magnitude larger than
the next largest dataset. Furthermore, unlike other datasets, MEGA includes a coarse action label
(Insert/Delete/Replace) for every pair, supporting per-action supervision, diagnostics, and repro-
ducibility.
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Table 2: Performance comparison of SFT models on shared molecular editing tasks. The best results
are marked in bold. We report the mean and std of five runs.

Task Description Threshold Dataset
MEGA MolEdit MolOpt

Instruct Instruction

103 More like a drug 0.0 62.46 ± 2.18 23.92 ± 0.99 16.38 ± 2.03
0.1 28.43 ± 1.38 12.85 ± 0.58 8.38 ± 0.53

104 Less like a drug 0.0 97.81 ± 0.91 98.97 ± 0.33 96.87 ± 0.82
0.1 83.94 ± 3.43 98.86 ± 0.51 94.43 ± 1.47

107 More H-bond acceptors 0.0 99.28 ± 0.25 94.96 ± 1.70 89.33 ± 1.18
1.0 93.06 ± 0.66 43.35 ± 1.65 34.06 ± 0.58

108 More H-bond donors 0.0 99.80 ± 0.25 97.66 ± 0.59 96.21 ± 0.91
1.0 99.29 ± 0.25 67.57 ± 1.78 56.67 ± 1.10

Average 83.01 67.27 61.54

4 EXPERIMENTS

We evaluate MEGA in a two-stage protocol: (1) supervised fine-tuning (SFT) to benchmark perfor-
mance under identical model and training settings against existing datasets, and (2) RL post-training
with a hybrid reward combining property gains and structural similarity. We also analyze edit action
distributions, locality, and sample efficiency in single- and multi-objective tasks.

4.1 SUPERVISED FINE-TUNING

Protocol. We fine-tune a Llama-3 8B model Dubey et al. (2024) with LoRA adapters Hu et al.
(2021) on MolOpt Instruction, MolEdit Instruct, and MEGA. All runs use the same hyperparameters,
training schedule, and LoRA configuration. Training last approximately 23 H100-equivalent hours
per model until the validation loss no longer improves.

Evaluation follows the MoleculeSTM protocol Liu et al. (2023a) and is restricted to the 4 single-
objective tasks shared by all three datasets. The test set contains 200 unique parent SMILES not
present in any of the training sets. For each task, we assess performance at two property thresholds
(loose and strict) and report the hit ratio, defined as the fraction of generated molecules that achieve
the required property improvement. Each experiment is repeated five times, with a decoding tem-
perature of 1.0, and we report the mean and standard deviation of the hit ratio across runs. The
resulting models are referred to as MEGA SFT. For further comparisons and training settings details
see Appendix B.

Results. Table 2 shows that the LLM trained on MEGA outperforms the same architecture trained
on MolEdit Instruct and MolOpt Instruction by +15.74 (pp) and +21.47 (pp), respectively. The
largest gain occurs in the “more like a drug” objective, a target known to be particularly challeng-
ing due to its composite nature Liu et al. (2023b). Variance is low and comparable to the other
benchmarks, indicating that improvements are stable across repeated evaluations.

4.2 REWARD-GUIDED POST-TRAINING

Protocol. We further refine the best checkpoint from above using GRPO Shao et al. (2024) to
improve property alignment while preserving local edits. During training, for each parent SMILES,
the model generates a batch of multiple candidates, which are scored relative to each other. This
feedback is used for updating the model weights. The scalar reward is defined as:

R = 1[∆p(parent, child) ≥ τ ]︸ ︷︷ ︸
property hit

+γ 1valid(child)︸ ︷︷ ︸
validity hit

+λ htan(parent, child)︸ ︷︷ ︸
Tanimoto hit level
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Table 3: Comparison of DrugAssist, Gemini 2.5 Pro, and MEGA-GRPO across five shared tasks
from the DrugAssist benchmark, evaluated under loose and strict thresholds.

Task Description Threshold Model
DrugAssist Gemini 2.5 Pro MEGA GRPO

101 More soluble in water 0 80.00 82.23 97.49
0.5 41.00 59.45 91.10

103 More like a drug 0 76.00 60.14 83.49
0.1 63.00 23.46 50.00

107 More H-bond acceptors 0 71.00 64.97 98.60
1 67.00 5.57 86.74

108 More H-bond donors 0 72.00 73.54 99.31
1 76.00 6.32 91.45

201 More soluble & more HBA 0 - 0 50.00 80.32 95.19
0.5 - 1 27.00 24.43 84.21

Average 62.30 48.05 87.76

htan(parent, child) =


1.0, if T > 0.65,

0.5, if 0.4 ≤ T ≤ 0.65,

0.0, otherwise,

where the first term awards a hit when the property change ∆p meets or exceeds the task threshold
τ , the second term rewards valid and sanitized child smiles, and the third rewards scaffold-local
modifications via Tanimoto coefficient discretization. The coefficients γ and λ were selected empir-
ically to 1.0. We train with 3,000 rollouts per task under a KL-constrained objective. To assess the
data efficiency of the post-training stage, we repeat this experiment with training sets ranging from
1.4k parent SMILES up to the full MEGA dataset. The resulting models are referred to as MEGA
GRPO. Complete experimental details are provided in Appendix C.

We first compare MEGA GRPO against DrugAssist Zhuang et al. (2025), a state-of-the-art special-
ized LLM, and Gemini 2.5 Pro Comanici et al. (2025), a strong general-purpose LLM, on five single-
and multi-objective molecular editing tasks. For this evaluation, we use the 500-SMILES test set
provided by DrugAssist and report hit ratios under both loose and strict thresholds in Table 3.

We then compare MEGA GRPO against ChatDrug Turbo, a strong in-context learning LLM,
and MoleculeSTM, a contrastive-trained encoder–decoder, on the full 28-task suite of the MEGA
dataset. For this evaluation, we follow the same protocol described in the SFT section and report
results in Table 4. We verified that none of the test SMILES appeared in our training data to maintain
evaluation integrity.

Results. MEGA GRPO outperforms both DrugAssist and Gemini 2.5 Pro on the DrugAssist
benchmark (Table 3), achieving the highest hit ratio in 9 of 10 settings. The most pronounced
gains appear on the dual-objective solubility + HBA task (201), where it reaches 95.19% under
loose and 84.21% under strict thresholds, substantially ahead of both baselines. The only case
where MEGA GRPO underperforms is the strict drug-likeness objective, where DrugAssist retains
an edge. Gemini 2.5 Pro consistently trails, particularly under strict thresholds, underscoring the
difficulty of zero-shot general-purpose LLMs in molecular editing.

On the 28-task MoleculeSTM benchmark (Table 4), MEGA GRPO attains the best mean hit ratio
on all task/threshold pairs. It reaches ≥95% on most single-property edits under loose thresholds
(e.g., 101–102, 104, 106–108) and remains strong under stricter criteria. The notable hard case is
Task 103 (drug-likeness), where absolute rates drop for all methods; even so, MEGA GRPO leads
by 14 pp (62.60 vs. 48.65) at loose and 7 pp (26.75 vs. 19.37) at strict. MEGA GRPO’s advan-
tage is most pronounced on multi-objective tasks (201, 203, and 206), indicating better balancing
of potentially competing constraints. Variance across runs is small (typically ≤ 1.5), suggesting
the gains are stable across several runs. Overall, MEGA GRPO establishes a robust state-of-the-art
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Table 4: Performance comparison of MEGA GRPO against editing methods across single and multi
objective tasks and thresholds. We report the mean and standard deviation over five runs. The best
results are shown in bold.

Task Threshold Random MoleculeSTM ChatDrug Turbo MEGA GRPO

101 0 35.33±1.31 61.87±2.67 94.13±1.04 99.31±0.10
0.5 11.04±2.40 49.02±1.84 88.67±0.95 94.43±0.24

102 0 43.36±3.06 52.71±1.67 96.86±1.10 99.71±0.21
0.5 19.75±1.56 30.47±3.26 70.08±3.44 95.52±0.51

103 0 38.06±2.57 36.52±2.46 48.65±3.39 62.60±2.41
0.1 5.27±0.24 8.81±0.82 19.37±5.54 26.75±1.64

104 0 36.96±2.25 58.59±1.01 70.75±2.92 97.55±0.64
0.1 6.16±1.87 37.56±1.76 30.99±2.66 93.63±0.56

105 0 25.23±2.13 57.74±0.60 56.56±1.84 90.19±1.34
10 17.41±1.43 47.51±1.88 43.08±2.95 87.88±0.94

106 0 16.79±2.54 34.13±0.59 77.35±1.98 100.00±0.00
10 11.02±0.71 26.48±0.97 66.69±2.74 99.43±0.01

107 0 12.64±1.64 54.01±5.26 95.35±0.62 99.86±0.29
1 0.69±0.01 27.33±2.62 72.60±2.51 92.35±0.50

108 0 2.97±0.61 28.55±0.76 96.54±1.31 98.45±0.83
1 0.00±0.00 7.69±0.56 76.43±3.32 95.22±0.34

201 0 – 0 9.88±1.03 27.87±3.86 79.62±0.64 98.53±0.44
0.5 – 1 0.23±0.33 8.80±0.04 49.64±2.66 90.34±0.47

202 0 – 0 2.99±0.38 8.55±2.75 51.59±3.79 97.24±0.92
0.5 – 1 0.45±0.32 2.93±0.30 24.92±4.85 92.04±0.53

203 0 – 0 2.28±1.15 33.51±4.08 89.34±0.96 99.64±0.48
0.5 – 1 0.00±0.00 9.98±1.03 53.64±5.81 98.35±0.90

204 0 – 0 0.69±0.58 17.03±2.75 39.90±3.86 92.60±1.44
0.5 – 1 0.00±0.00 2.59±1.14 24.19±2.19 60.06±1.83

205 0 – 0 5.06±1.21 35.69±3.19 12.85±2.68 89.30±0.93
0.5 – 10 1.16±0.68 19.15±0.73 10.44±5.75 82.86±0.75

206 0 – 0 12.17±1.05 44.35±0.68 65.33±2.16 99.54±0.43
0.5 – 10 6.20±0.64 28.67±2.22 52.90±2.23 94.31±0.23

baseline for both single- and multi-objective molecular editing. These outcomes reflect the synergy
between the MEGA dataset and locality-aware GRPO training. MEGA provides informative and di-
verse demonstrations of guided optimization through single-local edits, while GRPO with Tanimoto
similarity further aligns the model’s behavior with task-specific reward signals. For further details,
see Appendix D.

Data Efficiency. Figure 3 shows that GRPO with Tanimoto reward outperforms SFT across
all data regimes while maintaining scaffold edits within our targeted Tanimoto similarity range
(0.6–0.8). With only 14k training examples, MEGA GRPO (14K) matches the performance of
MEGA SFT trained on 522k by +2.11 pp, achieving ∼ 36× data efficiency multiplier with the same
Llama 3 base model.

Guided-Action Editing. Figure 4 shows the distribution of fragment-level edit actions across
tasks. The MEGA SFT model roughly reproduce the action distribution of the MEGA dataset.
This indicates internalization of single-fragment edit patterns (replace, insert, delete) present in the
demonstrations. In contrast, MEGA GRPO learns, via RL, heavily favors replace actions, reflect-
ing an optimization bias towards minimal yet property-aligned functional group modifications. The
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Figure 3: Data efficiency comparison of SFT and GRPO across training set sizes (based on loose
threshold). GRPO consistently outperforms SFT while keeping edits within the targeted Tanimoto
similarity range (0.6–0.8).
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Figure 4: Distribution of fragment-level edit actions during inference for MEGA SFT (522K) and
MEGA GRPO (14K), on single and double-molecule optimization tasks.

performance increase of the GRPO model, suggest that replace-dominant strategies are, on average,
more efficient than the dataset’s action distribution.

5 CONCLUSION

In this work, we release MEGA, a family of large-scale datasets comprising 31.4M molecule
pairs designed to advance property-guided molecular editing. By systematically generating sin-
gle chemically rational edits that improve a target property (replace, insert, delete), MEGA pro-
vides dense, high-quality supervision for exploring local chemical space. Our experiments demon-
strate its value: models fine-tuned on MEGA significantly outperform those trained on existing
datasets in supervised settings. Furthermore, when combined with RL post-training, models trained
on MEGA achieve state-of-the-art performance on established benchmarks and demonstrate a re-
markable ∼ 36× improvement in data efficiency. By providing controlled, high-quality examples at
scale, MEGA enables the development of stronger generative models and more effective molecular
optimization workflows.
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6 REPRODUCIBILITY STATEMENT

The construction of the dataset is described in Section 3.1, with additional licensing details provided
in Appendix F. The dataset is released under the same license as the source dataset from which it is
derived. Scripts for training and evaluation, including both finetuning and post-training procedures,
will be made available in a public repository under a permissive license. These resources, along with
the detailed experimental settings reported in the main text and appendix, are intended to ensure full
reproducibility of our results and maximize benefit to the research community.

7 ETHICAL STATEMENT

The authors have considered the ethical implications of this work and find no direct ethical concerns.
All research was performed on publicly available datasets and did not involve human subjects or
personally identifiable information. The authors also declare no conflicts of interest.

8 USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used in a limited capacity as a writing and coding assistant.
Specifically, LLMs were used to:

• Improve clarity, grammar, and flow in parts of the manuscript.

• Suggest structure for some sections of text.

• Assist with debugging of boilerplate code, without contributing novel algorithmic ideas.

All substantive research ideas, experimental design, analysis, and conclusions were developed en-
tirely by the authors. The authors take full responsibility for the accuracy and integrity of all content
presented.
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Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato,
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A MEGA DATASET DETAILS

Tasks. For curating MEGA we used single-objective tasks (101–108) that targets one property, and
multi-objective tasks (201–206) for two properties. Table 5 lists the desired direction of change (↑
increase, ↓ decrease), variable name (consistent with RDKit), alongside the requirement in natural-
language. For each task we evaluate 2 threshold with different levels of property change. Table 6
gives the evaluation thresholds under loose and strict criteria. For multi-objective tasks, each thresh-
old vector follows the property order in the Target(s) column.

Task ID Target(s) Task Requirement 1 Task Requirement 2
101 ↓ logP more soluble in water None
102 ↑ logP less soluble in water None
103 ↑ QED more like a drug None
104 ↓ QED less like a drug None
105 ↓ TPSA higher permeability None
106 ↑ TPSA lower permeability None
107 ↑ HBA more hydrogen bond acceptors None
108 ↑ HBD more hydrogen bond donors None
201 ↓ logP , ↑ HBA more soluble in water more hydrogen bond acceptors
202 ↑ logP , ↑ HBA less soluble in water more hydrogen bond acceptors
203 ↓ logP , ↑ HBD more soluble in water more hydrogen bond donors
204 ↑ logP , ↑ HBD less soluble in water more hydrogen bond donors
205 ↓ logP , ↓ TPSA more soluble in water higher permeability
206 ↓ logP , ↑ TPSA more soluble in water lower permeability

Table 5: Task catalog for small-molecule property edits. All tasks require the output molecule to
remain similar to the input. Arrows indicate desired property direction.

Task ID Loose Strict
101 [0] [0.5]
102 [0] [0.5]
103 [0] [0.1]
104 [0] [0.1]
105 [0] [10]
106 [0] [10]
107 [0] [1]
108 [0] [1]

201 [0, 0] [0.5, 1]
202 [0, 0] [0.5, 1]
203 [0, 0] [0.5, 1]
204 [0, 0] [0.5, 1]
205 [0, 0] [0.5, 10]
206 [0, 0] [0.5, 10]

Table 6: Evaluation thresholds per task. For multi-objective tasks, each vector’s order follows the
Target(s) order in Table 5.
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Dataset Statistics. This subsection summarizes the scale and composition of MEGA-Large (31M)
and MEGA (522K) and quantifies how representative the smaller split is of the full corpus. Table 7
reports dataset-level counts. MEGA-31M contains 246,532 unique parent molecules directly taken
from the Zinc-250 dataset. In includes 72,366,584 evaluated edits, of which 31,354,522 are suc-
cessful. MEGA mirrors this profile at smaller scale with 4,105 unique parents and 1,205,430 edits,
including 522,058.

Metric MEGA-Large (31M) MEGA (522K)
Unique parent molecules 246,532 4,105
Successful edits 31,354,522 522,058
Unique successful SMILES 21,879,431 367,954
Negative edits 41,012,062 683,372
Unique negative SMILES 8,129,138 137,012
Total SMILES 72,366,584 1,205,430

Table 7: Side-by-side summary of MEGA datasets.

Table 8 compares the distribution of successful edits by operation. The proportions are stable across
scales: delete ≈3.1%, insert ≈43.6%, and replace ≈53.3% in both MEGA (522K) and
MEGA-Large (31M). This alignment suggests that MEGA preserves the operational mix of the full
dataset and is suitable for compute-friendly budgets.

MEGA (522K) MEGA-Large (31M)
Operation Count % Count %
Delete 15,924 3.1% 960,992 3.1%
Insert 227,789 43.6% 13,677,420 43.6%
Replace 278,345 53.3% 16,716,110 53.3%
Total 522,058 100% 31,354,522 100%

Table 8: Distribution of successful edit operations for MEGA-Large and MEGA.

Table 9 reports successful edits per task for MEGA-Large (31M) and MEGA (522K). Counts are
broadly balanced across tasks and per-task ranking is consistent across scales. Tasks 101/102/104
yield the largest winner pools, while 103 (increase QED) and 205 (reduce logP& decrease TPSA)
show markedly consistent with results from the literature. MEGA preserves the relative task diffi-
culty profile of the full corpus.

Task MEGA-Large MEGA
101 2,613,794 43,463
102 2,609,126 43,443
103 1,061,168 17,774
104 2,570,496 42,793
105 1,645,706 27,401
106 2,462,800 41,005
107 2,462,791 41,005
108 2,462,781 41,005
201 2,462,711 41,005
202 2,457,965 40,933
203 2,462,768 41,005
204 2,400,936 39,978
205 1,218,686 20,243
206 2,462,794 41,005
Total 31,354,522 522,058

Table 9: Number of successful edit examples per task for MEGA-Large (31M) and MEGA (522K).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Mean shifts, Table 10, align with the instructions for every task. Examples: LogP↓ (101) moves
the mean by −0.975 (winners vs. parents) and separates winners from losers by −1.577; LogP↑
(102) shifts by +0.965 with a winner–loser gap of +1.133; QED↓ (104) shifts by −0.217; TPSA↑
(106) exhibits a large increase of +31.611; HBA↑ (107) and HBD↑ (108) increase by +2.749 and
+2.316, respectively. The consistent sign and sizable winner–loser separations (last column) provide
evidence of strong task-wise consistency on MEGA.

Task Property Obj. Parent x̄ Winner x̄ ∆ W–P Loser x̄ ∆ W–L
101 LogP ↓ 2.475 1.501 −0.975 3.078 −1.577
102 LogP ↑ 2.475 3.440 +0.965 2.307 +1.133
103 QED ↑ 0.733 0.797 +0.064 0.614 +0.183
104 QED ↓ 0.733 0.516 −0.217 0.727 −0.211
105 TPSA ↓ 64.918 49.669 −15.249 77.022 −27.353
106 TPSA ↑ 64.918 96.530 +31.611 61.857 +34.673
107 HBA ↑ 3.990 6.739 +2.749 4.224 +2.515
108 HBD ↑ 1.237 3.553 +2.316 1.248 +2.305

Table 10: MEGA: mean target-property values and deltas. ∆W–P = x̄W − x̄P (winners minus
parents) and ∆W–L = x̄W − x̄L (winners minus losers). “Winners” and “losers” correspond to
successful and unsuccessful edits, on strict threshold respectively. Signs follow the task objective
(increase/decrease).

Figure 5 visualizes the single-objective shifts via kernel density estimates of the target property
for parent (orange) and edited child (blue) molecules. Across all eight tasks, the child distribution
moves in the instructed direction (reduce/increase or count increase), demonstrating strong task-wise
consistency in MEGA.

Figure 5: Molecular property distributions between parent and child molecules for MEGA.

For comparison to prior datasets, we report the Fréchet ChemNet Distance (FCD; lower is closer)
(Preuer et al., 2018). As shown in Table 11, the distance between MolEdit and MolOpt roughly 4x
lower compared to MEGA. This indicates that MEGA occupies a distinct region of the chemical
space, while the incumbent datasets exhibit notable overlap, thus, expanding the resources available
in the existing literature.

Table 11: Fréchet distance between datasets computed in Morgan-fingerprint space (lower is closer).

Dataset MEGA MolEdit MolOpt
MEGA 0.000 2.790 2.738
MolEdit 2.790 0.000 0.696
MolOpt 2.738 0.696 0.000
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Prompts. Unless otherwise stated, prompts request one candidate molecule in SMILES, with no
extra explanation.

SINGLE-OBJECTIVE PROMPTS:

Prompt 101: Reduce logP

User: Can you make molecule SMILESmore soluble in water? The output molecule should
be similar to the input molecule.
Output: One valid SMILES.

Prompt 102: Increase logP

User: Can you make molecule SMILESless soluble in water? The output molecule should be
similar to the input molecule.
Output: One valid SMILES.

Prompt 103: Increase QED

User: Can you make molecule SMILESmore like a drug? The output molecule should be
similar to the input molecule.
Output: One valid SMILES.

Prompt 104: Reduce QED

User: Can you make molecule SMILESless like a drug? The output molecule should be
similar to the input molecule.
Output: One valid SMILES.

Prompt 105: Decrease TPSA

User: Can you make molecule SMILEShigher permeability? The output molecule should be
similar to the input molecule.
Output: One valid SMILES.

Prompt 106: Increase TPSA

User: Can you make molecule SMILESlower permeability? The output molecule should be
similar to the input molecule.
Output: One valid SMILES.

Prompt 107: Increase HBA

User: Can you make molecule SMILESwith more hydrogen bond acceptors? The output
molecule should be similar to the input molecule.
Output: One valid SMILES.

Prompt 108: Increase HBD

User: Can you make molecule SMILESwith more hydrogen bond donors? The output
molecule should be similar to the input molecule.
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Output: One valid SMILES.

TWO-OBJECTIVE PROMPTS:

Prompt 201: Reduce logP & Increase HBA

User: Can you make molecule SMILESmore soluble in water and more hydrogen bond ac-
ceptors? The output molecule should be similar to the input molecule.
Output: One valid SMILES.

Prompt 202: Increase logP & Increase HBA

User: Can you make molecule SMILESless soluble in water and more hydrogen bond accep-
tors? The output molecule should be similar to the input molecule.
Output: One valid SMILES.

Prompt 203: Reduce logP & Increase HBD

User: Can you make molecule SMILESmore soluble in water and more hydrogen bond
donors? The output molecule should be similar to the input molecule.
Output: One valid SMILES.

Prompt 204: Increase logP & Increase HBD

User: Can you make molecule SMILESless soluble in water and more hydrogen bond donors?
The output molecule should be similar to the input molecule.
Output: One valid SMILES.

Prompt 205: Reduce logP & Decrease TPSA

User: Can you make molecule SMILESmore soluble in water and higher permeability? The
output molecule should be similar to the input molecule.
Output: One valid SMILES.

Prompt 206: Reduce logP & Increase TPSA

User: Can you make molecule SMILESmore soluble in water and lower permeability? The
output molecule should be similar to the input molecule.
Output: One valid SMILES.
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B SUPERVISED FINE-TUNING (SFT) DETAILS

For all our fine-tuning experiments, we utilize a memory-efficient, 4-bit quantized LLaMA 3.1 8B
Instruct model as the backbone. Our datasets are consistently formatted as prompt-completion pairs,
where the prompts are detailed in the main text and the corresponding completions are the child
SMILES.

To ensure a fair comparison across benchmarks, we trained three models, as detailed in Table 2, each
on a different dataset that has been filtered to contain comparable tasks. For the MEGA dataset, we
retain tasks 101, 102, 103, 104, 107, and 108, resulting in 229K prompt-completion pairs. For
MolEdit-Instruct, we use tasks 103, 104, 107, and 108 (as tasks 101 and 102 are not available),
yielding 650K prompt-completion pairs. For MolOpt-Instructions, we include tasks 101, 102, 103,
104, 107, and 108, producing 301K prompt-completion pairs.

All models are trained using Low-Rank Adaptation (LoRA) with a rank of r=32 and α=16, target-
ing all attention projection matrices and feed-forward layers. We use a training batch size of 16
with a gradient accumulation of 2 steps, resulting in an effective batch size of 32. Optimization
is performed with an 8-bit quantized AdamW optimizer for memory efficiency. The learning rate
is set to 1e − 4 with a cosine annealing scheduler and a linear warm-up period of 100 steps. For
regularization, a weight decay of 0.01 is applied. All models are trained with a maximum sequence
length of 512 tokens, using mixed-precision training (bfloat16) when supported. All trainings are
conducted on a single A100 (40GB) GPU for approximately 23 hours.

B.1 EVALUATION

We perform a sanity check to ensure that test SMILES are not present in any of the training sets using
canonical SMILES notation to prevent any data leakage. Importantly, to ensure the fairest possible
evaluation, we evaluate each model using the prompt templates specific to their respective training
datasets. This means models trained on MolEdit-Instruct data are evaluated with MolEdit-Instruct
prompt templates, while models trained on MEGA use MEGA templates, and models trained on
MolOpt-Instructions use MolOpt-Instructions templates, eliminating any potential bias from prompt
format differences.
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Training Loss of SFT Models
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Figure 6: Training loss curves for three SFT models on MEGA, MolEdit-Instruct, and MolOpt-
Instructions. MEGA achieves the lowest final loss (∼0.18), followed by MolOpt-Instructions and
MolEdit-Instruct respectively.

As shown in Figure 6 the model trained on MEGA exhibits significantly faster convergence and
substantially lower final loss values. The better training dynamics observed with MEGA indicates
that our dataset leads to more sample-efficient learning, achieving better optimization faster.
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In addition, for Table 3, we report hit ratio results comparing MEGA GRPO against Gemini 2.5 Pro
(June 17, 2025 official API release) and DrugAssist on the 500 test SMILES provided by DrugAs-
sist.
This evaluation is performed over a single run, and we carefully verify that none of these 500
SMILES are included in our training set to avoid any possibility of data contamination.

B.2 EXTRA COMPARISONS

To further assess the utility of the MEGA dataset and extend the results in Table 2, we conducted
an pair-wise comparison between MEGA and each external dataset on their overlapping task sets.
Specifically, MEGA shares five tasks with MolEdit-Instruct and six with MolOpt-Instructions.

In the first experience, we trained models exclusively on the five tasks shared between MEGA and
MolEdit-Instruct, namely tasks 103, 104, 107, 108, and 201 (Table 12). This setting corresponds
to 678K training examples from MolEdit-Instruct and 183K examples from MEGA restricted to
these five tasks. In the second, we trained models on the six tasks shared between MEGA and
MolOpt-Instructions, namely tasks 101, 102, 103, 104, 107, and 108 (Table 13), which amounts to
301K training examples from MolOpt-Instructions and 229K examples from MEGA. All training
hyperparameters and conditions described in Appendix B were kept identical to ensure a fair and
controlled comparison.

In these head-to-head evaluations, we found that models trained on the MEGA data partitions, in
average, outperform those trained on the corresponding data from MolEdit-Instruct and MolOpt-
Instructions. This finding further validates the quality and effectiveness of our dataset, demonstrating
that its superior performance is not limited to a small task intersection, but holds true in expanded
comparisons.

Table 12: Performance comparison: MEGA vs
MolEdit Instruct

Task Threshold MolEdit-Instruct MEGA

103 0.0 27.19 ± 0.84 61.05 ± 2.88
0.1 14.37 ± 0.95 24.36 ± 1.73

104 0.0 99.28 ± 0.52 95.84 ± 0.89
0.1 97.94 ± 0.55 80.95 ± 3.41

107 0.0 95.72 ± 0.61 98.02 ± 0.90
1.0 43.05 ± 1.64 94.58 ± 0.76

108 0.0 98.10 ± 0.71 99.80 ± 0.25
1.0 66.53 ± 2.05 97.25 ± 0.60

201 0.0 87.14 ± 1.99 96.18 ± 1.03
0.5 81.66 ± 1.72 87.86 ± 1.58

Average 71.10 83.59

Table 13: Performance comparison: MEGA vs
MolOpt-Instructions

Task Threshold MolOpt-Instruction MEGA

101 0.0 96.71 ± 0.70 98.04 ± 0.51
0.5 96.41 ± 0.58 92.47 ± 0.79

102 0.0 88.41 ± 1.85 97.41 ± 0.74
0.5 88.41 ± 1.85 92.53 ± 2.25

103 0.0 16.82 ± 1.57 59.71 ± 1.29
0.1 8.68 ± 1.16 26.72 ± 2.31

104 0.0 97.92 ± 1.40 97.42 ± 0.32
0.1 93.68 ± 1.88 84.54 ± 2.15

107 0.0 92.33 ± 2.42 98.35 ± 0.50
1.0 33.41 ± 3.03 93.36 ± 0.57

108 0.0 94.76 ± 0.91 100.00 ± 0.00
1.0 56.10 ± 1.74 98.56 ± 0.89

Average 71.97 86.59
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C GRPO DETAILS

C.1 GRPO ALGORITHM FOR MOLECULAR EDITING

For each molecular editing prompt (xin, xt), GRPO operates as follows:

1. Sample a group of candidate molecules:
{y1, y2, ..., yG} ∼ πθ(·|xin, xt) (1)

where G is the number of generations by our policy model
2. Compute rewards for all candidates using batch molecular property evaluation:

ri = R(yi, xin, xt) for i = 1, ..., G (2)

3. Calculate group-relative advantages:

Âi =
ri − r̄

σr + ϵ
(3)

where r̄ = 1
G

∑G
j=1 rj and σr =

√
1
G

∑G
j=1(rj − r̄)2 are the mean and standard deviation

of rewards within the group, and ϵ = 10−8 for numerical stability.
4. Update the policy using the GRPO objective:

LGRPO(θ) = − 1∑G
i=1 |yi|

G∑
i=1

|yi|∑
t=1

[
min

(
ρi,tÂi, clip(ρi,t, 1− ε, 1 + ε)Âi

)
− βDKL[πθ∥πref]

]
(4)

where:
• ρi,t =

πθ(yi,t|xin,xt,yi,<t)
πθold (yi,t|xin,xt,yi,<t)

is the probability ratio

• ε = 0.2 is the clipping parameter
• β = 0.0 by default
• If β > 0, the KL divergence is estimated as shown previously

C.2 EXPERIMENTAL DETAILS

For locality-aware GRPO training, we ensured strict consistency between supervised fine-tuning
(SFT) and post-training data. For example, the MEGA GRPO (14K) model used the same 14K
SMILES for both SFT and GRPO. Similarly, the results in Table 4 were obtained from a policy
model first fine-tuned on the full 522K prompt–completion pairs of MEGA, with the same data
reused during GRPO. In this phase, we sampled G = 12 generations per prompt and computed
rewards for each candidate molecule.

Our composite reward function is designed to guide the model toward valid, improved, and struc-
turally related molecules using three distinct signals. First, the validity reward provides a binary
signal that ensures chemical correctness through RDKit sanitization while rejecting any outputs that
are unchanged or fragmented. Second, the property reward implements a task-specific evaluation
using a dual-threshold mechanism to provide fine-grained control over property modifications. Strict
thresholds (e.g., ∆LogP > 0.5, ∆QED > 0.1) yield a reward of 1.0, whereas loose thresholds that
only require a correct directional change yield 0.5. This encourages the model to learn both con-
servative and substantial improvements. Third, the Tanimoto similarity reward enforces structural
conservation, assigning a reward of 1.0 for high similarity (Tanimoto coefficient > 0.65), 0.5 for
moderate modifications (coefficients ∈ [0.4, 0.65]), and 0.0 for major scaffold modifications (coef-
ficients < 0.4).

All GRPO training was conducted on a single A100 GPU, with convergence achieved in approxi-
mately 10 hours at around 3,000 steps. We used an 8-bit quantized AdamW optimizer with a learning
rate of α = 5× 10−6, β1 = 0.9, β2 = 0.999, a weight decay of 0.01, and gradient norm clipping at
0.5. The learning rate followed a cosine annealing schedule with a 10% linear warmup. To ensure
memory efficiency, the model incorporated 4-bit quantization and LoRA adaptation with a rank of
r = 32. We used an effective batch size of 8 (4 samples per device with 2 gradient accumulation
steps) and maximum sequence lengths of 256 and 128 for prompts and completions, respectively.
All computations were performed using bfloat16 mixed precision.
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D IMPACT OF GRPO AND TANIMOTO REWARD ON SCAFFOLD SIMILARITY

(a) Dataset size: 1.4K (b) Dataset size: 7K (c) Dataset size: 14K

(d) Dataset size: 70K (e) Dataset size: 140K (f) Dataset size: 500K

Figure 7: Tanimoto similarity distributions for different training data sizes. Each plot shows the
distribution for SFT (purple), GRPO without Tanimoto reward (turquoise), and GRPO with Tani-
moto reward (orange) models. The green shaded region (0.6–0.8) indicates the targeted tanimoto
similarity range.

Figure 7 shows the results of LLM postraining across varying dataset sizes sampled from MEGA us-
ing GRPO with and without incorporating a Tanimoto similarity component into the reward system.
When trained without the Tanimoto reward on small datasets, the models achieve high hit ratios
but tend to alter the scaffold substantially, yielding molecules with low similarity to their parent
compounds. As the dataset size increases, however, the model implicitly recovers the similarity dis-
tribution observed in the SFT baseline, ultimately reaching the target similarity regime even without
an explicit reward signal. In contrast, when the Tanimoto reward is included, the model attains this
small-edit regime with as few as 1.4k training examples (roughly 100 per task type).
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E QUALITATIVE EXAMPLES

Table 14: Visualization of molecular editing with three actions: Replace, Insert, and Delete. The yellow
regions indicate replaced substructures, the blue regions indicate inserted substructures, and the red regions
indicate deleted substructures. Each example shows the transformation from the input molecule xin to the
output molecule xout.

(a) 101 (strict) (b) 106 (strict)
Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 3.3398
→ 2.2743 TPSA: 79.3700 → 103.1600

(c) 102 (strict) (d) 103 (loose)
Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 1.6861
→ 3.2998 QED: 0.8626 → 0.9025

(e) 105 (strict) (f) 107 (loose)
Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

TPSA:
89.3500 → 72.2800 H-Bond Acceptors: 2 → 3

(g) 108 (strict) (h) 205 (strict)
Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

H-Bond
Donors: 1 → 3 LogP: 3.0216 → 1.3313, TPSA: 44.81 → 32.18
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(i) 101 (strict) (j) 102 (strict)
Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 0.4971
→ -0.0816 LogP: 4.0895 → 4.6941

(k) 104 (strict) (l) 201 (strict)
Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

QED: 0.3421
→ 0.1626 LogP: 0.4971 → -0.1731, H-Acceptors: 9 → 11

(m) 202 (strict) (n) 204 (strict)
Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 3.7027
→ 4.9789, H-Acceptors: 8 → 10 LogP: 5.7082 → 6.4651, H-Donors: 1 → 3

(o) 206 (strict) (p) 108 (strict)
Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 4.0895
→ 3.3751, TPSA: 45.67 → 83.72 H-Bond Donors: 0 → 3

(q) 102 (strict) (r) 103 (strict)
Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

LogP: 3.0114
→ 3.5138 QED: 0.5656 → 0.8620

(s) 105 (strict) (t) 105 (strict)
Input Molecule xin → Output Molecule xout Input Molecule xin → Output Molecule xout

TPSA:
31.3500 → 18.4600 TPSA: 55.4000 → 38.3300

F DATASET LICENSE

We derived our work from the ZINC 250K dataset Akhmetshin et al. (2021), available here , which
is distributed under the GNU General Public License v3 or later (GPL-3.0+). In accordance with
this license, we release our derived dataset under the same terms, preserving the freedoms to use,
share, and modify the data.
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