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Abstract

Mamba state-space models (SSMs) have recently outperformed state-of-the-art (SOTA)
Transformer large language models (LLMs) in various tasks and been widely adapted.
However, a major concern for stable learning in recurrent-based deep models (such as SSMs)
is the sensitivy of their recurrent dynamics. Despite widespread adaptation, the sensitivity of
Mamba’s recurrent dynamics under common fine-tuning methods–e.g., mixed-precision fine-
tuning (MPFT) and parameter-efficient fine-tuning (PEFT)–remains unexplored. Empirically,
we show that Mamba LLMs are extremely stable to changes introduced by combinations
of MPFT and PEFT, in stark contrast to Transformer LLMs, which we demonstrate
may drastically diverge from their respective full-precision counterparts under different
combinations of MPFT and PEFT (despite the near-ubiquitous adaptation of these fine-
tuning frameworks for attention-based models). The demonstrated robustness of Mamba
LLMs are due to their recurrent dynamics, which we prove are guaranteed to be stable using
dynamical systems theory (in particular, Lyapunov stability). We conclude by using MPFT
and PEFT to novelly study Mamba LLMs’ in-context learning (ICL) abilities on natural
language tasks, thus supplementing other recent work.

1 Introduction

Mamba(Gu & Dao, 2024a) state-space models (SSMs) have been shown to greatly outperform comparable
attention-based LLMs (Biderman et al., 2023) across a large number of standard natural language bench-
marks. Subsequently, pretrained Mamba models have been widely adapted across a large number of data
modalities (Liu et al., 2024; Li & Chen, 2024; Quan & Li, 2024; Li et al., 2024), tasks (Xie et al., 2024; Wang
et al., 2024a), and architectures (Anthony et al., 2024; Park et al., 2024; Lieber et al., 2024). However,
despite such widespread adaptation and subsequent research threads (Dao & Gu, 2024; Park et al., 2024;
Wang et al., 2024b), no existing work has sought to understand the stability of learning Mamba SSMs in
common LLM fine-tuning frameworks, such as mixed-precision fine-tuning (MPFT). For recurrent-based deep
models, such as Mamba SSMs, the sensitivity of recurrent dynamics to small changes (e.g., those introduced
by mixed-precision) is a primary concern for stable learning (Bengio et al., 1994; Pascanu et al., 2013).

To determine the stability of time-varying Mamba models, we leverage theory from dynamical systems. Under
the framework of Lyapunov stability, we show that small input changes within the SSM layer of both Mamba
and the more recent Mamba-2 (Dao & Gu, 2024) models do not lead to exponentially deviating outputs.
Furthermore, we extend these theoretical results to account for deviations in input and latent Mamba states
produced by combinations of MPFT and PEFT.

We empirically validate these theoretical results; for a large number of randomly generated SSM layers, we
show that manually adjusting initial latent and input states produces maximum deviations in the output
states which exponentially decrease over discrete time. Furthermore, by expanding previous divergence
performance metrics (Dettmers et al., 2022; Dettmers & Zettlemoyer, 2023; Dettmers et al., 2024) and
evaluating combinations of MPFT and PEFT, we show that fine-tuned Mamba LLMs do not substantially
deviate in performance compared to full-precision full fine-tuning. This is demonstrated in stark contrast
to comparable Transformer-based LLMs, which we show may drastically differ from their full-precision full
fine-tuning counterparts, exhibiting large deviation spikes. Over two widely used fine-tuning datasets
and two widely used natural language benchmarks, attention-based LLMs Pythia (Biderman
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et al., 2023) and OpenELM (Mehta et al., 2024) exhibit 9 and 4 large deviation spikes, respectively,
whereas Mamba LLMs exhibit zero. Thus, Mamba LLMs are significantly more stable to performance
deviations under MPFT and PEFT, whereas Transformer LLMs are susceptible to large deviation spikes.

Lastly, we use stable MPFT and PEFT to explore the ICL capabilities of instruction tuned Mamba and
Mamba-2 models on natural language tasks, thus complementing recent studies which evaluated Mamba ICL
on synthetic tasks (Park et al., 2024; Lee et al., 2024). While the ICL capabilities of pretrained Mamba
models lag behind those of comparable Transformer models–Mamba and Mamba-2 models only achieve 38%
and 82%, respectively, of the performance improvements (relative to zero-shot) of Pythia models–instruction
tuned Mamba and Mamba-2 models improve to 81.5% and 132% of the ICL improvements achieved by Pythia.
Thus, while pretrained Mamba models’ ICL capabilities lag behind comparable Transformers, we show that
instruction-tuning using MPFT and PEFT greatly narrows this gap.

Our major contributions are summarized as follows:

• We derive bounds on the Lyapunov exponents of both Mamba and Mamba-2 models’ SSM equations.
Using these bounds, we theoretically show that small input changes within the MambaBlock do not
lead to exponentially deviating outputs.

• Building on the aforementioned bounds, we theoretically show that changes to MambaBlock latent
and input states stemming from MPFT and PEFT do not lead to exponentially deviating outputs.

• We empirically demonstrate the above theoretical results:

– Directly introducing ε changes to the inputs states of 100 random MambaBlock, we confirm that
the resulting output states do not deviate from the unperturbed outputs over discrete time (the
maximum deviation exponentially decreases).

– For MPFT and PEFT, we measure the performance deviation between FP32 full fine-tuned and
MPFT/LoRA Mamba models and compare to attention-based models. Across two fine-tuning
datasets, two widely used natural language benchmarks, several model sizes, and a large number
of MPFT/PEFT configurations, we show that training Mamba LLMs is significantly more stable
than comparable Transformer LLMs.

• We expand performance divergence measures previously used to study MPFT and PEFT for Trans-
former LLMs (Dettmers et al., 2022; Dettmers & Zettlemoyer, 2023; Dettmers et al., 2024). In
addition to showing Mamba models are drastically more stable than comparable attention-based
LLMs, the expanded divergence metric also demonstrates that Transformer LLMs are susceptible to
large deviation spikes.

• Using stable MPFT and PEFT, we complement recent studies by examining the ICL capabilities
of Mamba/Mamba-2 models evaluated on natural language tasks. We show that instruction tuning
allows SSMs to perform ICL competitively with comparable Transformer LLMs on natural language
tasks.

Terminology. When describing a particular foundation model or result, we use the term “Mamba model”
to refer to one of the original models released in Gu & Dao (2024a) and “Mamba-2 model” to refer to
models released in Dao & Gu (2024). Despite subtle architectural differences, these two SSMs share the same
state-space equations and design scheme of storing the majority of SSM parameters in a large memory buffer.
We thus synonymously use the term MambaBlock to refer to the SSM layer of both Mamba and Mamba-2
models.

2 Background

Mixed-precision and parameter-efficient fine-tuning. In the current era of extremely large foundation
models, both MPFT and PEFT have become ubiquitous tools for the rapid adaptation of Transformer-based
LLMs towards specific applications. PEFT using adapters (He et al., 2021) allows a large pretrained model to
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be efficiently adapted for a particular downstream task by freezing the full model and training only a small
number of extra parameters. Arguably the most widely used such PEFT method is LoRA (Hu et al., 2021),
which injects trainable low-rank matrices into Transformer layers to approximate weight updates.

To further decrease the computational demands necessary for LLM fine-tuning and inference, MPFT via
mixed-precision (i.e., FP16 or BF16) (Kalamkar et al., 2019; Micikevicius et al., 2018) and quantized low-
precision (Dettmers et al., 2024) have proven effective strategies to reduce GPU memory and runtime
requirements without deleterious effects on downstream performance (Dettmers et al., 2024; Wu et al.,
2020). Additionally, mixed-precision approaches have paved the way for hardware-aware optimizations within
the self-attention module (Dao et al., 2022), greatly mitigating the quadratic complexity of Transformer
LLMs. Together, PEFT and MPFT have created a rich ecosystem with which varying combinations of these
approaches may be used to meet the computational constraints of a given training system.

State-space Models. Structured state-space sequence (S4) models (Gu et al., 2022; Fu et al., 2023) are SSMs
which leverage linear time-invariant (LTI) systems to combine the computational advantages of Transformers–
i.e., highly parallelizable training–and recurrent neural networks (RNNs)–i.e., subquadratic autoregressive
inference using recurrency. Within the S4 layer, an input signal is discretized and LTI parameters representing
the input’s latent dynamics are learned. Owing to the S4 block’s latent dynamics being LTI, the S4 block’s
output may be thus compactly represented as a single convolution between the input and an SSM convolution
kernel (a matrix whose entries are products of LTI learnable parameters resulting from unrolling the state-space
equations). However, despite hardware efficiency and long-dependency-modeling improvements, LTI-based S4
models remained inferior to Transformers of comparable parameter-sizes for natural language tasks, even
when augmenting S4 layers with attention-layers for hybrid architectures (Gu & Dao, 2024a).

Innovating on these previous S4 approaches, Mamba utilizes time-varying parameters to model latent dynamics,
thus broadening the ability to capture nuanced changes evolving in discrete-time. Without LTI dynamics,
however, the input-output representation via the SSM convolution kernel is no longer applicable, thus voiding
previous hardware-aware S4 optimizations (Fu et al., 2023). To enable hardware efficiency with time-varying
SSM parameters, (Gu & Dao, 2024a) thus introduced extensively customized CUDA kernels which implement
highly parallelized prefix sums to compute recurrent states. Subsequently, Dao & Gu (2024) considered the
unrolled state-space equations and leveraged tensor contractions (i.e., einsum notation (Rogozhnikov, 2022))
to efficiently calculate Mamba variables. The resulting Mamba-2 foundation models contained significantly
larger latent-variable dimensions than the Mamba models of (Gu & Dao, 2024a), while maintaining efficiency
on modern GPU accelerators.

In-context learning. ICL provides an adaptable alternative to fine-tuning. Rather than fine-tune the LLM
directly, ICL augments a prompt with n relevant examples (called shots) preceding the query of interest.
Given sufficiently large models and pretraining data (Brown et al., 2020; Wei et al., 2022), Transformer LLMs
have proven adept at learning new concepts on the fly provided such few-shot prompting. However, it is worth
noting that ICL inference time increases dramatically as the number of shots grows (due to self-attention’s
quadratic complexity) and PEFT (when possible) is known to produce more accurate downstream learning
results (Brown et al., 2020; Liu et al., 2022).

3 Mamba state-space models

For latent-variable dimension d and maximum input sequence length T , the MambaBlock defines state-space
parameters A, Bt, Ct, ∆t P Rdˆd for t P t1, . . . , T u. The matrix ∆t controls the discrete step-size. Given an
input sequence u1, . . . , uT P Rd, the following linear mapping through latent states x1, . . . , xT P Rd is used
to produce the output y1, . . . , yT P Rd:

xt “ Ātxt´1 ` B̄tut (1)
yt “ Ctxt, (2)

where ∆̄t “ softpluspLinearp∆tqq P Rdˆd, Āt “ exp p∆̄tAq and B̄t “ A´1pĀ´IqBt. In practice, A, Bt, Ct

and ∆t are diagonal matrices.

3



Under review as submission to TMLR

Due to the time-variance of Equations 1 and 2, previous SSM stability results are no longer applicable
(discussed further in Appendix E). The Mamba foundation models were pretrained in full FP32 precision
and, subsequently, official implementations have cautioned against training in reduced precision (Gu & Dao,
2024b; Huggingface, 2024). Thus, how sensitive the MambaBlock’s recurrent dynamics are remains an open
question. We next answer the latter using theory from dynamical systems.

3.1 Stable dynamics in the MambaBlock

For Mamba’s discrete dynamical system in Equations 1 and 2, define

xt “ Fθpxt´1, utq, (3)

where θ denotes the time-varying parameters described in Section 3. For input sequence u1, . . . , uT and
initial latent state vector x0, we thus write

xT “ FθpFθp. . . Fθpx0, u1qqq – F T ´1
θ px0, u1q.

The rate of divergence between two scalar ε-close inputs to a discrete dynamical system is bounded by the
system’s maximal Lyapunov exponent λmax (Mikhaeil et al., 2022). Given λmax and two initial values px0, u1q

and px0 ` ε, u1 ` εq, the maximum deviation between these points grows as (Laffargue et al., 2013; Sayama,
2015):

max |F N
θ px0, u1q ´ F N

θ px0 ` ε, u1 ` εq| P Op|ε| exp pNλmaxqq.

Thus, when λmax ą 0, nearby trajectories exponentially separate and, when λmax ď 0, nearby trajectories
ultimately converge to the same fixed point or periodic cycles.

The maximal Lyapunov exponent is defined as

λmax – lim
T Ñ8

1
T

log

∥∥∥∥∥ T
ź

t“0

Bxt

Bxt´1

∥∥∥∥∥
2

,

where ∥∥2 denotes the spectral norm for matrices. For an arbitrary MambaBlock, we prove the following:
Theorem 1. Let pxt´1, utq be the latent state and input at an arbitrary time t P t1, . . . , T u within a
MambaBlock. Then small changes pxt´1 ` ε, ut ` εq produce deviations which are exponentially non-increasing
over discrete-time. That is, max |F N

θ pxt´1, utq ´ F N
θ pxt´1 ` ε, ut ` εq| P Opε exp pNζqq, for some scalar

ζ ď 0.

The proof of Theorem 1 is available in Appendix A, where the maximal Lyapunov exponent for an arbitrary
MambaBlock is first proven to be non-positive. The main result subsequently follows.

Thus, the latent states of Mamba and Mamba-2 models are stable under small input changes. However,
variables y1, . . . , yT are the primary outputs for such models, particularly for LLM applications. We next
show that, given Theorem 1, Mamba and Mamba-2 output variables are also stable.
Theorem 2. Assume pxt´1 ` ε, ut ` εq produce deviations which are exponentially non-increasing over
discrete-time. Then small changes to the output yt are also exponentially non-increasing over discrete time.

The proof of Theorem 2 is available in Appendix B. Thus, by Theorems 1 and 2, the latent and output
states of both Mamba and Mamba-2 models are stable to changes encountered during recurrency.

3.1.1 Divergence bounds for automatic mixed-precision and PEFT

For an arbitrary MambaBlock, let x0, . . . , xT and u1, . . . , uT be the trajectory of latent and input states under
full-precision fine-tuning. During a forward pass, automatic mixed-precision (AMP) saves time and memory
by computing forward activations in half-precision (FP16 or BF16). During a backward pass, AMP computes
gradients in half-precision and up-casts to full-precision prior to updating. MFPT thus introduces changes to
the inputs u1, . . . , uT (which are passed through a Swish) and latent states x0, . . . , xT through ∆̄t (which is
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passed through a softplus), up/downcasting of parameter updates, and the aforementioned changes to the
input states.

Potentially in concert with MPFT, PEFT via LoRA induces changes by learning low-rank matrices Ât, B̂t, Ĉt

x̂t “ pĀt ` Âtqxt´1 ` pB̄t ` B̂tqut

ŷt “ pCt ` Ĉtqxt

Let x1
0, . . . , x1

T and u1
1, . . . , u1

T be the trajectory of latent and input states under MPFT and/or PEFT. We
thus have the following two theorems:
Theorem 3. Let ϵu

t “ max |ut ´ u1
t|, i.e., the maximum, positive scalar-difference between the tth

MPFT/PEFT and full fine-tuning input state. Similarly, let ϵx
t “ max |xt ´ x1

t| and ϵ˚ “ max
ŤT

t“0tϵu
t , ϵx

t u

(where we define u0 “ 0). We thus have

max |F T
θ px0, u1q ´ F T

θ px1
0, u1

1q| P Opϵ˚ exp pTζqq,

for some scalar ζ ď 0. Thus, differences introduced by AMP and/or PEFT for Mamba models do not
exponentially compound over discrete-time.
Theorem 4. Let y1

t be the trajectory of output states produced by x1
0, . . . , x1

T and u1
1, . . . , u1

T under MPFT
and/or PEFT. Then we thus have

max |yT ´ y1
T | P Opϵ˚ exp pTζqq,

for some scalar ζ ď 0. Thus, small changes to the output yt resulting from MPFT and/or PEFT are
exponentially non-increasing over discrete time.

The proof of Theorem 3 is available in Appendix C. Theorem 4 may be derived by directly applying the proof
technique of Theorem 2 to the results of Theorem 3. Thus, the latent and output states of both Mamba and
Mamba-2 models are stable to changes encountered during AMP and MFPT.

4 Experiments

4.1 Non-divergent MambaBlock dynamics

We explore the implications of Theorem 2 for arbitrary MambaBlocks. For n random trials and various ε, we
randomly initialize the inputs (i.e., ut for t “ 1, . . . , T ) and parameters (i.e., A, Bt, Ct, ∆t) of a MambaBlock
with T “ 2048 and latent-variable dimension d “ 64.

For each trial and ε, we first calculate the MambaBlock outputs y1, . . . , yT (where yt “ F t
θpx0, u1q). We then

perturb the initial states px0 ` ε, u1 ` εq “ px1
0, u1

1q and calculate the subsequent perturbed model outputs
y1

1, . . . , y1
T (where y1

t “ F t
θpx1

0, u1
1q “ F t

θpx0 ` ε, u1
1 ` εq). The maximum deviation is then calculated for

each time point, i.e., max |yt ´ y1
t| “ max |F t

θpx0, u1q ´ F t
θpx0 ` ε, u1 ` εq|. Figure 1 shows both the mean

maximum deviation per time averaged across trials, as well as the standard deviation, for ε “ 0.1.

As we can see, the maximum divergence starts out proportional to the change in initial conditions, but
quickly decays and converges to the original output trajectory. Thus, changes to a MambaBlocks inputs do
not compound over discrete time. Additional experiments for ε P t0.01, 0.001u are available in Appendix D
and demonstrate the same dynamics.

4.2 Non-divergent Mamba MPFT and PEFT

We explore the implications of Theorem 4 for combinations of MPFT and PEFT on pretrained Mamba models.
We focus on utilizing LoRA (Hu et al., 2021), which is arguably the most widely used PEFT framework for
LLMs. Using the Alpaca dataset (Taori et al., 2023), Mamba 160M, 410M, and 790M models are fine-tuned for
three epochs with a maximum sequence length of 512. We denote the targeting of all linear layers (ALL) for
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Figure 1: For 100 random MambaBlocks, initial latent and input states px0, u0q are deviated by ε. The
resulting maximum deviation in output states is computed and shown to exponentially decrease over discrete
time. µ denotes the maximum absolute deviation at discrete time t averaged over all trials, while σ denotes
the respective standard deviation at each discrete time.

LoRA as ALL LoRA, the targeting of a subset of linear layers (SLL) for LoRA as SLL LoRA (i.e., ∆t, Bt,
and Ct parameters), and no adapters as Full (i.e., full fine-tuning).

Each fine-tuning run occurred on a single Nvidia A10G GPU (24 GB total memory). To further limit
extraneous numerical effects, the same batch size is used for all FP32, FP16, and BF16 experiments for a given
model size. While this leads to hardware underutilization (i.e., non-saturated GPU memory for mixed-precision
and LoRA experiments), this is necessary to guarantee no divergence is due to differences in parameter
update schedules. For comparison, two Transformer-based LLM families of similar parameter counts are
fine-tuned using the same experimental setup: Pythia (sizes 160M, 410M, and 1B) and OpenELM (Mehta et al.,
2024) (sizes 270M and 450M). The training recipe for all models was adapted from Tunstall et al. (2023), with
the AdamW_torch optimizer and a cosine annealing schedule. Further experimental details are available in
Appendix F.

All models were evaluated using the LM evaluation harness from Eleuther AI (Gao et al., 2023). Model
performance is measured as percent accuracy using the MMLU (Hendrycks et al., 2020) and Wino-
grande (Sakaguchi et al., 2021) datasets. The difference in model performance is reported as the mean
divergence (i.e., absolute difference) between the original full-precision and respective mixed-precision model,
averaged over {0, 1, 3, 5}-shot percent accuracy. Thus, a divergence greater than one denotes an
average difference greater than one entire percentage of accuracy. We thus refer to a divergence
greater than unity as a large deviation spike.

Mean divergence results for all models are displayed in Figure 2(a) and Figure 2(b) for MMLU and Winogrande,
respectively. Across mixed-precisions and adapter settings, Mamba displays smaller divergences than both
Pythia and OpenELM models. E.g., for Winogrande evaluations, Alpaca fine-tuning with Mamba
models is an average 2.9 and 2.4 times smaller in mean divergence than Pythia and OpenELM
models, respectively. For MMLU evaluations, Alpaca fine-tuning with Mamba models is an average 2.6
times smaller in mean divergence than both Pythia and OpenELM models. Importantly, Mamba models do
not exhibit large deviation spikes after fine-tuning, in contrast to both Pythia and OpenELM models.

We note that the results in Figure 2 display the fine-tuning of 72 LLMs and 576 few-shot evaluations. In
Appendix H, these experiments are expanded to include the LIMA fine-tuning dataset (Zhou et al., 2024)
as well as the standard deviations for all mean deviation results. Across all experiments, Mamba models
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(a) Mean full-precision (FP32) divergence in MMLU performance.
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(b) Mean full-precision (FP32) divergence in Winogrande performance.

Figure 2: Mean full-precision (FP32) divergence in performance for Mamba, Pythia, and OpenELM models.
Models are fine-tuned over the Alpaca dataset using different combinations of MPFT and PEFT. Full
fine-tuning (i.e., no PEFT adapters) is denoted as Full.

are significantly more stable for MPFT/PEFT compared to Transformer-based LLMs. E.g., for MMLU
evaluations, LIMA fine-tuning with Mamba models is an average 7 and 3.3 times smaller in mean
divergence than Pythia and OpenELM models, respectively. For Winogrande evaluations, LIMA
fine-tuning with Mamba models is an average 4.1 and 3.3 times smaller in mean divergence than Pythia
and OpenELM models, respectively. Across the two fine-tuning datasets, two benchmarks, and six
evaluated MPFT/PEFT combinations, Pythia and OpenELM produce 9 and 4 large deviation
spikes, respectively, while Mamba produces zero.

4.3 Hyperparameter tuning robustness of Mamba models

We empirically demonstrate that Mamba models are robust to the choice of PEFT hyperparemters. Using
the training recipe of Tunstall et al. (2023) as a basis, we conduct an extensive hyperparameter search across
the learning rate, LoRA dimension, and number of warmup steps. From the Cartesian-product of these three
parameters, 150 hyperparameter configurations were sampled and used to fine-tune Mamba 370M over the
Openhermes dataset (Teknium, 2024), which consists of 242,000 supervised samples. For comparison, Pythia
410M is similarly fine-tuned using the same set of 150 hyperparameter configurations.

The MMLU 5-shot performance for each of the 150 Mamba and Pythia fine-tuned models is displayed in
Figure 3. Pythia 410M is capable of higher performance than Mamba 370M, where the average accuracy for
the former and the latter are 26.5% and 24.8%, respectively. However, Mamba 370M is much more robust
to the choice of hyperparameters, with a difference of 1.5% between the minimum (23.3%) and maximum
(24.8%). In contrast, Pythia 410M fine-tuned models display a large performance difference of 4.7% between
the minimum (22.9%) and maximum (27.6%).
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Figure 3: Fine-tuning hyperparameter search for OpenHermes. Each point is a different hyperparameter
configuration. SLL LoRA was used for both models. The x-axis is the learning rate, the y-axis is resulting
MMLU 5-shot performance, bubble size is the LoRA dimension, and the color is the number of warmup steps
P t0, 1k, 2ku.

4.4 Stable instruction tuning improves Mamba ICL for natural language tasks

With both stable MPFT and PEFT, we determine the impact of instruction tuning Mamba and Mamba-2
models on ICL for natural language tasks. We instruction fine-tuned Mamba and Mamba-2 pretrained models
using ALL LoRA, the OpenHermes dataset, and the training recipe described in Section 4 (with BF16). Zero
and few-shot performance are evaluated using the same five standard natural language benchmarks used in
Section 4.3. ICL performance is reported as the average improvement percentage of {1, 3, 5}-shot versus
0-shot (AIPSS). For comparison, Pythia pretrained models are instruction fine-tuned using the same training
recipe and ALL LoRA (i.e., all Pythia linear layers are adapted).
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Figure 4: Instruction tuning narrows the ICL gap between Mamba and Pythia, and creates a gap from Pythia
to Mamba-2 models. ALL LoRA models were instruction tuned on the OpenHermes (Teknium, 2024) dataset
for one epoch. Performance is reported as the average improvement percentage of {1, 3, 5}-shot versus 0-shot
over five standard natural language benchmarks.

Figure 4 displays AIPSS for pretrained and instruction fine-tuned Mamba and Pythia models. As previously
noted, pretrained Mamba models do not display similar ICL ability as comparable Pythia models on the
evaluated standard NLP benchmarks. In particular, Mamba 2.8B, the largest pretrained Mamba model,
displays inconsistent zero-shot improvements as the number of shots increase. While pretrained Mamba-2
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models display significantly better ICL ability than Mamba models, Mamba-2 models smaller than 780 million
parameters struggle.

However, after instruction tuning, all Mamba models larger than Mamba 130M consistently improve in ICL
performance as the number of shots increase. Similarly, the majority of Mamba-2 models larger than
Mamba-2 130M greatly improve in ICL performance. Thus, while pretrained Mamba and Mamba-2 models
are only capable of 38% and 82% (respectively) of the AIPSS compared to similar pretrained Pythia models,
instruction tuned Mamba and Mamba-2 models are capable of 81.5% and 133% of the AIPSS relative to
similarly fine-tuned Pythia models.

In addition to Pythia, we compare instruction tuned Mamba models’ ICL abilities to other state-of-the
Transformer LLMs of comparable sizes and pretraining token counts: OpenELM (Mehta et al., 2024) (sizes
270M, 450M, and 1.1B), TinyLlama 1.1B (Zhang et al., 2024), and OLMo 1.2B (Groeneveld et al., 2024). We
additionally group models by parameter count, to understand ICL as an emergent behavior of fine-tuned
Mamba models. To further explore the emergence of this ability for Mamba SSMs, we include recent
Mamba-specific PEFT methods (Yoshimura et al., 2025). Displayed in Appendix G, pretrained SSMs and
Transformers of parameter counts 270 million and less display slight or detrimental ICL abilities (i.e., few-shot
performance is worse than zero-shot). For models of greater than 450 million parameters, the majority of
SSMs and Transformers display positive ICL abilities, with the exception of Mamba 1.4B.

Instruction tuning greatly smooths ICL performance across both parameter classes. Thus, while instruction
tuned SSMs and Transformers of 160 million parameters or fewer continue to display slight or detrimental
ICL abilities, all models of 270 million parameters and greater show positive ICL abilities, with
Mamba-2 2.7B closely matching (or exceeding) the ICL ability of the top performing Transformer
LLM per-shot. Furthermore, in terms of an emergent ability (Wei et al., 2022), ICL emerges for instruction
tuned Mamba and Mamba-2 SSMs of size 370 million and greater, while no clear trend presents itself for
pretrained models.

5 Conclusions and Future Directions

Using dynamical systems theory, we’ve shown that the recurrent dynamics of Mamba SSMs are stable to small
input perturbations. We’ve extensively confirmed this result, showing that Mamba training is significantly
more robust to changes introduced during MPFT and PEFT than Transformer-based LLMs across widely-used
fine-tuning datasets and benchmarks. Furthermore, by including many more few-shot evaluations in our
divergence metric than previous work, our stability studies uncovered that Transformer LLMs are susceptible
to large deviation spikes during MPFT alone, as well as when MPFT is combined with PEFT. As MPFT
and PEFT are two of the most common LLM fine-tuning frameworks, and as lower precision formats (e.g.,
NF4 and FP8) become more widely used for fine-tuning, we advocate for more extensive stability analysis
(e.g., including several few-shot evaluations when calculating divergence) to expose large deviation spikes.

In order to mitigate large deviation spikes, we’ve shown that, unlike Transformer LLMs, Mamba models
are extremely stable and do not exhibit this phenomena. Furthermore, in addition to stable MPFT and
PEFT, we’ve shown that a core LLM reasoning ability (ICL) of Mamba models significantly improves with
instruction tuning; i.e., we’ve shown that while pretrained Mamba models’ ICL capabilities lag behind those
of pretrained LLMs on natural language tasks, instruction tuned Mamba models’ rival (and surpass, in many
Mamba-2 cases) the ICL capabilities of instruction tuned Transformers. Thus, Mamba models are extremely
stable learners with the potential to display the ICL capabilities of attention-based models once instruction
tuned.

There are several avenues for future work. In particular, adapting Mamba’s CUDA kernels to support more
aggressive low-precision PEFT methods (Dettmers et al., 2024) would further decrease the hardware needed
to train Mamba models, while providing additional speedups and testing the limits of the derived stability
results. Furthermore, our theoretical contributions open the door for several follow up studies. E.g., additional
results building off Theorems 3 and 4 may tackle generalization error bounds and privacy fine-tuning (by
considering a language modeling framework and calculating upper bounds under distributions of ε), and
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Mamba-specific decoding schemes (where new algorithms may exploit the derived deviation bounds ensure
next-token predicitions lie within a deviation tolerance from the true optimal decoding).

6 Relations to Previous Work

MPFT divergence for LLMs. Previous work has studied the performance difference for attention-
based LLMs under low-precision inference (Dettmers et al., 2022; Dettmers & Zettlemoyer, 2023) and
fine-tuning (Dettmers et al., 2024). However, these works only measured divergence using single-shot
performance (i.e., zero-shot in (Dettmers et al., 2022; Dettmers & Zettlemoyer, 2023), 5-shot for MMLU and
zero-shot otherwise in (Dettmers et al., 2024)). In contrast, we report the difference in model performance
as the mean divergence between the full-precision and mixed-precision models, averaged over the accuracy of
four different few-shot evaluations. Thus, in contrast to previous work, our inclusion of multiple shots: a)
uncovers significant divergence in widely used LLMs even at widely used mixed-precisions (FP16 and BF16),
and (b) more rigorously tests mixed-precision training’s effect on one of LLMs’ most important reasoning
abilities (ICL). We are not aware of any previous works which have attempted to understand the performance
impact of MPFT on Mamba models.

Lyapunov stability and RNNs/SSMs. Lyapunov exponents have previously been considered (Mikhaeil
et al., 2022; Vogt et al., 2022) for classic RNN structures (e.g., vanilla RNNs, LSTMs, GRUs, PLRNNs, etc.),
to determine when such models exhibit chaotic dynamics and the impact on the exploding/vanishing gradient
phenomena1.

For S4 (Gu et al., 2022) SSMs, Goel et al. (2022) used Hurwitz matrices to characterize the numerical stability
of linear time-invariant (LTI) S4 models. Similarly, Orvieto et al. (2023) used the LTI property to derive the
eigenvalue decomposition of S4-like models, providing stability conditions by bounding the corresponding
eigenvalues (further discussed in Appendix E). However, such analysis is not applicable to time-varying
models, such as Mamba, nor does it characterize the effects of sensitive dependence on initial conditions
(e.g., divergence of two ε close inputs). To the best of our knowledge, no previous works have used Lyapunov
exponents to explore the effects of mixed-precision on recurrent neural models or Mamba architectures.

In-context learning. Recent work has sought to understand the in-context learning (ICL) capabilities of
Mamba LLMs when trained from scratch for specific tasks (Park et al., 2024; Lee et al., 2024). Another line of
recent work has sought to understand how hybrid Mamba-Transformer models may be directly distilled from
Transformer models (Wang et al., 2024b). However, to the best of our knowledge, no existing works have
either theoretically explored the effects small input changes (e.g., due to mixed-precision) have on Mamba’s
recurrent dynamics or empirically explored such effects downstream impact on fine-tuning.

As previously noted, recent works (Park et al., 2024; Lee et al., 2024) have studied Mamba’s ability to perform
ICL by training Mamba models for specific tasks. Such tasks include logistic regression, decision trees, and
learning other simple function classes, following the work of Garg et al. (2022). We emphasize that, in this set
up, relatively small Mamba models–33 million and 90 million parameters for Lee et al. (2024) and Park et al.
(2024), respectively–are trained from scratch for every evaluated task. Indeed, Park et al. (2024) notes that
subsequent work is necessary to understand Mamba’s ICL capabilities for language modeling using standard
natural language benchmarks, as well as for larger model sizes. Thus, our study of both the pretrained and
instruction tuned ICL capabilities of Mamba/Mamba-2 LLMs for natural language tasks are complimentary
to previous works.

Failure Cases and Limitations

While we explored the use of LoRA for Mamba models, many other PEFT adapters exist (Liu et al., 2022; Li
& Liang, 2021; Houlsby et al., 2019; Lester et al., 2021). Furthermore, while mixed-precision using FP16 and
BF16 were explored, lower-precision methods exist (Dettmers et al., 2024). Both are interesting directions for

1We note that this continues a long line of research exploring RNNs sensitivity to initial conditions and their subsequent ability
to produce chaotic output (Ribeiro et al., 2020; Laurent & von Brecht, 2017; Bertschinger & Natschläger, 2004; Bertschinger
et al., 2004), although previous work did not leverage Lyapunov exponents.
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future work. Finally, our timing and memory usage experiments using Alpaca did not consider the largest
two Mamba models (1.4B and 2.8B) due to their exceeding A10G memory capacity for FP32 full fine-tuning.

Broader Impact Statement

The Mamba models considered are all LLMs, and thus have the same potential positive and negative societal
impacts as other LLMs (e.g., hallucinations). Furthermore, fine-tuning is known to possibly erode existing
LLM guardrails, and thus the described methods may be adapted for this fine-tuning use case (as is the case
for all PEFT and MPFT methods). However, MPFT/PEFT is shown to improve the quality of Mamba
models for downstream applications, which may be adapted for all positive LLM applications in society (e.g.,
personal assistants, task automation, code completion, etc.). Finally, the described methods decrease the
computational constraints required to train and inference Mamba SSMs, which has implications for green ML
(e.g., decreased CO2 emissions, positive climate change impact, etc.).
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A Mamba stable dynamics proof

Recall the state-space parameters and equations for the MambaBlock; A, Bt, Ct, ∆t P Rdˆd for t P t1, . . . , T u “

rT s. Given an input sequence u1, . . . , uT P Rd, the following linear mapping through latent states x1, . . . , xT P

Rd is used to produce the output y1, . . . , yT P Rd:

xt “ Ātxt´1 ` B̄tut (4)
yt “ Ctxt,

where ∆̄t “ softpluspLinearp∆tqq P Rě0
dˆd, Āt “ exp p∆̄tAq, B̄t “ A´1pĀ ´ IqBt, and Rě0 is the set of

non-negative real numbers. In practice, A, Bt, Ct and ∆t are diagonal matrices.
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Furthermore, recall the following definitions:

xt “ Fθpxt´1, utq

where θ denotes the aforementioned time-varying parameters. For input sequence ut, . . . , uT and initial latent
state value x0, we thus write

xT “ FθpFθp. . . Fθpx0, u1qqq – F T ´1
θ px0, u1q.

We first prove that, given two scalar ε-close inputs to a MambaBlock, their deviations do not grow exponentially
as the number of recurrences increases (Lemma 1). The main result in the paper is subsequently proved.
Lemma 1. For input px0, u1q to a MambaBlock, small changes px0 ` ε, u1 ` εq produce deviations which
are exponentially non-increasing over discrete-time. That is, max |F N

θ px0, u1q ´ F N
θ px0 ` ε, u1 ` εq| P

Op|ε| exp pNζqq, for some scalar ζ ď 0.

Proof. Firstly, we note that within the MambaBlock, A is stored in log-space followed by a negative exponen-
tiation prior to use. Thus, A P Rď0

dˆd, where Rď0 is the set of non-positive real numbers.

Recall that for the maximum deviation, we have:

max |F N
θ px0, u1q ´ F N

θ px0 ` ε, u1 ` εq| P Op|ε| exp pNλmaxqq.

where the maximal Lyapunov exponent λmax is defined as:

λmax – lim
T Ñ8

1
T

log

∥∥∥∥∥ T
ź

t“0

Bxt

Bxt´1

∥∥∥∥∥
2

,

and ∥∥2 denotes the spectral norm for matrices.

Thus, to complete the proof, it suffices to show that λmax ď 0. Recall that A and ∆̄t are diagonal. From
Equation 4, we thus have

λmax “ lim
T Ñ8

1
T

log

∥∥∥∥∥ T
ź

t“0

Bxt

Bxt´1

∥∥∥∥∥
2

“ lim
T Ñ8

1
T

log

∥∥∥∥∥ T
ź

t“0
exp p∆̄tAq

∥∥∥∥∥
2

“ lim
T Ñ8

1
T

log

∥∥∥∥∥exp
T

ÿ

t“0
p∆̄tAq

∥∥∥∥∥
2

Let i be the dimension which corresponds to the output of the spectral norm, i.e., i “

argmaxj“1,...,dtexp
řT

t“0p∆̄trj, jsArj, jsqu. We thus have

λmax “ lim
T Ñ8

1
T

log

∥∥∥∥∥exp
T

ÿ

t“0
p∆̄tAq

∥∥∥∥∥
2

“ lim
T Ñ8

1
T

log exp
T

ÿ

t“0
p∆̄tri, isAri, isq

“ Ari, is lim
T Ñ8

1
T

T
ÿ

t“0
∆̄tri, is

Ari, is is non-positive and limT Ñ8
1
T

řT
t“0 ∆̄tri, is ě 0, since ∆̄tri, is P Rě0 @t. Thus, λmax ď 0.
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Theorem. Let pxt´1, utq be the latent state and input at an arbitrary time t P r1, T s within a MambaBlock.
Then small changes pxt´1 ` ε, ut ` εq produce deviations which are exponentially decreasing over discrete-time,
i.e., max |F N

θ px0, u1q ´ F N
θ px0 ` ε, u1 ` εq| P Op|ε| exp pNζqq, for some scalar ζ ď 0.

Proof. Let τptq be a function that maps time values such that τptq P r1, T ´ ts and τptq “ 1, τpt ` 1q “

2, . . . , τpt ` T q “ T ´ t. Then Bτptq, Cτptq, ∆τptq define a new MambaBlock with inputs uτptq, . . . , uτpt`T q and
subsequent recurrent states xτptq, . . . , xτpt`T q. Applying Lemma 1 to this MambaBlock with pxτptq´1, uτptqq

completes the proof.

B Mamba stable outputs proof

Theorem. Assume pxt´1 ` ε, ut ` εq produce deviations which are exponentially non-increasing over discrete-
time. Then small changes to the output yt are also exponentially non-increasing over discrete time.

Proof. Recall that xT “ F T
θ px0, u1q. Furthermore, recall from Equations 1 and 2, yt “ Ctxt, where Ct is

diagonal.

Let

yT “ GT
θ px0, u1q “ CT xT “ CT F T

θ px0, u1q.

Consider ε-close inputs pxt´1, utq and pxt´1 ` ε, ut ` εq, and their respective outputs yt and y1
t. Assume

pxt´1 ` ε, ut ` εq produce deviations which are exponentially non-increasing over discrete-time. That is,
max |F N

θ pxt´1, utq ´ F N
θ pxt´1 ` ε, ut ` εq| P Op|ε| exp pNζqq, for some scalar ζ ď 0.

We thus have

max |yt ´ y1
t| “ max |GN

θ pxt´1, utq ´ GN
θ pxt´1 ` ε, ut ` εq|

“ max |CN F N
θ pxt´1, utq ´ CN F N

θ pxt´1 ` ε, ut ` εq|

9 max |F N
θ pxt´1, utq ´ F N

θ pxt´1 ` ε, ut ` εq|,

where proportionality follows due to the diagonality of CN and the vector-absolute value. Thus,

max |GN
θ pxt´1, utq ´ GN

θ pxt´1 ` ε, ut ` εq| P Op|ε| exp pNζqq

C Mamba stable AMP and/or PEFT dynamics proof

For an arbitrary MambaBlock, let x0, . . . , xT and u1, . . . , uT be the trajectory of latent and input states under
full-precision fine-tuning. During a forward pass, automatic mixed-precision (AMP) saves time and memory
by computing forward activations in half-precision (FP16 or BF16). During a backward pass, AMP computes
gradients in half-precision and up-casts to full-precision prior to updating. MFPT thus introduces changes to
the inputs u1, . . . , uT (which are passed through a Swish) and latent states x0, . . . , xT through ∆̄t (which is
passed through a softplus), up/downcasting of parameter updates, and the changes to the aforementioned
changes to the input states.

Potentially in concert with MPFT, PEFT via LoRA induces changes by learning low-rank matrices Ât, B̂t, Ĉt

x̂t “ pĀt ` Âtqxt´1 ` pB̄t ` B̂tqut

ŷt “ pCt ` Ĉtqxt

Let x1
0, . . . , x1

T and u1
1, . . . , u1

T be the trajectory of latent and input states under MPFT and/or PEFT. We
thus have the following
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Theorem. Let ϵu
t “ max |ut ´ u1

t|, i.e., the maximum, positive-scalar difference between the tth MPFT and
full fine-tuning input state. Similarly, let ϵx

t “ max |xt ´ x1
t| and ϵ˚ “ max

ŤT
t“0tϵu

t , ϵx
t u (where we define

u0 “ 0). We thus have

max |F T
θ px0, u1q ´ F T

θ px1
0, u1

1q| P Opϵ˚ exp pTζqq,

for some scalar ζ ď 0. Thus, differences introduced by AMP and/or PEFT for Mamba models do not
exponentially compound over discrete-time.

Proof. Consider the ϵ-vector definition of the Lyapunov exponent: given λmax, ϵ P Rd, and two initial values
px0, u1q and px0 ` ϵ, u1 ` ϵq, the maximum deviation between these points grows as:

max |F T
θ px0, u1q ´ F T

θ px0 ` ϵ, u1 ` ϵq| P Op∥ϵ∥2 exp pT λmaxqq.

where ∥∥2 denotes the L2-norm for vectors.

Let fp¨q be a function which maps a vector to the set of its elements, e.g., for z P Rd, fpxq “ tx1, . . . , xdu.
Thus, note that for a˚ “ maxt|a| : @a P fpϵqu, ∥ϵ∥2 ď a˚

?
d and Op∥ϵ∥2 exp pTλmaxqq ď Opa˚ exp pTλmaxqq.

Let E “
ŤT

t“0tut ´ u1
t, xt ´ x1

tu (where we define u0 “ 0), and ϵ˚ “ maxt|a| : @a P ϵ, @ϵ P Eu. @ ϵ P E , we
thus have

max |F T
θ px0, u1q ´ F T

θ px0 ` ϵ, u1 ` ϵq| P Op∥ϵ∥2 exp pTλmaxqq Ď Opϵ˚ exp pTλmaxqq,

Furthermore, tut ´ u1
t, xt ´ x1

tu Ď E , and thus

max |F T
θ px0, u1q ´ F T

θ px0 ´ x0, u1 ´ u1
1q| P Opϵ˚ exp pTλmaxqq

Let τptq be a function that maps time values such that τptq P r1, T ´ts and τptq “ 1, τpt`1q “ 2, . . . , τpt`T q “

T ´ t. Then Bτptq, Cτptq, ∆τptq define a new MambaBlock with inputs uτptq, . . . , uτpt`T q and subsequent
recurrent states xτptq´1, xτptq, . . . , xτpt`T q. @t P t1, . . . , T u, tut ´ u1

t, xt ´ x1
tu Ď E , so that

max |F T ´t
θ pxτptq ´ 1, uτptqq ´ F T ´t

θ px1
τptq´1, uτptqq| P Opϵ˚ exp ppT ´ tqλmaxqq.

.

Thus, we have

max |F T
θ px0, u1q ´ F T

θ px1
0, u1

1q| P Opϵ˚ exp pTλmaxqq,

where λmax ď 0 by Lemma 1.
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D MambaBlock Maximum Deviation results

D.1 ε varying initial conditions
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Figure 5: Perturbing the initial states of random MambaBlocks produces output state deviations which
exponentially decrease over discrete time. µ denotes the maximum absolute deviation at discrete time t
averaged over all trials, while σ denotes the respective standard deviation at each discrete time.
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Figure 6: Perturbing the initial states of random MambaBlocks produces output state deviations which
exponentially decrease over discrete time. µ denotes the maximum absolute deviation at discrete time t
averaged over all trials, while σ denotes the respective standard deviation at each discrete time.
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E Previous SSM stability results

Previous SSM stability results (Goel et al., 2022; Orvieto et al., 2023) consider the following linear time-
invariant (LTI) equations used in S4 models,

xt “ Āxt´1 ` B̄ut (5)
yt “ Cxt., (6)

which can be unrolled to produce

xk “

k
ÿ

j“0
ĀjB̄uj . (7)

By eigendecomposition,

Āj “ pPΛP´1qj “ PΛjP´1.

In (Orvieto et al., 2023), the derived sufficient condition for stability is thus |αi| ď 1, for Λ “

diagprα0, α1, . . . , αdsq. Relatedly, in (Goel et al., 2022), stability is enforced by constraining Λ to be Hurwitz,
in which case the real part of each diagonal entry αi is negative, i.e., Repαiq ă 0, for Λ “ diagprα0, α1, . . . , αdsq.

Both results critically rely on the LTI property of Equations 5 and 6 to derive Equation 7. However, Mamba’s
state-space equations are linear time-varying (LTV), and thus Equation 7 does not hold. Thus, previous
SSM stability results do not directly apply to Mamba models.

F Experimental Details

Table 1: Learning rate and LoRA dimension r values
Mamba size Mamba-2 size Pythia size learning rate Mamba/Pythia LoRA r Mamba-2 LoRA r

130M 130M 160M 1.0e-5 8 8
370M 370M 410M 5.0e-5 16 16
790M 780M 1B 1.0e-6 32 32
1.4B 1.3B 1.4B 5.0e-6 64 64
2.8B 2.7B 2.8B 5.0e-7 128 64

All model checkpoints were evaluated on all benchmarks and few-shot settings using the LM evaluation harness
from Eleuther AI (Gao et al., 2023), version 0.4.2. Pythia and Mamba Huggingface checkpoints were used for
all inference and fine-tuning experiments, e.g., EleutherAI/pythia-160m and state-spaces/mamba-130m-hf
for the smallest respective models. All fine-tuning experiments were run using package versions Transformers
4.40.0.dev0, Accelerate 0.28.0, TRL 0.8.1, PyTorch 2.2.1+cu121, and PEFT 0.10.0. All Mamba-2
models were run using mamba-ssm v2.2.2 using Huggingface checkpoints, e.g., state-spaces/mamba-130m
for the smallest model.

For MPFT, Flash Attention 2.0 (Dao et al., 2022) via flash_attn 2.5.7 was used for Pythia models.
For FP16 and BF16 inference results, Flash Attention 2.0 was used for both Pythia and OLMo models. For
OLMo results, the 336B-token checkpoint was used by specifying revision=step80000-tokens336B.

All Alpaca and OpenHermes fine-tuning experiments used the following training recipe (adapted from
(Tunstall et al., 2023)): AdamW_torch optimizer, cosine annealing schedule, no gradient accumulation,
maximum norm of 1.0 for gradient clipping, and no warmup steps. Training epochs used for all Alpaca and
OpenHermes experiments were three and one, respectively. For both Pythia and Mamba models, the learning
rate and LoRA dimension r were scaled to improve performance of smaller models (per-model values listed in
Table 1).
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For SLL LoRA, targeted Mamba layers were {x_proj, embeddings, in_proj, out_proj}; x_proj is a large
MambaBlock memory buffer which, when targeted by LoRA, adapts parameters ∆t, Bt, and Ct. Pythia
targeted SLL LoRA layers were {dense, embed_in, query_key_value, dense_h_to_4h,dense_4h_to_h},
chosen to balance performance across model sizes.

All experiments were run using a single-GPU Nvidia A10G (24 GB total memory). For Pythia, Mamba, and
Mamba-2 ALL LoRA experiments in Figure 4, all models followed the same training and PEFT recipes, save
for Mamba-2 2.7B which required a LoRA r dimension of 64 to fit in A10G memory.

The Alpaca dataset is freely available for download at https://huggingface.co/datasets/tatsu-lab/
alpaca under open-source license CC-by-NC 4.0. The OpenHermes dataset is freely available for
download at https://huggingface.co/datasets/teknium/OpenHermes-2.5 under open-source license
MIT, Apache 2.0, CC.
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Table 2: Pretrained model performance. Model checkpoints were evaluated on all benchmarks and few-shot
settings using the LM evaluation harness from Eleuther AI (Gao et al., 2023). LAMBADA zero-shot is more effective
for the model sizes considered (further discussed in (Xie et al., 2021; Brown et al., 2020)) and thus excluded from
few-shot performance averages. Highlighted in bold is the top-performing few-shot learner per benchmark and model
grouping.

Model N-shot LAMBADA LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrande 0-shot incr.
ppl Ó acc Ò acc Ò acc Ò acc Ò acc Ò acc Ò Mean % Ò

Mamba
130M

0 16.0 44.3 35.2 64.7 48.0 24.3 52.6 –
1 19.3 38.2 35.1 64.6 47.0 23.5 50.8 -1.9
3 23.1 35.2 35.0 65.1 49.1 24.0 51.0 -0.4
5 24.4 36.2 34.9 64.9 49.1 23.7 50.0 -1.2

Mamba-2
130M

0 16.8 43.9 35.3 64.9 47.4 24.2 52.6 –
1 20.6 37.9 34.9 64.1 46.9 23.1 51.3 -2.0
3 24.3 35.1 34.9 64.4 49.0 24.7 52.9 0.9
5 26.5 34.9 34.6 64.4 48.6 24.8 51.7 0.2

Pythia
160M

0 38.2 32.7 30.2 61.8 43.4 23.8 51.0 –
1 47.2 28.2 30.6 62.2 43.4 23.7 49.3 -0.4
3 63.7 24.7 30.5 61.9 44.8 22.9 51.3 0.1
5 66.3 25.3 30.4 62.6 43.4 23.1 50.8 -0.2

Mamba
370M

0 8.1 55.6 46.5 69.5 54.9 27.8 55.3 –
1 9.7 49.8 45.9 69.3 57.4 26.5 54.7 -0.5
3 10.9 48.4 46.2 69.5 58.8 28.4 53.8 1.2
5 11.4 48.6 46.2 69.4 58.3 28.0 55.9 1.5

Mamba-2
370M

0 8.0 55.9 46.9 70.5 54.8 26.7 55.4 –
1 9.8 50.3 46.4 70.5 56.5 26.8 54.2 0.0
3 11.3 48.5 46.6 70.2 59.0 26.9 54.3 1.0
5 12.5 46.6 46.7 70.3 58.5 28.2 53.3 1.5

Pythia
410M

0 10.8 51.5 40.6 66.9 52.0 24.1 53.4 –
1 12.3 47.1 40.5 68.0 53.8 25.6 52.4 1.8
3 14.4 43.2 40.9 67.9 55.1 26.9 54.0 4.2
5 14.6 44.1 40.8 68.1 54.6 26.6 53.4 3.5

Mamba
790M

0 6.0 61.4 55.1 72.3 61.2 29.5 55.9 –
1 7.1 55.9 54.5 72.4 63.0 30.2 56.9 1.3
3 8.1 54.5 54.2 72.3 63.5 31.4 57.1 2.2
5 8.8 52.9 54.6 72.6 64.4 31.9 57.2 3.1

Mamba-2
780M

0 5.9 61.7 54.9 72.0 61.0 28.5 60.2 –
1 7.1 55.5 54.7 72.4 62.3 32.1 57.1 1.9
3 8.6 53.3 54.7 72.5 62.8 32.3 57.8 2.5
5 9.9 51.4 55.2 72.1 62.8 32.2 56.8 2.2

Pythia
1B

0 7.9 56.3 47.2 70.7 57.0 27.0 53.4 –
1 8.0 51.8 47.3 70.7 57.1 28.2 53.4 1.0
3 10.5 48.2 47.5 71.2 59.2 28.0 54.3 2.2
5 10.9 48.4 47.3 71.4 58.7 28.4 53.1 1.9

Mamba
1.4B

0 5.0 64.9 59.2 74.1 65.5 32.9 61.3 –
1 5.8 60.6 58.2 74.7 64.5 33.0 60.9 -0.5
3 6.6 58.9 58.9 73.6 66.1 34.5 60.9 0.7
5 7.0 58.3 59.0 74.1 66.4 35.5 60.4 1.5

Mamba-2
1.3B

0 5.0 65.6 60.0 73.2 64.2 33.1 61.1 –
1 6.0 60.1 59.4 73.1 65.6 35.3 59.4 1.0
3 6.7 58.6 60.1 73.4 66.5 35.4 61.9 2.5
5 7.0 58.6 60.2 73.7 66.5 35.9 61.4 2.7

Pythia
1.4B

0 6.1 61.7 52.1 70.9 60.5 28.5 57.4 –
1 7.0 56.3 52.1 71.4 62.0 29.5 57.5 1.4
3 7.9 54.4 52.6 70.9 63.9 31.1 56.8 2.9
5 8.0 54.4 52.8 71.0 63.2 31.3 57.8 3.3

Mamba
2.8B

0 4.2 69.1 66.1 75.2 69.6 36.4 63.3 –
1 5.0 63.7 65.6 75.6 69.9 37.1 63.9 0.6
3 5.5 62.8 65.5 75.3 70.8 38.1 65.1 1.7
5 5.7 62.5 66.1 76.1 70.9 38.1 64.6 2.0

Mamba-2
2.7B

0 4.1 69.6 66.6 76.4 69.5 36.3 63.9 –
1 4.8 65.1 65.9 75.1 70.0 38.6 65.1 1.3
3 5.3 63.9 66.8 75.2 71.9 41.0 64.1 3.1
5 5.7 62.3 67.1 75.3 70.7 41.2 65.9 3.6

Pythia
2.8B

0 5.0 64.7 59.3 73.9 64.2 32.9 59.8 –
1 5.7 60.9 59.4 73.8 66.8 34.8 59.0 1.7
3 6.2 59.1 59.9 74.7 67.4 34.9 60.8 2.9
5 6.5 59.1 60.2 74.5 67.1 35.0 61.3 3.1
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Table 3: Instruction tuned model performance. Model checkpoints were evaluated on all benchmarks
and few-shot settings using the LM evaluation harness from Eleuther AI (Gao et al., 2023). LAMBADA
zero-shot is more effective for the model sizes considered (further discussed in (Xie et al., 2021; Brown et al.,
2020)) and thus excluded from few-shot performance averages. Highlighted in bold is the top-performing
few-shot learner per benchmark and model grouping.

Model N-shot LAMBADA LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrande 0-shot incr.
ppl Ó acc Ò acc Ò acc Ò acc Ò acc Ò acc Ò Mean % Ò

Mamba
130M

0 12.9 46.5 35.1 64.2 48.7 25.5 51.7 –
1 17.8 38.1 35.0 64.2 48.6 24.9 52.2 -0.4
3 22.3 35.3 34.8 64.2 50.2 24.5 50.6 -0.8
5 23.6 35.9 34.7 64.7 49.8 24.6 50.2 -0.9

Mamba-2
130M

0 15.2 44.5 35.1 64.5 47.2 24.7 52.2 –
1 21.9 36.1 34.5 64.3 46.8 24.0 50.8 -1.7
3 26.9 33.3 34.7 65.1 48.5 25.2 51.5 0.6
5 29.0 33.8 34.5 64.8 48.7 25.1 51.3 0.4

Pythia
160M

0 30.2 36.1 30.0 62.2 44.7 23.6 50.3 –
1 44.5 29.1 30.4 62.0 44.0 23.6 50.5 -0.0
3 66.7 25.5 30.3 62.8 45.2 22.8 49.8 -0.3
5 70.4 25.3 30.5 62.9 44.1 23.4 50.8 0.3

Mamba
370M

0 7.2 56.0 46.3 69.2 55.3 27.7 56.0 –
1 9.3 49.9 45.7 68.7 57.1 28.3 55.4 0.5
3 10.4 49.4 45.7 68.9 58.7 29.7 54.1 1.6
5 11.0 48.3 45.7 70.1 59.3 29.1 54.5 1.9

Mamba-2
370M

0 7.6 54.7 46.8 69.3 52.2 27.0 56.0 –
1 9.9 48.3 46.0 69.6 55.7 28.8 55.2 2.1
3 11.8 46.3 46.3 70.1 59.0 29.1 54.5 3.6
5 12.6 45.5 46.3 70.8 59.6 29.5 53.0 3.8

Pythia
410M

0 13.3 46.4 40.9 67.4 52.7 25.4 53.4 –
1 17.2 40.4 40.5 68.4 53.6 25.7 53.0 0.5
3 21.1 37.4 40.9 67.7 55.7 27.1 52.6 2.3
5 21.5 38.2 40.7 67.8 55.7 27.3 53.8 2.8

Mamba
790M

0 5.2 62.8 55.6 72.8 62.4 30.6 56.2 –
1 6.3 56.6 54.9 72.7 64.6 31.7 56.3 1.2
3 7.0 55.6 54.7 72.4 65.3 33.2 57.5 2.7
5 7.5 54.6 54.9 72.9 65.6 33.8 57.2 3.2

Mamba-2
780M

0 4.9 63.4 55.8 71.7 61.1 30.6 59.2 –
1 6.6 55.2 54.4 72.7 64.2 34.0 57.6 2.5
3 7.8 52.7 54.9 73.5 65.0 34.6 57.8 3.6
5 8.6 52.8 54.8 73.4 64.6 34.0 58.0 3.1

Pythia
1B

0 7.7 56.6 47.3 70.8 57.1 26.7 53.4 –
1 8.8 52.0 47.4 70.7 57.5 28.8 53.6 1.8
3 10.2 48.7 47.5 71.4 59.0 28.5 54.4 2.6
5 10.6 48.8 47.4 71.5 58.9 28.4 53.0 2.0

Mamba
1.4B

0 4.6 64.8 59.3 74.3 65.2 35.1 62.3 –
1 5.4 60.3 58.2 74.3 66.7 35.7 62.8 0.6
3 6.1 59.3 58.4 74.1 67.4 36.6 61.8 1.0
5 6.3 58.8 58.8 74.5 68.3 37.0 59.9 1.1

Mamba-2
1.3B

0 4.9 63.0 60.1 73.8 64.0 34.8 61.3 –
1 6.1 58.2 59.2 74.2 67.0 35.0 60.1 0.5
3 7.0 56.6 59.4 73.7 67.8 36.6 59.9 1.5
5 7.2 56.5 59.9 73.5 68.5 36.7 60.7 2.2

Pythia
1.4B

0 5.2 63.6 52.9 71.1 61.2 30.3 58.2 –
1 6.2 57.4 52.7 71.7 62.2 30.6 56.9 0.2
3 7.0 56.1 53.1 71.1 64.5 32.8 56.8 2.3
5 7.1 55.5 53.3 71.2 63.8 33.5 57.5 2.9

Mamba
2.8B

0 4.0 67.7 66.4 75.6 68.4 36.6 64.2 –
1 4.8 63.3 65.9 76.2 70.9 39.4 64.6 2.4
3 5.3 62.1 65.7 75.8 71.3 39.1 65.4 2.4
5 5.4 61.9 66.2 77.2 71.4 40.4 66.1 3.9

Mamba-2
2.7B

0 3.8 68.4 67.5 76.0 69.5 38.3 65.3 –
1 4.5 63.8 66.7 76.0 71.8 41.5 67.1 2.6
3 5.0 62.3 67.3 76.2 73.3 44.4 66.0 4.5
5 5.3 61.8 67.4 76.4 72.4 44.5 65.0 4.1

Pythia
2.8B

0 5.0 64.7 59.3 74.0 64.7 33.3 59.2 –
1 5.6 60.8 59.5 74.0 66.7 34.9 59.3 1.7
3 6.1 59.2 59.9 75.0 67.5 34.9 60.9 2.9
5 6.5 59.0 60.4 74.5 67.0 35.1 61.2 3.0
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F.1 Hardware throughput and memory-utilization improvements given PEFT and MPFT

With stable dynamics and observed divergences smaller than comparable Transformers, we show that MPFT
and PEFT may be used to significantly increase GPU-training throughput for Mamba SSMs. To demonstrate
such improvements, we utilize the previous fine-tuning settings for the Alpaca dataset. However, we now
adjust the batch size to maximize throughput per MPFT and PEFT configuration.

For each MPFT and PEFT configuration, the average tokens-per-second (ATPS) is calculated as the total
tokens used for fine-tuning divided by total training time, and the maximum memory-per-token (MMPT) is
calculated as the maximum GPU memory utilization incurred (over the entire fine-tuning run) divided by
the total number of tokens in each mini-batch. Results are plotted in Figure 7.

Both throughput and memory utilization improve as the number of Mamba parameters increases in Figure 7.
Compared to the full-precision full fine-tuning of Mamba 790M (the largest model supported by an
A10G’s memory capacity), evaluated MPFT and PEFT combinations result in an average 2.15 times
more training tokens-per-second while reducing per-token memory utilization by an average
62.7%. Across all model sizes, evaluated MPFT and PEFT combinations result in an average 1.74 times
more training tokens-per-second while reducing per-token memory utilization by an average 47.2% compared
to respective full-precision fine-tuned runs. Furthermore, while full fine-tuning is no longer possible on a
single A10G for Mamba models greater than 790 million parameters, MPFT and PEFT allow training Mamba
models up to 2.8 billion parameters on GPUs with as little as 24 GB onboard memory.
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Figure 7: Timing and memory usage calculated Mamba model-sizes and PEFT combinations. Each model
was trained using the Alpaca dataset dataset for three epochs and maximum sequence length 512. For each
PEFT combination, the batch size was tuned to maximize GPU occupancy. Full fine-tuning exceeds available
GPU memory (24 GB) for models greater than 790 million parameters.

G ICL as an emergent ability of Mamba SSMs

We study the emergent behavior (as a function of model size) of Mamba/Mamba-2 SSMs’ ICL abilities
on natural language tasks by comparing to a larger number of Transformer-based LLMs of varying sizes.
We compare to OpenELM (Mehta et al., 2024) (sizes 270M, 450M, and 1.1B), TinyLlama 1.1B (Zhang et al.,
2024), and OLMo 1.2B (Groeneveld et al., 2024). To limit the emergent effects on both parameter size
and pretraining token counts, we did not evaluate models greater than 2.8 billion parameters and chose
open-source checkpoints as close as possible to the 300 billion total pretraining tokens used for Mamba,
Mamba-2, and Pythia models. Thus, pretraining token counts for OpenELM, TinyLlama, and OLMo models
were 429 billion, 503 billion, and 336 billion, respectively. We note this potentially biases ICL performance
in favor of the newly evaluated Transformer-based LLMs, and that direct comparisons between Mamba,
Mamba-2, and Pythia are the most fair (as these three classes of models were all pretrained on the same
dataset for the same number of total pretraining tokens).

We repeat the experiments from Figure 4, where we evaluate the pretrained and instruction tuned ICL
capabilities of all models. To understand the critical role of parameter counts, we group all models into
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two classes: LLMs containing 450 million parameters or less, and LLMs containing greater than 450 million
parameters. ICL performance measured by AIPSS is displayed in Figure 8.

From Figure 8, it is clear that pretrained SSMs and Transformers of parameter counts 270 million and less
display slight or detrimental ICL abilities (i.e., few-shot performance is worse than zero-shot). For models of
greater than 450 million parameters, the majority of SSMs and Transformers display positive ICL abilities,
with Mamba 1.4B being an outlier in terms of poor performance. With the exception of TinyLlama at 1-shot
performance and Mamba-2 2.7B for 3- and 5-shot performance, the majority of other pretrained models
cluster together.

Instruction tuning greatly smooths ICL performance across both parameter classes. While instruction tuned
SSMs and Transformers of 160 million parameters or fewer continue to display slight or detrimental ICL
abilities, all parameters of 270 million and greater show positive ICL abilities. For instruction tuned models
of greater than 450 million parameters, all SSMs and Transformers show positive ICL abilities, with Mamba-2
2.7B greatly outperforming all other models (both SSM and Transformer) in this class.

Thus, in terms of ICL as a function of SSM model size, while no clear trend presents itself for pretrained
models, ICL emerges for instruction tuned Mamba and Mamba-2 SSMs of size 370 million and greater.
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Figure 8: Instruction tuning improves Mamba-2 ICL performance past Transformer LLMs. ALL LoRA models
were instruction fine-tuned on the OpenHermes dataset for one epoch. Performance is reported as the average
improvement percentage of {1, 3, 5}-shot versus 0-shot over five standard natural language benchmarks:
HellaSwag, PIQA, Arc-E, Arc-C, and WinoGrande. Mamba* and Mamba’ refer to recent Mamba-1 PEFT
methods, i.e., LoRAppXq and Additional-Scan, respectively, from Yoshimura et al. (2025).

H Expanded divergence results: Alpaca and LIMA fine-tuning, MMLU and
Winogrande benchmarks, Mean and Standard Deviation divergences

We extend the non-divergent Mamba fine-tuning results from Section 4. Recall that the following MPFT and
PEFT configurations are considered to fine-tune each considered LLM:
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1. Full fine-tuning in FP32

2. Full fine-tuning in FP16

3. Full fine-tuning in BF16

4. ALL LoRAfine-tuning in FP32

5. ALL LoRAfine-tuning in FP16

6. ALL LoRAfine-tuning in BF16

7. SLL LoRAfine-tuning in FP32

8. SLL LoRAfine-tuning in FP16

9. SLL LoRAfine-tuning in BF16

In addition to the Alpaca dataset (Taori et al., 2023), we also fine-tune all models using the LIMA dataset (Zhou
et al., 2024). Models are trained using LIMA for 5 epochs, while all other settings follow the fine-tuning recipe
used for Alpaca (described in Appendix F).

For natural language benchmarks, in addition to MMLU, we evaluate each fine-tuned model using Wino-
grande (Sakaguchi et al., 2021). Recall that, for each benchmark, divergence between a mixed-precision
fine-tuned model is measured between its full-precision counterpart and averaged over {0, 1, 3, 5}-shot
performance. In addition to the average divergence, we also include the standard deviation of divergence.
Thus, in total, 144 LLMs were fine-tuned, 576 MMLU evaluations were conducted, and 576
Winogrande evaluations were conducted.

Figure H displays results for Alpaca and MMLU, Figure H displays results for Alpaca and Winogrande,
Figure H displays results for LIMA and MMLU, Figure H displays results for LIMA and Winogrande. Summary
statistics for all experiments are presented in Table H. While OpenELM exhibits large deviation spikes for both
Alpaca benchmark evaluations–and Pythia exhibits large deviation spikes for all four evaluations–Mamba
does not exhibit a single large deviation spike on any benchmark for all considered model sizes
and MPFT/PEFT configurations (i.e., 18 total configurations excluding the full-precision baselines).
Furthermore, Mamba models are significantly more stable for MPFT/PEFT compared to Transformer-based
LLMs. E.g., for MMLU evaluations, Alpaca fine-tuning with Mamba models is an average
2.6 times smaller in mean divergence than both Pythia and OpenELM models, while LIMA
fine-tuning with Mamba models is an average 7 and 3.25 times smaller in mean divergence
than Pythia and OpenELM models, respectively.
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(a) Mean full-precision (FP32) divergence in MMLU performance.

Figure 9: Alpaca fine-tuning, MMLU evaluation. Mamba, Pythia, and OpenELM models are fine-tuned
over the Alpaca dataset using different combinations of MPFT and PEFT. Full fine-tuning (i.e., no PEFT
adapters) is denoted as Full.
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Table 4: Summary of divergence results for Alpaca and LIMA fine-tuning datasets, MMLU and Winogrande
benchmarks, and Mamba, OpenELM, and Pythia models. For each deviation summary statistic per fine-tuning
dataset and benchmark, the lowest deviation is highlighted in bold.

(Fine-tuning dataset), Benchmark Architecture Large deviation spikes Ó Avg mean divergence Ó Std mean divergence Ó

(Alpaca, MMLU)
Pythia 1 0.37 0.41

OpenELM 1 0.37 0.32
Mamba 0 0.14 0.08

(Alpaca, Winogrande)
Pythia 4 0.72 0.58

OpenELM 3 0.59 0.37
Mamba 0 0.25 0.09

(LIMA, MMLU)
Pythia 1 0.28 0.34

OpenELM 0 0.13 0.15
Mamba 0 0.04 0.03

(LIMA, Winogrande)
Pythia 3 0.45 0.45

OpenELM 0 0.36 0.18
Mamba 0 0.11 0.12
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(a) Mean full-precision (FP32) divergence in Winogrande performance.

Figure 10: Alpaca fine-tuning, Winogrande evaluation. Mamba, Pythia, and OpenELM models are
fine-tuned over the Alpaca dataset using different combinations of MPFT and PEFT. Full fine-tuning (i.e.,
no PEFT adapters) is denoted as Full.
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(a) Mean full-precision (FP32) divergence in MMLU performance.

Figure 11: LIMA fine-tuning, MMLU evaluation. Mamba, Pythia, and OpenELM models are fine-tuned
over the LIMA dataset using different combinations of MPFT and PEFT. Full fine-tuning (i.e., no PEFT
adapters) is denoted as Full.
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Figure 12: LIMA fine-tuning, Winogrande evaluation. Mamba, Pythia, and OpenELM models are
fine-tuned over the LIMA dataset using different combinations of MPFT and PEFT. Full fine-tuning (i.e., no
PEFT adapters) is denoted as Full.

27


	Introduction
	Background
	Mamba state-space models
	Stable dynamics in the MambaBlock
	Divergence bounds for automatic mixed-precision and PEFT


	Experiments
	Non-divergent MambaBlock dynamics
	Non-divergent Mamba MPFT and PEFT
	Hyperparameter tuning robustness of Mamba models
	Stable instruction tuning improves Mamba ICL for natural language tasks

	Conclusions and Future Directions
	Relations to Previous Work
	Mamba stable dynamics proof
	Mamba stable outputs proof
	Mamba stable AMP and/or PEFT dynamics proof
	MambaBlock Maximum Deviation results
	 varying initial conditions

	Previous SSM stability results
	Experimental Details
	Hardware throughput and memory-utilization improvements given PEFT and MPFT

	ICL as an emergent ability of Mamba SSMs
	Expanded divergence results: Alpaca and LIMA fine-tuning, MMLU and Winogrande benchmarks, Mean and Standard Deviation divergences

