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Abstract

Teachers are increasingly using prompted
LLMs to generate exam questions, and students
can use generated questions for self-assessment.
When generating questions from a given ed-
ucational text—rather than relying solely on
the LLM’s internal knowledge—handling long
textual content, such as a textbook spanning
hundreds of pages, presents a challenge. In this
paper, we experiment with three knowledge
representation approaches tailored for educa-
tional question generation using LLMs. As
a novel contribution among these alternatives,
we adapt the atomic fact decomposition method
from fact-checking research to the educational
domain. We manually evaluate the generated
questions based on various criteria. Our empir-
ical results indicate that a list of atomic facts
provides a better foundation for question gener-
ation than long plain text and that LLM-based
question generation from Knowledge Graph
triplets outperforms rule-based question gener-
ation from Knowledge Graphs.

1 Introduction

The automatic generation of educational questions
(EQG) will play a key role in scaling education
(Baidoo-Anu and Ansah, 2023). It can significantly
decrease the workload of teachers along with en-
abling student self-assessment at scale in a person-
alized way. Large language models (LLMs) have
demonstrated great performance in various tasks
and applications. Teachers also employ LLMs to
generate assessment questions for their exams by
prompting general models (Walter, 2024).

In this paper, we focus on EQG given textual
educational material (textbooks, lecture slides, tran-
scripts, etc.). Questions are generated faithfully to
the educational material and not from the latent
knowledge of pre-trained general LLMs. This use
case is important in rapidly evolving fields, as it
can be applied even to web content like blog posts.

Onboarding processes in organizations can also ex-
ploit automated assessments against their own doc-
ument base. Lastly, a teacher might want to teach
special topics that should be included in assess-
ment questions. We note that this approach seems
to be very similar to RAG, but in EQG there is no
query, thus instead of the retriever step it requires
special techniques to gather relevant contexts from
the educational material for the generation step.
Although LLMs have great potential in EQG,
their use is not unproblematic, as they suffer from
hallucinations and misinformation. Chen et al.
(2024) and our preliminary experiments also report
that LLMs can generate close to perfect simple
questions. Simple questions are remember-type
questions (according to the Bloom’s Taxonomy of
educational science (Anderson et al., 2001)) which
can be generated from a short chunk of text as
relevant content. Increasing the complexity level
of questions requires the LLM to get to a deeper
semantic understanding of the text; thus, it leads
to hallucinations. Similarly EQG from long con-
tents, for instance a textbook, also introduces more
mistakes as distant relationships in text are more
difficult to detect in LLMs. In this paper, we pro-
pose four methods for generating multiple-choice
questions (MCQs) from multiple chapters of text-
books. These types of items are still remember-type
questions, but the generation of good-quality ques-
tions and answer options requires comprehensive
memorization of all of the educational material.
There are various opportunities to represent the
knowledge of a larger educational material that pro-
vides the knowledge context for the generation step
of the LLM. Knowledge Graphs (KGs) are struc-
tured representation formats that represent knowl-
edge in entity-relation-entity triplets and can store
unlimited amounts of information. The key practi-
cal disadvantage of KGs is that they are rigid, and
building a KG from text is still not precise enough
with moderate coverage (despite the vast amount



of research on KG extraction (Kertkeidkachorn and
Ichise, 2017; Koncel-Kedziorski et al., 2019; Mel-
nyk et al., 2022)). On the other end, we can con-
sider the original long-form texts as a knowledge
representation format, having perfect precision and
coverage. The problem is that LLMs are not accu-
rate enough to understand deeper and long-distance
semantic/pragmatic relationships in long texts. We
propose to use a solution that lies between KGs and
long texts. Inspired by fact-checking research (Min
et al., 2023; Chung et al., 2025), we extract atomic
facts from the original text and use the set of atomic
facts as the knowledge representation format for
EQG. The definition of atomic fact is EQG-driven,
it can be any simple and clear statement, i.e. whose
knowledge can be assessed. Our assumption is that
the set of atomic facts, which are simple and clear
sentences, are considerably easier to understand by
LLMs than long texts and provide a less rigid and
better coverage representation than KGs could.

We introduce four EQG methods grounded on
the three knowledge representation formats (two
methods for the KGs). Each of the methods em-
ploys GPT-40 (Hurst et al., 2024) with few-shot
prompting. We carried out comparative exper-
iments on the methods and generated compare-
type MCQs for sorting algorithms. The generated
MCQs were carefully evaluated by human experts
(teachers of algorithms subject) according to seven
evaluation metrics. The evaluation metrics were de-
signed for real-world usability, i.e. whether they are
usable by a teacher or for student self-assessment.
The metrics cover areas from factual correctness
through clarity to creativity and engagement. The
conclusion of these experiments is that there is no
clear winner, but there is a considerable tradeoff
between question correctness.

In summary, our contributions are threefold in
this paper:

* We adapt the atomic fact text decomposition
method to the EQG task.

* We propose and comperatively evaluate four
methods for educational MCQ generation
based on three different types of knowledge
representation.

* Our human evaluation methodology for gen-
erated MCQs consists of various aspects that
are important in their real-world usability, in-
cluding factuality, clarity, creativity, and en-
gagement metrics.

2 Related Work

Multiple-choice question generation Multiple-
choice question (MCQ) generation has been exten-
sively studied in educational technology.

Early research focused on template-based or rule-
based techniques. Papasalouros et al. (2008) de-
veloped algorithms for MCQ generation based on
domain ontologies, introducing eleven strategies.
Of these eleven, Strategy 6 and Strategy 7 are very
similar to our rule-based KG approach.

LLMs have been disrupting the EQG field in the
last two years. For instance, Maity et al. (2024)
introduced multi-stage prompting with GPT mod-
els, showing improved performance across multiple
languages. Scaria et al. (2024) reported that LLMs
are able to generate MCQs keeping the Bloom’s
Taxonomy levels, while Yao et al. (2024) and Wang
et al. (2024) developed a self-refine framework for
professional exam questions using iterative self-
critique.

Recent work demonstrates, that hybrid methods
are still relevant. Kumar et al. (2024) combined
ontology-based and machine learning techniques
for MCQ generation. Their approach also specifi-
cally addresses generating questions for different
cognitive levels.

Prior EQG work focuses on generating ques-
tions either from localized contexts or without any
grounding in a zero-shot manner. Our work ad-
dresses the challenge of generating questions that
require information scattered across multiple chap-
ters or sections of educational material.

Atomic fact extraction Atomic fact extraction
is a recently popularized technique mainly used in
claim-verification. Min et al. (2023) argues that
complex claims could contain both valid and in-
valid information, hence the need for decomposing
these complex sentences into statements that each
contain a single piece of information, that is unam-
biguous in their factuality.

Min et al. (2023) proposes a complete frame-
work for evaluating LLLM-generated text by break-
ing it down to atomic statements and estimating
the ratio of such statements that were supported
by a trusted source. Chung et al. (2025) presents
a complex system, leveraging a similar approach
in the medical domain to verify LLM-generated
text based on the patient’s medical history. Wan-
ner et al. (2024) compares different methods for
breaking down claims into atomic facts and shows
that the decomposition method significantly affects



downstream results on factual precision measure-
ments, such as FACTSCORE (Min et al., 2023).

Atomic fact extraction is useful in other domains
besides claim verification. Chen et al. (2023) found
that breaking down complex sentences into self-
contained factual statements, which they refer to as
"propositions"” significantly improves retrieval per-
formance in a dense retrieval setting. They work
with various open-domain QA datasets and En-
glish Wikipedia text, presenting FACTOIDWIKI,
English Wikipedia broken down into various lev-
els of granularity (passage, sentence, and proposi-
tion). Kamoi et al. (2023) uses GPT-3.5 to auto-
matically decompose Wikipedia claims into sub-
claims, showing improved performance on entail-
ment tasks across multiple datasets.

To the best of our knowledge, we are the first
to employ atomic facts as educational knowledge
representation. Our definition of atomic facts is
slightly different from the claim-checking defini-
tion as we focus on small self-contained knowledge
statements that are suitable for evaluation. The ed-
ucational use case requires that the atomic facts be
both verifiable and pedagogically relevant.

3  Question Generation Approaches

3.1 MCQ for Comparing Skills

We automatically generate MCQs, which is a com-
mon assignment format in education, as they can
test various levels of complexity and cognition of
students (Masters et al., 2001; Brady, 2005; Scaria
et al., 2024). We address monodisciplinary EQG
(Chen et al., 2024) and in this study, we experiment
with comparison questions for sorting algorithms.
To answer these questions, the test-taker has to
remember the concepts in algorithm studies (e.g.
time complexity), concepts that are specific to sort-
ing algorithms (e.g. stable sorting), and has to re-
member the sorting algorithms’ properties. Accord-
ing to Bloom’s Taxonomy (Anderson et al., 2001),
these questions belong to the remember level, as
these MCQs can be answered with perfect remem-
bering, while comprehensive understanding is not
necessary.

On the other hand, remembering many pieces of
information is necessary to answer the comparison-
type MCQs, and this information is scattered in
the educational material, requiring the test-taker to
keep in mind dozens of pages. The key difference
between this paper and related EQG work (Chen
et al., 2024; Elkins et al., 2023) is that we gener-

ate questions from very long texts of educational
material and a single MCQ can ask for facts men-
tioned in the texts far from each other. Precise and
full coverage understanding of long texts is still
a challenge for LLMs. We describe three knowl-
edge representation forms for EQG, designed to
overcome this issue.

3.2 Knowledge Representaion Alternatives

We explored three approaches to represent the edu-
cational knowledge. A comparative example of the
alternatives is presented in Figure 1.

Plain Text As LLMs have the ability to make
sense of plain textual information, the first natural
choice was to represent the knowledge as text. Our
first approach utilized text descriptions, sourced
from Wikipedia entries. In educational deployment,
this could be extended to textbooks, lecture notes,
and other trusted materials. This format maintains
natural language context but requires LLMs to iden-
tify and extract relevant information.

Knowledge Graph KGs offer a structured rep-
resentation through entities and relationships. The
structure of KGs makes programmatic manipula-
tion possible while meaningful edge types and con-
cept nodes could make them interpretable for hu-
mans. A large number of KGs are available, and
constructing new ones for specialized domains is
also manageable.

It is important to note that KGs and knowl-
edge spaces (Doignon and Falmagne, 1985, 2015),
which are often used in the education literature, are
separate approaches to organizing educational con-
tent. While knowledge spaces provide manageable
chunks for direct instruction and assessment and
focus on prerequisites, KGs are a general repre-
sentation of data, making use of concepts and the
relationships between them.

Factual Statements This approach transforms
natural text into atomic fact statements, where each
statement captures a single, self-contained piece of
information.

Each factual statement must satisfy three criteria:

1. Non-triviality: The statement should convey
meaningful domain knowledge

2. Self-containment: The statement should be
comprehensible without additional context

3. Verifiability: The statement should be clearly
true or false within the domain
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Figure 1: Overview of four EQG methods over three knowledge representation forms.

This representation combines the accessibility
of natural language with some of the structural
benefits of KGs, as statements often follow implicit
subject-predicate-object patterns.

3.3 MCQ Generation Methods

Building upon the previously described knowledge
representations, we developed four distinct meth-
ods for generating multiple-choice questions, see
Figure 1 for an overview. Each method uses LLMs
and we engineered the EQG prompts to be as simi-
lar to each other as possible.

Plain Text-Based Method A straightforward ap-
proach would be to give the entire educational ma-
terial to the LLM to generate questions. However,
due to the limited context window of LLMs, this
approach quickly becomes infeasible with large
volumes of content. Splitting the data is not an
option either, as it would prevent generating ques-
tions that consider the entire document. To address
these challenges, we partitioned the source material
into manageable segments (e.g. textbook chapters)
and first applied a summarization process to each
segment individually. This process removes less
important details while still allowing the LLM to
grasp the big picture. The resulting summaries
were then used as input for the few-shot question
generation prompt.

Rule-based EQG from Knowledge Graphs To
exploit the structured information inherent in
KGs, we created a rule-based question generation
methodology that utilizes predefined templates cor-
responding to the graph’s nodes and edges. Two
primary templates were constructed. In the first

template, the inquiry focuses on identifying which
algorithm exhibits a specified property. Let knowl-
edge graph G = {(h,r,t)|h,t € V,r € R} isa
set of triplets, where V is the set nodes and R is
the set of relation types. Let p € V a selected
property and € R a selected relation type, and
we have four sorting algorithms s, € S the answer
and s1_3 € S distractors where S C V.

Which algorithm has {r} of {p}?
- Sq, where (sq,7,p) € G
- 81, where (s1,7,p) ¢ G
- s9, where (sg,7,p) ¢ G
- s3, where (s3,7,p) ¢ G

In the second template, the focus is on a spe-
cific algorithm s € S by inquiring about one of its
properties. In this case, the question is formulated
as:

What is the {7} of {s}?
- Pa, Where (s,7,p,) € G
- p1, where (s,7,p1) € G
- pa, where (s,7,p2) ¢ G
- p3, where (s,7,p3) ¢ G

Where p, € V the answer and the p;_3 € V dis-
tractors.

Because the generated questions initially relied
exclusively on the formal structure of the KG, this
approach led to many unnatural questions for ex-
ample, “Which algorithm has instance of of adap-
tive sort?”. We prompt an LLM to rephrase these
questions to make them more understandable for
students.



Knowledge Graph + LLM In this method, in-
stead of relying on predefined templates, we use the
KG - or a selected subset thereof — as the context of
an LLM. The KG is represented in a list of textual
(h, 7, s) triplets. The LLM few-shot prompted for
MCQ generation based on this context can infer
the relationships necessary for coherent question
generation.

Atomic Facts The last method employs atomic
facts as context. These factual statements have a
structure that closely resembles how knowledge
is organized in a KG, while it is more flexible as
there is no ontology schema. Atomic facts are more
concise than presenting the same information as
lengthy paragraphs of plain text. The list of atomic
facts provides the context for the LLM employing
a few-shot prompt very similarly to the previous
method.

4 Experimental Results

4.1 Datasets

Our goal is to generate MCQs that require hav-
ing information from different parts of educational
materials, for instance, connecting concepts from
different chapters of a textbook. Let S = Merge
sort, Selection sort, Heapsort, Timsort, Quicksort,
Insertion sort, Bubble sort represent selected sort-
ing algorithms.

The set S of sorting algorithms represents a case
of this general problem, where each algorithm can
be considered a separate chapter within a textbook
on computer algorithms. What makes sorting algo-
rithms a good use case is that they share the same
properties (time and space complexity, stability,
etc.) while being different in important aspects.
However, we believe that our approach can be gen-
eralized to most educational content. For each rep-
resentation approach, we constructed specialized
datasets:

Plain Text Corpus We extracted and processed
the English Wikipedia articles corresponding to
each algorithm in S. Original long textual content
was summarized by prompting an LLM, in order to
fit the most amount of text possible into the context
window of the LLM while maintaining essential
algorithmic concepts. The resulting corpus had a
total of 2,060 words.

Knowledge Graph Dataset We used Wikidata'
as our source of KG, as it is naturally aligned with
Wikipedia, thus trying to align our structured and
unstructured knowledge representations. Due to
the amount of information represented in the text,
as opposed to any KG, this is not fully achievable.
We extracted a subgraph from Wikidata centered
on the algorithms in S. The graph was pruned
to remove technical edges (e.g., entity IDs) while
preserving meaningful relationships. The resulting
graph contained 99 triplets.

Factual Statement Dataset We prompt an LLM
to transform the plain text corpus into atomic fac-
tual statements. Each paragraph was sequentially
processed by the model, which had access to the
requirements and factual statement criteria. The fi-
nal dataset comprised of 1,471 sentences. We note
that the extraction of atomic facts is not a summa-
rization or text simplification process. Instead, it
is aimed at decomposing rather complex sentences
into a pedagogically relevant set of simple, self-
contained statements.

Topic-Oriented Filtering Topic-oriented filter-
ing is an opportunity for the educator to customize
the underlying dataset to contain only knowledge
that the educator wants to assess. Filtering is
the most convenient with KGs through removing
triplets with certain relation types and atomic fact
sentences can be simply deleted. On the other hand,
modifying the source plain text to keep only ped-
agogically relevant content requires a lot of effort
and uncertainty.

To align with educational objectives, we applied
additional filtering across all representations to em-
phasize the technological aspects of sorting algo-
rithms. This included removing historical develop-
ment information, and focusing instead on opera-
tional characteristics and complexity analysis. To
achieve this, in the case of Wikipedia, a summa-
rization LLM was prompted to remove undesired
content, reducing the corpus from 23,643 words to
2,060 words. The factual statements were reduced
from 1,471 to 1,435 sentences using heuristical
techniques to locate and remove this information.
In the case of the KG, we collected certain rela-
tion types that indicate the presence of this type of
information, such as WikidataProperty : P61
("discoverer or inventor") and deleted all triples
from the KG with these relation types, reducing the

"https://www.wikidata.org/wiki/Wikidata
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number of triplets from 99 to 85.

For the sake of reproducibility, the cleaned plain
texts, the KG triplets, and the list of atomic facts
are available at github.com/anonym.

4.2 Experimental Details

We used GPT-4o0 (version 2024-08-06) with a tem-
perature setting of 0.4 for all experiments, includ-
ing summarization, atomic fact decomposition, and
rephrasing tasks, accessing the model through Ope-
nAI’s API? from a local machine (a total API cost
of $10 USD). In preliminary experiments, we found
that a lower temperature option (0.4) produced
higher quality questions compared to a higher set-
ting (0.7). No additional computational resources
were required for the experiments.

The whole knowledge base fits into the con-
text window of the prompts in all of the EQG
prompts. The summarized Wikipedia articles con-
sist of 2,060 words, while the atomic facts 18,021
words. In the Knowledge Graph + LLM method,
the triplets were formatted as “subject — predicate
— object”, allowing the model to access all rele-
vant relationships during question generation.

At the KG rules method, when generating ques-
tions using the first template type, if a randomly
selected property was not shared by four different
algorithms (which was needed for one correct an-
swer and three distractors), we randomly sampled
algorithms as distractors, under the assumption that
the absence of a property in the KG indicates the
algorithm lacks that characteristic. This enabled us
to generate questions about properties not shared
by at least four algorithms in the dataset, increasing
the pool of possible questions despite the number
of triplets available.

All approaches used prompts that enforced: (1)
inference across multiple facts for comparison-
based questions, (2) verification of answer choices
by prompting to include evidence for both correct
answers and distractors, and (3) grounding in ex-
plicitly stated information only. All prompts are
provided in Appendix A.

4.3 Evaluation methodology

We applied seven evaluation metrics to compare the
questions generated by different methods. These
metrics were inspired by the evaluation method-
ologies of Chen et al. (2024); Elkins et al. (2023);
Luo et al. (2024); Scaria et al. (2024) and were
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further refined based on insights gained during the
annotation process.

Answer Correctness (Yes/No) Yes, if the pro-
vided answer is correct for the given question.

Distractor Incorrectness (Yes/No) Evaluates
whether the distractors are valid, ensuring that none
of the distractors constitute correct answers.

Option Quality (Good/Bad) Option quality is
good if the correct answer and the distractors are
non-trivial to distinguish and the MCQ is suffi-
ciently challenging. Distractors should also avoid
redundancy among them and trivial elimination.
For example, the question should not implicitly re-
veal the answer, as in the case of “Which sorting
algorithm uses a heap?”

Text Quality (1-5) Measures the linguistic qual-
ity of the question, assessing grammatical correct-
ness, clarity, and readability. A score of 1-2 cor-
responds to grammatically incorrect sentences, a
score of 3 indicates grammatically correct but not
entirely clear questions, while a score of 4 repre-
sents understandable phrasing that could still be
improved.

Compactness (Yes/No) Early experiments re-
vealed generated MCQs with unnecessary details,
such as asking about multiple concepts while the
answer options can be chosen by knowing only one
concept. This metric is yes if the question contains
only essential information.

Template-Based vs. Creative (1-5) A very sub-
jective metric, to assess the extent to which the
question follows a template-based structure, i.e.
boring (1) or diverse and exhibits creativity (5).

Would You Use It? (1-5) Evaluates whether a
teacher would consider using the question in an
exam. This is the most subjective metric, as it
depends entirely on the preferences of the educator.
Prior studies have incorporated relevance-based
metrics (Chen et al., 2024; Elkins et al., 2023; Luo
et al., 2024; Scaria et al., 2024); however, we leave
out this category because our preliminary findings
indicated that all generated MCQs consistently met
relevance criteria. Similarly, a frequently used met-
ric evaluated whether a question aligned with a pre-
defined category of the Bloom’s Taxonomy (Bloom
et al., 1956). Since our initial annotation process
confirmed that all questions adhered to their respec-
tive categories, we excluded this metric as well.


github.com/anonym
https://platform.openai.com/

Answer Distractor Compact Option Text Template ~ Would You
Corr. Incorr. ’ Quality quality v. Creative Use It?
Plain Text 0.85 0.80 0.55 1.00 4.55 4.04 3.50
Atomic Facts 0.95 0.80 0.95 0.98 4.73 3.74 3.90
KG + LLM 0.90 0.95 1.00 0.95 4.71 2.65 3.78
KG Rules 0.90 0.75 1.00 0.79 4.70 2.51 3.36

Table 1: The four annotators’ average scores on three factual correctness and four engagement metrics.

The evaluation of the generated MCQs was con-
ducted by four annotators, all of whom are either
current or former teachers of the Algorithm and
Data Structures undergraduate course. Each anno-
tator reviewed and annotated every example in the
dataset.

4.4 Results

The performance of the methods was compared
over an MCQ bank containing 20 generated ques-
tions per method (listed in Appendix B). Every
MCQ was independently evaluated by all four an-
notators. To ensure unbiased evaluation, the MCQs
were presented in a randomized order, and the an-
notators were unaware of their origin.

Answer Correctness, Distractor Incorrectness,
and Compactness metrics are objective ones. The
cases of disagreement among annotators were fur-
ther examined by a designated annotator, who made
the final decision. Table 1 presents the average
scores of the annotators.

For the metrics where disagreement was not re-
solved, we conducted an analysis of inter-annotator
agreement. In the case of the categorical Option
Quality metric, we computed Fleiss’ kappa (k)
across the four annotators, where the x = 0.89
indicates a high level of agreement.

For the remaining nominal metrics, Spearman’s
rank correlation coefficient was employed to com-
pare the decisions of the annotators. We report here
the average of the pairwise correlations. Among
the three nominal categories, the Template-Based
vs. Creative metric achieved the highest correla-
tion, with a coefficient of 0.61. In contrast, the
Text Quality and Would You Use It? metrics ex-
hibited lower agreement levels, with correlation
coefficients of 0.31 and 0.22, respectively. The low
correlation for Would You Use It? is understandable
because this subjective measure is highly depen-
dent on personal preferences. Text quality ratings
received mostly 4 and 5 ratings. Annotators judged
only nuances, thus the low agreement here can be
attributed here to personal preferences also.

Our results reveal significant differences in MCQ
factual correctness across the four approaches, with
structured and semi-structured knowledge repre-
sentations showing more favorable results. While
the Plain Text approach achieved respectable
scores, the aggregate performance across all factual
metrics (Answer Correctness, Distractor incorrect-
ness and Option Quality) shows that both Atomic
Facts and KG + LLM achieved higher overall fac-
tual accuracy. This suggests that structured and
semi-structured representations provide a more re-
liable grounding for EQG. On the other hand, the
more freedom the method gets, the more creative
MCQs are generated.

5 Discussion

5.1 Error analysis

The Would You Use It? metric indicates a prefer-
ence for MCQs generated using either atomic facts
or KG triplets as LLM context. This can be partly
due to the conciseness of the MCQs generated by
these approaches, illustrated by the Compactness
score. The plain text-based approach produced
many questions with redundant content, this being
the reason for its low score on the Compactness
metric. For instance, the question “Which sorting
algorithm is described as a stable, hybrid sorting
algorithm that combines merge sort and insertion
sort?” provides multiple attributes when a smaller
subset of information would uniquely identify Tim-
sort as the correct answer for the question.

The rule-based KG approach, despite having the
least amount of LLM influence, did not achieve the
high factual accuracy we expected. KG incomplete-
ness is one source of these errors, but rephrasing
can also introduce mistakes due to ambiguities in
edge labels. For instance, the ambiguity of the
triplet “insertion sort — derivative work — Timsort”
led to the following rephrased question: “Which
algorithm is a derivative of Timsort?” where the
direction of the “derivative” is changed.

Another common issue was the rigidity of the
rule-based approach, which struggled with incon-



sistencies in the KG. For instance, the interchange-
able use of “subclass of” and “instance of ” rela-
tionships in Wikidata (“bubble sort — instance of’
— sorting algorithm” vs. “merge sort — subclass
of — sorting algorithm”) created problems for
rule-based generation. The KG + LLM approach
overcame these issues by leveraging the LLM’s
ability to understand semantic similarities between
edge types and node names, leading to better per-
formance in distractor validity.

5.2 Hallucination

We address EQG’s faithfulness to the given edu-
cational material. As the topic of computer algo-
rithms is well known, the basic concepts are prob-
ably learnt by the LLLMs. To measure the meth-
ods’ hallucination, we designed a standalone exper-
iment in which deliberately false information was
injected into the data sources. The objective was to
determine whether the generated MCQs would rely
on the falsified data or the pretrained knowledge of
the LLM.

Initially, we permuted the names of the sort-
ing algorithms present in the preprocessed texts
(summarized texts and atomic facts) and in the KG.
Specifically, we applied a permutation where every
occurrence of the algorithms’ names was replaced,
carefully addressing variations such as “mergesort”
versus “Merge sort”. The below mapping is ap-
plied to the original algorithm identifiers:

selection sort — heapsort — insertion sort —
— Timsort — bubble sort —
— quicksort — merge sort — selection sort

After the replacement, the four EQG methods
were executed on the permuted dataset, yielding
new MCQs derived from the intentionally cor-
rupted data. To ensure that the generated MCQs
remained comparable, we subsequently revered the
replacement over the new MCQs and options to
restore the original algorithm names. The resulting
MCQ bank was then subjected to an annotation
process using only the Answer Correctness and
Distractor Incorrectness metrics. For each method,
20 MCQs were evaluated and the outcomes for the
corrupted MCQs are presented in Table 2.

The results show that the KG Rules method,
which depends least on the capabilities of the LLM,
exhibited the lowest degree of hallucination. In this
method, the LLM’s primary task was to rephrase
the MCQ, ensuring that the answers remained con-
sistently aligned with the KG. The mistakes of KG

Answer Corr. Distractor Incorr.

Original Corrupted | Original Corrupted
Plain Text 0.85 0.60 0.80 0.50
A. Facts 0.95 0.60 0.80 0.20
KG+LLM 0.90 0.65 0.95 0.20
KG Rules 0.90 0.95 0.75 0.60

Table 2: Hallucination experiments: Scores on original
and corrupted datasets.

Rules in the corrupted data has the same source as
the original data, i.e. relation direction ambiguity.
In contrast, for the other three methods, wherein the
LLM was responsible for constructing the MCQ,
the incidence of errors was much higher and the
three methods suffered from halucination at the
same level.

The Plain Text method achieved considerably
better scores on Distractor Incorrectness compared
to other methods. Analysing the MCQs, this can
mainly attributed to behaviour of the method gen-
erating distractors that were specific to algorithmic
contexts, such as “Using a heap data structure.”

6 Conclusions

In this paper, we analysed the knowledge repre-
sentation formats of long educational textual ma-
terials to automatically generate comparison-type
MCQs. Our experiments show that generating
EQG directly from long, plain texts gives signifi-
cantly more factually incorrect answers than other
representations, while rule-based MCQ generation
from KG yields boring MCQs and question quality
highly depends on the coverage and completeness
of the KG. Instead of these methods, we recom-
mend to list facts as the context of an EQG prompt
and exploit LLMs to generate questions. The list
of facts can be triplets from a KG or simple state-
ment sentences (atomic facts) decomposed from
the original long, plain text. The choice between
these methods should consider two factors: (1) the
availability of a high-quality KG for the domain,
and (2) the desired trade-off between factual ac-
curacy and engagement. While both approaches
demonstrate overall good factual correctness, KG
+ LLM scoring slightly higher, the atomic facts
method produces more creative and engaging ques-
tions, as indicated by its higher “Template-Based
vs. Creative” metric compared to KG + LLM.



Limitations

In this study, we experimented exclusively with a
narrow domain of sorting algorithms. A crucial
limitation of our findings is that we do not know
whether they hold on characteristically different
other domains, like arts.

Similarly, we only generate comparison-type
MCQs. We can only guess that other types of ques-
tions requiring remembering distant facts would
behave in the same way.

We employed hand-crafted and manually
cleaned KG as a knowledge representation option.
In the real world, KG has to be constructed from
text and the text-to-KG process is far from perfect
(see the review of Pan et al. (2024)). The errors in-
troduced by the text-to-KG process might decrease
the efficiency of the KG+LLM method.

In this study, we assumed that the subset of the
educational material — either in the format of plain
text or a list of atomic facts or KG triplets — from
which comparison-type MCQs can be generated is
given. This is not available in real-world situations
where you can have hundreds of textbook pages.
As a future work, we are proposing methods to
identify a reduced number of subsets of distant text
chapters or subsets of atomic facts which gives an
appropriate grounding for EQG.

Our evaluation setup is human labor intensive.
As a future work, it would be interesting to investi-
gate whether some of our metrics can be replaced
by automatic evaluation in an LLM as a judge ap-
proach. The annotations of the four domain ex-
perts for the 160 generated MCQs provide a useful
benchmark for the comparative evaluation of hu-
man and LLLM as a judge evaluations.

As Section 5.2 shows, hallucination is a seri-
ous issue with the proposed methods. Improving
faithfulness is one of our most important research
challenges.
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A

Prompts

This section shows the prompts that were applied to the results of the paper.

A.1 Plain Text-Based Method

The following prompt was used to summarize Wikipedia articles.

[ RV N RN

9
10
11
12

13
14
15
16

17

Remove any unnecessary text from the given passage, retaining only the essential information needed to understand the main

< topic, while ensuring individuals familiar with the topic gain the same insights as before.

# Steps

**Read the Text*x: Carefully review the entire passage to comprehend its main topic and context.

*xIdentify Key Points**: Determine the primary ideas, statements, or data that are crucial for understanding the topic,
ensuring all necessary insights remain for those familiar with the subject.

**Filter Out Extraneous Information*x: Remove any superfluous text such as filler words, repetitive phrases, tangential
details, and unrelated anecdotes that do not contribute to the core understanding of the topic.

**Maintain Coherencex*: Ensure the remaining text is clear and coherent without compromising the primary message or

< understanding of the topic, retaining essential insights for knowledgeable readers.

rlwlnve

# Output Format

A concise and focused text that contains only the necessary information needed to understand the main topic, ensuring
< comprehensive understanding by all audiences.

# Notes

- Consider the audience for which the text is being tailored to ensure that all retained information is relevant and maintains
< the knowledge depth suitable for those familiar with the topic.
- Be mindful of retaining context and logical flow even as you remove extraneous text, ensuring experts continue to learn at

< the same level of depth.

The following prompt was applied to generate MCQs from the summarized texts.

Create multiple choice questions from the provided documents frathat assess Understanding” according to Anderson's taxonomy.

Focus on generating questions that require learners to infer, and compare content from the documents.

# Steps

1. **Analyze the Documents:x* Thoroughly read the attached documents to grasp key concepts and details necessary for creating
< insightful questions.

2. *xDetermine Key Concepts:** Identify the main ideas and important supporting details.

3. **Generate Questions:** Formulate clear and easy to understand questions that require the application of understanding

< skills, such as interpretation or summarization.

4. *xCreate Options:** Develop plausible distractors for each question along with the correct answer.

5. **Provide Context:** Include a context from the sources for each question to guide learners, based on the attached

— documents.
# Output Format

The output should be formatted as a JSON array of objects. Each object should represent a question and include:
- *xquestion**: The text of the question.

- x%xoptions**: An array of answer choices.

- x%correct_answer**: The position or index of the correct answer in the options array. Starting from @.

- **grounding*x: A context from the sources for the question, based on the attached documents.

“Tjson
[
{
"question”: "What is the main concept addressed in [Section/Paragraph]?”,
"options”: ["Option A", "Option B", "Option C", "Option D"],
"correct_answer”: 1,
"grounding”: "Provide a context from the sources for the question.”
3,
]
# Examples

**Example 1:%x

_Input:_
An article about an algorithm.
An article about an another algorithm.

_Output:_
TT7json
[

{

"question”: "Which algorithm has instance of of divide-and-conquer algorithm?”,

11



45 "options"”: ["heapsort”, "quicksort”, "Timsort”, "selection sort”],

46 "correct_answer”: 1,

47 "grounding”: "The divide-and-conquer algorithm is a key concept in quicksort.”
48 }

49 ]

5

52 (Real examples should be longer and customized to the attached documents, focusing on understanding concepts presented.)
53

54 # Notes

55

56 - Ensure each question is designed to test understanding within Anderson's taxonomy.

57 - Verify that distractors are plausible to encourage critical thinking.

58 - Tailor questions to reflect the specific content and style of the attached documents.
59 - Provide context from the sources to guide learners in answering the questions.

A.2 Atomic Facts

To generate questions from the atomic facts we used the following prompt:

Given a knowledge base of factual statements about a topic, generate 10 multiple choice questions that test understanding of
< the concepts and relationships described in these facts.

2

3 Focus on generating questions that require learners to infer, and compare content from the triplets.
4

5 # Steps

6

7 1. First, *xidentify clusters of related facts** by either

8 a) Finding predicates that connect multiple subjects to the same type of object

9 (e.g., all algorithms with their space complexity)

10 OR

11 b) Finding predicates that connect one subject to multiple objects

12 (e.g., all properties of one algorithm)

13

14 2. x*xBefore formulating a question, verifyxx:

15 - You have enough distinct options for 4 meaningful choices

16 - The relationships are unambiguous (one clear correct answer)

17 - Supporting evidence exists for both the correct answer and distractors

18 - For property questions: at least 4 different algorithms have this property

19 - For value questions: at least 4 different possible values exist across algorithms
20

21 # Guidelines for questions

22

23 1. Answers must be definitively provable from the given facts

24 2. All 4 options must be plausible and related to the topic

25 3. Incorrect options (distractors) should be based on facts about other related concepts
26 4. The distractor answers should not be too trivial

27 5. Questions should test relationships between concepts or comparative properties

28

29 # Output Format

30

31 The output should be formatted as a JSON array of objects. Return nothing but the JSON response, pay attention to the format so
< it can be loaded by Python's ~json.loads™ without any modifications. Each object should represent a question and include:

32 - xxquestion*x: The text of the question.

33 - xxchoices**: An array of answer choices.

34 - xxcorrect**: The position or index of the correct answer in the options array. Starting from @.

35 - *xgrounding**: A list of factual statements from the sources for the question, based on the attached documents.

37 T json

38 [

39 {

40 "question": "...",
41 "choices”: [

42

46 1,

47 "correct”: 0-3, // index of the correct answer

48 "grounding”: ["...", "...", "..."]1 // list the relevant facts supporting the correctness of the correct answer option
< and any relevant information to the distractors

49 }

50

52

53 # Examples

54

55 *xExample 1:%%
56

57 _Input:_

58 List of factual statements about algorithms and their properties.
59

60 _Output:_

61 T json

62 [

12



63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

"question”: "Which algorithm is not a stable sorting algorithm?”,
"choices": [
"Timsort”,
"Heapsort”,
"Insertion Sort”,
"Bubble Sort”
1,
"correct”: 1,
"grounding”: [
"Timsort is a stable sorting algorithm”,
"Heapsort is not stable”,
"Insertion sort is a stable sorting algorithm”,
"Bubble sort is a stable sorting algorithm”

*xExample 2:x*

_Input:_
List of factual statements about algorithms and their properties.

_Output:_
“Tjson
L
{
"question”: "What is the worst-case space complexity of merge sort?”,
"choices": [
"0(n)”,
"0(1)”,
"0(n log n)",
"0(n*2)"
1,
"correct”: 0,
"grounding”: [
"Merge sort has a worst-case space complexity of 0(n).",
"Merge sort has space complexity of 0(n).",
"Quicksort has a worst-case space complexity of 0(n).",
"Heapsort has a worst-case space complexity of 0(1)."
]
}
]
# Rules
1. Only use information explicitly stated in the fact statements
2. Only reference concepts mentioned in the knowledge base
3. Treat the facts as the sole source of truth
4. If something isn't explicitly stated in a fact, don't assume it
5. Consider different ways the same concept might be expressed

# Notes

- Verify that distractors are plausible to encourage critical thinking.
- Provide triplets from the sources to guide learners in answering the questions.

Return nothing but the json response, formatted to be loaded by Python's json.loads without any modifications.

The facts were extracted from the plain texts by the following prompt:

W -

W

You are tasked with extracting fact-based statements from a text.

Guidelines:

1. Break down complex sentences into simple, atomic facts. Each fact must clearly indicate its topic and be completely

< self-contained.

2. Only use information present in the source text

3. Only return pieces of information which are relevant for later testing knowledge on the topic in an educational setting (as
< the facts will be used for constructing test questions)

4. Focus on technical, definitional, and functional aspects that demonstrate understanding of the core concept

5. Each statement must clearly indicate what topic or concept it's describing, as if it could appear in a random set of facts
< about different topics

BAD: "Compares each element with the next one”
GOOD: "Bubble sort compares each element with the next element in the list”

Input Format:

<INPUT>

Your text goes here...
</INPUT>

Output Format:
L

"Fact statement 1",
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20
2

22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

"Fact statement 2",
]
Example:

<INPUT>

The number *xxgxxx (/pai/; spelled out as "**pix*") is a mathematical constant, approximately equal to 3.14159, that is the
< ratio of a circle's circumference to its diameter. In addition to being irrational, *m* is also a transcendental number,
< which means that it is not the solution of any non-constant polynomial equation with rational coefficients.

</INPUT>

Output:
[
"7 is approximately equal to 3.14159",
"7 equals the ratio of a circle's circumference to its diameter”,
"7 is an irrational number”,
"7 is a transcendental number”
"A transcendental number cannot be the solution of any non-constant polynomial equation with rational coefficients”

]

Possible statements left out due to their lack of relevancy:

- "The number 7 is a mathematical constant”, --> as this is a very trivial statement

- "m is pronounced as 'pai'"”, --> this can't be effectively used when constructing a written test on 7

- "m is spelled out as 'pi'"”, --> as this is a very trivial statement

A.3 Knowledge Graph + LLM

The below system prompt was applied to generate questions from the KG:

RN o NV I P I )

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Given a knowledge base of facts in the form of triplets (subject--predicate->object), generate multiple choice questions that
< test understanding of relationships and properties in the knowledge graph.

Focus on generating questions that require learners to infer, and compare content from the triplets.
# Steps

1. First, *xidentify clusters of related facts*x by either
a) Finding predicates that connect multiple subjects to the same type of object
(e.g., all algorithms with their space complexity)
OR
b) Finding predicates that connect one subject to multiple objects
(e.g., all properties of one algorithm)

2. x%xBefore formulating a question, verifyxx:
- You have enough distinct options for 4 meaningful choices
- The relationships are unambiguous (one clear correct answer)
- Supporting evidence exists for both the correct answer and distractors
- For property questions: at least 4 different algorithms have this property
- For value questions: at least 4 different possible values exist across algorithms

3. *xDocument all relevant supporting tripletsx* that:
- Prove the correct answer
- Disprove incorrect options
- Use semantically similar predicates
- Validate the complete set of choices

# Output Specifications

. Generate 10 questions

. Each question must have exactly 4 options

. Only ONE option should be correct based on the knowledge base
. All answers must be supported by explicit triplets

. The distractor answers should not be too trivial

ghAWwN =

# Output Format

The output should be formatted as a JSON array of objects. Return nothing but the JSON response, pay attention to the format so
< it can be loaded by Python's ~json.loads™ without any modifications. Each object should represent a question and include:
- **question**: The text of the question.

- *xchoices**: An array of answer choices.

- x%xcorrect**: The position or index of the correct answer in the choices array. Starting from 0.

- xxsupporting_triplets*x: Supporting triplets from the input, keep the format. Do not modify the triplets.

*Tjson
L
{

"question": "...",
"choices": [

1,

"correct”: 0-3, // index of the correct answer

14



54 "supporting_triplets”: [

55 // format: "subject--predicate->object, do not include any comments as it makes the result unparsable
56 ]

57 3}

58

59 T

60

61 # Examples

62

63 *xExample 1:%%

64

65 _Input:_

66 Triplets from a knowledge graph, about algorithms and their properties.
67

68 _Output:_

69 T json

70 L

71 {

72 "question”: "Which algorithm is not a stable sorting algorithm?”,
73 "choices": [

74 "Timsort",

75 "Heapsort”,

76 "Insertion Sort”,

71 "Bubble Sort”

8 1,

79 "correct": 1,

80 "supporting_triplets": [

81 "Timsort--instance of->stable sorting algorithm”,

82 "heapsort--has property->not stable”,

83 "insertion sort--instance of->stable sorting algorithm”,

84 "insertion sort--is a type of->stable sorting algorithm”,
85 "bubble sort--instance of->stable sorting algorithm”,

86 "bubble sort--is a type of->stable sorting algorithm”,

87 "bubble sort--is->stable sorting algorithm”

88 ]

89 }

90

91 T

92

93 Note how the same concept "being stable” is expressed through different predicates:

94 "instance of->stable sorting algorithm”

95 - "is a type of->stable sorting algorithm”

96 - "is->stable sorting algorithm”

97 - "has property->not stable”

98

99 **Example 2:%*

100

101 _Input:_

102 Triplets from a knowledge graph, about algorithms and their properties.
103

104 _Output:_

105 T json

106 [

107 {

108 "question”: "What is the worst-case space complexity of merge sort?”,
109 "choices": [

110 "o(n)",

111 "0(1)",

112 "0(n log n)",

113 "0(n*2)"

114 1,

115 "correct”": 0,

116 "supporting_triplets”: [

117 "merge sort--worst-case space complexity->0(n)",
118 "merge sort--has space complexity->0(n)",

119 "merge sort--space complexity->0(n)",

120 "quicksort--worst-case space complexity->0(n)",
121 "heapsort--worst-case space complexity->0(1)"
122 ]

123 }

124

125 Tt

126

127 Note how space complexity can be expressed through variations like:
128 - "worst-case space complexity”

129 - "has space complexity"”

130 - "space complexity"”

131

132 # Rules

133

134 1. Only use information explicitly stated in the triplets
135 2. Only reference entities mentioned in the knowledge base
136 3. Treat the knowledge base as the sole source of truth

137 4. If a fact isn't explicitly stated in a triplet, don't assume it
138 5. Consider semantic equivalence of different predicates

139

140 # Notes

15



141

142 - Verify that distractors are plausible to encourage critical thinking.
143 - Provide triplets from the sources to guide learners in answering the questions.

144

145 Return nothing but the json response, formatted to be loaded by Python's json.loads without any modifications.

Where the edges were added to the message with User role in the subject —predicate — object format:

1 Knowledge base:
2 {edges}

A.4 Rule-based EQG from Knowledge Graphs
We used the following prompt to rephrase the rule-based MCQs:

® NN R W —

Rewrite the following JSON questions and options to make them more readable and user-friendly by:

Simplifying and improving readability.

Correcting any grammatically incorrect sentences.

Replacing unnecessarily long date formats with concise and clear ones (e.g.: in the case of Jan @1 dates show only the year).
Phrasing the question in such a way that it is less like it was generated using a template.

Make the questions more creative, but preserve the original meaning.

Return nothing but the json response, formatted to be loaded by Python's json.loads without any modifications.

B Generated Questions

Atomic Facts

1. Which algorithm is a hybrid of mergesort and

insertion sort?

2. Which algorithm is most suitable for sorting

Heapsort
Timsort
Quicksort
Bubble Sort

linked lists?

L]

L]

¢ Selection Sort

3. Which algorithm is particularly efficient for
sorting linked lists?

4. Which sorting algorithm has a worst-case time
complexity of O(n2)?

L]

Merge Sort
Quicksort
Heapsort

Merge Sort
Quicksort
Heapsort
Bubble Sort

Bubble Sort
Merge Sort
Heapsort
Timsort

16

5. Which sorting algorithm is known for its effi-

ciency in sorting arrays with many equal ele-
ments?

* Quicksort

* Merge Sort

» Heapsort

* Selection Sort

. Which sorting algorithm is known for its poor

locality of reference?

» Heapsort

¢ Quicksort

* Merge Sort

* Insertion Sort

. Which sorting algorithm is known for its sim-

ple implementation but poor performance on
large datasets?

* Merge Sort
* Quicksort

e Bubble Sort
e Timsort

8. Which sorting algorithm is known to be sta-

ble?

* Merge Sort

* Quicksort

» Heapsort

* Selection Sort



0.

10.

11.

12.

13.

14.

Which sorting algorithm is known to perform
poorly on already sorted data?

* Quicksort with the first element as the pivot

* Merge Sort
* Heapsort
* Insertion Sort

Which sorting algorithm is known to perform
poorly on large lists due to its quadratic time
complexity?

* Merge Sort

¢ Quicksort

* Bubble Sort

* Heapsort

Which sorting algorithm is particularly ben-
eficial when sorting data stored on slow-to-
access media?

¢ Quicksort

* Bubble Sort
* Merge Sort

* Insertion Sort

Which sorting algorithm is particularly ineffi-
cient for large lists?

* Bubble Sort
* Merge Sort
¢ Quicksort
* Heapsort

What is the main advantage of Timsort over
Quicksort for sorting object references or
pointers?

* Less memory usage

* Better locality of reference
* Stability

 Faster execution time

Which sorting algorithm is specifically de-
signed to handle large datasets stored on slow-
to-access media?

* Merge Sort

¢ Quicksort

* Heapsort

¢ Insertion Sort

15. Which sorting algorithm is typically less effi-

cient on large lists compared to merge sort?
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16.

17.

18.

19.

20.

e Insertion Sort
* Quicksort

¢ Heapsort

» Bubble Sort

Which sorting algorithm is typically more ef-
ficient than bubble sort on average?

¢ Insertion Sort
¢ Selection Sort
¢ Merge Sort

¢ Quicksort

Which sorting algorithm is typically used as a
fallback when quicksort becomes inefficient?

» Heapsort

* Merge Sort

* Bubble Sort
* Insertion Sort

Which sorting algorithm is used as the default
in"Python since version 2.3?

* Quicksort
* Heapsort

¢ Timsort

¢ Merge Sort

Which sorting algorithm uses a ’divide-and-
conquer’ approach?

* Quicksort
* Insertion Sort

¢ Bubble Sort
e Selection Sort

What is the primary advantage of using Tim-
sort over Quicksort?

* Stability
* Lower space complexity

* Faster average-case performance
* Better worst-case time complexity



KG + LLM

1. Which algorithm has a best-case tifiie com-
plexity of O(n)?
* Insertion Sort
* Merge Sort
* Heapsort
¢ Quicksort

2. Which algorithm has a worst-case space com-
plexity of O(1)?
* Heapsort
* Merge Sort
¢ Quicksort
* Timsort

3. Which algoritl}m has a worst-case time com-
plexity of O(n2)?
* Bubble Sort
* Heapsort
* Merge Sort
* Timsort

4. Which algoritl}m has a worst-case time com-
plexity of O(n2)?
* Bubble Sort
* Timsort
* Heapsort
* Merge Sort

5. Which algorithm has an average tirhe com-
plexity of O(n log n)?
* Heapsort
* Bubble Sort
* Insertion Sort

¢ Selection Sort

6. Which algorithm is a derivative work of Tim-
sort?

* Insertion Sort
* Merge Sort

* Heapsort

* Bubble Sort

7. Which algorithm is an example of an @daptive
sort?

* Timsort
* Heapsort
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10.

11.

12.

13.

14.

15.

* Quicksort
¢ Selection Sort

Which algorithm is based on both merge sort
and insertion sort?

e Timsort

» Heapsort

* Quicksort

* Bubble Sort

Which algorithm is based on both merge sort
and insertion sort?

* Timsort

» Heapsort

* Quicksort

* Bubble Sort

Which algorithm is named after Tim Peters?

e Timsort

* Bubble Sort
* Insertion Sort
* Merge Sort

Which algorithm is not a comparison sort?

» Heapsort

* Timsort

* Bubble Sort
* Merge Sort

Which algorithm is not a stable sorting algo-
rithm?

» Heapsort

* Bubble Sort

* Insertion Sort

* Merge Sort

Which algorithm is not a stable sorting algo-
rithm?

» Heapsort

* Timsort

* Merge Sort

* Bubble Sort

Which algorithm is used by Python for sort-
ing?

* Timsort

¢ Quicksort

* Heapsort
* Merge Sort

Which algorithm is used by Python?



16.

17.

18.

19.

20.

e Timsort

* Bubble Sort
* Insertion Sort
* Heapsort

Which algorithm is used by the Java Platform,
Standard Edition?

* Timsort

* Bubble Sort
* Insertion Sort
* Heapsort

Which sorting algorithm has a best-case time
complexity of O(n)?

* Insertion Sort

* Heapsort

* Merge Sort

¢ Quicksort

Which sorting algorithm has a worst-case
space complexity of O(1)?

* Heapsort

* Merge Sort

* Timsort

¢ Quicksort

Which sorting algorithm is an instance of a
comparison sort?

¢ Quicksort
* Heapsort
* Merge Sort
* Bubble Sort

Which sorting algorithm is an instance of an
adaptive sort?

* Timsort

* Heapsort

¢ Quicksort
* Merge Sort
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KG rules
1. What kind of algorithm is Merge Sori?

* Sorting Algorithm
* Stable Sorting Algorithm

* Online Algorithm
* Divide-and-Conquer Algorithm

2. What kind of algorithm is Selection Sort?

* Sorting Algorithm

* Divide-and-Conquer Algorithim
* Online Algorithm
* Adaptive Sort

3. What kind of algorithm is Timsort?

* Comparison Sort

* Divide-and-Conquer Algorithm
* Online Algorithm
¢ In-Place Algorithm

4. What type of algorithm is Timsort?

* Adaptive Sort

* Divide-and-Conquer Algorithm
¢ In-Place Algorithm

* Online Algorithm

5. What type of algorithm is Timsort?

* Online Algorithm

* Divide-and-Conquer Algorithm
* In-Place Algorithm

* Stable Sorting Algorithm

6. Which algorithm has a best-case time com-
plexity of O(n log n)?
* Merge Sort
* Bubble Sort
* Heapsort
* Selection Sort

7. Which algorithm has a worst-case spage com-
plexity of O(1) auxiliary?
* Bubble Sort
* Insertion Sort
» Heapsort
* Timsort

8. Which algorithm has a worst-case space com-
plexity of O(1)?
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10.

11.

12.

13.

14.

15.

» Heapsort
* Merge Sort
* Quicksort
* Bubble Sort

Which algorithm has a worst-case time com-
plexity of O(n log n)?

* Insertion Sort

* Quicksort

* Merge Sort

* Selection Sort

Which algorithm has a worst-case time com-
plexity of O(n log n)?

* Selection Sort

* Insertion Sort

e Timsort
e Bubble Sort

Which algorithm is a derivative of Timsort?

* Insertion Sort
* Selection Sort
¢ Quicksort

e Timsort

Which algorithm is an example of a divide-
and-conquer algorithm?

* Selection Sort
¢ Quicksort
» Heapsort
e Insertion Sort

Which algorithm is an example of an online
algorithm?

* Insertion Sort

* Timsort

* Merge Sort

* Bubble Sort

Which algorithm is based on Insertion Sort?

» Bubble Sort
* Timsort

» Heapsort

* Merge Sort

Which algorithm is based on Merge Sort?

* Timsort

* Selection Sort
¢ Quicksort

* Insertion Sort



16.

17.

18.

19.

20.

Which algorithm is derived from Smoothsort?

* Selection Sort
* Insertion Sort
* Merge Sort

» Heapsort

Which algorithm is used by the V8 engine?

¢ Insertion Sort
* Bubble Sort
» Timsort

* Heapsort

Which algorithm uses the merge algorithm?

¢ Quicksort

* Merge Sort

* Bubble Sort
* Insertion Sort

Which sorting method is an example of an
in-place algorithm?

¢ Quicksort

* Selection Sort

* Insertion Sort

* Heapsort

Which sorting method is named after bubbles?

* Bubble Sort

* Insertion Sort
* Selection Sort
e Timsort
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Plain text

1. In what scenario is Merge Sort patiicularly

advantageous?

» Sorting small datasets

 Sorting large datasets with exierrial storage

 Sorting data in-place
 Sorting data with minimal memory

2. What is a common optimization for guicksort

to avoid worst-case performance?

* Using a fixed pivot
* Using insertion sort for small aurays

» Switching to bubble sort
* Increasing recursion depth

3. What is a key advantage of Timsoit over

Quicksort?

e Timsort is a stable sort

» Timsort has better worst-case tifnie com-
plexity

* Timsort uses less memory

* Timsort is easier to implement

4. Which algorithm is described as using a ’pivot’

element to partition the array into sud-arrays?

¢ Insertion Sort
* Merge Sort

¢ Quicksort

* Selection Sort

5. What is a key disadvantage of heapsort com-

pared to quicksort?

* Heapsort is not stable.

» Heapsort has a higher worst-case time
complexity.

* Heapsort is not an in-place algorithm.

» Heapsort is recursive.

6. What is a primary disadvantage of Selection

Sort compared to Insertion Sort?

* Higher time complexity

* More memory usage

* Less efficient for small datasets
* More write operations

7. Which sorting algorithm is described as a sta-

ble, hybrid sorting algorithm that'¢ombines
merge sort and insertion sort?

8.

9.

10.

11.

12.

13.

» Heapsort

* Timsort

* Quicksort

* Bubble Sort

Which sorting algorithm is described as hav-
ing a worst-case time complexity of O(n2)
but is simple and can be advantageous when
auxiliary memory is limited?

* Selection Sort

* Merge Sort

» Heapsort

* Timsort

Which sorting algorithm is generally more ef-
ficient for partially sorted data?

» Heapsort

* Bubble Sort

* Insertion Sort
* Selection Sort

Which sorting algorithm is known for its effi-
cient performance on small datasets and par-
tially sorted data?

* Insertion Sort
* Bubble Sort
* Merge Sort

* Quicksort

Which sorting algorithm is known for its poor
locality of reference?

* Heapsort

* Merge Sort
* Quicksort
* Timsort

What is a significant disadvantage of heapsort
compared to quicksort?

* It is not stable

* It has a higher worst-case time complex-
ity

* It uses more memory

e It is harder to implement

Which sorting algorithm is known for its sta-
ble sorting and efficient performance on se-
quentially accessed data?

* Heapsort
* Quicksort

* Merge Sort



* Selection Sort * Heapsort
* Merge Sort

14. Which sorting algorithm is noted for its inef-
e Quicksort

ficiency on large datasets but is simple and

often used for educational purposes? ¢ Bubble Sort
* Merge Sort 18. Which sorting algorithm is typically used in
* Bubble Sort hybrid forms like Timsort due to its stability
* Quicksort and efficiency for sequential media?

* Insertion Sort * Merge Sort

15. Which sorting algorithm is particularly inef- ¢ Quicksort

ficient for large datasets due to its (O(n2)) * Heapsort

complexity? * Selection Sort
» Bubble Sort , . . . .
- rt 19. Which sorting algorithm is used in Python due

‘eapso to its efficiency on real-world data?

* Timsort
« Merge Sort » Heapsort

* Merge Sort
16. Which sorting algorithm is particularly noted

for its use in educational contexts due to its
simplicity, despite its inefficiency?

e Timsort
e Bubble Sort

» Heapsort 20. What is the primary advantage of merge sort
* Selection Sort over quicksort?
* Bubble Sort *+ Merge sort is in-place.
* Insertion Sort » Merge sort is stable.
17. Which sorting algorithm is typically faster for * Merge sort has better average time com-
randomized data due to better cache coher- plexity.
ence? * Merge sort requires less space.
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