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ABSTRACT

The analysis of characteristic motions in infants plays a pivotal role in quanti-
fying developmental progress and clinical risk for neurodevelopmental and mus-
culoskeletal abnormalities. Traditional methods often rely on resource intensive
manual motion assessments carried out by clinicians while computer assisted ap-
proaches frequently utilize computationally expensive simulations or black-box
classification models. These approaches struggle to efficiently both capture and
differentiate the highly correlated dynamics of infant motion, limiting their ability
to deliver actionable insights in a clinically viable decision time frame. In re-
sponse to these challenges, we introduce the use of dynamic mode decomposition
(DMD) as a transformative approach for decomposing complex infant motion into
interpretable, independent components that are linearly additive in nature. DMD
not only enables extraction of large scale clinically meaningful patterns but also
can integrate with existing computer assisted interventions with regard to stan-
dardized motion features. We assess an optimized DMD formulation on 275,000
frames of infant motion in clinical settings that have undergone manual motion as-
sessment by clinicians. Our experimental results show that using DMD modes as
predictive components result in equal or superior accuracy in predicting abnormal
clinical motion assessments compared to traditional manual or computer assisted
methods. In addition, these modes serve as highly data informative features them-
selves and can be utilized as a novel basis for personalized clinical analysis and
uncertainty quantification at scale.

1 INTRODUCTION

Infant motion analysis plays a critical role in developmental pediatric healthcare by extracting in-
valuable insights of cognitive and motor milestone trajectories and offering opportunities for early
detection of potential abnormalities. By systematically tracking and analyzing infant movements,
clinicians can identify deviations from normative developmental milestones and initiate timely inter-
ventions (Letzkus et al., 2024). However, the inherent complexity, variability, and dimensionality of
motion systems pose significant computational barriers in extracting meaningful motion patterns and
actionable insights in a clinically useful timescale. Infant movements are characterized by highly
correlated, transient dynamics that are difficult to quantify using conventional methods. Notably,
numerous clinical bodies of work have demonstrated infant movements correlated to high develop-
mental disorder risk are characterized by a lack of fluency and independent extremity movements
where bodily movements are restricted to highly correlated joints rather than the whole system.

Traditional methods to determine developmental progress based on predictive factors like movement
variance and complexity often rely on manual assessments by individual clinicians and resource-
intensive heuristic assessments with varying levels of inter-rater reliability (Crowle et al., 2017).
Computer assisted interventions frequently feature classification models with little to no inter-
pretable features or computationally expensive simulation frameworks and focus on the reconstruc-
tion of infant motion data with limited capabilities to extract clinically meaningful motion structures
for analysis Schroeder et al. (2020). Such models are not well suited for real-time or near real-time
analysis at scale, limiting their utility in clinical settings where low latency and repeated, longitudi-
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Figure 1: Pose estimation pipeline to derive anatomical keypoint features (a) for input into a dynamic
mode decomposition (DMD) model (b) Top 3 most dominant DMD modes are shown with their most
informational joints, as determined by their Frobenius Norm.

nal insights can inform interventions. There remains pressing need for analytical methodologies that
can decompose these correlated motion dynamics into interpretable and independent components in
a manner that preserves a low level of latency and is well suited for near real-time analysis and
decision making.

Dynamic Mode Decomposition (DMD) offers a promising solution to this challenge. As a data-
driven approach, DMD excels at identifying and decomposing complex systems into coherent modes
that capture the underlying dynamics. By reframing infant motion as a complex dynamical system,
DMD enables the extraction of meaningful patterns from highly correlated motion data, providing
a computationally efficient and interpretable alternative to traditional simulations. This capability
is particularly valuable in infant motion analysis where the ability to model transient dynamics
with high fidelity is essential for clinical interpretation and decision-making. Moreover, DMD’s
efficiency in processing large datasets makes it well-suited for real-time applications, bridging the
gap between theoretical models and practical, scalable solutions.

DMD is a well known analytical technique originating in physical systems that produces decompo-
sition of a nonlinear system of states into independent components, even if the data in non-stationary
in nature. While DMD originated in the study of physical systems, its novel application in the study
of characteristic patterns in other dynamical systems such as motion detection and analysis has
been proposed Erichson & Donovan (2016). Features extracted from high-dimensional motion data
include characteristic poses, repetitive motions, and unique behavioral patterns that are essential
for customizing rehabilitation and early intervention strategies based on individual motion profiles.
DMD assumes that the dynamics of a physical system can be approximated by a linear combination
of independent time relationships over time. Specifically, it assumes that a combination of modes,
each with its own evolving exponential behaviors, can be decomposed from the larger system (H. Tu
et al., 2014). For any given sequential snapshots X1 and X2 at different times, DMD learns a linear
operator to map elements from one time step of a sequence of snapshots (state vectors) to the next.
Typically, X1 contains all snapshots except the last, and X2 contains all snapshots except the first.
Snapshots are data samples of a system at different times. For pose estimation problems, this means
DMD consists of a linear approximations of non-linear dynamics over the observation window and
motion that can be modeled as resulting from the sum, or superposition, of several independently
interacting dynamic patterns.
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While variance maximization methods like principal component analysis (PCA) and singular value
decomposition (SVD) are effective for feature extraction and noise/dimensionality reduction, they
do not account for any temporal relationships of the features in a given data feature set. DMD
explicitly models the time dynamics of data and how data features evolve over time, and utilizes
SVD to produce orthogonal matrices that provide a basis to project the original data, usually in a
subspace smaller than the original.

2 METHODOLOGY

2.1 EVALUATION ON CLINICAL DATASET

Simple RGB videos of 275 active infants in supine position were acquired from an institutional
neonatal intensive care unit (NICU) between July 2019 and November 2021. Motion was filmed in
a standardized vertical orientation at a consistent angle above the infant at a frame rate of 30 frames
per second (fps) and infants were free of positioning aids or motion restricting medical apparatus.
Each video motion sequence was reviewed and scored by a minimum of 2 infant General Move-
ment Assessment (GMA) certified clinician evaluators to be normal or abnormal. 17 standardized
anatomical keypoints were extracted from each video frame in the motions store using the High-
Resolution Network (HRNet) convolutional neural network (CNN). Unlike conventional CNNs that
diminish resolution through pooling layers, HRNet initiates with a high-resolution sub-network and
progressively integrates lower-resolution ones in parallel to capture detailed spatial information and
accurately predict our infant joint landmarks with a mean average precision (mAP) of 94.2%. The
center most 1000 frames of each infant’s full motion store were concatenated as input into the opti-
mized DMD model as the matrix X as representative motion sequences for each infant.

2.2 STANDARD DYNAMIC MODE DECOMPOSITION (DMD)

The standard formulation of DMD is utilized to analyze the dynamics from time series data repre-
sented as a matrix X , with each row capturing N features. This approach begins by dividing X into
two matrices, X1 and X2, corresponding to sequential time frames. A reduced singular value de-
composition (SVD) is then applied to X1 targeting a specific rank r, formulated as X1 = UrSrV

∗
r .

The output of this decomposition includes the matrices U , S, and V ∗. The projected DMD operator
Atilde is computed as Atilde = UT

r X2VrS
−1
r , and its eigenvalues and eigenvectors (W ) are deter-

mined from the equation AtildeW = WΛ. DMD modes Φ are then derived using Φ = UrW , and the
state xk at a given mode i and time k is reconstructed through xk = ΦΛkb =

∑r
i=1 Λ

k
i biϕi. Con-

tinuous time dynamics are defined by xk =
∑r

i=1 e
log(λik)biϕi = ΦeΩkb, with the return outputs

being the DMD modes Φ, eigenvalues Λ, and vectors W .

Many variations of Standard DMD exist. Namely, Exact DMD extends the standard DMD for-
mulation by incorporating the full utilization of the pseudo-inverse in the calculation of the DMD
operator, augmenting DMD’s ability to handle noisy or outlying data. This approach uses a similar
segmentation of X into X1 and X2 but employs the full matrices U , S, and V ∗ from the SVD of X1,
leading to a DMD operator defined as A = X2V S−1U∗. The application of the full pseudo-inverse
typically results in a more accurate and robust approximation of the underlying dynamics, partic-
ularly useful in scenarios where the data set exhibits complex or more subtle dynamical structures
(Brunton et al., 2016). Finally, we use the Hankel Time Delay embedding as a method enhance a
given DMD system’s observability Frame & Towne (2023). Time delay incorporates delayed copies
of a given state into the analysis:

Xdelayed = [X(t), X(t− 1), . . . , X(t−m+ 1)]

This approach extends the state vector to include m previous time steps (reported as a delay of d=m),
effectively increasing the dimensionality of each snapshot by duplicating it (Curtis et al., 2023).

3 RESULTS AND DISCUSSION

To further minimize the role of environmental noise in DMD’s application, we apply the bagging and
optimization dynamic mode decomposition (BOPDMD) extension of the standard DMD framework.
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Figure 2: Joints that significantly contribute to the total variance of individual DMD modes for a
health infant with equally variant joints (top) and an abnormal infant with biased joints (bottom) as
coded by clinical infant movement assessment evaluators.

BOPDMD offers novel mechanisms for integrating statistical bagging, aggregation, subsampling,
and ensembling techniques to improve DMD stability and accuracy. Given a dataset X and a number
b of bootstrap samples, BOPDMD operates by generating b bootstrap samples Xi from X . Standard
DMD is then applied independently to each bootstrap sample. The resulting dynamic modes and
their corresponding eigenvalues from each sample are optimized and aggregated by taking the mean
of the weights Ωi, dynamic modes Φi, and temporal coefficients bi from each sample. Additionally,
regularization techniques are used to optimize each set of Ωi,Φi, and bi before aggregation. The
optimized modes are aggregated from all bootstrapped samples to form a consensus set of dynamic
modes. The BOPDMD method not only enhances the robustness of the decomposition by reducing
the variance of the dynamical mode estimates but also can parameterize the dynamic modes to be
more representative of the true underlying system dynamics (Sas).

Comparing the results of Exact DMD with and without Hankel delay, optDMD, and BOPDMD
yields the most superior results for the optDMD formulation. Notably, the results for an ill con-
figured time delay have higher error than Exact DMD alone and optDMD performs better than
BOPDMD, its equivalent formulation with bagging, indicating potential for a more tolerant ensem-
bling scheme. Finally, we utilize the makeups of the dynamical modes as a classification feature by
taking the percentage variance explained by the top-10 most informational joints for a given mode.
Even with such a severely restricted feature set, a simple support vector machine (SVM) with a
radial basis function (RBF) is able to classify the clinician labeled clinical targets with a 95.2 %
agreement rate with clinician diagnosis, equivalent to or exceeding the established baseline posi-
tive identification rates of both the GMA and deep learning based computer assisted interventions
(Garfinkle, 2024; Gong et al., 2022; Reich et al., 2021).

4 CONCLUSION

Dynamic Mode Decomposition (DMD) emerges as a novel method to leverage the vast amounts of
near-real time data available from feature extraction methods like pose estimation in infant motion
analysis. Not only can DMD serve as a method of identifying large scale characteristic motions
of infants, it can serve as a form of feature and dimensionality reduction via its dynamical modes.
Unlike quantitative methods that cannot decouple motion characteristics to the temporal dimension,
DMD modes are independent to each other, successfully decouple spatial and temporal dynamics,
and are linearly additive. The properties make DMD components extremely interpretable, as they
enable analysis, reconstruction, and manipulation of each dynamic component and their representa-
tive features. Moving forward, future work will focus on refining the DMD ensembling techniques,
expanding the feature set to build more robust model ablations across clinical targets, and integrating
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these methods directly into real-time clinical workflows via real-time streaming or classification to
further validate the utility of analytical methods at scale in infant motion analysis.
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