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Abstract

This work focuses on the rapid development of linguistic annotation tools for low-resource

languages (languages that have no labeled training data). We experiment with several cross-

lingual annotation projection methods using recurrent neural networks (RNN) models. The

distinctive feature of our approach is that our multilingual word representation requires only

a parallel corpus between source and target languages. More precisely, our approach has

the following characteristics: (a) it does not use word alignment information, (b) it does not

assume any knowledge about target languages (one requirement is that the two languages

(source and target) are not too syntactically divergent), which makes it applicable to a wide

range of low-resource languages, (c) it provides authentic multilingual taggers (one tagger for

N languages). We investigate both uni and bidirectional RNN models and propose a method

to include external information (for instance, low-level information from part-of-speech tags)

in the RNN to train higher level taggers (for instance, Super Sense taggers). We demonstrate

the validity and genericity of our model by using parallel corpora (obtained by manual or

automatic translation). Our experiments are conducted to induce cross-lingual part-of-speech

and Super Sense taggers. We also use our approach in a weakly supervised context, and it

shows an excellent potential for very low-resource settings (less than 1k training utterances).

1 Introduction

Annotating linguistic resources consists of adding information of interpretative

nature to the original raw data (Garside, Leech and McEnery 1997). This information

may be terminological, lexical, morphological, syntactic or semantic. Linguistic re-

sources can be lexicons, transcriptions of dialogues, text corpora, etc. (Veronis 2000).

Annotating corpora with linguistic information (part-of-speech tagging, sense

tagging, syntactic analysis, named entity identification and semantic role annotation)

involves significant human efforts. The availability of parallel corpora has recently

led to several research studies on cross-lingual annotation projection. The idea

is to explore the use of unsupervised (no-supervision on the targets languages)

approaches which project labels from the (resource-rich) source language (such as

English which has large amounts of annotated corpora and several analysis tools
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2 O. Zennaki et al.

available) to the (under-resourced) target language with less resources. The goal of

cross-language projection is, on the one hand, to provide all languages with linguistic

annotations, and on the other hand, to automatically induce text analysis tools for

these languages.

In this work, we address the task of automatic building of multilingual linguistic

resources and tools. This article presents the use of unsupervised approaches to learn

multilingual Natural Language Processing (NLP) tools from parallel corpora with

only annotations in the source language.

Contributions. We investigate different architectures of RNNs — unidirectional

RNN (URNN) and bidirectional RNN (BRNN) — for multilingual sequence

labeling tasks. Two NLP tasks are considered: Part-of-speech (POS) tagging and

Super Sense tagging (SST) (Ciaramita and Altun 2006). Our RNN architectures

demonstrate very good results on unsupervised training for new target languages.

In addition, we show that the integration of POS information in RNN models is

useful to build a multilingual coarse-grain semantic (Super Sense) tagger. For this,

a simple and efficient way to take into account low-level linguistic information for

more complex sequence labeling tasks is proposed. Semi-supervised scenarios (where

a small amount of annotated target data is available) are also investigated in this

journal article.

Outline. The remainder of the article is organized as follows. Section 2 reviews

related work. Section 3 describes our cross-language annotations projection ap-

proaches based on RNN. Section 4 (POS tagging) and Section 5 (SST) present our

empirical studies and experimental results. We finally conclude the article in Section

6 and present our future research directions.

2 Related work

We present below most approaches for cross-lingual projection based on word

alignment or representation learning.

2.1 Cross-lingual projection based on word alignment

The availability of parallel corpora has recently led to several research works

exploring the use of unsupervised or semi-supervised cross-lingual annotation

projection based on word alignment information. Through word alignments in

parallel corpora, the annotations are transferred from the (resource-rich) source

language to the (potentially under-resourced) target language.

2.1.1 Unsupervised methods

Cross-lingual projection of linguistic annotations was pioneered by Yarowsky, Ngai

and Wicentowski (2001) who proposed to transfer annotations from resource-rich

languages onto resource-poor languages, based only on word alignments from a

parallel corpus. After alignment, the source language is annotated, and annotations

are projected to the target language. The resulting (noisy) annotations are used in
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A neural approach for inducing multilingual resources 3

conjunction with robust learning algorithms to build cheap unsupervised NLP tools.

This approach has been successfully used to transfer several linguistic annotations

between languages. Examples include POS (Das and Petrov 2011; Duong, Cook,

Bird and Pecina 2013), named entities (Kim, Toutanova and Yu 2012), syntactic

constituents (Jiang, Liu and Lü 2011), word senses (Bentivogli, Forner and Pianta

2004; van der Plas and Apidianaki 2014) and semantic role labels (Pado and Pitel

2007; Annesi and Basili 2010).

In recent years, several works have investigated transfer learning (Pan and

Yang 2010) in NLP. We can cite the work of Jiang et al. (2015) who applied

transfer learning on annotation adaptation. They implemented several models

for transferring annotations of a source corpus to the annotation format of

another target corpus. These models are based on a transfer classifier which learns

correspondence regularities between annotation guidelines from a parallel annotated

corpus, which has two kinds of annotations for the same data. In this specific

application, the source corpus and the target corpus are in the same language. In

the same vein, Passban, Liu and Way (2017) implemented statistical and neural

machine translation engines that are trained on one language pair but are used

to translate another language. They trained a reliable model for a high-resource

language, and then they exploited cross-lingual similarities in order to adapt the

model to work for a close language with few resources.

In order to build our baseline system, we use direct transfer which is similar to

the method described in Yarowsky et al. (2001). First, we tag the source side of the

parallel corpus using an available supervised tagger. Next, we align words in the

parallel data using GIZA++ (Och and Hermann 2000) to find out corresponding

source and target words. Then, we project tags in the target language using following

projection criteria:

• For 1-to-1 alignments, we project tags directly.

• For N -to-1 mappings, we project the tag of the word at the position N/2

rounded up to the next whole number.

• The unaligned words (target) are tagged with their most frequent associated

tag in the corpus.

We finally train a tagger on the target language using Trigrams’n’Tags (TnT)

statistical tagger (Brants 2000).

2.1.2 Semi-supervised methods

Cross-lingual projection requires a parallel corpus and word alignment between

source and target languages. Many automatic word alignment tools are available,

such as GIZA++ which implements IBM models (Brown et al. 1993). However,

the noisy (non-perfect) outputs of these methods are a serious limitation for the

annotation projection based on word alignments (Fraser and Marcu 2007). To deal

with these limitations, recent studies have proposed to combine projected labels

with partially supervised monolingual information in order to filter out invalid label

sequences. For example, Li, Graça and Taskar (2012), Täckström et al. (2013) and
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4 O. Zennaki et al.

Wisniewski et al. (2014) have proposed to improve projection performance by using

a dictionary of valid tags for each word (coming from Wiktionary1).

2.2 Projection based on cross-lingual representation learning

In another vein, recent studies based on cross-lingual representation learning

methods have been proposed to avoid using such pre-processed and noisy alignments

for label projection. First, these approaches learn language-independent features,

across many different languages (Durrett, Pauls and Klein 2012; Al-Rfou, Perozzi

and Skiena 2013; Täckström, McDonald and Nivre 2013; Luong, Pham and

Manning 2015; Gouws and Søgaard 2015; Gouws, Bengio and Corrado 2015). Then,

the induced representation space is used to train NLP tools by exploiting labeled

data from the source language and applying them in the target language. Cross-

lingual representation learning approaches have achieved good results in different

NLP applications such as cross-language SST and POS tagging (Gouws and

Søgaard 2015), cross-language named entity recognition (Täckström, McDonald and

Uszkoreit 2012), cross-lingual document classification and lexical translation (Gouws

et al. 2015), cross language dependency parsing (Durrett et al. 2012; Täckström et al.

2013) and cross-language semantic role labeling (Titov and Klementiev 2012).

Our approach described in the next section, is inspired by these works since

we also try to induce a common language-independent feature space (cross-lingual

words embeddings). Unlike Durrett et al. (2012) and Gouws and Søgaard (2015),

who use bilingual lexicons, and unlike Luong et al. (2015) who use word alignments

between source and target languages,2 our common multilingual representation is

very agnostic. We use a simple (multilingual) vector representation based on the

occurrences of source and target words in a parallel corpus and we let the RNN

learn the best internal representations (corresponding to the hidden layers) specific

to the task (SST, POS tagging or other tasks).

In this work, we learn a cross-lingual POS tagger (multilingual POS tagger if a

multilingual parallel corpus is used) based on a recurrent neural network (RNN) on

the source labeled text and apply it to tag target language text. We explore URNN

and BRNN architectures, respectively. We also show that the proposed architecture

is well suited for lightly supervised training (adaptation). Starting from the intuition

that low-level linguistic information is useful to learn more complex taggers, we also

introduce three new RNN variants to take into account external (POS) information

in a more complex task (multilingual SST).

3 Our approach: Using recurrent neural networks in cross-lingual projection of

annotations

To avoid projecting label information from deterministic and error-prone word

alignments, we propose to represent the bilingual word information intrinsically in

1 http://www.wiktionary.org/
2 To train a bilingual representation regardless of the task.
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A neural approach for inducing multilingual resources 5

Fig. 1. (Colour online) Overview of the proposed model architecture for inducing

multilingual RNN taggers.

an RNN architecture. Then, this RNN is used as a multilingual sequence labeling

model (we investigate POS tagging and SST tasks).

3.1 Proposed method

We propose a method for learning multilingual sequence labeling tools based on

RNN, as can be seen in Figure 1. In our approach, a parallel or multi-parallel

corpus between a resource-rich language and one or many target (potentially under-

resourced) language(s) is used to extract common (multilingual) and agnostic words

representation. These representations, which rely on sentence-level alignment only,

are used with the source side of the parallel/multi-parallel corpus to learn a neural

network tagger in the source language. Since a common representation of source

and target words is chosen, this neural network tagger is authentically multilingual

and can also be used to tag texts in target language(s).

In our agnostic representation, we associate to each word (in source and target

vocabularies) a common vector representation, namely Vw (equation (1)).

Vw =

{
Vwi = 1 if w ∈ Si
Vwi = 0 else

(1)

Si, i = 1, . . . , N is the i th bisentence of the parallel corpus, where N is the number

of parallel sentences (bisentences in the parallel corpus).

The idea is that, in general, a source word and its target translation appear

together in the same bisentences and their vector representations are close. We can

then use the RNN tagger, initially trained on source side, to tag the target side

(because of our common vector representation). This simple representation does not

require multilingual word alignments since the RNN learns the optimal internal
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6 O. Zennaki et al.

Fig. 2. (Colour online) High-level schema of RNN used in our work unidirectional (left

schema) and bidirectional RNN (right schema).

representation needed for the annotation task (for instance, the hidden layers of the

RNN can be considered as multilingual word embeddings).

3.2 Recurrent neural networks

There are two major architectures of neural networks: Feedforward (Bengio

et al. 2003) and RNN (Schmidhuber 1992; Mikolov et al. 2010). Sundermeyer

et al. (2013) showed that language models based on recurrent architecture achieve

better performance than language models based on feedforward architecture. This

is due to the fact that RNNs do not use a context of limited size. This property led

us to use, in our experiments, the Elman recurrent architecture (Elman 1990), in

which recurrent connections occur at the hidden layer level.

We consider in this work two Elman RNN architectures (see Figure 2): URNN

and BRNN. In addition, to be able to include low-level linguistic information in our

architecture designed for more complex sequence labeling tasks, we propose three

new RNN variants to take into account external information (such as POS tags) for

a more complex task: multilingual SST.

3.2.1 Unidirectional RNN

In the Elman URNN, the recurrent connection is a loop at the hidden layer level.

This connection allows URNN to use at the current time step hidden layer’s states

of previous time steps. In other words, the hidden layer of URNN represents all

previous history and not just n− 1 previous inputs, thus the model can theoretically

represent long context.

The architecture of the URNN considered in this work is shown in Figure 2. In

this architecture, we have four layers: input layer, forward (also called recurrent or

context layer), compression hidden layer and output layer. All neurons of the input

layer are connected to every neuron of forward layer by weight matrix IF and RF ,

the weight matrix HF connects all neurons of the forward layer to every neuron of
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A neural approach for inducing multilingual resources 7

compression layer and all neurons of the compression layer are connected to every

neuron of output layer by weight matrix O.

The input layer consists of a vector w(t) that represents the current word wt in

our common words representation (all input neurons corresponding to current word

wt are set to 0 except those that correspond to bisentences containing wt, which

are set to 1), and of vector f(t − 1) that represents output values in the forward

layer from the previous time step. We name f(t) and c(t) the current time step

hidden layers (our preliminary experiments have shown better performance using

these two hidden layers instead of one hidden layer), with variable sizes (usually 80–

1,024 neurons) and sigmoid activation function. These hidden layers represent our

common language-independent feature space and inherently capture word alignment

information. The output layer y(t), given the input w(t) and f(t − 1) is computed

with the following steps:

f(t) = Σ(w(t).IF (t) + f(t − 1).RF (t)) (2)

c(t) = Σ(f(t).HF (t)) (3)

y(t) = Γ(c(t).O(t)) (4)

Σ and Γ are the sigmoid and the softmax functions, respectively. The softmax

activation function is used to normalize the values of output neurons to sum up to

1. After the network is trained, the output y(t) is a vector representing a probability

distribution over the set of tags. The current word wt (in input) is tagged with the

most probable output tag.

For many sequence labeling tasks, it is beneficial to have access to future in

addition to the past context. So, it can be argued that our URNN is not optimal

for sequence labeling, since the network ignores future context and tries to optimize

the output prediction given the previous context only. This URNN is thus penalized

compared with our baseline projection based on TnT (Brants 2000) which considers

both left and right contexts. To overcome the limitations of URNN, a simple

extension of the URNN architecture — namely, BRNN (Schuster and Paliwal

1997) — is used to ensure that context at previous and future time steps will be

considered.

3.2.2 Bidirectional RNN

An unfolded BRNN architecture is given in Figure 2. The basic idea of BRNN is to

present each training sequence forwards and backwards to two separate recurrent

hidden layers (forward and backward hidden layers) and then somehow merge the

results. This structure provides the compression and the output layers with complete

past and future context for every point in the input sequence. Note that without the

backward layer, this structure simplifies to a URNN.

The inference procedure for the unfolded bidirectional network for one time slice

1 ≤ t ≤ T to determine all predicted outputs, was described in the reference paper

on BRNN (Schuster and Paliwal 1997), and can be summarized as follows:
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8 O. Zennaki et al.

• Compute the backward hidden layers states from t = T to t = 1 (equation

(5)):

b(t) = Σ(w(t).IB(t) + b(t + 1).RB(t)) (5)

• Use the backward hidden layers states to compute the compression layers c(t)

(equation (6)) and output layers y(t) (equation (4)) from t = 1 to t = T :

c(t) = Σ(f(t).HF (t) + b(t).Rb(t)) (6)

3.2.3 Network training

The first step in our approach is to train the neural network, given a parallel corpus

(training corpus) and a validation corpus (different from train data) in the source

language. In typical applications, the source language is a resource-rich language

(which already has an efficient tagger or manually tagged resources). Our RNN

models are trained by stochastic gradient descent using usual back-propagation and

back-propagation through time algorithms (Rumelhart, Hinton and Williams 1985).

We learn our RNN models with an iterative process on the tagged source side of

the parallel corpus. After each epoch (iteration) in training, validation data is used

to compute per-token accuracy of the model. After that, if the per-token accuracy

increases, training continues in the new epoch. Otherwise, the learning rate is halved

at the start of the new epoch. Eventually, if the per-token accuracy does not increase

anymore, training is stopped to prevent over-fitting. Generally, convergence takes

5–10 epochs, starting with a learning rate α = 0.1.

The second step consists in using the trained model as a target language tagger

(using our common vector representation). It is important to note that if we train

on a multilingual parallel corpus with N languages (N > 2), the same trained model

will be able to tag all the N languages.

Hence, our approach assumes that the word order in both source and target

languages are similar. In some languages such as English and French, word order

for contexts containing nouns could be reversed most of the time. For example, the

compound word the European Commission would be translated into la Commission

Européenne. In order to deal with the word order constraints, we also combine the

RNN model with the baseline cross-lingual projection model in our experiments. In

case of syntactic divergence between source and target languages, another idea would

be to pre-process text in target language to better match the text in source language.

This could be done using linguistically motivated rules automatically extracted from

typological databases such as the World Atlas of Language Structures3. This latter

possibility is part of our future work.

3.3 Dealing with out-of-vocabulary words

For the words unseen in the initial parallel corpus (OOV words), their vector

representation is a vector of zero values. Consequently, during testing, the RNN

3 http://wals.info

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324918000293
Downloaded from https://www.cambridge.org/core. Commissariat à l'énergie atomique, on 06 Aug 2018 at 14:41:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324918000293
https://www.cambridge.org/core


A neural approach for inducing multilingual resources 9

model will use only the context information to tag the OOV words found in the

test corpus. To deal with these types of OOV words,4 we use the CBOW model of

Mikolov et al. (2013) to replace each OOV word by its closest known word in the

current OOV word context (to achieve this, we compute cosine similarity between

word embeddings). Once the closest word is found, its common vector representation

is used (instead of the vector of zero values) at the input of the RNN.

3.4 Combining simple cross-lingual projection and RNN models

Since the direct transfer model M1 and RNN model M2 use different strategies

for tagging (TnT is based on Markov models, while RNN is a neural network), we

assume that these two models can be complementary. To keep the benefits of each

approach, we explore how to combine them with linear interpolation. Formally, the

probability to tag a given word w is computed as

PM12(t|w) = (μPM1(t|w,CM1) + (1 − μ)PM2(t|w,CM2)) (7)

where CM1 and CM2 are the context of w considered by M1 and M2, respectively. The

relative importance of each model is adjusted through the interpolation parameter

μ. The word w is tagged with the most probable tag, using function f described as

f(w) = arg max
t

(PM12(t|w)) (8)

4 Multilingual part-of-speech tagging-based RNN

We applied our method to build RNN POS taggers for four target languages —

French, German, Greek and Spanish — with English as the source language. No

annotation is available for the target languages (we suppose these languages are

under-resourced).

In order to determine the effectiveness of our common words representation

described in Section 3.1, we also investigated the use of state-of-the-art bilingual

word embeddings (using MultiVec Toolkit5 (Bérard et al. 2016)) as input to our

RNN tagger.

4.1 Light supervision (adaptation) of RNN model

While the unsupervised RNN (no-supervision on the target languages) model

described in the previous section has not seen any annotated data in the target

language, we also consider the use of a small amount of adaptation data (manually

annotated in target language), relatively to the huge number of sentences used to

learn supervised tagger, in order to capture target language specificity. In that case,

the RNN model is adapted in a light supervision manner, using a small monolingual

target corpus (manually annotated — the exact size used for adaptation is provided

4 Words which do not have a known vector representation.
5 https://github.com/eske/multivec

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324918000293
Downloaded from https://www.cambridge.org/core. Commissariat à l'énergie atomique, on 06 Aug 2018 at 14:41:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324918000293
https://www.cambridge.org/core
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in Table 5 –) and the common vector representation of words (extracted from the

initial parallel corpus). We plan to experiment with a gradually increasing amount

of annotated data in the target language (from 100 to 10, 000 utterances). Such an

approach is particularly suited for an iterative scenario where a user would post-edit

(correct) the unsupervised POS tagger output in order to produce rapidly adaptation

data in the target language (light supervision).

4.2 Data

For French as a target language, we used a train set of 10, 000 parallel sentences, a

validation set of 1, 000 English sentences and a test set of 1, 000 French sentences,

all extracted from the ARCADE II English–French corpus (Veronis et al. 2008).

The test set is tagged with the French TreeTagger (Schmid 1995) and then manually

checked.

For German, Greek and Spanish as a target language, we used training and

validation data extracted from the Europarl corpus (Koehn 2005) which are a subset

of the training data used in Das and Petrov (2011) and Duong et al. (2013). This

choice allows us to compare our results with those of Das and Petrov (2011), Duong

et al. (2013) and Gouws and Søgaard (2015). The train data set contains 65, 000

bisentences, a validation set of 10, 000 bisentences is also available. For testing, we

use the same test corpora as (Das and Petrov 2011), (Duong et al. 2013) and (Gouws

and Søgaard 2015) (bisentences from CoNLL shared tasks on dependency parsing

(Buchholz and Marsi 2006)). The evaluation metric (per-token accuracy) and the

universal tagset defined by Petrov, Das and McDonald (2012) (twelve tags common

for most languages) are used for evaluation. This universal POS tagset defines the

following twelve POS tags, which exist in similar form in most languages: NOUN

(nouns), VERB (verbs), ADJ (adjectives), ADV (adverbs), PRON (pronouns), DET

(determiners and articles), ADP (prepositions and postpositions), NUM (numerals),

CONJ (conjunctions), PRT (particles), ‘.’ (punctuation marks) and X (a catch-all for

other categories such as abbreviations or foreign words).

For training, the English (source) sides of the training corpora (ARCADE II and

Europarl) and of the validation corpora are tagged with the English TreeTagger

toolkit. Using the matching provided by Petrov et al. (2012), we map TreeTagger

tagset as well as tagset found in CoNLL shared task data to the common universal

tagset.

In order to build our baseline unsupervised tagger (based on a Direct Cross-

lingual Projection — see Section 2.2.1), we also tag the tagger side of the training

corpus, with tags projected from English side through word-alignments established

by GIZA++ (alignment models were trained using IBM Models 1–5). After the tags

projection, a target language POS tagger based on TnT approach (Brants 2000) is

trained.

The combined model is built for each considered language using cross-validation

on the test corpus. First, the test corpus is split into two equal parts and on each

part, we estimate the interpolation parameter μ (equation (7)) which maximizes the

per-token accuracy score. Then each part of the test corpus is tagged using the

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324918000293
Downloaded from https://www.cambridge.org/core. Commissariat à l'énergie atomique, on 06 Aug 2018 at 14:41:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324918000293
https://www.cambridge.org/core


A neural approach for inducing multilingual resources 11

Fig. 3. A t-SNE visualization of RNN vector (word embeddings) representations of the same

few frequent English and French words.

combined model tuned on the other part, and vice versa (standard cross-validation

procedure).

We trained MultiVec bilingual word embeddings on the parallel Europarl corpus

between English and each of the target languages considered.

4.3 Qualitative evaluation

As we have previously stated, we propose to represent the bilingual word information

intrinsically in our RNN model by letting the RNN learn its internal words

representation (bilingual word embeddings) using our common words representation

(Section 3.1). We present here a qualitative evaluation of English–French bilingual

word embeddings learned from the ARCADE II English–French corpus. We jointly

visualized the RNN bilingual words representation of the most frequent words

in English and French using the t-SNE (Van der Maaten and Hinton 2008)

visualization tool. The embeddings are shown in Figure 3. We observe that the

visualization of the embeddings of English words and their French translations are

close and even in some cases they are overlapped. Therefore, it seems that our RNN

model is able to represent bilingual word information.

4.4 Results and discussion

4.4.1 Results

Table 1 reports the results obtained for the unsupervised POS tagging. We note that

the POS tagger based on BRNN has better performance than URNN, which means

that both past and future contexts help select the correct tag.

6 For RNN models, only one (same) system is used to tag German, Greek and Spanish.
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Table 1. Token-level POS tagging accuracy for two baseline methods –B/L–
(simple projection and URNN using MultiVec bilingual word embeddings as input),
RNN6–Our–, Projection+RNN –Comb.– and state-of-the-art methods –SOTA– (Das
& Petrov (2011), Duong et al. (2013) and Gouws & Søgaard (2015))

���������Model

Lang. French German Greek Spanish

All OOV All OOV All OOV All OOV

B/L Simple projection 80.3 77.1 78.9 73.0 77.5 72.8 80.0 79.7

URNN MultiVec 75.0 65.4 70.3 68.8 71.1 65.4 73.4 62.4

Our URNN 78.5 70.0 76.1 76.4 75.7 70.7 78.8 72.6

BRNN 80.6 70.9 77.5 76.6 77.2 71.0 80.5 73.1

BRNN − OOV 81.4 77.8 77.6 77.8 77.9 75.3 80.6 74.7

Comb. Proj. + URNN 84.5 78.8 81.5 77.0 78.3 74.6 83.6 81.2

Proj. + BRNN 85.2 79.0 81.9 77.1 79.2 75.0 84.4 81.7

Proj. + BRNN − OOV 85.6 80.4 82.1 78.7 79.9 78.5 84.4 81.9

SOTA (Das 2011) ... ... 82.8 ... 82.5 ... 84.2 ...

(Duong 2013) ... ... 85.4 ... 80.4 ... 83.3 ...

(Gouws 2015) ... ... 84.8 ... ... ... 82.6 ...

The OOV rate of the test corpora is around twenty per cent.

Table 1 also shows the performance before and after performing our procedure

for handling OOVs in BRNNs. It is shown that after replacing OOVs by the closest

words using CBOW, the tagging accuracy significantly increases (McNemar’s Test

p < 0.005 on French, German and Greek).

As shown in the same table, our RNN models accuracy is close to that of the

simple projection tagger. It achieves comparable results to Das and Petrov (2011)

and Duong et al. (2013) (who used the full Europarl corpus while we use only a

65, 000 subset of it) and to Gouws and Søgaard (2015) (who used extra resources

such as Wiktionary and Wikipedia). Interestingly, RNN models learned using our

common words representation (Section 3.1) seem to perform significantly better than

RNN models using MultiVec bilingual word embeddings.

It is also important to note that only one single URNN and BRNN tagger

applies to German, Greek and Spanish, so this is an authentic multilingual POS

tagger. Finally, as for several other NLP tasks such as language modeling (where

standard and NN-based models can be combined in order to obtain optimal results),

the combination of standard and RNN-based approaches (Projection+ ) seems

necessary to further optimize POS tagging accuracies.

In order to know in what respect considering right context (bidirectional archi-

tecture) improves RNN model accuracy, we analyzed the French test corpus. In

the example provided in Table 2, future time steps (tags of the words — de la

Commission Européenne –) information helps to resolve the French word Finances

tag ambiguity. We hypothesize that the context information is better represented in

BRNN.
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Table 2. Effect of bidirectional architecture

English Financial situation of the European Parliament.

French Finances de la Commission Européenne.

URNN Finances / VERB ...

BRNN Finances / NOUN ...

Table 3. Word order divergence — unambiguous tag word –.

EN Supervised Treetagger ... other/ADJ specific/ADJ groups/NOUN ...

FR Unsupervised URNN ... autres/ADJ groupes/NOUN spécifiques/ADJ ...

In case of word order divergence, we observed that our model can still handle

some divergence, notably for the following cases:

• Obviously, if the current tag word is unambiguous (case of ADJ and NOUN

order from English to French — see Table 3), then the context (RNN history)

information has no effect.

• When the context is erroneous (due to the fact that word order for the target

test corpus is different from the source training corpus), the right word tag

can be recovered using the combination (RNN+Cross-lingual projection —

see Table 4).

To deal with the word order divergence limitation, we also propose light super-

vision (adaptation) of RNN model. In Table 5, we report the results obtained after

adaptation with a gradually increasing amount of target language data annotated

(from 100 to 10, 000 utterances).

We focus on German target language only. It is compared with two supervised

approaches based on TnT or RNN. The supervised approaches are trained on the

adaptation data only. For supervised RNN, it is important to mention that the

input vector representation has a different dimension for each amount of adaptation

data (we recall that the vector representation is Vwi, i = 1, . . . , N, where N is the

number of sentences, and N is growing from 100 to 10, 000). The results show that

our adaptation, on top of the unsupervised RNN is efficient in very low resource

settings (<1, 000 target language utterances). When more data is available (>1, 000

utterances), the supervised approaches start to improve (but RNN and TnT are still

complementary since their combination improves the tag accuracy).

Figure 4 details the behavior of the same methods for OOV words. We clearly

see the limitation of the unsupervised URNN + adaptation to handle OOV words,

Table 4. Word order divergence — ambiguous tag word -

EN supervised treetagger ... two/NUM local/ADJ groups/NOUN ...

FR unsupervised URNN ... deux/NUM groupes/NOUN locaux/NOUN ...

Projection + URNN ... deux/NUM groupes/NOUN locaux/ ADJ ...
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14 O. Zennaki et al.

Table 5. Lightly supervised model: effect of German adaptation corpus (manually
annotated) size on unsupervised RNN model (unsupervised RNN + DE adaptation
trained on EN Europarl and adapted to German)

������������Model

DE corpus size
0 100 500 1k 2k 5k 7k 10k

Unsupervised URNN + DE adaptation 76.1 82.1 87.3 90.4 90.7 91.2 91.4 92.4

Supervised URNN DE only ... 71.0 76.4 82.1 90.6 93.0 94.2 95.2

Supervised TnT DE only ... 80.5 86.5 89.0 92.2 94.1 95.3 95.7

Supervised URNN + Supervised TnT DE ... 81.0 86.7 90.1 94.2 95.3 95.7 96.0

Contrastive experiments with German supervised POS taggers using same data (RNN, TnT

and RNN+TnT). 0 means no German corpus used during training.

100 500 1K 2K 5K 7K 10K
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Unsupervised URNN + DE Adaptation
Supervised URNN DE only
Supervised TnT DE only

Fig. 4. (Colour online) Accuracy on OOV according to German training corpus size for

unsupervised URNN + DE adaptation, supervised URNN DE and supervised TNT DE.

since the input vector representation is the same (comes from the initial parallel

corpus) and does not evolve as more German adaptation data is available.

In order to know the impact of adaptation, we analyzed the German test corpus.

The example provided in Table 6, shows that RNN better handles tag ambiguity

with adaptation: In the unsupervised RNN model, the word kandidiert is tagged

as a noun (NOUN), whereas it is a verb (VERB) in this particular context.

5 Multilingual super sense tagging-based RNN

Our RNN model is applied to a more complex task: multilingual SST. In order to

measure the impact of the parallel corpus quality on our method, we also learn our
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Table 6. Effect of adaptation on German data

German ... er denn kandidiert

Unsupervised URNN ... er/PRON denn/ADV kandidiert/NOUN

Unsupervised URNN +DE adapt.(1k) ... er/PRON denn/ADV kandidiert/VERB

SST models using the multilingual parallel corpus MultiSemCor (MSC) which is the

result of manual or automatic translation of SemCor from English into Italian and

French.

5.1 Super sense tagset

SST is an NLP task that consists of annotating each significant entity in a text, within

a general semantic taxonomy defined by the WordNet (Fellbaum 1998) lexicographer

classes (called super-senses). In Ciaramita and Altun (2006), SST was defined as a

task half-way between named entity recognition and Word Sense Disambiguation

(WSD): It is an extension of NER, since it uses a larger set of semantic categories,

and it is an easier and more practical task with respect to WSD, that deals with very

specific senses (the complete list of super-senses and a short description is shown in

Table 7).

5.2 RNN variants

We propose three new RNN variants to take into account low-level (POS) inform-

ation in a higher level (SST) annotation task. The question addressed here is at

which layer of the RNN should this low-level information be included to improve

SST performance? As specified in Figure 5, the POS information can be introduced

either at input layer or at forward layer (forward and backward layers for BRNN)

or at compression layer. In all these RNN variants, the POS of the current word is

also represented with a vector (POS(t)). Its dimension corresponds to the number of

POS tags in the tagset (universal tagset of Petrov et al. (2012) is used). We propose

one hot vector representation where only one value is set to 1 and corresponds to

the index of current tag (all other values are 0).

5.3 Data

SemCor. The SemCor (Miller et al. 1993)7 is a subset of the Brown Corpus (Kucera

and Francis 1979) labeled with the WordNet (Fellbaum 1998) senses. In Table 8, we

provide an example extracted from SemCor.

MultiSemCor. The English–Italian MultiSemcor (MSC-IT-1) corpus is a manual

translation of the English SemCor to Italian (Bentivogli, Forner and Pianta 2004)8.

As we already mentioned, we are also interested in measuring the impact of the

7 http://web.eecs.umich.edu/~mihalcea/downloads.html#semcor
8 http://multisemcor.fbk.eu/
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Table 7. Nouns and verbs super sense labels (WordNet lexicographer classes), and
short description (from the Wordnet documentation)

NOUNS

SuperSense NOUNS DENOTING SuperSens NOUNS DENOTING

Act Acts or actions Object Natural objects (not

man-made)

Animal Animals Quantity Quantities and units of

measure

Artifact Man-made objects Phenomenon Natural phenomena

Attribute Attributes of people and

objects

Plant Plants

Body Body parts Possession Possession and transfer of

possession

Cognition Cognitive processes and

contents

Process Natural processes

Communication Communicative processes and

contents

Person People

Event Natural events Relation Relations between people

or things or ideas

Feeling Feelings and emotions Shape Two- and three-dimensional

shapes

Food Foods and drinks State Stable states of affairs

Group Groupings of people or objects Substance Substances

Location Spatial position Time Time and temporal relations

Motive Goals Tops Abstract terms for unique

beginners

VERBS

SuperSense VERBS OF SuperSens VERBS OF

Body Grooming, dressing and

bodily care

Emotion Feeling

Change Size, temperature change,

intensifying

Motion Walking, flying, swimming

Cognition Thinking, judging, analyzing,

doubting

Perception Seeing, hearing, feeling

Communication Telling, asking, ordering,

singing

Possession Buying, selling, owning

Competition Fighting, athletic activities Social Political and social activities

and events

Consumption Eating and drinking Stative Being, having, spatial

relations

Contact Touching, hitting, tying,

digging

Weather Raining, snowing, thawing,

thundering

Creation Sewing, baking, painting,

performing
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Table 8. An example of SemCor (v.3.0) in SGML format (standard generalized
markup language)

<contextfile concordance=brown>

<context filename=br-a01 paras=yes>

[. . . ]

<s snum=29>

<wf cmd=ignore pos=DT>The</wf>

<wf cmd=done pos=NN lemma=couple wnsn=2 lexsn=1:14:01:: >couple</wf>

<wf cmd=done pos=VBD ot=notag>was</wf>

<wf cmd=done pos=VB lemma=marry wnsn=1 lexsn=2:41:00::>married</wf>

<wf cmd=done rdf=aug pos=NN lemma=aug wnsn=1 lexsn=1:28:00::>Aug.</wf>

<wf cmd=done pos=CD ot=notag>2</wf>

<punc>,</punc>

<wf cmd=done pos=CD ot=notag>1913</wf>

<punc>.</punc>

</s>

[. . . ]

</context>

</contextfile>

Fig. 5. (Colour online) URNN variants with POS information at three levels: (a) input layer,

(b) forward layer, (c) compression layer.

parallel corpus quality on our method. For this, we use two translation systems: (a)

Google Translate to translate the English SemCor to Italian (MSC-IT-2) and French

(MSC-FR-2); (b) LIG machine translation phrase based system, off-the-shelf SMT

system based on Moses (Koehn et al. 2007) taken from LIG (Besacier et al. 2012)

to translate the English SemCor to French (MSC-FR-1)9 (Salah et al. 2016).

9 https://github.com/getalp/WSD-TALN2016-Hadjsalahetal
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Table 9. WordNet synset, BabelNet sense and super sense mapping

Word WordNet synset BabelNet sense Super sense

Couple couple%1:14:01:: bn:00023269n noun.group

Married marry%2:41:00:: bn:00085614v verb.social

Aug. aug%1:28:00:: bn:00007140n noun.time

Training corpus. The SemCor was labeled with the WordNet synsets. However,

because we train models for SST, we convert SemCor synsets annotations to super

senses. We train our models using the four different versions of MSC (MSC-IT-1,2

- MSC-FR-1,2), with modified Semcor on source side.

Test Corpus. To evaluate our models, we used the SemEval 2013 Task 12

(multilingual WSD) (Navigli, Jurgens and Vannella 2013) test corpora, which are

available in five languages (English, French, German, Spanish and Italian) and

labeled with BabelNet (Navigli and Ponzetto 2012) senses. We map BabelNet senses

to WordNet synsets, then WordNet synsets are mapped to super senses (see Tabel 9).

We used the sense mapping between Princeton WordNet 3.0 and BabelNet 1.1.1

provided by Nasiruddin et al. (2015).

5.3.1 SST systems evaluated

The goals of our SST experiments are the following: First, to investigate the

effectiveness of using POS information to build multilingual super sense tagger,

second to measure the impact of the parallel corpus quality (manual or automatic

translation) on our RNN models (URNN, BRNN and our proposed variants). To

summarize, we build four super sense taggers based on direct cross-lingual projection

(see Section 2.2.1) using four versions of MSC (MSC-IT-1, MSC-IT-2, MSC-FR-1

and MSC-FR-2) described above. Then we use the same four versions to train our

multilingual SST models based on URNN and BRNN. For learning our multilingual

SST models based on RNN variants proposed in Section 5.1, we also tag SemCor

using TreeTagger (POS tagger proposed by Schmid (1995)).

5.4 Results and discussion

5.4.1 Results

Our models are evaluated on SemEval 2013 Task 12 test corpora. Results are directly

comparable with those of systems which participated to this evaluation campaign.

We report two SemEval 2013 (unsupervised) system results for comparison:

• MFS Semeval 2013: The most frequent sense is the baseline provided by

SemEval 2013 for Task 12, this system is a strong baseline, which is obtained

by using an external resource (the WordNet most frequent sense).
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Table 10. Super sense tagging (SST) accuracy for simple Projection, RNN and their
combination

���������Model

Lang. Italian French

MSC-IT-1 MSC-IT-2 MSC-FR-1 MSC-FR-2

trans man. trans. auto trans. auto trans auto.

B
/
L

Simple Projection 61.3 45.6 42.6 44.5

O
u
r

S
S
T

B
a
se

d
R

N
N

URNN 59.4 46.2 46.2 47.0

BRNN 59.7 46.2 46.0 47.2

URNN-POS-In 61.0 47.0 46.5 47.3

URNN-POS-H1 59.8 46.5 46.8 47.4

URNN-POS-H2 63.1 48.7 47.7 49.8

BRNN-POS-In 61.2 47.0 46.4 47.3

BRNN-POS-H1 60.1 46.5 46.8 47.5

BRNN-POS-H2 63.2 48.8 47.7 50

BRNN-POS-H2 - OOV 64.6 49.5 48.4 50.7

C
o
m

b
in

a
ti
o
n

Proj. + URNN 62.0 46.7 46.5 47.4

Proj. + BRNN 62.2 46.8 46.4 47.5

Proj. + URNN-POS-In 62.9 47.4 46.9 47.7

Proj. + URNN-POS-H1 62.5 47.0 47.1 48.0

Proj. + URNN-POS-H2 63.5 49.2 48.0 50.1

Proj. + BRNN-POS-In 62.9 47.5 46.9 47.8

Proj. + BRNN-POS-H1 62.7 47.0 47.0 48.0

Proj. + BRNN-POS-H2 63.6 49.3 48.0 50.3

Proj. + BRNN-POS-H2 - OOV 64.7 49.8 48.6 51.0

S
-E MFS Semeval 2013 60.7 52.4

GETALP (Schwab et al. 2012) 40.2 34.6

• GETALP: A fully unsupervised WSD system proposed by Schwab et al. (2012)

based on Ant-Colony algorithm.

The DAEBAK! (Manion and Sainudiin 2013) and the UMCC-DLSI systems

(Gutiérrez Vázquez et al. 2011) have also participated to SemEval 2013 Task 12.

However, they use a supervised approach.10

Table 10 shows the results obtained by our RNN models and by two SemEval 2013

WSD systems. URNN-POS-X and BRNN-POS-X refer to our RNN variants: In

means input layer, H1 means first hidden layer and H2 means second hidden layer.

We achieve the best performance on Italian using MSC-IT-1 clean corpus, while

noisy training corpus degrades SST performance. The best results are obtained with

10 DAEBAK! and UMCC-DLSI for SST have obtained: 68.1 per cent and 72.5 per cent on
Italian; 59.8 per cent and 67.6 per cent on French.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324918000293
Downloaded from https://www.cambridge.org/core. Commissariat à l'énergie atomique, on 06 Aug 2018 at 14:41:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324918000293
https://www.cambridge.org/core


20 O. Zennaki et al.

Table 11. Improved tagged example for French target language

English ... who also serves as the regional Mexico climate change adviser.

French ... qui est également conseiller sur le climat pour le Mexique.

BRNN ... conseiller/verb.communication ...

BRNN-POS-H2 ... conseiller/noun.person ...

combination of simple projection and RNN which confirms (as for POS tagging)

that both approaches are complementary.

We also observe that the RNN approach seems more robust than simple projection

on noisy corpora. This is probably due to the fact that no word alignments are

required in our cross language RNN. Finally, BRNN-POS-H2-OOV achieves the

best performance, which shows that the integration of POS information in RNN

models and dealing with OOV words are useful to build efficient multilingual super

senses taggers. Finally, it is worth mentioning that integrating low-level (POS)

information lately (last hidden layer) seems to be the best option in our case.

The example in Table 11, shows that the integration of POS information in our

neural SST tagger (BRNN-POS-H2) helps to resolve the French word conseiller

(adviser in English) SST tag ambiguity, tagged by BRNN (model without the

integration of POS information) as verb.communication, whereas it is an noun.person

6 Conclusion

In this article, we have described an approach based on RNNs to induce multilingual

NLP tools. In particular, we have used URNN and BRNN architectures on two

NLP tasks: POS tagging and SST. We have also proposed and experimented new

RNN variants which take into account low-level information (POS) in a higher

level task (SST). Our approach needs only parallel corpora without using word

alignment information and it does not assume any knowledge about target languages

(however, one requirement is that the two languages (source and target) are not too

syntactically divergent).

We first empirically evaluated the proposed approach on two unsupervised POS

taggers: (1) English–French bilingual POS tagger; and (2) English–German–Greek–

Spanish multilingual POS tagger. The performance of the second model is close to

state-of-the-art with only a subset (65, 000 sentences) of Europarl corpus used (when

state-of-the-art approaches use the whole Europarl corpus). In addition, when a

small amount of supervised data is available, the experimental results demonstrated

the effectiveness of our approach in a weakly supervised context (well adapted to

low resource scenarios).

Second, in order to demonstrate the genericity of our approach we have applied

our RNN model on a more complex task: multilingual SST. We have investigated

two pairs of languages: English–Italian and English–French which allowed us to

measure the impact of the parallel corpus quality on the results of our approach.

For the English–Italian pair, we have used two MSC parallel corpora: The first
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results from English–Italian manual translation and the second was constructed

using English–Italian automatic translation. Concerning the English–French pair,

we have used two MSC parallel corpora generated with two Statistical Machine

Translation tools. The obtained results (on SST) showed that our approach seems

more robust than state-of-the-art methods (based on word alignment) on noisy

corpora. Additionally, we have observed that the integration of POS information in

RNN models is useful to build efficient multilingual super senses taggers.

Finally, we have also proposed a method to deal with OOV words which has led

to improvements for both tasks (multilingual POS tagging and multilingual SST).

We then conclude that our approach is generic and has the following advantages:

(a) it uses a language-independent word representation (based only on word co-

occurrences in a parallel corpus), (b) it provides authentic multilingual taggers (one

tagger for N languages) and (c) it can be easily adapted to a new target language

(when a small amount of supervised data is available).

For future work, we plan to apply multitask learning to build systems that

simultaneously perform syntactic and semantic analysis. We also plan, on the one

hand, to exploit multiple source languages to improve our RNN taggers with our

common (multilingual) vector representation (this is possible with a multi-parallel

corpus and our common words representation), and on the other hand, to apply our

approach to truly under-resourced languages as defined in Besacier et al. (2014). In

the case of strong differences in word order between source and target languages,

and based on Aufrant, Wisniewski and Yvon (2016) works, we plan to use pre-

processing based on features extracted from large typological databases such as

World Atlas of Language Structures11 for instance.
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Cho, K., van Merriënboer, B., Bahdanau, D., and Bengio, Y. 2014. On the properties of neural

machine translation: encoder–decoder approaches. In Proceedings of the Syntax, Semantics

and Structure in Statistical Translation, pp. 103–111.

Ciaramita, M., and Altun, Y. 2006. Broad-coverage sense disambiguation and information

extraction with a supersense sequence tagger. In Proceedings of the 2006 Conference

on Empirical Methods in Natural Language Processing, Association for Computational

Linguistics, pp. 594–602.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. 2011.

Natural language processing (almost) from scratch. Journal of Machine Learning Research

12: 2493–2537.

Das, D., and Petrov, S. 2011. Unsupervised part-of-speech tagging with bilingual graph-based

projections. In Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies , vol. 1, Association for Computational

Linguistics, pp. 600–609.

Duong, L., Cook, P., Bird, S., and Pecina, P. 2013. Simpler unsupervised POS

tagging with bilingual projections. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies , vol. 2,

pp. 634–639.

Durrett, G., Pauls, A., and Klein, D. 2012. Syntactic transfer using a bilingual lexicon.

In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning, Association for Computational

Linguistics, pp. 1–11.

Elman, J. L. 1990. Finding structure in time. Cognitive science 14: 179–211.

Fellbaum, C. 1998. WordNet. Wiley Online Library, Cambridge, MA: MIT Press.

Fraser, A., and Marcu, D. 2007. Measuring word alignment quality for statistical machine

translation. Computational Linguistics 33: 293–303.

Garside, R., Leech, G. N., and McEnery, T. 1997. Corpus Annotation: Linguistic Information

from Computer Text Corpora. Taylor & Francis, Abingdon.

Gouws, S., and Søgaard, A. 2015. Simple task-specific bilingual word embeddings.

In Proceedings of the 14th Annual Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

pp. 1386–1390.

Gouws, S., Bengio, Y., and Corrado, G. 2015. BilBOWA: fast bilingual distributed

representations without word alignments. In Proceedings of the 32nd International

Conference on Machine Learning, pp. 748–756.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324918000293
Downloaded from https://www.cambridge.org/core. Commissariat à l'énergie atomique, on 06 Aug 2018 at 14:41:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324918000293
https://www.cambridge.org/core


A neural approach for inducing multilingual resources 23

Graves, A. 2012. Supervised sequence labelling. In Supervised Sequence Labelling with

Recurrent Neural Networks, pp. 5–13. Berlin, Heidelberg: Springer.

Gutiérrez Vázquez, Y., Fernández Orquı́n, A., Montoyo Guijarro, A., Vázquez Pérez, S. 2011.
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Täckström, O., Das, D., Petrov, S., McDonald, R., and Nivre, J. 2013. Token and type

constraints for cross-lingual part-of-speech tagging. Transactions of the Association for

Computational Linguistics 1: 1–12.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324918000293
Downloaded from https://www.cambridge.org/core. Commissariat à l'énergie atomique, on 06 Aug 2018 at 14:41:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324918000293
https://www.cambridge.org/core


A neural approach for inducing multilingual resources 25

Titov, I., and Klementiev, A. 2012. Crosslingual induction of semantic roles. In Proceedings

of the 50th Annual Meeting of the Association for Computational Linguistics , vol. 1, pp.

647–656.

Van der Plas, L., and Apidianaki, M. 2014. Cross-lingual word sense disambiguation for

predicate labelling of french. In Proceedings of the 21st TALN (Traitement Automatique

des Langues Naturelles) Conference, pp. 46–55.

Veronis, J. 2000. Annotation automatique de corpus: panorama et état de la technique.

Ingénierie des langues 4(4): 111–129.

Veronis, J., Hamon, O., Ayache, C., Belmouhoub, R., Kraif, O., Laurent, D., Nguyen, T. M. H.,

Semmar, N., Stuck, F., and Zaghouani, W. 2008. Arcade II Action de recherche concertée
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