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Abstract

Soft-greedy operators, namely ε-greedy and softmax, remain a common choice to induce a
basic level of exploration for action-value methods in reinforcement learning. These operators,
however, have a few critical limitations. In this work, we investigate a simple soft-greedy
operator, which we call resmax, that takes actions proportionally to their max action gap:
the residual to the estimated maximal value. It is simple to use and ensures coverage of
the state-space like ε-greedy, but focuses exploration more on potentially promising actions
like softmax. Further, it does not concentrate probability as quickly as softmax, and so
better avoids overemphasizing sub-optimal actions that appear high-valued during learning.
Additionally, we prove it is a non-expansion for any fixed exploration hyperparameter,
unlike the softmax policy which requires a state-action specific temperature to obtain a
non-expansion (called mellowmax). We empirically validate that resmax is comparable to or
outperforms ε-greedy and softmax across a variety of environments in tabular and deep RL.

1 Introduction

Many value-based methods in reinforcement learning rely on soft greedy operators, such as softmax (Luce,
1959) and ε-greedy (Watkins, 1989). These operators play two roles: for soft-greedification within the Bellman
update when bootstrapping off values in the next state (target policy) and to encourage some amount of
exploration (in the behavior policy). Soft-greedification within the Bellman update facilitates learning a
stochastic soft-optimal policy and can help mitigate the overestimate bias in Q-learning (Song et al., 2019).
This changes the target policy being learned. For the second role, regardless of whether a Q-learning update
is used or a soft-greedy update, the soft-greedy operator can be used to take actions. Such an approach is
actually complementary to directed exploration approaches, like those that learn optimistic values, because it
can provide a small amount of additional exploration and so robustness to estimation error in the optimistic
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values. And for some environments, where only a small amount of exploration is needed, these soft-greedy
operators for the behavior provide a sufficient level of exploration.

The two most common soft-greedification operators—ε-greedy and softmax—have several limitations. ε-
greedy explores in an undirected way. Regardless of the agent’s estimates of the value of an action, the
agent’s exploration step is uniformly random. Softmax—a Boltzmann policy on the action-values—is more
directed, in that it samples proportionally to the exponentials of the value of the actions. However, softmax
is notoriously difficult to tune and suffers from concentrating too quickly due to the use of this exponential.
This concentration overemphasizes actions that appear high-valued under current estimates but are actually
suboptimal. This overemphasis issue can cause softmax to settle on a suboptimal policy, as we reaffirm
in our experiments. Further, the softmax is not sound when used within the Bellman update: it does not
guarantee that the Bellman update is a contraction (Asadi & Littman, 2017), which is needed to ensure
convergence under Sarsa or dynamic programming updates (Littman & Szepesvári, 1996). The greedy or
ε-greedy operators, on the other hand, are both non-expansions and so ensure convergence: when used inside
the Bellman update, with a discount less than 1 or under proper policies, the Bellman update is a contraction.

There has been work improving on these soft-greedy operators for value-based techniques. Several works
have addressed the non-expansion issue for softmax (Asadi & Littman, 2017; Cesa-Bianchi et al., 2017; Pan
et al.). One of these works proposes a soft-greedy operator called mellowmax (Asadi & Littman, 2017) that
is guaranteed to be a non-expansion when it is used within the Bellman update. The operator involves
optimizing the exploration parameter in softmax per state and has been shown to improve stability when
it is used for exploration (Kim et al., 2019). However, mellowmax is not a simple heuristic to use, as it
requires solving a root finding problem to compute the policy for decision making. To solve this problem
they used Brent’s method, which is computationally complex (Wilkins & Gu, 2013). An approach called
value-difference exploration (Tokic, 2010; Tokic & Palm, 2011) adapts the exploration parameter ε and the
temperature for softmax over time, using the difference in the softmax of the values before and after learning.
A later empirical study, however, highlighted that this approach does not perform consistently (Gimelfarb
et al., 2020).

In this work, we consider a new soft-greedy operator, which we call resmax, based on a probability matching
scheme originally developed in the contextual bandit setting (Abe & Long, 1999; Foster & Rakhlin, 2020).
This technique is similar to softmax in the sense that it assigns distinct probabilities to actions based on
the estimated action-values. However, unlike softmax, the probability for taking each action is determined
using its max action gap: the difference between the approximated value of the greedy action and the given
action. The policy is inversely proportional to this max action gap, and avoids the use of the exponential that
causes softmax to overemphasize actions. We theoretically show that it ensures a minimal probability on each
action, regardless of the action-values, ensuring all actions are explored. We prove that it is a non-expansion,
and so combines well with generalized value iteration algorithms. We additionally provide an empirical study,
across a variety of hard and easy exploration problems, with tabular and deep function approximation. We
find that, in tabular experiments, resmax outperforms both softmax and ε–greedy–especially when softmax
suffers from overestimation– and performs similarly to mellowmax, but with dramatically lower run time. In
the deep RL experiments, resmax is comparable to the baselines.

Remark: It is worth noting that parallel work in the policy gradient literature examines different policy
parameterizations, that resemble some of these operators used for value-based methods. It has been noted
that the softmax policy parameterization can concentrate too quickly (Mei et al., 2020), motivating the
introduction of another parameterization called the escort transform. Other work, particularly those analyzing
convergence properties, examines categorical policy parameterizations (Zhan et al., 2021). This policy gradient
work does not directly apply here, because we do not learn a parameterized policy. Instead, we use these
operators to obtain a policy directly from learned action-values. Policy gradient methods often learn action
preferences, which are not the same as action-values, resulting in notably different properties. For example,
action preferences can concentrate very quickly, making entropy regularization more critical in policy gradient
methods. Further, the non-expansion requirement is unnecessary for policy gradient methods; in fact, we
highlight that an extension of the escort transform to this value-based setting does not have the non-expansion
property.
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2 Background

We model the environment as a discounted Markov Decision Process (MDP) (S,A,R, P, γ) where S is
the set of states; A the set of actions; R the set of possible rewards; γ ∈ [0, 1] the discount factor; and
P : S ×R×S ×A → [0, 1] the dynamics function. In a given state s, the agent takes action a and transitions
to state s′ and receives reward r according to probability P (s′, r|s, a).

The agent’s goal is to learn a policy π : S ×A → [0, 1] that maximizes its discounted cumulative reward. The
action-value function for each state-action pair under the policy is

qπ(s, a) .= Eπ

[ ∞∑
k=0

γkRt+k+1|St = s, At = a

]
(1)

The agent attempts to approximate qπ∗ , the action-value function for the optimal policy π∗, with an
approximate action-value function q that is parameterized by θ. Many reinforcement learning algorithms
compute this approximation iteratively, using either Q-learning or Expected Sarsa. Both methods use an
update to the parameter vector θ of the form

θt+1 ← θt + αδt∇q(s, a, θt)

but with different TD errors δt. Q-learning uses δt = r + γmaxa′q(s′, a′, θt) − q(s, a, θt). Expected Sarsa
uses δt = r + γEa′∼π(·|s′)[q(s′, a′, θt)]− q(s, a, θt) where the target policy π is typically a soft-greedy policy.
When θ has an entry for each s, a, pair, we call this the tabular setting. Going forward, we will use q(s, a) in
our descriptions of operators and policies; however, one can easily substitute it for q(s, a, θ) in non-tabular
settings.

To learn these action-values, the agent needs to explore. One simple strategy to promote exploratory behavior
is to use soft-greedy policies, either just for the behavior (as in Q-learning) or for both the behavior and
target (as in Expected Sarsa). Two common soft-greedy policies are the Boltzmann softmax policy and
ε-greedy, defined as

πsm(a | s) .= eq(s,a)τ−1∑
a′∈A

eq(s,a′)τ−1 (2)

πεg(a | s) .=
{

1− ε + ε
|A| if a = argmaxaq(s, a)

ε
|A| otherwise

(3)

with an exploration parameter τ > 0 and ϵ ∈ [0, 1]. With lower values of τ , softmax is greedier; with higher
values of τ , softmax action selection becomes more equiprobable. Similarly, for ϵ = 0, the ε-greedy policy is
perfectly greedy, becoming increasing random with higher ε; at ε = 1.0, the policy becomes uniform random
with equiprobable action selection. Thus, these methods share two essential characteristics: randomness in
action selection to guarantee the coverage of the whole state space and a hyperparameter to vary the degree
to which the greedy action is chosen.

Though widely used, softmax and ε-greedy suffer from several flaws. One of the major problems of ε-greedy
is that it ignores the estimates of action-values and assigns a uniform probability to each non-greedy action.
This undirected exploration results in wasting time taking actions that the agent might already know are
vastly suboptimal. Further, to explore specific parts of the environment, it might need to chain a sequence of
random actions, which might be very low probability. Consider, for instance, the RiverSwim environment
(Strehl & Littman, 2008), where an agent receives a minor positive reward if it takes the left action in the
initial state, but a much larger reward at the far right of the environment that is harder to reach. To receive
this high reward, the agent might need to take several exploratory actions in a row, and so typically gets
stuck learning to go left.

Softmax is more directed, in that it assigns the probability of each action corresponding to its action-value.
However, if the temperature is not set carefully, softmax will assign an excessively disproportionate probability
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to the greedy action because this probability is based on exponentiating action values. Consequently, softmax
often overemphasizes actions that currently have high value estimates, at the expense of exploring other
actions. We provide an illustative example in the next section, explaining this issue further.

Furthermore, when using the softmax operator in the Expected Sarsa update, this operation is not guaranteed
to be a non-expansion (Littman, 1996; Littman & Szepesvári, 1996). The softmax operator inside the Bellman
update, is sm(q(s′, ·), τ) = Ea′∼πsm(·|s′)[q(s′, a′)] =

∑
a′ πsm(a′|s′)q(s′, a′). Generalized Value Iteration (GVI)

algorithms, such as Expected Sarsa, require this operator to be a non-expansion, to guarantee converge to
a unique fixed point (Littman & Szepesvári, 1996; Asadi & Littman, 2017). Without the non-expansion
property, an operator may converge to multiple fixed points, even in the tabular setting; softmax does not
have this property.

The mellowmax operator (Asadi & Littman, 2017)

mmω(x) .= ω log
(

1
n

n∑
i=i

exiω−1

)
(4)

was designed to fix this non-expansion issue1. Mellowmax behaves as a quasi-arithmetic mean, with a
parameter ω controlling how much mellowmax behaves like an average or a max. The corresponding
mellowmax policy πmm can be found by solving a convex optimization. First, using a solver2, one obtains a
value β such that: ∑

a∈A
eβq(s,a)−βmmω(q(s,·))q(s, a)−mmω(q(s, ·)) = 0 (5)

This β is a state-specific softmax temperature to provide the resulting (maximum entropy) mellowmax policy:

πmm(a|s) .= eq(s,a)β∑
a′∈A eq(s,a′)β

(6)

Since β needs to be computed at each state, mellowmax needs considerably more compute than softmax,
resmax or ε-greedy. The need for root finding also increases the complexity of implementing mellowmax as
a soft-greedy operator; in our implementation, we had to correct for numerical instability and iteratively
increase the bounds of the root finder to make sure a β always exists without having bounds set too wide
(and thus affecting runtime).

3 The Resmax Operator

Our goal is to obtain the benefits of all three of these operators: (a) use the information provided by
action-values (like softmax and mellowmax), (b) avoid the overemphasis of softmax (like ε-greedy) and (c) be
easy and computationally efficient to use (unlike mellowmax). For this purpose, we propose resmax. Let
qmax(s) .= maxa q(s, a) be the value of any greedy action in state s, and G(s) = {b ∈ A | q(s, b) = qmax} be
the set of greedy actions. The resmax policy πrm is defined as

a /∈ G(s) : πrm(a | s) .= 1
|A|+ η−1(qmax − q(s, a)) (7)

b ∈ G(s) : πrm(b | s) .= 1
|G(s)|

(
1−

∑
a/∈G(s)

πrm(a | s)
)

where the exploration parameter η > 0 can be thought of as the exploration pressure. Larger η values push
towards exploration whereas low values result in more exploitation— are greedier. When η →∞ the policy
is uniformly random and when η → 0 the policy is greedy with respect to q(s, b).

1We write mellowmax with ω=̇1/ω in Asadi & Littman (2017), so that as ω increases, mellowmax behaves more greedily—
similarly to ε in ε-greedy and τ in softmax.

2We use brentq, provided in scipy (Virtanen et al., 2020).
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Figure 1: Contrasting policies produced using the softmax and resmax, for different exploration parameters,
with q(a2) = −5 and q(a1) ∈ [−5, 5]. As the max action gap increases, softmax much more quickly concentrates
probability on action a1 than resmax.

In words, the resmax policy first assigns probability to every action inversely proportionally to it’s action-values:
1/(|A|+ η−1(qmax − q(s, a))) is biggest when q(s, a) = qmax, equaling 1/(|A|), with less probability assigned
to an action as q(s, a) gets further from qmax. Then the remaining probability is evenly distributed amongst
the maximal (greedy) actions. This mimics ε-greedy, where all actions are assigned a small probability ε/|A|
and remaining probability distributed among maximal actions. Resmax, however, assigns small probabilities
for each non-greedy action proportional to the action-values, rather than uniformly.

Consider two extreme cases for intuition. If all actions are equal, then they are all assigned 1/|A|. If one action
b is maximal, then all others actions are assigned some probability smaller than 1/|A|, and the remaining
probability assigned to b will be higher than 1/|A|. If the action gap is big, q(s, b) >> q(s, a) and η = 1, for
example, then πrm(b|s) is almost 1 and the probability on the remaining actions is near zero.

This operator is efficient to compute and easy to use for exploration or soft-greedification. To use it with
Q-learning or DQN, the agent simply samples actions from the resmax policy in Equation 7. To use it within
the Bellman update, for soft-greedification, we can simply use the corresponding resmax operator

rm(q(s, ·), η) .=
∑
a∈A

πrm(a | s)q(s, a) (8)

=
∑
a∈A

q(s, a)
|A|+ η−1(qmax − q(s, a)) + qmax

(
1−

∑
a∈A

1
|A|+ η−1(qmax − q(s, a))

)
As η goes to 0, this operator becomes the max operator (proven in Appendix A).

To better understand resmax, we contrast it to softmax in Figure 1. We particularly highlight that softmax
overemphasizes actions with high approximates values, in comparison to resmax. We consider a setting
where there are two actions a1 and a2, and visualize the policies for a state ŝ for different max action gaps
between the approximate values, q(a1) − q(a2), where q(ai)

.= q(ŝ, ai). We set q(a2) = −5 and then vary
q(a1) ∈ [−5, 5]. For most choices of the temperature τ , if q(a1) is sufficiently larger than q(a2), then the
outputs of the softmax policy for a1 will be near 1. Thus, it may take a very large number of steps to finally
choose action a2 and explore this other action. Under resmax, the probability assigned to the greedy action
is much less skewed towards 1, particularly for smaller gaps between the values in the actions.

In the next two sections, we motivate that resmax satisfies the other two requirements, in addition to
ease-of-use: (1) it avoids the overemphasis in softmax and encourages exploration and (2) is a non-expansion.

5



Published in Transactions on Machine Learning Research (12/2023)

4 Resmax Encourages Exploration

In this section, we first confirm that resmax is guaranteed to provide sufficient exploration, by maintaining
non-neglible probability on all actions. Then we investigate resmax in two hard exploration problems, with
misleading rewards, in comparison to softmax and mellowmax.

4.1 State-Action Space Coverage

Exploration strategies should satisfy certain fundamental properties to make sure that algorithms such as
Q-learning and Sarsa converge to the optimal value (Singh et al., 2000; Watkins & Dayan, 1992). A key
property is that each state-action pair should be visited infinitely many times during continual learning. To
show that resmax satisfies this property, we prove that the probability of taking all of the actions will be
higher than zero during learning for any bounded action-values. This result is straightforward to show, but
needed for completeness to ensure we do not lose this useful property of ε-greedy and softmax.
Property 4.1. Assume there exists qbound > 0 such that ∀s, a, |q(s, a)| ≤ qbound. The probability of taking
any non-greedy action a and a greedy action b satisfies

0 <
1

|A|+ 2η−1qbound
≤ πrm(a | s) <

1
|A|
≤ πrm(b | s) < 1

Proof. First, we determine the upper-bound and lower-bound for non-greedy actions a. By analyzing
Equation 7, it is clear that its lowest-value will be obtained only when the difference between q(s, b) and
q(s, a) is at its highest. We therefore get the following lower bound on πrm(a | s)

πrm(a | s) = 1
|A|+ η−1(q(s, b)− q(s, a))

≥ 1
|A|+ η−1 (qbound − (−qbound))

= 1
|A|+ 2η−1qbound

> 0

Furthermore, πrm(a | s) is bounded above by 1/|A|, because q(s, b)− q(s, a) > 0 in the denominator. The
probability of greedy actions b are lowest when all actions are greedy, having probability 1/|A|.

4.2 An Illustrative Example of Overemphasis

A serious issue with using softmax for exploration comes from the fact that it uses exponents within its
formulation, which can assign an overly disproportionate probability to current greedy action under the
approximation action values. We demonstrate the severity of the softmax overemphasis problem in the
HardSquare MDP (Figure 2a). The agent starts in the state s1 and s2 with an equal probability. The agent
can stay in the start states for a reward of 104, or move to s3 and s4, where it can receive a larger reward of
2× 104. In expectation, s3 and s4 are better, but the high reward in the initial states s1 and s2 can mislead
the agent. For the experiment, we use tabular Q-learning. We initialize q(s, a)← 0, ∀(s, a) ∈ S ×A. The
results, depicted in Figure 2b, are obtained by averaging over 30 runs and selecting the best performance
across three different step sizes.

We can see that the softmax policy stays in the initial states s1 and s2 due to its tendency to overemphasize
the actions that stay in the start states. On the contrary, resmax can escape from the initial states and
successfully explore towards the optimal solution. We include mellowmax in our results for Hardsquare
and note that it performs worse than resmax for best choices of hyperparameters. Due to the optimization
procedure inherent in mellowmax, its runtime is on average 28× longer than resmax.

4.3 More Experiments in a Classic Hard Exploration Environment

We further investigate the exploration properties of these operators in a more well-known environment
typically used to test exploration, called RiverSwim (Strehl & Littman, 2008). This environment consists
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of 6 states arranged in line, of which the agent starts in the leftmost. This state has a small reward but
the rightmost state may give a comparatively large reward. In order to reach this state the agent must
traverse the MDP from left to right, fighting against a current which causes moving right to often fail. We
use RiverSwim with a fixed horizon, meaning that after 20 actions the agent will be returned to the start
state, in effect making the environment more difficult. See Figure 3 for the full specification. All algorithms
are run for 800,000 time steps.

(a) HardSquare MDP

2 12 2 7 2 2 23 28 213 218 223

, ,
0.4
0.6
0.8
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1.6
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1e9

mellowmax
softmax
resmax

(b) Performance on HardSquare

Figure 2: (a) The HardSquare MDP: a simple MDP with four states, three actions and γ = 0.95. Each
edge shows an stochastic transition labeled by action, probability, and reward respectively. The agent
starts in states s1 and s2 with equal probability. (b) Performance of resmax, mellowmax and softmax on
HardSquare. The means and standard errors are shown for 30 runs for each parameter setting. The x-axis is
the hyper-parameter choices for each operator. Softmax gets stuck in states s1 and s2, whereas resmax can
escape from the initial states and successfully explore towards higher value states. Results are shown for
η, ω ∈ {2−10, 2−9, ..., 215} and τ ∈ {2−15, 2−14, ..., 225}.
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(a) RiverSwim
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(b) Stochastic-reward RiverSwim

Figure 3: Diagram of RiverSwim and stochastic-reward RiverSwim. Dotted lines and solid lines show the
transitions and probabilities for the left and right actions, respectively. Diagram adapted from Osband et al.
(2013).
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Figure 4: (a) Performance across hyperparameters for RiverSwim. The means and bootstrapped 95%
confidence intervals are shown for 30 runs for each parameter setting. The x-axis is plotted with a log scale,
and shows the value of exploration parameters. We show results for ε ∈ {0, 0.1, ..., 1} τ ∈ {2−9, 2−8, ..., 22},
η ∈ {2−12, 2−11, ..., 20} and ω ∈ {2−12, 2−11, ..., 27} (b) The state visitation frequency per episode for the initial
state (light curve) and final state (dark curve) of RiverSwim for best hyperparameters (η = 2−4, τ = 2−2).
Resmax starts with slightly higher frequency in the initial low reward state, but once resmax encounters
the final high reward state it pushes towards this state more than softmax since it avoids overemphasis of
the low reward actions in the initial state. Note that mellowmax and epsilon-greedy are left out to mainly
focus on comparing state visitation of resmax to softmax. But, as expected from the similar performance of
mellowmax to resmax in these experiments, their state visitation is similar.

Mellowmax Softmax Resmax -greedy

103

Ru
nt
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Figure 5: Logarithmic-scale runtime of Expected-Sarsa for each operator, averaged over all parameters across
both RiverSwim variants. We show bootstrapped 95% confidence intervals with error bars.

We ran resmax, softmax, mellowmax and ε-greedy coupled with Expected Sarsa on RiverSwim across a broad
range of hyperparameters (η, τ , ω and ε). The hyperparameter ranges were chosen to match the technique.
For example softmax requires relatively larger values of τ due its exponents. Results are shown in Figure 4a,
where we measure algorithm performance by the total online return across these hyperparameters.

We find that resmax achieves a higher total return under best hyperparameter settings than softmax, indicating
it is more capable of escaping the pull of the left state. ε-greedy fails to explore at all, and its total return
is hardly visible for any values of ε. Figure 4b confirms that softmax lingers in the initial leftmost state
longer than resmax does and ultimately spends less time in the high reward rightmost state. Mellowmax
performs very similarly to resmax across hyperparamter settings; however, due to the call to a root finder
within mellowmax, it takes much longer in terms of wall time (shown in Figure 5).
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Figure 6: (a) Performance across hyperparameters on Stochastic-reward RiverSwim. The means and
bootstrapped 95% confidence intervals are shown for 30 runs for each parameter setting. The x-axis is plotted
with a log scale, and shows the value of exploration parameters. We show results for the same hyperparameter
ranges as in Figure 4a. (b) The probability of selecting the optimal action (right) from the initial state during
the first step in the episode in Stochastic-reward RiverSwim. Results for both figures are averaged over 100
runs and are for optimal choices of hyperparameters in Stochastic-reward RiverSwim: η = 2−5, τ = 2−2.

Stochasticity in rewards can help alleviate some of the misleading reward problem. Uncertainty in the rewards
can prevent over-exploitation of sub-optimal actions and help drive exploration. We replaced the deterministic
positive rewards in RiverSwim with rewards drawn from a Gaussian distribution with the mean being the
original reward and variance of 1. Results are shown in Figure 6a. All four techniques see a reduction in
hyperparameter sensitivity, but resmax, mellowmax and ε-greedy increase their total return under optimal
parameter settings, whereas softmax does not. With stochastic rewards, softmax still assigns too great a
weight on sub-optimal actions, as shown in Figure 6b. Softmax learns to take the optimal action in the
initial state at a slower rate than resmax, indicating that softmax is concentrating too heavily on misleading
rewards.

5 Resmax Is a Non-Expansion

The second key property of resmax is that it is a non-expansion. Figure 7a shows a simple two state MDP
(taken from Asadi & Littman (2017)) where the action-values of softmax may not converge, as shown in
Figure 7b. Resmax, since it is a non-expansion, converges for all settings of η. We show in Figure 7c that
resmax indeed converges under a setting of η that provides similar exploration to softmax.

We now show that the resmax operator is a non-expansion.
Property 5.1. The resmax operator is a non-expansion: for any two vectors x⃗, y⃗ ∈ RA and η ≥ 0 we have,

|rm(x⃗, η)− rm(y⃗, η)| ≤ max
i∈[A]

|xi − yi| (9)

Proof. Let us rewrite the resmax operator, using δi
.= ∥x∥∞ − xi

rm(x⃗, η) =
∑

i∈[A]

xi

A + 1
η δi

+ ∥x∥∞

[
1−

∑
i∈[A]

1
A + 1

η δi

]
= ∥x∥∞ −

∑
i∈[A]

δi

A + 1
η δi

= ∥x∥∞ −
∑

i∈[A]

ηδi

Aη + δi
(10)

To show that resmax is a non-expansion, we use Theorem 1 of Paulavičius & Žilinskas (2006) which states
the following. For Lipschitz function f(x), f : Rd → R,

|f(x)− f(y)| ≤ L1∥x− y∥∞

9
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(c) Resmax

Figure 7: The non-expansion property is important for convergence under GVI. On the MDP shown in (a),
if we use softmax in the Expected Sarsa update (with τ = 1/16.55), the action values do not converge, as
shown in (b). We can see that resmax does converge in (c) with η = 0.000085 (chosen to induce a similar
level of exploration to softmax). We use a step size α at time t to be 1/(⌊t/100, 000⌋+ 1), which meets the
usual conditions for stochastic approximation to converge (Sutton & Barto, 2018). The tuples in (a) are of
the form: (action, probability of transition given action, reward). Results are smoothed with a window size
of 10, as in Asadi & Littman (2017).

where L1 = sup{∥∇f(x)∥1 : x ∈ D} is the Lipschitz constant, D is a compact set, and ∇f(x) =
(∂f/∂x1, ..., ∂f/∂xd) is the gradient of the function f(x). Therefore, we need to show that the ℓ1 norm of
the gradient of resmax is less than or equal to 1, namely L1 ≤ 1.

The resmax operator is differentiable, so we can apply this theorem. We characterize the partial derivatives
and show that their ℓ1 norm is bounded by 1. Notice first that ∂

∂xj
∥x∥∞ = 0 if xj < ∥x∥∞ or if more than

one entry in x is maximal. Infinitesimally changing xj in these two cases does not change ∥x∥∞. This partial
derivative is only non-zero if xj is the unique max; changing it changes the max norm linearly, meaning the
partial derivative is 1. Therefore, for x where xj is the unique max,

∂

∂xj
rm(x⃗, η) = 1−

∑
i∈[A],i̸=j

Aη2

(Aη + δi)2 (11)

and for other indices (or x where there are two or more maximal elements), we have

∂

∂xj
rm(x⃗, η) = Aη2

(Aη + δj)2 (12)

Notice now that
Aη2

(Aη + δi)2 = Aη2

A2η2 + 2Aηδi + δ2
i

≤ Aη2

A2η2 = 1
A

. (13)

where the inequality holds because all the terms in the denominator are positive. The ℓ1 norm corresponds
to summing up all the partial derivatives.

Case 1 (x with two or more maximal elements): All partial derivatives are of the form in Equation 12,
bounded above by 1/A as per Equation 13, so the ℓ1 norm is bounded above by

∑
i∈[A] 1/A = 1.

Case 2 (x has a unique maximal element xk): By Equation 13, we know that the partial derivative for k (in
Equation 11) is positive. Therefore, the ℓ1 norm corresponds to summing up all these nonnegative partial
derivatives ∑

i∈[A],i̸=k

Aη2

(Aη + δi)2 + 1−
∑

i∈[A],i̸=k

Aη2

(Aη + δi)2 = 1

All these arguments were true for any x⃗, therefore, L1 = 1, and so resmax is a nonexpansion.

10
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This result also lets us show that the sequence of policies generated by approximate policy iteration under
the resmax operator converges to a unique limiting policy regardless of the choice of the initial policy π0.
This follows from Theorem 1 of Perkins & Precup (2002), which simply requires the operator be Lipschitz
continuous with an ϵ-soft policy (π is ϵ-soft if π(a|s) > ϵ for ∀a ∈ A). As shown in Section 4.1, the resmax
policy is ϵ-soft. By the non-expansion property of resmax, we can also say the resmax operator is Lipschitz
continuous (Asadi & Littman, 2017).

A natural question is if we could have obtained a non-expansion result with a different variant of resmax.
For example, one alternative is to take the squared max action gap, or more generally a p-norm: (xj − xi)p.
Somewhat surprisingly, we cannot do so; we prove that for p > 1, we would no longer have a non-expansion
(see Appendix B.1). This further motivates the particular form we chose for resmax.

Finally, our strategy to prove that resmax is an non-expansion was simple: bound the ℓ1-norm of the gradient,
with respect to the inputted action-values. A more complex, specialized approach was used for mellowmax
(Asadi & Littman, 2017). Though our strategy is straightforward, it is the first time it has been used for
these operators, and should facilitate analyzing other new operators. We use this strategy to show another
potential operator, based on the escort transform (Mei et al., 2020), does not have the non-expansion property
(see Appendix B.2).

6 Resmax in Deep RL

Many valued-based RL algorithms with function approximation use ε-greedy as a default method to add a
degree of exploration. Resmax, in order to be considered a general-purpose method, should also scale to this
setting. To show this, we conduct experiments in the deep RL setting (1890 experiments) across both easy
and hard exploration Atari 2600 environments (Bellemare et al., 2013). Ranges for exploration parameters
are chosen to ensure that the peaks for each approach resides in the chosen range. Further details on our
implementation and computational infrastructure are in Appendix C.

We first study the utility of resmax compared to the baselines of mellowmax, softmax and ε-greedy on easy
exploration Atari environments, namely Asterix and Breakout, chosen from human-optimal easy exploration
environments as categorized in Bellemare et al. (2016). We begin by analyzing the sensitivity of both
algorithms to their exploration parameters. The sensitivity plots for these experiments are shown in Figure 8.
We see that softmax performs better with higher exploration parameters compared to resmax. This observation
aligns with our intuition, considering the overemphasis property of softmax. In both environments, we can
observe that the ε-greedy approach yields better results with a lower level of exploration, specifically with an
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Figure 8: Sensitivity curves showing the performance across hyperparameters. Results shown are averaged over
10 runs for each parameter setting and the shaded region represents the standard error. The x-axis of sensitivity
plots is plotted with a log scale, and shows the value of η and τ , which are swept over {20, 2−4, . . . , 2−20, 2−24}.
ε-greedy is the best-performing instance selected from ε values of {0.01, 0.1, 0.2, 0.3, 0.4, 0.5}.
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Figure 9: Learning-curves presenting the best performance across the selected exploration parameters. Results
shown are averaged over 10 runs for each parameter setting and the shaded region represents the standard
error.
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Figure 10: Sensitivity curves showing the performance across hyperparameters. Results shown are av-
eraged over 10 runs for each parameter setting and the shaded region represents the standard error.
The x-axis of sensitivity plots is plotted with a log scale, and shows the value of η and τ , which are
swept over {20, 2−4, . . . , 2−20, 2−24}. ε-greedy is the best performing instance selected from ε values of
{0.01, 0.1, 0.2, 0.3, 0.4, 0.5}.

ε value of 0.01, indicating that these environments embrace more greedy algorithms, a finding consistent with
Laidlaw et al. (2023).

The learning curves for the top-performing hyperparameter configurations of each algorithm are illustrated
in Figure 9. In general, resmax exhibits superior performance or remains competitive when compared to
softmax and ε-greedy, while demonstrating similar performance to mellowmax. Specifically, in the Asterix
environment, resmax competes well with softmax and mellowmax, surpassing ε-greedy. However, on Breakout,
resmax outperforms softmax, while performing similarly to ε-greedy and mellowmax.
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Figure 11: Learning-curves presenting the best performance across the selected exploration parameters. The
results shown are averaged over 10 runs for each parameter setting and the shaded region represents the
standard error.

Next, we analyze the efficacy of resmax with respect to the same baselines in five sparse-reward Atari
environments that are hard to explore: Freeway, Pitfall, Gravitar, Venture, and PrivateEye. The sensitivity
plots are presented in Figure 10. Opposite to the easy exploration results, resmax, mellowmax, and softmax
tend to do better with lower exploration parameters, except in Gravitar and Pitfall, showing that they require
more exploration in these environments.

The learning curves for the top-performing instances in these environments are depicted in Figure 11. As
observed, resmax outperforms both softmax and ε-greedy in two of the environments: Freeway and Venture.
Additionally, it exhibits competitive performance in the remaining three environments, with a slightly lower
return in Gravitar compared to softmax. When compared to mellowmax, resmax performs similarly in all
environments, except in Venture where it slightly outperforms mellowmax.

These findings indicate that resmax is a promising alternative to ε-greedy and softmax for promoting
exploration. A particularly striking result is how much more effective both resmax and softmax are than
ε-greedy, both in Atari and in earlier results. If nothing else, these results suggest that we should consider
resmax and softmax more often in Atari experiments. Further, resmax is typically quite similar to softmax,
with a few instances where it is notably better.

7 Conclusion

Soft-greedy operators, including ε-greedy, softmax and resmax, continue to play an important role in
reinforcement learning. They serve dual purposes: they function as soft-greedification within the Bellman
update and to induce a basic level of exploration. Hence, they are valuable for both on-policy and off-policy
learning. Their simplicity is also a strength: they can be easily used with (deep) function approximation and
are complementary to more focused exploration techniques. We propose a new soft-greedy operator, called
resmax. Unlike softmax, resmax is a non-expansion, regardless of the choice of exploration parameter, and
thus suitable for use with a Bellman update. Moreover, resmax ensures state-action space coverage and it
avoids softmax’s fundamental issue of overemphasis. Our empirical results show that resmax encourages more
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exploration than softmax, since it does not overemphasize and also explores more efficiently than ε-greedy.
Resmax also has the non-expansion property of mellowmax with a fraction of the computation required.

This paper proposes resmax in its simplest form, so there are many avenues for future research. As resmax is
a new operator to reinforcement learning, it deserves further benchmarking and experimentation in both
simple and complex environments in order to shed more light on when this operator is useful. Another natural
direction for future work is to explore adaptation and normalization techniques which are suitable for resmax.
Just like decay schedules for ε, schedules or adaption schemes for resmax could allow more exploration in
early layer, and allow greedier policies later.
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A Resmax Does Maximization

It can be easily shown that the Expected Sarsa update of resmax, represented in Equation 8, can do
maximization (i.e., give the highest probability to the greedy action) when η goes to 0. We first show how
πrm(a | s) for non-greedy actions will change when this happens:

lim
η→0

πrm(a | s) = lim
η→0

1
|A|+ η−1(q(s, b)− q(s, a)) = 0

This equality will hold as long as q(s, b) ̸= q(s, a).

Considering this, we can derive Equation 8 when η goes to infinity as follow:

lim
η→0

rm(q(s, ·), η) = lim
η→0

∑
a/∈G(s)

πrm(a | s)q(s, a)

+ (1−
∑

a/∈G(s)

πrm(a | s))qmax

= 0− (1− 0)qmax = qmax

Since qmax is the action-value of the greedy action, resmax can do maximization. It is also interesting to note
that when η goes to ∞, the generated policy will be equiprobable thus Expected Sarsa update of resmax will
average all the action-values. So, this operator can make a balance between q-learning update and update
with equiprobable policy by tuning the value of η, like softmax and mellowmax.

B More Non-Expansion Results

Here, we first show that a more general form of resmax operator is not a non-expansion, except when its
form is equal to resmax. Then, we show that the escort transform operator recently presented in the policy
gradient literature is not a non-expansion.

B.1 Is the General Form of Resmax a Non-Expansion?

A general form of resmax operator with max action gap, v, replaced by a gap emphasis function g(v) = vp

for p ∈ R+ is defined as follows

rm(x⃗, η) =
∑

i∈[d],i/∈G(s)

xi

d + 1
η (xj − xi)p

+xj

1−
∑

i∈[d],i/∈G(s)

1
d + 1

η (xj − xi)p

 =
∑

i∈[d],i/∈G(s)

xi − xj

d + 1
η (xj − xi)p

+xj

(14)
where G(s) .= {i|maxi xi = xi} and xj

.= maxi xi.

Now we want to show that if p > 1 resmax with gap emphasis function g(v) = vp is no longer a non-expansion.
Let d = 2, η = 1, j = 2, and δ1

.= x2 − x1 ≥ 0. We take the derivative of resmax with respect to x1 and get

∂

∂x1
rm(x⃗, η = 1) = −pδp

1 + δp
1 + 2

(2 + δp
1)2 = 2 + (1− p)δp

1
(2 + δ1)2 .

Now we compute ∂rm(x⃗, η = 1)/∂x2,

∂

∂x2
rm(x⃗, η = 1) = (p− 1)δp

1 − 2
(2 + δp

1)2 + 1 = (p + 3)δp
1 + δ2p

1 + 2
(2 + δp

1)2 .

Note that ∂rm(x⃗, η = 1)/∂x2 ≥ 0 when δ1 ≥ 0 and p > −3. We will use this fact later. Since we have
∇rm(x⃗, η = 1), we will define and compute L1(x),

L1(δ1) .=
∣∣∣∣ ∂

∂x1
rm(x⃗, η = 1)

∣∣∣∣+
∣∣∣∣ ∂

∂x2
rm(x⃗, η = 1)

∣∣∣∣ =
∣∣∣∣2 + (1− p)δp

1
(2 + δp

1)2

∣∣∣∣+
∣∣∣∣ (p− 1)δp

1 − 2
(2 + δp

1)2 + 1
∣∣∣∣ .
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We would like to note that if p = 1 then L1(δ1) = 1 for all δ1 ≥ 0. Now we will show that if p > 1 then
L1(δ1) > 1 for some δ1. Since all the terms of ∂

∂x2
rm(x⃗, η = 1) are positive, we can remove the absolute value

from this term. Now let δ1 = (2c/(p− 1))1/p for c ∈ [1,∞), which when p > 1 is positive, then we have

L1(δ1) =
∣∣∣∣2 + (1− p)(2c/(p− 1))

(2 + 2c/(p− 1))2

∣∣∣∣+ (p− 1)(2c/(p− 1))− 2
(2 + 2c/(p− 1))2 + 1

= (p− 1)(2c/(p− 1))− 2
(2 + 2c/(p− 1))2 + (p− 1)(2c/(p− 1))− 2

(2 + 2c/(p− 1))2 + 1 = 4c− 4
(2 + 2c/(p− 1))2 + 1.

Now for c > 1 we have that

L1 ≥ L1(δ1) = 4c− 4
(2 + 2c/(p− 1))2 + 1 > 1

where the first inequality holds by the definitions of L1 and L1(δ1) and the second strict inequality holds
since 4c − 4 > 0 when c > 1. Putting this all together, we have shown that if p > 1 for the gap emphasis
function g(v) = vp and η = 1 then there exists a vector x⃗ ∈ R2 such that if δ1

.= x2 − x1 = (2c/(p− 1))1/p

for c ∈ (1,∞), then L1 > 1. This means that if we put more emphasis on the gaps, resmax is no longer a
non-expansion.

This proof can be generalized for arbitrary d by letting j = arg maxi xi = d and considering the special case
when δ1 = δ2 = ... = δd−1 ≈ (cd/(p− 1))1/p. Thus the current gap emphasis function for resmax is tight in
the sense that adding more emphasis to the gaps would mean resmax is no longer a non-expansion.

B.2 Is the Escort Transform a Non-Expansion?

In this section, we will show that a version of the escort transform does not have the non-expansion property.
The escort transform (Mei et al., 2020) was introduced for policy gradient methods (with action preferences),
but can naturally be defined for action-values as

πe(a|s) = |q(s, a)|p∑
b|q(s, b)|p , for all (s, a) ∈ S ×A and p ≥ 1.

Now we will analyze the following escort operator et(q(s, ·), p) .=
∑

a′ πe(a′|s)q(s, a′). Now let x⃗ ∈ R2 be a two
dimensional vector that lies in the first Cartesian quadrant, meaning the vector contains only non-negative
elements. Then the escort operator becomes

et(x⃗, p) = xp+1
1 + xp+1

2
xp

1 + xp
2

.

Note the absolute values are dropped because x⃗ is assumed to be in the first Cartesian quadrant. Now taking
derivatives with respect to both x1 and x2 we get

∂

∂x1
et(x⃗, p) = xp−1

1 (xp+1
1 + (p + 1)x1xp

2 − pxp+1
2 )

(xp
1 + xp

2)2

and

∂

∂x2
et(x⃗, p) = xp−1

2 (x2(xp
1 + xp

2)− pxp
1(x1 − x2))

(xp
1 + xp

2) .

Now we want to compute the Lipschitz constant with respect to the max norm of et(x⃗, p), L1 = | ∂
∂x1

et(x⃗, p)|+
| ∂

∂x2
et(x⃗, p)|. Let x⃗ = [1, 0] and p = 1, we have

L1 =
∣∣∣∣11−1(11+1 + (1 + 1)(1)(0)1 − (1)(0)1+1)

(11 + 01)2

∣∣∣∣+
∣∣∣∣01−1(0(11 + 01)− (1)(1)1(1− 0))

(11 + 01)2

∣∣∣∣ =
∣∣∣∣11
∣∣∣∣+
∣∣∣∣−1

1

∣∣∣∣ > 1.

Thus we can conclude that the escort operator does not have the nlon-expansion property since we have an
instance when L1 > 1.
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C Experimental Configuration

C.1 Computational Infrastructure

We ran our experiments on a compute cluster. Each job used a single CPU core, except for Atari experiments
that used GPUs. The compute cluster allocated CPUs based on availability. The possible options were
2.1Ghz Intel CPUs with model numbers E5-2683 V4 Broadwell, E7-4809 V4 Broadwell, or Platinum 8160F
Skylake, as well 2.4Ghz Intel Platinum 8260 Cascade Lake. For GPU experiments, we used V100 Volta GPU.
We also requested 400MB for the tabular setting. In the case of deep RL, we requested 16GB of memory for
Atari environments. Different algorithms and exploration heuristics within one environment used the same
configurations of resources.

C.2 Logging Procedure

To save returns and steps per episode, we average returns or the number of steps per episode for all of
the episodes that have been finished in a specific number of steps that we call log-interval. To elaborate,
returns and the number of steps per episode for all the episodes that are finished in the log interval will be
accumulated and averaged. We only store this final averaged value. For instance, if we set the total number
of steps to 100, 000, and define a log-interval of 1, 000, then 100 values will be stored. This way of storing the
results of our experiments can save us both memory and space. At the same time, the stored results are
proportional to the performance of each of the employed algorithms. We use log-interval of 1, 000 for all our
tabular experiments and log-interval of 100, 000 for all the Atari experiments.

C.3 Hyperparameters

In this section, we present the hyperparameters that are used in our experiments and the reason for selecting
them. One of the hyperparameters we needed to set fairly across different soft-greedy operators were their
respective exploration parameters, such as η and τ . To do this, we swept over a large set of hyperparameters
for each soft-greedy operator to make sure that the exploration parameter with the near-best performance
resides in this set.

In the deep RL setting, we use the DQN algorithm. We chose a fixed set of parameters that work well across
all three benchmark environments. These parameters are presented in Appendix Table 1. We swept over
three different step sizes across all our experiments: 0.0005, 0.0001, 0.00005. Our experiments with these step
sizes show that a step size of 0.0001 works best across all large-scale atari environments. We present the
results in this paper based on these step sizes.

Parameter Name Fixed Value
Optimizer Adam

β1 0.9
β2 0.999

ϵ for Adam 10−8

Batch size 64
Buffer size 100, 000

Number of training steps per iteration 1
Target network update frequency 1, 000

Number of steps before learning starts 50, 000
γ 0.99

Table 1: The fixed parameters used to run DQN experiments.

For implementing the neural networks we used the PyTorch framework. We used a convolutional neural
network as the function approximation, with three convolutional layers that are followed by two fully connected
layers. ReLU is used as the activation function for these networks. Convolutional layers have 32, 64, and 64
filters; a kernel size of 8, 4, and 3, and a stride of 4, 2, and 1, respectively. The first fully connected includes
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512 neurons, and the second one outputs the action values. We use uniform Xavier initialization to initialize
the weights of the network.
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