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Abstract

Anomaly segmentation, which localizes defective areas, is an
important component in large-scale industrial manufacturing.
However, most recent researches have focused on anomaly
detection. This paper proposes a novel anomaly segmenta-
tion network (AnoSeg) that can directly generate an accurate
anomaly map using self-supervised learning. For highly ac-
curate anomaly segmentation, the proposed AnoSeg consid-
ers three novel techniques: Anomaly data generation based
on hard augmentation, self-supervised learning with pixel-
wise and adversarial losses, and coordinate channel concate-
nation. First, to generate synthetic anomaly images and ref-
erence masks for normal data, the proposed method uses
hard augmentation to change the normal sample distribution.
Then, the proposed AnoSeg is trained in a self-supervised
learning manner from the synthetic anomaly data and nor-
mal data. Finally, the coordinate channel, which represents
the pixel location information, is concatenated to an input of
AnoSeg to consider the positional relationship of each pixel
in the image. The estimated anomaly map can also be uti-
lized to improve the performance of anomaly detection. Our
experiments show that the proposed method outperforms the
state-of-the-art anomaly detection and anomaly segmentation
methods for the MVTec AD dataset. In addition, we com-
pared the proposed method with the existing methods through
the intersection over union (IoU) metric commonly used in
segmentation tasks and demonstrated the superiority of our
method for anomaly segmentation.

Introduction
Anomaly segmentation is the process that localizes anomaly
regions. In the real world, since the number of anomaly data
is very limited, conventional anomaly segmentation meth-
ods are trained using only normal data. Typically, many
anomaly segmentation methods are based on anomaly de-
tection techniques (using reconstruction loss (An and Cho
2015; Baur et al. 2018; Sakurada and Yairi 2014; Chen et al.
2017; Bergmann et al. 2019), high-level learned represen-
tation (Bergmann et al. 2020) and GradCAM (Venkatara-
manan et al. 2020; Kimura et al. 2020)) because the real
dataset includes few anomaly images without the ground
truth (GT) mask. Therefore, as shown in Figs. 1(b) and (c),

**equal contribution
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Comparison of anomaly maps (before threshold-
ing) of the proposed method with the SOTA methods in
the MVTec-AD dataset. Except for the proposed method,
anomaly maps of existing methods are normalized to [0, 1].

these methods such as Patch SVDD (Yi and Yoon 2020) and
SPADE (Cohen and Hoshen 2020) are not trained directly
on pixel-level segmentation and they are difficult to gener-
ate anomaly maps similar to GT masks.

To handle this problem, this paper proposes a new
methodology that can directly learn the segmentation task.
The proposed anomaly segmentation network (AnoSeg) can
generate an anomaly map to segment the anomaly region
that is unrelated to the normal class. The goal of AnoSeg
is to generate an anomaly map that represents the normal
class region within a given image for anomaly segmentation,
unlike the existing methods to indirectly extract anomaly
maps. For this goal, our AnoSeg proposes three following
approaches. First, as shown in Fig. 2, AnoSeg uses the seg-
mentation loss directly using the synthesized data generated
through hard augmentation. Second, AnoSeg learns to gen-
erate the anomaly map and reconstruct normal images. Also,
an adversarial loss is applied by using a generated anomaly
map and an input image. Since the anomaly map learns the
normal sample distribution, AnoSeg has high generalization
for unseen normal and anomaly regions even with a small
number of normal samples. Third, we propose the coordi-
nate channel concatenation using a coordinate vector based



Figure 2: Overview of the training process of the proposed AnoSeg. AnoSeg generates reconstructed images and anomaly maps.

on coordconv (Liu et al. 2018). Anomaly regions in a par-
ticular category often depend on the location information
of a given image. Therefore, the proposed coordinate vec-
tor helps to understand the positional relationship of normal
and anomaly regions in the input image.

Therefore, Fig. 1(d) shows that the anomaly map of
AnoSeg is very similar to GT even without thresholding.
Moreover, we describe how to perform anomaly detection
by extending existing methods (Sabokrou et al. 2018) us-
ing anomaly maps. As a result, AnoSeg outperforms SOTA
methods on the MVTec AD dataset in terms of intersection
over union (IoU) and AUROC. Additional experiments us-
ing IoU metric also show that AnoSeg is robust for thresh-
olding.

Proposed Method: AnoSeg
The proposed AnoSeg is a “holistic” approach which incor-
porates three techniques: self-supervised learning using hard
augmentation, adversarial learning, and coordinate channel
concatenation. The details are explained in the following
sub-sections.

Self-supervised Learning Using Hard
Augmentation

To train anomaly segmentation directly, an image with an
anomaly region and its corresponding GT mask correspond-
ing to the image are required. However, it is difficult to ob-
tain these images and GT masks in the real case. Therefore,
the proposed method uses hard augmentation (Tack et al.
2020) and Cutpaste (Li et al. 2021) to generate synthetic
anomaly data and GT masks. Hard augmentation refers to
generating samples shifted away from the original sample
distribution. As confirmed in (Tack et al. 2020), the hard
augmented samples can be used as a negative samples.
Therefore, as shown in Fig. 3, we use three types of hard
augmentation: rotation, perm, and color jitter. Each augmen-
tation is applied with a 50% chance. Then, like Cutpaste
(Li et al. 2021), the augmented data is pasted into a ran-
dom region of normal data to generate the synthetic anomaly
data and corresponding masks for segmentation. Finally, the

Figure 3: Our synthetic anomaly data augmentation. The
synthetic anomaly data is generated by several hard augmen-
tations and Cutpaste ((Li et al. 2021)).

anomaly segmentation dataset is composed as follows:
xSeg = {xNor, xAno} , ASeg = {ANor, AAno} , (1)

where xseg is a set of normal and synthetic anomaly im-
ages, in which xNor and xAno are normal images and syn-
thetic anomaly images, respectively. Aseg is a set of normal
and synthetic anomaly masks, in which ANor and AAno are
normal masks with all inner values set to one and synthetic
anomaly masks, respectively.

Using the anomaly segmentation dataset with a pixel-level
loss, we can directly train our AnoSeg. The anomaly seg-
mentation loss LSeg is as follows:

LSeg = E ‖ ASeg − ÂSeg ‖1, (2)

where ÂSeg indicates the generated anomaly map (normal
and anomaly classes). The generated anomaly map has the
same size as an input image and outputs a value in the range
of [0, 1] for each pixel depending on the importance of
the pixel of the input image. However, since the synthetic
anomaly data are only subset of various anomaly data, it is
difficult to generate a real anomaly maps that are unseen in
training phase.

Adversarial Learning with Reconstruction
To improve the generality for various anomaly data, it is im-
portant to train normal region distribution accurately. There-
fore, AnoSeg utilizes masked reconstruction loss that uses
reconstruction loss only in normal regions to learn only the
distribution of normal regions and avoid bias of the distribu-
tion of synthetic anomaly regions. Also, since the discrim-
inator inputs a pair for an input image and its GT masks,



Figure 4: Overall process of the coordinate channel concate-
nation.

the discriminator and generator can focus on normal region
distribution. Thus, anomaly region cannot be reconstructed
well and the detail of the anomaly map can also be improved.
Loss functions for adversarial learning are as follows:

LAdv = min
G
max
D
{E [log(D(concat(xSeg, ASeg)))]

+E [log(1−D(concat(x̂Seg, ÂSeg)))]}, (3)

LRe = E ‖ xSeg ∗ASeg − x̂Seg ∗ASeg ‖1 /E ‖ ASeg ‖1,
(4)

where D, G, and concat are a discriminator, a generator,
and a concatenation operation, respectively. In Section 5, we
demonstrated the effectiveness of adversarial loss.

Coordinate Channel Concatenation
In the anomaly segmentation task, unlike typical segmen-
tation task, the location information is the most impor-
tant information because normal and anomaly class can be
changed depending on where they are located even for the
same object (e.g. cable). To provide additional location in-
formation, we use a coordinate vector inspired by Coord-
Conv (Liu et al. 2018). We generate rank 1 matrices that
are normalized to [-1, 1] for x and y axes, respectively, con-
sidering the coordinates. Then, we concatenate these matri-
ces with the input image as channels (Fig. 4). As a result,
AnoSeg extracts features by considering the positional rela-
tionship of the input image.

Anomaly Detection Using Proposed Anomaly Map
In this section, we design a simple anomaly detector that
adds the proposed anomaly map to the existing GAN-
based detection method (Sabokrou et al. 2018). The pro-
posed anomaly detector trains anomaly detection by learn-
ing only normal data distribution after training of AnoSeg.
As shown in Fig. 5, We simply concatenate the input image
and anomaly map to use them as inputs of detector, and ap-
ply both an adversarial loss and a reconstruction loss. Then,
we use the feature matching loss introduced in (Salimans
et al. 2016) to stabilize the learning of the discriminator.

In the test process (Fig. 5), the proposed anomaly detec-
tor obtains anomaly scores using the discriminator that has

Figure 5: An overview of the proposed anomaly detection
method. To obtain anomaly score, the pair of images recon-
structed from the anomaly map and the anomaly detector
(fake pair) are compared with the pair of the normal mask
and the input image (real pair) using a discriminator.

learned the normal data distribution. We first assume that the
input image is normal, so the mask ANor with all inner val-
ues set to zero is used in pairs with the input image. When
the input image is really normal, a fake pair (anomaly map
and reconstructed image) is similar to the real pair (normal
mask and input image), so the anomaly detector has a low
anomaly score. On the other hand, when the input image is
abnormal, the fake pair is significantly different to the real
pair, so it has a high anomaly score. To compare the real and
fake pair, the reconstruction loss and the feature matching
loss are used as follows:

Score = αL(f(concat(xTest, ANor)), f(concat(x̂Test, ÂTest)))

+ βL(xTest, x̂Test), (5)

where ANor is a normal GT mask (all zero), L is the mean
squared error, xTest is test input image. ÂTest and x̂Test

represent generated anomaly map and reconstructed image.

Experimental Results
Datasets and Metrics
To verify the anomaly segmentation and detection perfor-
mance of the proposed method, several evaluations were per-
formed on the MVTec AD dataset (Bergmann et al. 2019).
For the MVTec AD dataset, we resized both training and
testing images to the size of 256 × 256. We adopted the
pixel-level and image-level AUROCs to quantitatively eval-
uate the performance of different methods for anomaly seg-
mentation and detection, respectively. In addition, we used
IoU to evaluate anomaly segmentation. For the measurement
of IoU, a threshold, which maximizes IoU, was applied in
each method.

Implementation Details
The encoder of AnoSeg consists of the convolution layers
of ResNet-18 (He et al. 2016). The up-sampling layer of
decoders consists of one transposed convolution layer and



Pixel-level AUROC / IoU / Image-level AUROC
Method CAVGA US FCDD PatchSV DD SPADE Cutpaste Proposed

Mean 0.89/0.47/0.82 0.88/0.24/0.84 0.92/ - / - 0.96/0.43/0.92 0.96/0.48/0.86 0.96/ - /0.95 0.97/0.54/0.96

Table 1: Performance comparison of anomaly segmentation and detection in terms of pixel-level AUROC and image-level
AUROC with the proposed method and conventional SOTA methods on the MVTec AD dataset (Bergmann et al. 2019). Full
results for anomaly detection are added in Tables 2 and 3 of Appendix A

Figure 6: Overall process of the coordinate channel concate-
nation.

convolution layers. Two decoders of the AnoSeg are com-
posed of five up-sampling layers and two convolution layer
to generate an anomaly map and a reconstructed image. The
structure of the anomaly detector is the same as the AnoSeg
structure except for the decoder that generates the anomaly
map. Detailed information on training process and the net-
work architecture is described in Appendix B.

Comparison with the state-of-the-art methods
The comparison evaluations were performed with 6 recent
deep learning-based methods, both GradCAM-based meth-
ods (CAVGA (Venkataramanan et al. 2020) and Cutpaste
(Li et al. 2021)) and high-level feature representation-based
method (Uninformed students (US) (Bergmann et al. 2020)
and FCDD (Liznerski et al. 2021), patch SVDD (Yi and
Yoon 2020), and SPADE (Cohen and Hoshen 2020)) as
benchmarks. AnoSeg is trained directly on segmentation,
unlike conventional methods that depend on loss unrelated
to the segmentation task, such as classification loss. As a re-
sult, as shown in Table 1, AnoSeg outperformed the conven-
tional SOTA, such as Patch SVDD, SPADE, and Cutpaste,
by 1% AUROC in anomaly segmentation. We also evaluated
IoU, which is typically used as a metric for segmentation.
Table 1 shows the quantitative comparison on IoU. AnoSeg
achieved the highest performance compared to other meth-
ods in IoU. In particular, Patch SVDD and SPADE achieved
0.96 AUROC similar to AnoSeg in the evaluation of AU-
ROC, but had lower IoU than the proposed method. This is
because, unlike the existing method, the proposed method
was directly trained for segmentation.

Additionally, we compared the AUROC and IoU metrics
for the generated anomaly map in Fig. 6. In general, AUROC
is affected by the detection performance of the anomaly

regions. False positives for normal regions have relatively
no impact on AUROC. In the Patch SVDD of Fig. 6(a),
there were abnormal regions that cannot be detected. There-
fore, the anomaly map of Patch SVDD had lower AUROC
compared to other methods. Although the anomaly maps of
AnoSeg and SPADE visually show different anomaly maps,
the same AUROC was calculated because most anomaly re-
gions are detected in anomaly maps of AnoSeg and SPADE.
However, IoU was affected by false positives in normal re-
gions. Therefore, IoU of SPADE had lower performance
compared to AUROC. The proposed AnoSeg achieved the
highest performance for both IoU and AUROC.

In addition, Patch SVDD and our AnoSeg were compared
to verify the performance variation depending on the thresh-
old of the proposed method. IoU was measured by divid-
ing the anomaly score by 10000 units. Fig. 6(b) shows the
mean performance change of AnoSeg, SPADE and Patch
SVDD according to a threshold. As shown in Fig. 6(b), the
performance of AnoSeg did not significantly change signif-
icantly for different thresholds. Therefore, the anomaly map
is shown similar to the GT mask even though threshold-
ing was not applied in Fig. 6(a). On the other hand, Fig.
6(b) shows that Patch SVDD and SPADE had a signifi-
cant change in performance when the threshold is changed
around the threshold with the highest IoU. The result shows
that our model is robust against thresholding. By setting
the threshold between 0.2 and 0.8, AnoSeg could always
achieve better results consistently than other SOTA solutions
listed in Table 1.

Conclusion

This paper presented a novel anomaly segmentation network
to directly generate an anomaly map. We proposed AnoSeg,
a segmentation model using adversarial learning, and the
proposed AnoSeg was directly trained for anomaly segmen-
tation using synthetic anomaly data generated through hard
augmentation. In addition, anomaly regions sensitive to po-
sitional relationships were more easily detected through co-
ordinate vectors representing the pixel position information.
Hence, our approach enabled AnoSeg to be trained to gen-
erate anomaly maps with direct supervision. We also ap-
plied this anomaly maps to existing methods to improve
the performance of anomaly detection. Experimental results
on the MVTec AD dataset using AUROC and IoU demon-
strated that the proposed method is a specialized network for
anomaly segmentation compared to the existing methods.
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