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ABSTRACT

InfoNCE-based contrastive learning models (e.g., MoCo, SimCLR, etc.) have
shown inspiring power in unsupervised representation learning by maximizing a
tight lower bound of the mutual information of two views’ representations. How-
ever, its quadratic complexity makes it hard for scaling to larger batch sizes, and
some recent research suggests that it may exploit superfluous information that is
useless for downstream prediction tasks. In this paper, we propose ESCo (Effective
and Scalable Contrastive), a new contrastive framework which is essentially an
instantiation of the Information Bottleneck principle under self-supervised learning
settings. Specifically, ESCo targets a new objective that seeks to maximize the
similarity between the representations of positive pairs and minimize the pair-wise
kernel potential of negative pairs, with a provable guarantee of effective repre-
sentations that preserve task-relevant information and discard the irrelevant one.
Furthermore, to escape from the quadratic time complexity and memory cost, we
propose to leverage the Random Features to achieve accurate approximation with
linear scalability. We show that the vanilla InfoNCE objective is a degenerated case
of ESCo, which implies that ESCo can potentially boost existing InfoNCE-based
models. To verify our method, we conduct extensive experiments on both synthetic
and real-world datasets, showing its superior performance over the InfoNCE-based
baselines in (unsupervised) representation learning tasks for images and graphs.

1 INTRODUCTION

Contrastive learning (Hjelm et al., 2019; van den Oord et al., 2018; Belghazi et al., 2018) has achieved
remarkable success in unsupervised representation learning without using costly handcrafted labels.
Currently, the state-of-the-art contrastive models follow a multi-view perspective: two views of the
input data are first generated using random augmentations, and then their representations are trained
using contrastive loss. The key insight is to discriminate positive pairs (the views generated from the
same input) from negative ones (the views of distinct data points) in order construct self-supervised
signals. Among the contrasting methods, InfoNCE objective (van den Oord et al., 2018) based
models (e.g. CMC (Tian et al., 2020a), MoCo (He et al., 2020), SimCLR (Chen et al., 2020), etc.)
have become the most popular ones. Formally, under multi-view settings, one has two sets of data
points, {xA1 , · · · ,xAN} from view A and {xB1 , · · · ,xBN} from view B, and the InfoNCE approach
learns an encoder f(·) by optimizing the objective:

LA =

N∑
i=1

− log
ef(xA

i )>f(xB
j )/τ∑N

j=1 e
f(xA

i )>f(xB
j )/τ

(LB symmetrically) (1)

The foundation of InfoNCE lies in its connection with the Information Theory. Denote the random
variables of the two views by XA and XB respectively, and then minimizing Eq. 1 is to maximize a
tight variational lower bound of I(f(XA), f(XB)). This makes the learned representations keep the
shared information as much as possible, which presumably should be informative for downstream
tasks (Tsai et al., 2021).

Despite its theoretical grounds and promising results, InfoNCE-based models suffer from its quadratic
complexity with respect to the number of negative samples (O(N2)), since a large quantity of negative
samples are required to ensure precise approximation of the denominator in Eq. 1. While some up-to-
date works (Grill et al., 2020; Chen & He, 2020) propose effective remedy with linear complexity,
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the key rationales behind their success still remain unclear (Tian et al., 2021; Richemond et al., 2020).
Moreover, recent studies (Federici et al., 2020; Tsai et al., 2021; Zhang et al., 2021) suggest that
the encoder’s representations may contain superfluous information that is useless for downstream
predictions, which compromises the quality of the learned representations.

In this paper, we propose Effective and Scalable Contrastive Learning (ESCo), a novel framework for
multi-view contrastive learning. Inspired by the recent progress in Multi-view Information Bottleneck
(MIB) (Federici et al., 2020; Tsai et al., 2021), ESCo is derived from an instantiation of the IB
principle under multi-view self-supervised learning setting. More specifically, the objective of MIB
can be converted into a weighted combination of 1) a conditional entropy minimization term and
2) an entropy maximization term. The first one can be achieved by minimizing a simple MSE loss
between the representations of two views, while the second one could be realized by minimizing the
total pairwise potential w.r.t. a certain kernel function. Such a formulation guarantees that the ideal
solution induces effective learned representations that preserve all the task-relevant information and
discard as much the irrelevant one as possible. On top of this, to reduce the quadratic complexity
for kernel computation, we leverage Random Fourier Features (RFF) (Rahimi et al., 2007) and its
improved variant Structured Orthogonal Random Features (SORF) (Yu et al., 2016) to accurately
approximate the kernel function with linear complexity. Such a design endows the approach with
desirable scalability to large-scale training samples.

To shed more insights on the rationale of the proposed approach, we show that the vanilla InfoNCE
objective is essentially a degenerated case of ESCo with Gaussian kernels, which indicates that ESCo
can be potentially applied to enhance off-the-shelf InfoNCE-based models. The linear complexity of
ESCo also paves the way for harnessing a much larger quantity of negative samples with computation
budget controlled within the same level, which can indeed further strengthen the effectiveness of
InfoNCE as a lower bound surrogate of the mutual information objective. We apply our approach
to a variety of practical tasks, including synthetic data and real-world data spanning from images
to graphs. The results demonstrate that compared with InfoNCE-based counterparts, ESCo yields
superior performance with much less memory and time cost. Furthermore, we evaluate the model with
various dataset sizes, and demonstrate its applicability to large-scale datasets (batch sizes) without
large memory/time costs. The highlights of this paper can be summarized as follows:

1) We propose ESCo, a novel contrastive framework for unsupervised representation learning. For its
effectiveness, ESCo is an effective embodiment of Multi-view Information Bottleneck. Compared
with recent emerging methods that target MIB, ESCo does not require additional self-supervised
learning tasks (such as inverse predictive learning), and is versatile for a rich family of kernel
functions. We also show that ESCo possesses potential for boosting existing contrastive models.

2) For scalability, we take advantage of Random Fourier Features (RFF) and Structured Orthogonal
Random Features (SORF) to reduce the space-time complexity of ESCo from quadratic to linear,
enabling it to harness more negative samples without compromising efficiency and thus can be trained
with much larger batch sizes.

3) We conduct thorough experiments on synthetic datasets and also demonstrate the power of ESCo
in real-world tasks that require representation learning for images and graphs. The results show that
ESCo outperforms its baseline counterparts, with much less GPU memory cost and training time.

2 RELATED WORKS AND PRELIMINARIES

2.1 CONTRASTIVE SELF-SUPERVISED LEARNING

Self-Supervised Learning (SSL) aims at learning informative representations without the avail-
ability of labels through well-defined auxiliary tasks. Among current SSL models, multi-view
contrastive methods have achieved state-of-the-art performance in self-supervised representation
learning (van den Oord et al., 2018; Tian et al., 2020a; He et al., 2020; Chen et al., 2020). These
approaches first generate two views of the same input data through random augmentations, and then
use contrastive loss (typically the InfoNCE loss (van den Oord et al., 2018)) to maximize a tight lower
bound of the mutual information between the two views (Tschannen et al., 2019; Poole et al., 2019).

Despite its theoretical soundness and promising empirical performance on various tasks, InfoNCE-
based contrastive learning suffers from its quadratic complexity w.r.t. the number of data samples,
given the fact that it requires a large number of negative samples to ensure that the mutual infor-
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mation lower bound is tight enough (Poole et al., 2019). To explore negative-sample-free methods,
BYOL (Grill et al., 2020) and Simsiam (Chen & He, 2020) adopt asymmetric structures to avoid
trivial degenerated solutions without using negative samples. Although a recent study (Tian et al.,
2021) sheds some lights on understanding of their success, the rationales still remain uncleared
especially for why such methods could learn informative representations. Other works seek to detour
negative sampling through feature-level decorrelation (Zbontar et al., 2021; Bardes et al., 2021), yet
these models resort to assumptions for data distributions (e.g., Gaussian forms), which could be
violated in real-world scenarios.

2.2 INTERPRETING SELF-SUPERVISED LEARNING WITH INFORMATION THEORY

As mentioned above, the success of contrastive learning is often attributed to maximizing the mutual
information between the representations of two views. Tsai et al. (2021) points out that most
self-supervised frameworks, either predictive (Devlin et al., 2019; Noroozi & Favaro, 2016) or
contrastive, can be viewed as maximizing the mutual information between representations of input
data and pre-defined self-supervised signals. Inspired by the Information Bottleneck (IB) principle in
supervised representation learning (Tishby et al., 2000; Tishby & Zaslavsky, 2015; Strouse & Schwab,
2016), some recent studies generalize the spirits to multi-view self-supervised learning and proposes
Multi-view Information Bottleneck (MIB) (Tsai et al., 2021; Federici et al., 2020; Zhang et al.,
2021; Zbontar et al., 2021). MIB suggests that purely maximizing the mutual information between
the representations (as is done by InfoNCE loss) may lead the learned representations to exploit
redundant information that is useless for downstream predictions, so that an additional conditional
entropy minimization term is required to fulfill the MIB principle (Tsai et al., 2021).

2.3 KERNEL APPROXIMATION WITH RANDOM FOURIER FEATURES

Random Fourier Features (RFF or Random Features in short) (Rahimi et al., 2007; Liu et al., 2020) is
an effective technique for overcoming the poor scalability of kernel methods such as kernel SVM
and kernel ridge regression (Avron et al., 2017) and kernel Independence test (Zhang et al., 2018; Li
et al., 2021). Also, recently, RFF has been adopted to develop linear Transformers by approximating
the softmax attention (Choromanski et al., 2020; Peng et al., 2021). Given d-dimensional vectors x
and y and a shift-invariant kernel κ(·), RFF constructs an explicit mapping Ψ: Rd → RD, such that
κ(x,y) ≈ Ψ(x)>Ψ(y), which reduces the quadratic computation cost of the kernel matrix to a linear
one w.r.t data size. Generally, given a positive definite shift-invariant kernel κ(x,y) = κ(x− y), the
Fourier transform p of kernel κ is p(ω) = 1

2π

∫
e−jω

′∆k(∆)d∆, where ∆ = x− y. Then we could
draw D i.i.d. samples ω1, · · · ,ωD ∈ Rd from p, and Ψ(x) is represented as:

Ψ(x) =

√
1

D

[
cos(ω>1 x), · · · , cos(ω>Dx), sin(ω>1 x), · · · , sin(ω>Dx)

]>
. (2)

Let W = [ω1, · · · ,ωD] ∈ Rd×D be a linear transformation matrix, one may realize that W>x plays
a central role in the above computation. Specifically, when κ(·) is a standard Gaussian kernel (i.e.,
RBF kernel), each entry of W can be directly sampled from a standard Gaussian distribution. The
improved variants of RFF mainly concentrate on different ways to build the transformation matrix
W, so as to further reduce the computational complexity (Le et al., 2013) or lower the approximation
variance (Yu et al., 2016).

3 UNDERSTANDING SELF-SUPERVISED LEARNING WITH MULTI-VIEW
INFORMATION BOTTLENECK

In this section we first introduce Multi-view Information Bottleneck (MIB), which is the theoretical
foundation of our proposed method. Then we provide an example to illustrate that vanilla contrastive
learning objectives (i.e. InfoNCE) would fail to meet the MIB principle, which helps to convey the
motivation of our method.

3.1 MULTI-VIEW INFORMATION BOTTLENECK

In supervised representation learning, the Information Bottleneck (IB) principle provides a principled
interpretation for what kind of representations are optimal for a specific task. Denote the random
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Expected  
Performance

InfoNCE feasible region
Sweet Spot  (MIB target)

less informtive too much noise
  H: hidden variable  

S: superfluous variable 

X: raw feature

Y: label           

 

and        shares the same       but different   

   (a) An ideal data generation model

(c) How the information contained in representations affects the performance on downstream tasks

All task-relevant information is contained in 

(b) Information diagrams for the input features and labels

Figure 1: (a) An ideal data generation process that follows the multi-view redundancy assumption. (b)
When the data generation process in (a) holds, all the task-relevant information H(Y ) is contained in
the shared part between two views – I(XA, XB). (c) An illustration for the impact of the information
contained in the embeddings on the performance of downstream tasks. Zoom in for better view.

variables of input data, low-dimensional embeddings, and labels as X,Z and Y , respectively. IB
formulates representation learning task as a constrained optimization problem:

min I(Z,X) s.t. I(Z, Y ) is maximized, (3)

where I(·, ·) denotes the mutual information between two random variables, and β is a Lagrange
multiplier. The implication of IB is that the optimal representations should contain maximal informa-
tion that is useful for prediction, and meanwhile compress the input data as much as possible. The
Multi-view Information Bottleneck is defined in a similar way.
Definition 1. (Multi-View Information Bottleneck (Federici et al., 2020; Tsai et al., 2021) aims at
optimizing the following objective:

min I(ZA, XA) s.t. I(ZA, XB) is maximized, (4)

where XA, XB denote the random variables of two views of input data, and ZA, ZB denote the
random variables of their representations. The effectiveness of MIB for downstream tasks is guaran-
teed by the Multi-view Redundancy Assumption (Sridharan & Kakade, 2008), which assumes that
almost all the task-relevant information is contained in the shared part between two views. Tsai
et al. (2021) further prove that when this assumption holds, the learned representations through MIB
keeps maximal task-relevant information and discard as much task-irrelevant information as possible,
which provides an understanding for the rationale behind multi-view self-supervised learning.

As the constrained optimization problem in Eq. 1 is hard to solve with gradient descent, its relaxed
form using Lagrangian relaxation is usually considered (Zbontar et al., 2021; Zhang et al., 2021):

min I(ZA, XA) + βI(ZA, XB)

or min (β/β − 1)H(ZA|XB)−H(ZA), where β/(β − 1) > 1.
(5)

Here H(·) and H(·|·) denote entropy and conditional entropy, respectively. Note that in Eq. 4 and
Eq. 5 we treat view A as the primal view, and we have a symmetric objective for view B. For
convenience, in the following presentation, we only consider view A as the primal view, and the final
loss function is the combination of both views.

3.2 THE REDUNDANCY ISSUE OF CONTRASTIVE LEARNING

Recent studies (Tian et al., 2020b; Tsai et al., 2021) point out that the ideal representations through
multi-view learning are expected to preserve the shared information between (two) views and in the
meanwhile discard as much redundant information (not shared across views) as possible. Yet, current
contrastive learning methods (e.g. InfoNCE) would fail to achieve the second target. We provide an
illustration in Fig. 1 through a toy example.

We consider an ideal data generation process of multi-view data, as shown in Fig. 1(a). We use H to
denote a hidden variable, which decides the label of each data point, and S to denote a superfluous
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variable, which is irrelevant to the label but decides the input dataX together withH . In this example,
all the task-relevant information is contained in the shared part between two views I(XA, XB) (i.e.,
Fig. 1(b)). In Fig. 1(c), we show that the optimal representation should be informative enough
(I(ZA, ZB) = I(XA, XB)), and contains no noise (H(ZA|XB) = 0). Unfortunately, contrastive
learning approaches (e.g. InfoNCE loss) learn informative representations by purely maximizing
I(ZA, ZB), while the redundant information H(ZA|XB) is out of control, which may compromise
the quality of learned representations.

To refine contrastive learning with the ability of reducing superfluous information, Tsai et al. (2021)
combine InfoNCE objective with other self-supervised learning tasks, while Tian et al. (2020b) resort
to learnable data augmentations that aim to reduce the redundant information across views. This
paper inherits the spirit in (Tsai et al., 2021) that reduces redundant information by minimizing the
conditional entropy between two views, which will be detailedly presented in Sec. 4.

4 METHODOLOGY

Recall that the MIB objective in Eq. 5 consists of two terms: the conditional entropy term H(ZA|XB)
which should be minimized, and the entropy term H(ZA) which should be maximized. We next
introduce how to reach the two targets respectively with empirical estimation.

Minimization of H(ZA|XB). Given that H(ZA|XB) = H(ZA|ZB) − I(ZA, XB |ZB) ≤
H(ZA|ZB), we can minimize H(ZA|ZB) instead. We further adopt an assumption that the condi-
tional distribution p(ZA|ZB) is a Gaussian distribution with diagonal covariance N (ZB , σ

2I). Then
the minimization of H(ZA|ZB) could be achieved by simply minimizing the MSE loss between the
representations of positive pairs (i.e., reconstruction loss) (Tsai et al., 2021):

min E
(zA,zB)

‖zA − zB‖22, (zA, zB)∼PZA,ZB
. (6)

Maximization of H(ZA). Note that in most contrastive learning models (He et al., 2020; Chen et al.,
2020), the final outputs are l2-normalized, so that both ZA and ZB are distributed on a unit hyper-
sphere. Obviously we know that if ZA and ZB are distributed uniformly on the hypersphere, H(ZA)
and H(ZB) would be maximized. The problem of enforcing points to be uniformly distributed on
the unit hypersphere is a well-studied one in the literature (Wang & Isola, 2020), and can be realized
by minimizing the total pairwise potential w.r.t. a certain kernel function (e.g. Gaussian kernel):

min log E
z1,z2

[κ(z1, z2)], z1, z2
i.i.d.∼ PZA

, (7)

where κ(·, ·) is a kernel function (usuall should be shift-invariant, e.g. Gaussian kernel); z1 and z2

are i.i.d. samples from PZA
. Combining Eq. 6 and 7, the MIB objective in Eq. 5 can be converted

into the following one:

minλE(zA,zB)∼PZA,ZB
‖zA − zB‖22 + logEz1,z2∼PZA

[κ(z1, z2)], (8)

where λ is a trade-off hyper-parameter. We remark that λ in Eq. 8 cannot be interpreted as β/(β − 1)
in Eq. 5, since Eq. 6 and Eq. 7 are not for estimation of mutual information. A follow-up question
is how to instantiate Eq. 8 with empirical estimation, or in other words: 1) how to select the kernel
function κ; 2) how to choose a proper λ so that MIB is achieved; 3) how to sample positive pairs and
negative pairs. We next present a concrete implementation in Sec. 4.1 with Gaussian kernel, and then
we will show its connection to the vanilla InfoNCE loss.

4.1 INSTANTIATION WITH GAUSSIAN KERNEL

Given a batch of data with N data points: {(xA1 ,xB1 ), · · · , (xAN ,xBN )} and the correspond-
ing l2-normalized representations {(zA1 , zB1 ), · · · , (zAN , zBN )}, using Gaussian kernel κ(x,y) =

e−‖x−y‖
2
2/2τ and only using in-batch data points as negative samples, we can specify Eq. 8 as

minimizing the loss function

L =

N∑
i=1

λ‖zAi − zBi ‖22 + log

N∑
j=1

e−‖z
A
i −z

A
j ‖

2
2/2τ

 . (9)
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When x and y are both l2-normalized, we have ‖x − y‖22 = 2 − 2 · x>y and we can further
decompose the loss function of Eq. 9 into:

L =

N∑
i=1

(− log
ez

A
i

>
zBi /τ

N∑
j=1

ez
A
i

>zAj /τ

+ (λ− 1

2τ
)‖zAi − zBi ‖22 + const). (10)

Neglecting the constant term, the decomposed loss function in Eq. 10 is composed of two terms: 1) an
InfoNCE-like term (by replacing zBj in the denominator with zAj ), which plays the role of maximizing
I(ZA, ZB); 2) when λ > 1/2τ , the MSE term aims at minimizing H(ZA|ZB). Therefore, the
combination of the two terms can achieve the goal of MIB on condition that λ > 1/2τ .

Remark. Eq. 10 also reveals the connection between ESCo and InfoNCE objective: when κ(·, ·) is a
Gaussian kernel κ(x,y) = e‖x−y‖

2
2/2τ and λ = 1

2τ , our loss function in Eq. 9 would degenerate into
InfoNCE in Eq. 1. This essential relationship suggests that our method can be naturally applied to
combine with arbitrary InfoNCE-based models, which will be further discussed in Sec. 4.3.

Also, our approach is flexible for using other negative sample mining techniques such as memory
bank (He et al., 2020) or use both intra-view and inter-view negative samples (Chen et al., 2020).

4.2 FAST AND ACCURATE KERNEL APPROXIMATION WITH RANDOM FEATURES

While we have shown that through selecting proper kernel function κ(·, ·) and trade-off hyper-
parameter λ, the proposed objective function is capable for learning representations that meet the
MIB principle, it still requires quadratic complexity to compute the pair-wise kernel functions.
Observing that the pairwise kernel functions are summed up in Eq. 9, we can adopt the Random
Feature technique as introduced in Sec. 2.3 to reduce the complexity of kernel computation:

N∑
j=1

κ(zAi , z
A
j ) ≈

N∑
j=1

Φ(zAi )>Φ(zAj ) = Φ(zAi )

N∑
j=1

Φ(zAj ), (11)

where zAi and zAj ∈ Rd are input vectors, Φ(z) = [cos(W>z), sin(W>z)]/
√
D is the projection

function, and W is a randomly generated transformation matrix. In particular, when using Gaussian
kernel κ(x,y) = e−‖x−y‖

2
2/2τ , the linear projection matrix can be obtained via W = G/

√
τ ∈

Rd×D where G ∈ Rd×D is a random matrix with each entry sampled from standard Gaussian
distribution N (0, 1).

In fact, Random Fourier Feature (RFF) is an unbiased kernel estimator with space and time complexity
of O(NDd) (N is the number of data points), which is linear w.r.t. the dataset size. However, the
approximation variance is in inverse proportion to the projection dimension D, which means that it
requires a large D to ensure the accuracy of approximation (e.g. 10 times of embedding dimension d
or even more). This makes the computation cost still expensive for high dimensional data. To handle
this issue, we adopt Structured Orthogonal Random Features (SORF), a variant of RFF for Gaussian
kernel (Yu et al., 2016). Concretely, SORF replaces the linear random transformation matrix W with
a structured orthogonal one:

WSORF
1 =

√
d√
τ
HD1HD2HD3, (12)

where Di ∈ Rd×d, i = 1, 2, 3, are diagonal “sign-flipping” matrices, with each diagonal entry
sampled from the Rademacher distribution, and H is the normalized Walsh-Hadamard matrix.

While SORF is a biased estimator, its bias is negligible as long as d is not very small (Yu et al., 2016).
Also, SORF induces much smaller variance than RFF when the projection dimension is fixed, which
indicates that a prohibitively large D is not required to ensure the approximation accuracy. The most
stand-out merit of SORF is that it can be computed in O(ND log d) time by using fast Hadamard
transformation (Fino & Algazi, 1976), nearly not requiring extra memory cost by using in-place
operations. This endows our method with desirable scalability to larger dataset sizes and embedding
dimensions. We term our method with RFF and SORF as ESCo-RFF and ESCo-SORF respectively,
and evaluate them empirically in Sec. 5.

1The second dimension of WSORF in Eq. 12 is restricted to d but could be extended to any dimension by
concatenating multiple matrixes and removing redundant columns.
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4.3 RELATIONSHIPS AND COMPARISONS WITH RELATED WORKS

InfoNCE-based models. As pointed out in Sec. 4.1, the vanilla InfoNCE loss could be regarded as
an extreme and special case of ESCo by adopting Gaussian kernel and specify the value of trade-off
hyper-parameter, on top of which we further leverage Random Features to reduce the complexity.
In this sense, ESCo could serve as a plug-in module that enhances other InfoNCE-based models,
e.g. CMC (Tian et al., 2020a), MoCo (He et al., 2020), SimCLR (Chen et al., 2020) for images,
SimCSE (Gao et al., 2021) for sentences, and GRACE (Zhu et al., 2020)/GraphCL (You et al., 2020)
for nodes/graphs.

Asymmetric models. BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2020) propose to use
asymmetric structures like Stop-Gradient to avoid negative sampling. Despite their promising results
and linear complexity (since no pair-wise distance is required), the rationales behind these approaches
are still unclear2. Compared with them, ESCo can not only achieve linear scalability w.r.t. data sizes,
its effectiveness for learning informative and redundancy-free representations is also theoretically
grounded with the Multi-view Information Bottleneck principle.

Links to other works. To explain the learning behaviours of contrastive learning, a recent work
(Wang & Isola, 2020) decomposes the InfoNCE objective into two terms, one for alignment and
one for uniformity, and further proposes to optimize a weighted sum of them. Though we derive a
similar objective form, our formulation takes a different perspective from the Multi-view Information
Bottleneck and acts as a general framework that provides a unified view for existing contrastive
approaches. Based on this, we dissect the effect of the trade-off hyper-parameter that plays a central
role for guaranteeing effective learned representations. Moreover, another recent study (Tsai et al.,
2021) combines several self-supervised objectives (e.g. contrastive learning and inverse predictive
learning) to reach the MIB target. In comparison, the proposed ESCo does not require additional
self-supervised objectives, and provides a more general implementation of the MIB principle.

5 EXPERIMENTS

In this section, we evaluate ESCo empirically on various representation learning tasks. We select
state-of-the-art contrastive methods on image and node representation learning as the baseline models
and apply ESCo to boost them. We use Pytorch to implement all the baseline methods as well as
the proposed two models. Experiments on images are conducted on four NVIDIA T4 GPUs, and other
experiments are conducted on one NVIDIA T4 GPU. Specifically, we adopt structure-net3 to
do fast hadamard transformation, which enables much faster forward and backward computation of
ESCo-SORF with CUDA accelerations.

5.1 CONTROLLED EXPERIMENTS ON SYNTHETIC DATASETS

To verify the effectiveness of the proposed model under ideal circumstances, we create a synthetic
dataset, where the input data and the corresponding labels are ideally generated through the data
generation process in Fig. 1(a). The flowchart of how we generate multiple views as well as
labels is presented in Fig. 2, with detailed hyper-parameters presented in Appendix C. We select
SimCLR (Chen et al., 2020) as the baseline model and the backbone of ESCo.

Table 1: Test accuracy (%) on
controlled synthetic data.
Method Acc
SimCLR 38.11
ESCo-RFF (λ = 1.6) 40.52
ESCo-SORF (λ = 1.5) 40.86

We randomly generate 4000 samples with 2048 input feature di-
mension. We follow the standard contrastive pretraining plus linear
evaluation: we first train the model in an unsupervised manner with
all the samples; at evaluation stage, we randomly split the dataset
into 10 folds and use logistic regression with cross-validation to
obtain the test accuracy. We adopt a 3-layer MLP as the encoder
fθ(·), and set the temperature τ for all the methods as 1. Other
hyper-parameters are all set identically for all the models and are listed detailedly in Appendix C.

2Tian et al. (2021) provide an analysis of their learning dynamics with two-layer models, which accounts for
the reason why the two models do not fail with trivial solutions, yet it still remains as an open problem why they
could learn informative representations.

3https://github.com/HazyResearch/structured-nets
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    Hidden Variable

    Superfluous Variable Concat

Contrastive Learning

Label generationFeature generation

Predict

8 classes

argmax

Figure 2: Data flow of synthetic dataset. The raw features are generated from two random variables:
H is the hidden variable that decides the label, and S is the superfluous variable (e.g., controls
augmentation-invariant features). The input feature x is the MLP output of the concatenation of
hidden vector h sampled from H and superfluous vector s sampled from S. The input features of two
views xa and xb have shared hidden vector but different superfluous vector with x. fθ is a learnable
encoder parameterized by a 3-layer MLP. Other MLPs are randomly generated with fixed weights.
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Figure 5: Time consumption.

In Table 1 we report the test accuracy of our methods compared with the baseline model Sim-
CLR. ESCo-RFF (λ = 1.5) and ESCo-SORF (λ = 1.6) outperform SimCLR by 6.3% and 7.2%
respectively. Note that SimCLR can be regarded as an extreme case of our method by setting
λ = 1/2τ = 0.5 and not using random features.

To investigate the effect of λ on the model performance, we gradually increase λ from 0.5 to 2.0
and study how the test accuracy changes. To study how the performance varies when using random
features, we further equip SimCLR with the same trade-off hyper-parameter λ. Results are shown in
Fig. 3. As we can see, SimCLR also benefits from the increase of λ (for vanilla SimCLR, λ = 0.5).
Also, despite that ESCo-RFF suffers a bit performance drop, ESCo-SORF performs as well as
SimCLR on prediction tasks. Another observation is that when λ becomes too large, the performance
will begin to drop. This is reasonable as the second term in Eq. 9 gradually gets neglected with λ
increasing, so it is important to select a proper λ that gives the best trade-off for better expressiveness
and less redundancy.

We further validate the actual scalability performance of our methods against the baseline model.
We gradually increase the number of data points from 1,000 to 1,000,000, and record the memory
cost and execution time of our methods and SimCLR for computing the loss function. The results
are shown in Fig. 4 and Fig. 5 respectively. Consistent with the theoretical complexity, the memory
cost and time consumption of SimCLR grows quadratically w.r.t. the dataset sizes, and it runs out of
memory of a 16G GPU when N exceeds 40,000. In comparison, ESCo-RFF and ESCo-SORF can be
executed with linear memory cost, which makes our methods scalable to datasets with up to 1 million
data points using a GPU with only 16G memory. The linear time complexity also enables them to be
trained much faster on large-scale datasets.

5.2 REAL-WORLD DATASETS

We then apply our methods on real-world unsupervised representation learning tasks, including image
representations and node representations on graphs.

5.2.1 IMAGE REPRESENTATIONS

We evaluate our method on image representation learning tasks on CIFAR-10, CIFAR-100 and
STL-10 datasets. Following previous practices (Chuang et al., 2020; Wang & Isola, 2020; Robinson
et al., 2021), we choose SimCLR (Chen et al., 2020) as the base framework, and also for its simplicity
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Figure 6: Top-1 accuracy for image classification on three public datasets. The dotted horizontal line
represents the accuracy of baseline model (SimCLR).

Table 2: Accuracy, training time and memory cost on node classification tasks. ↑ indicates higher
accuracy, and ↓ indicates lower training time / GPU memory cost.

Method Cora (N : 2,708) Citeseer (N : 3,327 ) Pubmed (N : 19,717)
Acc Time Memory Acc Time Memory Acc Time Memory

GRACE 83.9 37.3s 2.6G 71.3 21.8s 3.1G 86.1 842.3s 14.5G
ESCo-RFF 84.3↑ 22.2s↓ 1.9G↓ 71.6↑ 14.8s↓ 2.0G↓ 86.1 203.9s↓ 3.8G↓
ESCo-SORF 84.4↑ 23.5s↓ 2.0G↓ 71.7↑ 16.1s↓ 2.1G↓ 86.3↑ 259.2s↓ 4.1G↓

and strong performance, we use ResNet-50 (He et al., 2016) as the encoder (backbone). We adopt
Adam optimizer (Kingma & Ba, 2014) with learning rate of 0.001. The temperature is set to τ = 0.5
and the dimension of latent vectors is set to 128. All the models are trained with 500 epochs and
evaluated using logistic regression. The results in Fig. 6 show that with a proper trade-off hyper-
parameter λ, our method can boost the performance of the baseline model. Compared with the
results on synthetic dataset in Sec. 5.1, we find that the optimal trade-off λ should be quite small,
and when we increase it, the linear classification accuracy will drop obviously. The possible reasons
include two aspects: 1) the redundant information between two views of images generated from
random augmentation is not that considerable; 2) the multi-view redundancy assumption (Sridharan
& Kakade, 2008) does not necessarily hold in real-world image classification datasets, which makes
little room for benefits from Eq. 6.

5.2.2 NODE REPRESENTATIONS

We further evaluate our methods on unsupervised node classification tasks by adopting GRACE (Zhu
et al., 2020) as the base framework and the competitor. GRACE is an InfoNCE-based contrastive
learning method for node classification on graphs.

We conduct experiments on three commonly used citation networks: Cora, Citeseer and Pubmed.
Each of them contains thousand-level nodes. We follow the setups as presented in (Zhu et al., 2020),
and provide the detailed hyper-parameter settings in Appendix C. In order for fair comparisons, we
adopt exactly the same hyper-parameters for the baseline model GRACE and our methods ESCo-RFF
and ESCo-SORF, except the trade-off parameter λ. The results are presented in Table 2. As we can
see, both ESCo-RFF and ESCo-SORF outperform the baseline model, with less training time and
GPU memory cost. It is worth noting that on Pubmed, which contains almost 20, 000 nodes, our
methods require much less training time and memory cost owing to their linear complexities.

6 CONCLUSION

We have proposed ESCo, a novel contrastive framework for unsupervised representation learning.
ESCo is an instantiation of Information Bottleneck principle under multi-view self-supervised learning
settings, and is proven to help learn informative and compressed representations. Compared with
previous contrastive methods, our approach requires much less training time and GPU memory cost
thanks to the adoption of Random Features, and consequently is scalable to large batch sizes. The
experimental results on both image and graph data show its effectiveness for boosting the performance
of existing contrastive learning approaches including SimCLR and GRACE.
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A ALGORITHMS

Algorithm 1: Pseudocode for ESCo-RFF and ESCo-SORF, PyTorch-like

def RFF_transform(input, w):
# input: [N * d], input embedding matrix
# w: [d * D], random projection matrix
trans = torch.mm(input, w)
D = w.size(1)
output = torch.cat([torch.cos(trans), torch.sin(trans)], dim = 1) / np.sqrt(D)

return output

# hadamard(input): function, fast hadamard transformation. input: N * d matrix.
Complexity: O(N*d*logd)

def SORF_transform(input, D_m, T, temp:
# input: [N * d], input embedding matrix
# D_m: [T, 3, d], diagonal sign-flipping d * d
matrixes, only containing diagonal terms.
# T: int, T = D/d
# temp: temperature hyper-parameter
d = input.size(1)
W = []
for i in range(T):

x = hadamard(input)
x = hadamard(D_m[i][0] * x)
x = hadamard(D_m[i][1] * x)
x = D_m[i][2] * x * np.sqrt(d) / np.sqrt(temp)
W.append(x)

W = torch.cat(W, dim = 1)
output = torch.cat([torch.cos(W), torch.sin(W)], dim=1) / np.sqrt(T*d)

return output

def ESCo-loss(z1, z2, temp, lambda, D, method):
z1 = normalize(z1, dim = 1)
z2 = normalize(z2, dim = 1)
loss_mse = (z1 - z2).pow(2).sum(1) * lambda # O(Nd)

d = z1.size(1)
if method == ’RFF’:

w = torch.randn(d,D) / np.sqrt(temp)
tran1 = RFF_transform(z1, w) # O(NdD)
tran2 = RFF_transform(z2, w) # O(NdD)

elif method == ’SORF’:
T = int(D/d)
D_m = torch.randint(0, 2, (T, 3, embedding.shape[1])).float()
D_m = 2 * D_m - 1
tran1 = SORF_transform(z1, D_m, T, temp) # O(NDlogd)
tran2 = SORF_transform(z2, D_m, T, temp) # O(NDlogd)

kernel_sum = torch.sum(tran2, dim = 0) # O(ND)
loss_kernel = torch.log(torch.sum(tran1 * kernel_sim, dim = 1)) # O(ND)

loss = (loss_mse + loss_kernel).mean()

# Complexity of ESCo-RFF: O(NdD)
# Complexity of ESCo-SORF: O(NDlogd)

B DATASETS AND EVALUATION PROTOCOLS

B.1 SYNTHETIC DATASET

The data generation process of the synthetic dataset has been briefly presented in Fig. 2. Here we
introduce each part of the generation process detailedly.

First of all, we assume that both the hidden variable H and superfluous variable S are 64-dimensional
vectors coming from a standard multivariate Gaussian distribution. For each data point, we generate
h, s, sA, sB ,∈ R64, with each entry sampled from a standard normal distribution N (0, 1). Then the
input hidden vectors for the data point itself, view A and view B are [h, s], [h, sA] and [h, sB ] ∈
R128 respectively. These vectors are subsequently put into a 3-layer MLP (hidden dimension
128− 256− 256− 1024) with randomly initialized weights and softmax activation to generate the
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Table 3: Statistics of node classification benchmarks

Dataset #Nodes #Edges #Classes #Features

Cora 2,708 10,556 7 1,433
Citeseer 3,327 9,228 6 3,703
Pubmed 19,717 88,651 3 500

input features x,xA and xB . h is then put into another 3-layer MLP (hidden dimension 64−256−8)
to generate its label (argmax is used to generate one-hot label).

For the encoder f(·), we adopt another 3-layer MLP (hidden dimension 1024− 1024− 1024− 512)
with ReLU activation. The additional projector is not adopted here so the embedding got through the
encoder is directly used to calculate the loss after l2 normalization.

For evaluation, we generate the dataset containing 2048 data triples {(xi,xAi ,xBi )}2048
i=1 , and the

corresponding labels {yi}2048
i=1 . For training the encoder f(·), only the two views xA and xB are

used. After the training process ends, the parameters of f(·) are frozen, and we use it to get the
embeddings of x, which is subsequently evaluated using logistic regression.

B.2 IMAGE CLASSIFICATION

CIFAR-10, CIFAR-100 and STL-10 are popular benchmarks for evaluating self-supervised
models on image representation learning tasks with appropriate computation costs. Following
previous practices (Chuang et al., 2020; Robinson et al., 2021) and for fair comparison with the
baseline model, we adopt exactly the same hyper-parameters and image augmentation techniques
for both SimCLR and ESCo (See Appendix C). For all the datasets, each method is trained for 500
epochs. Once the training ends, we evaluate the learned embeddings using logistic regression. The
top-1 classification accuracy in Fig. 6.

B.3 NODE CLASSIFICATION

We evaluate our models on three node classification datasets: Cora, Citeseer and Pubmed. Each
dataset is a citation network, where nodes denote papers and edges denote citation relationships.
We provide the statistics of the three datasets in Table 3. For evaluation, we follow the practice in
GRACE (Zhu et al., 2020) that randomly selects 10% nodes for training, 10% for validation and the
remaining for testing.

We use the same data augmentation methods proposed in GRACE (Zhu et al., 2020): node feature
masking and edge dropping. Following Zhu et al. (2020), we adopt a two-layer GCN (Kipf &
Welling, 2017) as the encoder, and a two-layer MLP as the projector. At training stage, the full graphs
generated through random augmentation are used to learn the GCN model, where all the other nodes
within the graph are negative samples. At test stage, the original graph is put into the GCN model to
get node representations, which are subsequently evaluated using logistic regression.

C HYPER-PARAMETERS

For the synthetic dataset, the hyper-parameters are set as:

• optimizer: Adam.

• training epochs: 1500.

• learning rate: 1e-5.

• weight decay: 0.

• embedding dimension: 512.

• random feature dimension: 2048.

• temperature τ : 1.0.
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Table 4: Hyperparameters for node classification datasets. lr: learning rate; wd: weight decay; de:
embedding dimension; dp: projector dimension; pe,i: edge dropping ratio of view i, pf,2: feature
masking ratio of view i; τ : temperature; λrff trade-off for RFF; λsorf : trade-off for SORF.

Dataset Epochs lr wd de dp Drff pe,1 pe,2 pf,1 pf,2 τ λrff λsorf

Cora 400 1e-4 1e-5 512 512 1024 0.2 0.3 0.3 0.3 0.5 1.3 1.2
Citeseer 200 1e-3 1e-5 256 256 1024 0.2 0.0 0.3 0.2 0.9 2.0 2.1
Pubmed 1500 1e-4 1e-5 256 256 1024 0.4 0.1 0.0 0.2 0.7 1.5 1.5

• trade-off hyper-parameter λ: 1.6 for ESCo-RFF, 1.5 for ESCo-SORF.

For image classification on CIFAR-10, CIFAR-100, STL-10, the hyper-parameters are set as:

• optimizer: Adam.
• batch size: 512.
• training epochs: 500.
• learning rate: 1e-3.
• weight deacy: 0.
• encoder: ResNet-50.
• projector dimension: 512.
• random feature dimension: 1024.
• trade-off hyper-parameter λ for CIFAR-10: 1.04.
• trade-off hyper-parameter λ for CIFAR-100: 1.08.
• trade-off hyper-parameter λ for STL-10: 1.04.

For node classification on Cora, Citeseer, Pubmed, we list the hyper-parameters in Table.4.
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