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ABSTRACT

In self-supervised image denoising, it is challenging to construct paired noisy sam-
ples from a single noisy observation, and the quality of samples seriously influ-
ences the performance of the denoising model. Strategies for constructing pairs of
samples for learning, such as blind-spot convolution and sub-sampling, are widely
adopted in existing self-supervised denoising methods. However, these strategies
suffer from the severe problems of information underutilization and pixel mis-
alignment, which seriously hinder the further improvement of denoising perfor-
mance. Furthermore, little attention has been paid to the sensitivity of denoising
models to deal with unknown noise, which is of great significance in enhancing
the practicality of denoising models. To overcome these challenges, we propose
a very simple and effective method, called Cyclic Shift, to construct paired noisy
images for self-supervised training. This new strategy solves the problems of
information underutilization and pixel misalignment without additional computa-
tion, and it can be easily embedded into existing denoising methods and signifi-
cantly boost their performance. In addition, we introduce the uncertainty-aware
loss in training to enable the denoising network to perceive the noise intensity and
have robust denoising performance. We theoretically explain the effectiveness of
Cyclic Shift and analyze the ability of the uncertainty loss to endow the network
with noise intensity perception. Extensive experimental results show that our ap-
proach achieves state-of-the-art self-supervised image denoising performance.

1 INTRODUCTION

Image denoising, which aims to recover a clean signal from noisy observations, is one of the essential
tasks in image processing and low-level computer vision. Recently, with the development of neu-
ral networks, learning-based surpervised denoisers Anwar & Barnes (2019); Chang et al. (2020b);
Ma et al. (2022) have achieved satisfactory performance. However, these methods depend heavily
on noisy/clean or noisy/noisy paired images, and collecting such paired images is complex and ex-
pensive, most notably in dynamic scenes and medical imaging, resulting in the limited practice of
supervised denoising methods.

To overcome this limitation, a series of un-/self-supervised denoising methods Laine et al. (2019);
Cha et al. (2020); Xu et al. (2020); Pang et al. (2021); Huang et al. (2021); Wang et al. (2022) inspired
by Noise2Noise Lehtinen et al. (2018) and Noise2Void Krull et al. (2019) have been proposed.
These denoising methods learn from only single noisy images, which means that they have better
practicability and broader application areas than supervised image denoising methods. However, this
advantage requires constructing pairs of samples for self-supervised learning. The main idea of these
denoising methods is to use the original noisy observations to get the paired noisy pixels/images,
which have the same scene and independent and identically distributed (i.i.d.) noise. According
to the strategies of constructing pairs of samples, they can be divided into two categories, blind-
spot-based (Figure 1 (a)-a) and sub-sample-based methods (Figure 1 (a)-b). These blind-spot-based
methods require masking out some pixels in the noisy images before feeding them to the network,
causing severe information underutilization during training. In addition, sub-sample-based methods
encounter the limitation of misaligned paired noisy images. These inherent limitations seriously
hinder the further improvement of denoising performance.
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(a) Comparison of the methods synthesizing paired
noisy images from only single noisy images.
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(b) Visual comparison of denoising sRGB images in the
setting of Gaussian noise (σ = 25) on KODAK.

Figure 1: (a) a, represents the blind-spot-based methods. b, indicates the sub-sample-based meth-
ods, and c, denotes Cyclic Shift that can overcome the problems of information underutilization
and pixel misalignment in a and b, respectively. A, B, and C denote different images. (b) Visual
comparison of the denoising performance of three representative methods is shown in (a). For better
viewing, we display the difference between the denoising results and Clean in colour.

To alleviate these problems mentioned above, in this paper, we propose a novel and easy-to-
implement method, Cyclic Shift (Figure 1 (a)-c), for synthesizing paired noisy images from a group
of different noisy observations. Specifically, we first obtain the group of pre-denoised images from
a denoising network, which learns from only single noisy observations. Then we extract the group
of noise from the corresponding noisy observations. After that, we can get two groups of noise with
different orders by Cyclic Shift and then fuse them with the pre-denoised images to obtain paired
noisy images with the same scene and i.i.d. noise. Finally, the constructed paired noisy images are
used to train the denoising network.

Furthermore, most self-supervised image denoising methods pay much attention to improving de-
noising performance, with little attention to the robustness, resulting in these denoising models being
sensitive to unseen noise. However, since there is no guarantee that the collected noisy observations
are compliant in practice, it is essential for the denoising network to keep robust in facing complex
scenarios. Therefore, we introduce the uncertainty-aware loss to enable the denoising network to
perceive the noise intensity, resulting in robust denoising performance.

Overall, our contributions are summarized as follows:

• We propose a novel strategy to construct sample pairs for self-supervised learning called
Cyclic Shift. It can well avoid the problems of insufficient information utilization and pixel
misalignment existing in the popular sample pairs constructing strategies. As a result, it
can extensively boost existing self-supervised denoising methods without any additional
computational cost.

• We introduce the uncertainty-aware loss to endow the network with the ability to perceive
the noise intensity to improve the robustness of the denoising network and obtain better
denoising performance in the face of unseen noise. Besides, we theoretically illustrate the
particularities of uncertainty modeling in self-supervised image denoising.

• By integrating Cyclic Shift and the uncertainty-aware loss, we obtain a robust and noise-
intensity-aware self-supervised image denoising model (CSU), which achieves the state-of-
the-art denoising performance on multiple datasets of sRGB, RAW, and grayscale domains.

2 RELATED WORK

2.1 IMAGE DENOISING

2.1.1 TRAINING WITH CLEAN IMAGES

The first supervised image denoising approach using neural networks is DnCNN Zhang et al. (2017).
Then, numerous advanced methods are proposed to further improve the denoising performance, such
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as FFDNet Zhang et al. (2018), N3Net Plötz & Roth (2018), CBDNet Guo et al. (2019), RIDNet
Anwar & Barnes (2019), NBNetCheng et al. (2021), and FADNet Ma et al. (2022). In practice,
unpaired noisy/clean images are more accessible to obtain than collecting paired noisy/clean images
used in supervised image denoising. Therefore, many denoising methodsChen et al. (2018); Hong
et al. (2020); Jang et al. (2021); Wu et al. (2020); Lin et al. (2021) based on unpaired noisy/clean
images are proposed. Besides, Lehtinen et al. Lehtinen et al. (2018) propose Noise2Noise, which
can learn denoising from paired noisy images, and the denoising performance of this method is com-
parable to that of supervised denoising models. However, the difficulty and high cost of obtaining
clean images make these methods challenging to apply in actual scenarios.

2.1.2 TRAINING WITH ONLY SINGLE NOISY IMAGES

Inspired by Noise2Noise Lehtinen et al. (2018), Noise2Void Krull et al. (2019) proposes using
the blind-spot convolution to learn denoising from only single noisy images. Subsequently, based
on the blind-spot convolution, Noise2Self Batson & Royer (2019), AP-BSNLee et al. (2022), and
Blind2Unblind Wang et al. (2022) are proposed, but they suffer a severe limitation of information
underutilization. Besides, Noiser2Noise Moran et al. (2020), GAN2GAN Cha et al. (2020), R2R
Pang et al. (2021), and IDR Zhang et al. (2022) employ prior knowledge to synthesize the paired
noisy images from noisy observations to train the denoising network. In addition, Self2Self Quan
et al. (2020) and NBR2NBR Huang et al. (2021) introduce two sampling approaches to generate
paired noisy images. These methods do not require clean images but have varying degrees of infor-
mation underutilization, pixel misaligned, and require prior knowledge about the noise.

2.2 ROBUSTNESS OF DENOSING MODEL

In image denoising, it is common to use filtered datasets with similar distributions and intensities
of noise and MSE/L1 loss for training, which results in the network performing well in denoising
specific noise but is sensitive to unseen noise (i.e. poor robustness). Moreover, keeping the robust-
ness of the model has received little attention in previous studies of image denoising but in other
computer vision tasks Kendall & Gal (2017); Choi et al. (2019); Chang et al. (2020a); Upadhyay
et al. (2021b); Sudarshan et al. (2021); Upadhyay et al. (2021a); Zhu et al. (2022); Jaskari et al.
(2022), such as face recognition Chang et al. (2020a), image-to-image translation Upadhyay et al.
(2021a), and depth completion Zhu et al. (2022). They demonstrate that model training with the
uncertainty-aware loss can quantify the uncertainty in the prediction and exclude the interference of
out-of-distribution pixels to make a sensible decision, and thus it has better robustness than standard
networks. However, the role of this idea in image denoising has not been discussed.

3 THEORETICAL CONTRIBUTIONS

Here, we introduce our twofold contributions. One is that We demonstrate the feasibility of training
denoising networks with paired noisy images constructed by Cyclic Shift and indicate that the Cyclic
Shift strategy can be applied to more realistic scenarios. The other is the noise-intensity-aware
uncertainty estimation of the denoising network.

3.1 CYCLIC SHIFT

In order to describe the theory more clearly, we assume that Y = X +N is the noisy observation of
X ∼ N

(
0, σ2

X

)
, and N ∼ N

(
0, σ2

N

)
is the noise, which is consistent with the assumptions made

in GAN2GAN (G2G) Cha et al. (2020). When given Y , the denoising result is the minimum MSE
(MMSE) estimate of X ,

f∗
MMSE(Y ) = E(X | Y ) =

σ2
X

σ2
X + σ2

N

Y. (1)

Based on the above settings, we can get paired noisy images Y1 = X + N1 and Y2 = X + N2, in
which N1 and N2 are two i.i.d. copies of the noise N . Therefore, for Noise2Noise (N2N), Eq.(1) is
rewritten as

fN2N (Y1) ≜ argmin
f

E (Y2 − f (Y1))
2 = E (Y2 | Y1) = E (X +N2 | Y1)

(s)
= E (X | Y1) =

σ2
X

σ2
X + σ2

N

Y1,

(2)

3



Under review as a conference paper at ICLR 2023

where (s) is inferred from Y1 and N2 independently of each other. However, it is challenging to get
the pure and clean images in practice. Subsequently, G2G Cha et al. (2020) is proposed, which is
the “Noisy” N2N. It has no X but the images X ′ with slight noise. Let X ′ = X + N0, in which
N0 ∼ N

(
0, σ2

0

)
, and the paired noisy observations are Y1

′ = X ′ +N1 and Y2
′ = X ′ +N2. Then,

Eq. (2) can be further reformulated as:

fG2G (Y ′
1 , a) ≜ argmin

f
E (Y ′

2 − f (Y ′
1))

2
= E (X ′ | Y ′

1) =
σ2
X(1 + a)

σ2
X(1 + a) + σ2

N

Y ′
1 , (3)

where a ≜ σ2
0/σ

2
X and 0 ≤ a < 1. It is obvious that Eq.(2) and Eq.(3) are the same when

a = σ2
0 = 0. Then, they proof that for a sufficiently large σ2

0 , fG2G(Y, a) gives a better estimate of
X than X ′. In other words, it is feasible to train the denoising network with Y1 and Y2.

We generalize G2G to the universal case by assuming that it is difficult to separate the noise N with
the actual distribution from a single noisy image but can obtain an approximate noise N ′, which can
be formulated as

Z = X ′ +N ′ = X +Nm +N −Nm, (4)

where X ′ = X +Nm, N ′ = N −Nm, Nm ∼ N
(
0, σ2

m

)
, and N ′ ∼ N

(
0, σ2

N + σ2
m

)
. After that,

we can get two i.i.d. noise sets, N1
′ and N2

′. The paired noisy images obtained by Cyclic Shift are
Z1 = X ′ +N1

′ and Z2 = X ′ +N2
′. With these settings, the estimated value of the MMSE is

fCS (Z1, b) ≜ argmin
f

E (Z2 − f (Z1))
2
= E (X ′ | Z1) =

σ2
X(1 + b)

σ2
X(1 + 2b) + σ2

N

Z1, (5)

where b ≜ σ2
m/σ2

X . We note that Eq.(5) is equal to Eq.(1) when b = σ2
m = 0, which is the same as

the condition for the optimal value of G2G.

Theory 1. It is feasible to train a denoising network using paired noisy images consisting of coarse-
denoised images and i.i.d noise with an approximate distribution to the actual noise.

Theory 1 motivates our approach, and the training process does not suffer severe information un-
derutilization. From the above analysis, it can be inferred that the upper limit of our method is the
result of the network training with the standard N2N datasets.

3.2 NOISE-INTENSITY-AWARE UNCERTAINTY ESTIMATION

Most previous studies in image denoising employ MSE/L1 loss to optimize the network. This leads
to the denoiser that treats all pixel points equally and has satisfied performance in dealing with
specific noise but has difficulty making the most informed decisions for unseen noise. Furthermore,
modeling uncertainty can compensate for this deficiency very well. Uncertainty captures hard-to-
perceive disturbances in the dataset Kendall & Gal (2017), as well as gives the network the ability
to discriminate them.

Modeling the uncertainty in other computer vision tasks Kendall & Gal (2017); Chang et al. (2020a);
Ning et al. (2021) is based on the following settings. Suppose that Q: {qi}ki=1 and g(S)(S: {si}ki=1)
are the learning target and output of the network g(·), respectively. The detractors (i.e. uncertainty)
in the dataset may be blurred, misaligned, slightly noisy, and so on, which can be denoted by an
additive term U : {ui}ki=1. The relationship between these three elements is usually represented as
the following equation,

Q = g(S) + ϵU, (6)

where ϵ ∼ N (0, I). Moreover, for a given input si and a corresponding target qi, the Gaussian
distribution is assumed for characterizing the likelihood function by

p(qi | si) =
1√
2πu2

i

exp(−
∥qi − g(si)∥2

2u2
i

). (7)

For ease of calculation, the log-likelihood can be formulated as follows,

ln p(qi | si) = −
∥qi − g(si)∥2

2u2
i

− 1

2
lnu2

i −
1

2
ln 2π. (8)

Then, the likelihood maximization is reformulated as the minimization of the loss function,
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LU =
1

K

k∑
i=1

1

2u2
i

∥qi − f (si)∥2 +
1

2
lnu2

i . (9)

where K is the number of samples in the training dataset. The network training with Eq.(9) is able
to output both the denoising result f(si) and the corresponding the uncertainty map ui.

Different from the above settings, the uncertainty of the estimation in the image denoising task is
closely related to the noise intensity. First, assuming that we have the paired noisy images Z1 =
X ′+N1

′ and Z2 = X ′+N2
′. g(Z2) represents the denoised images learned by the network. Then,

Eq.(6) can be formulated as
Z1 = g(Z2) + ϵU ′. (10)

Furthermore, we can infer that the uncertainty estimated by the network contains two components,
the noise that needs to be removed and the unavoidable disturbances that exist in the dataset. Namely,

U ′ = N ′
1 + U, (11)

Theory 2. In image denoising, the uncertainty modeled and estimated has the property of noise
intensity perception.

We experimentally verify Theory 2 in Figure 2, which shows the uncertainty map corresponding
to the noisy image used for testing. We train the uncertainty-based network using a dataset with
Gaussian noise (σ = 25). During testing, we added two different intensities of Gaussian noise

Clean Noisy Uncertainty Map

σ=5σ=5 σ=25σ=25

σ=50 σ=25 σ=50 σ=25

Figure 2: Uncertainty maps visualization in BSD300.

(e.g. σ = 5 (left) and 25 (right), first
row) to the same image. The noisy im-
ages are fed into the network to obtain
the corresponding uncertainty maps. It
clearly shows that the network assigns
higher uncertainty values to the pixels
with high-intensity noise. Therefore,
the uncertainty-based network can adap-
tively adjust the influence of pixels con-
taining unseen noise on the denoising
results according to the noise intensity,
making the uncertainty-based denoising
network more robust than the standard
denoising network.

4 IMPLEMENTATION

Motivated and supported by the above theories, we propose a novel robust self-supervised image
denoising method (CSU). An overview of the framework of CSU is shown in Figure 3. It consists
of three steps: pre-denoising, constructing paired noisy images with Cyclic Shift, and uncertainty-
aware denoising. Each of them will be described in detail below.

4.1 STEP 1: PRE-DENOISING

First, assume that we have a group of noisy observations Y = {yA, yB , yC , yD} from the whole
noisy dataset, in which the different letters in the subscripts represent different images with i.i.d.
noise. As shown in Figure 3 (Step 1), fe-d(·) denotes the whole denoising network, which can be
an arbitrary network that need to be optimized. The pre-denoised images getting from fe-d(·) can be
expressed as

X ′ = fe-d(Y ) = {x′
A, x

′
B , x

′
C , x

′
D}. (12)

4.2 STEP 2: CONSTRUCTING PAIRED NOISY IMAGES WITH CYCLIC SHIFT

After obtaining the pre-denoised image, we can get the noise N ′ by

N ′ = Y −X ′ = {n′
A, n

′
B , n

′
C , n

′
D}, (13)
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Figure 3: The overall structure of CSU. First, we get the pre-denoised images from the network
fe-d(·), which consists of two sub-networks, fe(·) and fd(·). Then, the pre-denoised images are
subtracted from the noisy observations to obtain the noise. Subsequently, we obtain the paired
noisy images by Cyclic Shift. Finally, we train the uncertainty-aware network fe-d-u(·) to learn the
denoising results and the uncertainty maps simultaneously. The small images in the upper right
corner are a visual representation of different types of images.

where the noise patches are independent of each other. Subsequently, we fix the order within the
group of X ′ and perform Cyclic Shift on N ′ twice. The detail of Cyclic Shift is to move the noise
block n′

∗ that is in the first position in N ′ to the end. Then, we can get N1
′ = {n′

B , n
′
C , n

′
D, n′

A}
and N2

′ = {n′
C , n

′
D, n′

A, n
′
B}. The paired noisy images are

Z1 = X ′ +N1
′,

Z2 = X ′ +N2
′,

(14)

in which

Z1 = {zA1, zB1, zC1, zD1},
Z2 = {zA2, zB2, zC2, zD2}.

(15)

Noisy images with the same letter in the subscript form paired noisy images (i.e., zA1 and zA2) with
the same pre-denoised image x′

∗ and i.i.d. noise.

4.3 STEP 3: UNCERTAINTY-AWARE DENOISING

We train the denoising network fe-d-u(·) with Z1 as the target and Z2 as the input (Figure 3 (Step
3)). fe(·) is used for extracting feature, and the two branches, fd(·) and fu(·) output the denoising
results and the uncertainty maps, respectively. In addition, we define θi = lnu2

i in Eq.(9) as the
output of fu(·) to avoid the existence of zero and negative values that cause the network to crash due
to the inability to calculate the logarithm with the following loss function,

LNIAU =
1

K

k∑
i=1

exp(−θi)
∥∥z1(i) − fe-d

(
z2(i)

)∥∥
2
+ λθi, (16)

where we set λ = 2 according to the Jeffreys prior Figueiredo (2001) to increase the sparsity of
the uncertainty maps. In this way, fe-d-u(·) can discriminate unseen noise or distractors presented in
the noisy images, thus giving the model better robustness. After training, we use fe-d(·) for testing
(Figure 3 (Inference)).
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Figure 4: (a) The ability of Cyclic Shift to significantly improve other denoising methods on
three datasets with Gaussian noise (σ = [5, 50]). Ours(·) indicates the improved results, i.e., “Ours
(N2V)” means that the N2V method uses the Cyclic Shift to construct sample pairs for training.
Note that N2N and N2C are the upper limit of all self-supervised denoising methods. (b) Visual
comparison of the improved denoising methods by Cyclic Shift on SET14 with Gaussian noise
(σ = [5, 50]). For better viewing, we show the difference between the denoising results and Clean
in colour.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Noise Type. For the experiments in sRGB space, ImageNet Deng et al. (2009) vali-
dation dataset is the training dataset. KODAK Rich Franzen (1999), BSD300 Martin et al. (2001),
and Set14 Zeyde et al. (2010) are the testing datasets. In grayscale experiments, we use the noisy
images from BSD400 Zhang et al. (2017) for training and Set12, BSD68 Roth & Black (2005) and
Urban100 Huang et al. (2015) for testing. Moreover, two types of Gaussian noise (σ = 25 and
σ ∈ [0, 55]) are considered in the above two experiments and the correlated noise is considered in
grayscale experiments. Besides, we take the raw-RGB images in the real-world from SIDD Abdel-
hamed et al. (2018) Medium dataset for training and the SIDD validation dataset for testing.

Training Details. The modified U-Net Wang et al. (2022) architecture is used for the experiments
on sRGB and raw-RGB datasets. We set batch size as 4 and use Adam Kingma & Ba (2014) as
the optimizer with a weight decay of 1e−8 to avoid overfitting. The initial learning rate is 3e−4 and
1e−4 for sRGB and raw-RGB denoising, respectively, and they decrease by half every 20 epochs for
100 training epochs. When training the uncertainty-aware denoising network, we set the learning
rate as 8e−5 for the sRGB experiments and 6e−5 for the raw-RGB experiments. In the experiments
with grayscale images, we train the DnCNN Zhang et al. (2017) with an initial learning rate of 3e−4.
The learning rate decreases by half every 30 epochs for 300 training epochs and remains constant
after 120 epochs.

5.2 CYCLIC SHIFT IMPROVES SOTA DENOISING METHODS

Here, we demonstrate that Cyclic Shift can significantly improve the denoising performance of
SOTA methods. We choose three representative SOTA denoising methods, N2V, NBR, and B2UB,
where B2UB has achieved SOTA performance recently. Figure 4 (a) clearly shows that the Cyclic
Shift significantly improves the denoising performance of the three methods. These results well
demonstrate the effectiveness of Cyclic Shift. Note that Cyclic Shift does not requiring any ad-
ditional computation when embedding into existing denoising methods. The visual comparison
of the improved denoising methods with the original methods is shown in Figure 4 (b). It intu-
itively demonstrates that the Cyclic Shift can improve the denoising performance for most of the
self-supervised denoising methods, especially the N2V-like models and the models that cannot syn-
thesize aligned paired noisy images like NBR.
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Table 1: Quantitative denoising results (PSNR(dB)/SSIM) of different methods on sRGB dataset.
Bolded red and bolded black represents the highest and second highest results, respectively.

Noise
Type Dataset

Method Upper Bound

CBM3D S2S N2V Nr2N DBSN R2R NBR B2UB Ours
(NBR)

Ours
(B2UB) N2N N2C

Gaussian
σ = 25

KODAK 31.87/
0.868

31.28/
0.864

30.32/
0.821

30.70/
0.845

31.64/
0.856

32.25/
0.880

32.08/
0.879

32.27/
0.880

32.28/
0.882

32.35/
0.883

32.41/
0.884

32.43/
0.884

BSD300 30.48/
0.861

29.86/
0.849

29.34/
0.824

29.32/
0.833

29.80/
0.839

30.91/
0.872

30.79/
0.873

30.87/
0.872

30.93/
0.877

30.90/
0.875

31.04/
0.878

31.05/
0.879

SET14 30.88/
0.854

30.08/
0.839

28.84/
0.802

29.64/
0.832

30.63/
0.846

31.32/
0.865

31.09/
0.864

31.27/
0.864

31.10/
0.865

31.07/
0.864

31.37/
0.868

31.40/
0.869

Gaussian
σ ∈[5,50]

KODAK 32.02/
0.860

31.37/
0.860

30.44/
0.806 - 30.38/

0.826
31.50/
0.850

32.10/
0.870

32.34/
0.872

32.43/
0.874

32.45/
0.875

32.50/
0.875

32.51/
0.875

BSD300 30.56/
0.847

29.87/
0.841

29.31/
0.801 - 28.34/

0.788
30.56/
0.855

30.73/
0.861

30.86/
0.861

30.92/
0.864

30.89/
0.863

31.07/
0.866

31.07/
0.866

SET14 30.94/
0.849

29.97/
0.849

29.01/
0.792 - 29.49/

0.814
30.84/
0.850

31.05/
0.858

31.14/
0.857

31.33/
0.863

31.24/
0.861

31.39/
0.863

31.41/
0.863

Table 2: Experimental results (PSNR(dB)/SSIM) on three grayscale datasets. All methods in the
table are based on DnCNN. The B2UB method was not included in the comparison because the
official code runs poorly on grayscale images for denoising.

Noise
Type Dataset Method Upper Bound

N2V NBR Ours(N2V) Ours(NBR) N2N N2C

Gaussian
σ = 25

Urban100 26.82/0.793 27.85/0.815 27.67/0.818 28.26/0.833 28.86/0.854 28.91/0.859
BSD68 27.27/0.746 28.15/0.774 27.94/0.778 28.31/0.793 28.63/0.804 28.68/0.809
SET12 28.48/0.792 29.16/0.802 29.05/0.808 29.38/0.815 29.79/0.834 29.89/0.838

Gaussian
σ ∈ [5, 50]

Urban100 26.12/0.732 26.80/0.746 26.82/0.763 27.10/0.774 27.22/0.777 27.74/0.794
BSD68 27.25/0.722 27.96/0.743 27.78/0.746 28.19/0.762 28.40/0.766 28.72/0.781
SET12 28.11/0.753 28.57/0.766 28.65/0.774 28.89/0.788 29.08/0.790 29.54/0.814

5.3 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our CSU against eight self-supervised denoising methods, Self2Self (S2S) Quan et al.
(2020), Noise2Void (N2V) Krull et al. (2019), Laine19 (L19) Laine et al. (2019), Noisier2Noise
(Nr2N) Moran et al. (2020), DBSN Wu et al. (2020), R2R Pang et al. (2021), NBR2NBR (NBR)
Huang et al. (2021), and Blind2Unblind (B2UB) Wang et al. (2022), two upper bound methods, su-
pervised denoising (N2C) and Noise2Noise (N2N) Lehtinen et al. (2018), and a traditional denoiser
BM3D Dabov et al. (2007).

Results on sRGB Dataset. The quantitative comparison results are shown in Table 1. Obviously,
our method significantly outperforms all other methods in the experiments with Gaussian noise
σ = 25 and σ ∈ [5, 50], and are comparable to the two upper bound methods. The reason for the
improved denoising performance is that training the denoising network with pairs of noisy images
constructed using cyclic shifting avoids the problems of information underutilization and pixel mis-
alignment. We find that our method performs better based on NBR than based on B2UB on BSD300
and Set14. The reason for this phenomenon is that B2UB empirically fixes the weighted average
hyperparameter during the training process, which leads to a bias in the noise learned by the net-
work. This further leads to the paired noisy images synthesized by Cyclic Shift containing noise that
deviates from the actual distribution. For NBR, the degradation of denoising performance is mainly
caused by the misalignment of paired noisy images constructed by sub-sampling, which can be well
addressed by our method.

Results on Grayscale Dataset. In the grayscale images denoising experiments, we retrain N2C,
N2N, and two self-supervised methods, N2V and NBR, based on DnCNN Zhang et al. (2017).
The quantitative denoising results are shown in Table 2. The results demonstrate that the proposed
method achieves the best denoising performance. Moreover, we find that the denoising performance
of ours CSU based on N2V is better than that of NBR in SSIM metric. We analyze the reasons for
this phenomenon are twofold. 1) CSU compensates for this severe problem of missing information
in the blind-spot-based methods. 2) There is a pixel bias in the paired noisy images obtained by
sub-sampling in NBR, resulting in the over-smoothed results of the denoising network. In addition,
to demonstrate that our method not only achieves excellent performance in removing Gaussian noise
but also in handling noisy datasets with spatially correlated noise, we synthesize the noisy images

8
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Table 3: Denoising results (PSNR(dB)/SSIM) on SIDD validation dataset in raw-RGB space.

Dataset
Method Upper Bound

BM3D N2V L19-mu
(Gaussian)

L19-pme
(Gaussian)

L19-mu
(Poisson)

L19-pme
(Poisson) DBSN R2R NBR B2UB Ours

(NBR) N2N N2C

SIDD
Validation

48.92/
0.986

48.55/
0.984

50.44/
0.990

42.87/
0.939

50.89/
0.990

48.98/
0.985

50.13/
0.988

47.20/
0.980

51.06/
0.991

51.36/
0.992

51.07/
0.991

51.21/
0.991

51.19/
0.991

(a) Comparison of the robustness.

Clean Noisy 14.81 N2V 21.47

NBR 22.21 B2UB 23.21 Ours 25.02

(b) Visual comparison.

Figure 5: (a) Comparison of the robustness of different methods on KODAK and BSD300. All
methods are trained with noisy images containing Gaussian noise (σ = 25) and tested with noisy
images containing different intensities of Gaussian noise. (b) Visual comparison of the robustness
of different denoising methods on SET14 (bottom values is PSNR). It shows the denoising results
of these methods, trained with noisy images containing Gaussian noise (σ = 25) and tested with
noisy images containing Gaussian noise (σ = 50).

using the way proposed by GAN2GAN Cha et al. (2020). The experimental results and details can
be viewed in the Appendix.

Results on Raw-RGB Dataset. Table 3 indicates that our method achieves the second-best de-
noising performance. It is to be expected because the theoretical upper limit of our method is N2N,
which is analyzed in the theoretical contributions section. We note that the denoising result of B2UB
is higher than N2N and N2C, which is caused by interpolating the noisy image before sampling in
B2UB. This approach is essentially a data enhancement technique and provides the network with
more available information. Moreover, the SIDD dataset contains multiple noisy images of the same
scene, which somewhat compensates for the lack of information during training.

5.4 UNCERTAINTY ENHANCES ROBUSTNESS OF DENOISING

We use the following strategy to investigate the robustness of different denoising models. The
denoising network is trained using the noisy images with fixed Gaussian noise (σ = 25), and the
denoising performance is quantified by providing images with different intensities of Gaussian noise.
There are five methods for comparison N2V, NBR, B2UB, “Ours w/o U”, and Ours (CSU). “U”
denotes the uncertainty loss LNIAU and “Ours w/o U” indicates that our method uses the MSE loss
instead of LNIAU when training the uncertainty-aware denoising network. As shown in Figure 5 (a),
our method models and estimates the uncertainty in the dataset resulting in a smoother degradation
trend for the denoised network than other methods, which means that the model can make informed
choices in the face of unseen noise. Moreover, the visual comparison of different methods are shown
in Figure 5 (b), which shows that our model incorporating uncertainty performs better than others in
dealing with unseen noise.

6 CONCLUSION

We propose a novel strategy, Cyclic Shift, to construct sample pairs for self-supervised image de-
noising learning. It can extensively boost existing self-supervised denoising methods without addi-
tional computational cost and does not rely on complex network structures, making it more practical.
In addition, we introduce the uncertainty-aware loss to improve the perception of noise intensity as
well as the robustness of the denoising network. By integrating both them, our CSU method achieves
the state-of-the-art denoising performance on multiple datasets.
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A EXPERIMENTAL RESULTS ON CORRELATED NOISE

For correlated noise, we generated the following noise for each ℓ-th pixel using the rules proposed
by GAN2GAN Cha et al. (2020),

Nℓ = ηMℓ + (1− η)

(
1√

|NBℓ|

∑
m∈NBℓ

Mm

)
, ℓ = 1, 2, . . . (17)

in which {Mℓ} are white Gaussian N (0, σ2), NBℓ is the k × k neighborhood patch except for the
pixel ℓ, and η is a mixture parameter. We set η = 1/

√
2 such that the marginal distribution of Nℓ

is also N (0, σ2) and set k = 16. Note in this case, Nℓ has a spatial correlation, and we tested
with σ = 15. The results of six denoising methods are shown in Table 4. The experimental results
illustrate that our method has better denoising performance in dealing with spatially correlated noise
than other self-supervised denoising methods.

Table 4: Experimental results (PSNR(dB)/SSIM) on three grayscale datasets. All methods in the
table are based on DnCNN. The B2UB method was not included in the comparison because the
official code runs poorly on grayscale images for denoising. Bolded red and bolded black represents
the highest and second highest results, respectively.

Noise
Type Dataset Method Upper Bound

N2V NBR Ours(N2V) Ours(NBR) N2N N2C

Correlated
σ = 15

Urban100 28.73/0.8708 30.05/0.8783 29.97/0.8893 30.52/0.8909 31.48/0.9103 31.42/0.9072
BSD68 28.73/0.8410 30.01/0.8679 29.96/0.8732 30.25/0.8776 31.20/0.9032 31.23/0.9053
SET12 29.98/0.8682 30.62/0.8783 30.75/0.8857 30.82/0.8914 31.90/0.9019 31.93/0.9044

B ABLATION STUDY

Table 5 shows the influence of our two modules, Cyclic Shift (C) and LNIAU (U) in sRGB space.
“Ours w/o C, U” means the denoising network for getting pre-denoised images. The data in Table
5 indicates that the improvement of the network denoising performance is mainly due to the paired
noisy images with the same scene synthesized by Cyclic Shift, and LNIAU has a slight improvement
in the denoising performance.

Table 5: Ablation study on the two components Cycle Shift (C) and LNIAU (U) in the sRGB space
with Gaussian noise σ = 25. Bolded black means the best PSNR/SSIM.

Method KODAK BSD300 SET14
Ours w/o C, U 32.265/0.8796 30.809/0.8742 30.968/0.8635
Ours w/o U 32.348/0.8828 30.929/0.8760 31.099/0.8643
Ours 32.350/0.8831 30.933/0.8767 31.102/0.8647

C VISUAL COMPARISON
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Clean

Noisy
N2C

28.87/0.8990
N2N

28.86/0.8938
N2V

26.81/0.8574
NBR

27.92/0.8553
Ours(N2V)
27.92/0.8554

Ours(NBR)
28.33/0.8735

Clean

Noisy
N2C

26.89/0.8128
N2N

26.86/0.8100
N2V

24.72/0.7388
NBR

26.24/0.7798
Ours(N2V)
25.68/0.7773

Ours(NBR)
26.59/0.8035

Figure 6: Visual comparison of denoising grayscale images in the setting of Gaussian noise (σ = 25)
on Urban100. For better viewing, we show the difference between the denoising results and Clean
in colour.

Clean

Noisy
N2C

35.08/0.9162
N2N

34.85/0.9090
N2V

32.68/0.8878
NBR

34.19/0.8885
Ours(N2V)
33.82/0.8777

Ours(NBR)
34.41/0.8916

Clean

Noisy
N2C

35.48/0.9157
N2N

34.65/0.8961
N2V

33.55/0.8713
NBR

34.55/0.8882
Ours(N2V)
34.38/0.8849

Ours(NBR)
34.70/0.8974

Figure 7: Visual comparison of denoising grayscale images in the setting of Gaussian noise (σ ∈
[5, 50]) on BSD68. For better viewing, we show the difference between the denoising results and
Clean in colour.
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Clean

Noisy
N2C

31.35/0.8448
N2N

31.35/0.8446
NBR

31.09/0.8380
B2UB

31.09/0.8377
Ours(NBR)
31.28/0.8431

Ours(B2UB)
31.22/0.8421

Clean

Noisy
N2C

31.23/0.9173
N2N

31.24/0.9174
NBR

30.73/0.9107
B2UB

30.97/0.9131
Ours(NBR)
31.05/0.9145

Ours(B2UB)
31.14/0.9153

Figure 8: Visual comparison of denoising sRGB images in the setting of Gaussian noise (σ = 25)
on BSD300. For better viewing, we show the difference between the denoising results and Clean in
colour.

Clean

Noisy
N2V

30.14/0.7726
NBR

30.51/0.7833
B2UB

30.64/0.7873
Ours(N2V)
30.44/0.7831

Ours(NBR)
30.54/0.7850

Ours(B2UB)
30.71/0.7886

Clean

Noisy
N2V

32.54/0.9530
NBR

33.35/0.9689
B2UB

33.94/0.9701
Ours(N2V)
33.45/0.9655

Ours(NBR)
33.89/0.9705

Ours(B2UB)
33.99/0.9703

Figure 9: Visual comparison of denoising sRGB images in the setting of Gaussian noise (σ ∈ [5, 50])
on SET14. For better viewing, we show the difference between the denoising results and Clean in
colour.
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