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Summary
We introduce WOFOSTGym, a novel crop simulation environment designed to train rein-

forcement learning (RL) agents to optimize agromanagement decisions for annual and peren-
nial crops in multi-farm settings. Effective crop management requires optimizing yield and
economic returns while minimizing environmental impact, a complex sequential decision-
making problem well suited for RL. However, the lack of simulators for perennial crops in
multi-farm contexts has hindered RL applications in this domain. Existing crop simulators also
do not support multiple annual crops. WOFOSTGym addresses the shortcomings of available
crop simulators by supporting 23 annual crops and two perennial crops, enabling RL agents
to learn diverse agromanagement strategies in multi-year, multi-crop, and multi-farm settings.
Our simulator offers a suite of challenging tasks for learning under partial observability, non-
Markovian dynamics, and delayed feedback. Our extensive experiments across a wide variety
of crops in single and multi-farm settings, including the constrained optimization tasks that
arise in agriculture, demonstrate the learning capabilities and challenges of RL and imitation
learning agents. The experiments highlight WOFOSTGym’s potential for advancing core RL
research and RL-driven decision support in agriculture.

Contribution(s)
1. We introduce WOFOSTGym, an RL simulator built on the WOFOST crop growth model,

designed for developing agromanagement policies across multiple annual and multi-season
perennial crops, advancing AI-driven decision support in agriculture.
Context: Existing crop simulators do not support perennial crops or multiple annual crops.
WOFOSTGym addresses this gap, enabling users without agricultural expertise to create
experiments with multiple farms and multiple crops, across a range of tasks with varying
observability to reflect real world sensing challenges.

2. We modify the WOFOST crop growth model (CGM) to simulate the growth of perennial
crops across multiple growing seasons, and update WOFOST nutrient modules to be able
to investigate the impact of agromanagement decisions on the surrounding environment.
Context: Bai et al. (2019) used the WOFOST crop growth model (CGM) to model the
growth of the perennial jujube tree across multiple seasons. Inspired by their work, we
modified the WOFOST CGM to support perennial growth within WOFOSTGym, and to
model continuous multi-year growth with the addition of a dormancy phase.

3. We apply Bayesian Optimization to calibrate the parameters of the WOFOST CGM to in-
crease model fidelity and compare our results with those of an existing work that collected
phenology data for 10 grape cultivars.
Context: High-fidelity CGMs are essential for sim-to-real transfer in open-field agricul-
ture, but parameter calibration is challenging and time-consuming. Traditional agronomic
methods rely on linear regression or Monte Carlo sampling. In contrast, our Bayesian Opti-
mization approach provides a more efficient, principled search of the CGM parameter space,
achieving comparable or superior results with fewer computations and limited field data.
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Abstract

We introduce WOFOSTGym, a novel crop simulation environment designed to train1
reinforcement learning (RL) agents to optimize agromanagement decisions for annual2
and perennial crops in single and multi-farm settings. Effective crop management re-3
quires optimizing yield and economic returns while minimizing environmental impact,4
a complex sequential decision-making problem well suited for RL. However, the lack5
of simulators for perennial crops in multi-farm contexts has hindered RL applications6
in this domain. Existing crop simulators also do not support multiple annual crops.7
WOFOSTGym addresses these gaps by supporting 23 annual crops and two perennial8
crops, enabling RL agents to learn diverse agromanagement strategies in multi-year,9
multi-crop, and multi-farm settings. Our simulator offers a suite of challenging tasks for10
learning under partial observability, non-Markovian dynamics, and delayed feedback.11
WOFOSTGym’s standard RL interface allows researchers without agricultural exper-12
tise to explore a wide range of agromanagement problems. Our experiments demon-13
strate the learned behaviors across various crop varieties and soil types, highlighting14
WOFOSTGym’s potential for advancing RL-driven decision support in agriculture.15

1 Introduction16

During a growing season, farmers face many decisions about how to optimally manage their crops17
to increase yield while reducing cost and environmental impact (Javaid et al., 2023). For example,18
irrigation planning must account for constraints on water use, and optimal irrigation scheduling can19
improve crop yield (Elliott et al., 2014). Motivated by the promising results of using reinforcement20
learning (RL) in other areas of precision agriculture, there is increasing interest from researchers21
and government agencies in applying RL to crop management decision problems in open-field agri-22
culture, especially for perennial crops (e.g. pears, grapes) (Astill et al., 2020; Gautron et al., 2022a).23

Agriculture presents key challenges for RL, making it a valuable testbed for research: (1) delayed24
feedback—actions like fertilization affect yield only months later, complicating credit assignment;25
(2) sparse rewards—since yield is only known at the episode’s end, learning an optimal policy is26
difficult (Vecerik et al., 2018); and (3) partial observability—many crop and soil states are unmea-27
surable or costly to obtain. While RL has been explored as a tool for optimizing open-field crop28
management decisions (Wu et al., 2022; Tao et al., 2023), its real-world adoption is limited to con-29
trolled settings such as greenhouses (An et al., 2021; Wang et al., 2020) and crop monitoring (Din30
et al., 2022; Zhang et al., 2020). We bridge this gap by presenting a simulator for annual and peren-31
nial crops in single and multi-farm settings.32

Training RL agents in the real world to optimize agromanagement decisions is infeasible because33
growing seasons are too long, and unconstrained exploration can cause costly errors like crop death34
and soil degradation (Tevenart & Brunette, 2021). Similar challenges in robotics and autonomous35
driving have been addressed with high-fidelity simulators, enabling RL applications (Kober et al.,36
2013; Kiran et al., 2022; Dauner et al., 2024; Todorov et al., 2012). While high-fidelity crop growth37
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Figure 1: The structure and visualization of the WOFOSTGym simulator. WOFOSTGym provides
an API around the WOFOST Crop Growth Model with a variety of environments to train RL agents
and generate data. Well documented configuration files control crop and soil dynamics.

models (CGMs) (Boote et al., 1996) offer an approach to testing crop management policies, they are38
not designed to interact with RL algorithms and require substantial domain expertise.39

Existing agriculture simulators (Gautron et al., 2022b) only simulate the growth of a single annual40
crop. They lack the functionality needed for perennial crop management as they do not capture crop41
growth across multiple years, including the dormant season (Forcella, 1998) (see Table 1). More-42
over, these simulators cannot be customized to study other crops or sites without domain knowledge43
of the underlying CGM and cannot learn joint agromanagement policies for multiple farms. Open-44
field agriculture problems are often modeled as a partially observable environment, but the current45
crop simulators do not allow for varying the number of hidden features for partial observability and46
do not support the creation of a wide range of agromanagement tasks across crop and soil types,47
which limit the scenarios that can be modeled (Tao et al., 2023).48

We present WOFOSTGym (see Figure 1), a crop simulator for learning annual and perennial crop49
management strategies across single and multiple farms. WOFOSTGym is built on the WOFOST50
CGM (van Diepen et al., 1989) to model the growth of perennial crops, and includes parameter sets51
for 23 annual crops and two perennial crops. Each crop contains between one and ten varieties. As a52
step towards high-fidelity modeling of perennial crop growth, we employ a Bayesian Optimization53
based method to calibrate CGM parameters to increase the fidelity of the phenological model for54
32 grape cultivars. To make WOFOSTGym accessible to RL researchers, we prioritize usability55
through extensive customization, seamless integration with standard RL algorithms, and a thorough56
documentation at anonymized site https://wofostgym.github.io/wofost-docs/.57

Our experiments highlight scenarios in WOFOSTGym where standard RL algorithms and imitation58
learning (IL) agents achieve optimal performance, alongside more complex cases that remain dif-59
ficult, underscoring opportunities for advancing learning approaches in agromanagement for both60
annual and perennial crops. We also design agromanagement decision-making tasks in WOFOS-61
TGym that illustrate both the potential and challenges of applying RL to agriculture, positioning62
WOFOSTGym as a rigorous testbed for developing and evaluating new algorithms.63

2 Background and Related Work64

This section briefly describes the POMDP framework used for modeling our problems, and an65
overview of existing crop simulators and crop growth models.66

Partially Observable Markov Decision Process We formulate our agromanagement problems67
using the framework of partially observable Markov decision process (POMDP) (Kaelbling et al.,68
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WOFOSTGym

Name
Perennial Crop

Support
Multiple Crops

and Farms
Easily

Customizable
Models Crop
Sub-processes

CyclesGym ✗ ✗ ✓ ✓

CropGym ✗ ✗ ✗ ✓

gym-DSSAT ✗ ✗ ✗ ✓

FarmGym ✗ ✗ ✓ ✗

WOFOSTGym (Ours) ✓ ✓ ✓ ✓

Table 1: Comparison of available crop simulators based on four important desiderata for use with
RL. A simulator is easily customizable if it does not require agriculture domain expertise to run
different experiments. Modeling crop sub-processes (phenology, roots, stems, leaves, etc.) as it
generally leads to a higher fidelity model.

1998). POMDPs are well-suited for open-field agriculture problems, since many crop and soil-69
related features that are essential for defining the system’s full state cannot be directly observed (Tao70
et al., 2023). Formally, a POMDP is a tuple M = ⟨S,A,P,R,Ω,O⟩ where S is a set of states, A is71
a set of actions, P : S × A× S → [0, 1] is the transition kernel, and R : S × A → R is the reward72
function. Ω is the set of possible observations and O : S × A × Ω → [0, 1] is the probability of73
obtaining observation o when taking action a in state s. A reward discount factor γ determines the74
importance of immediate versus future rewards. The RL agent computes a policy π : Ω×A → [0, 1]75

that maximizes the expected sum of discounted rewards, Eρπ

[∑T
t=0 γ

tR(st, at)
]
, where ρπ is the76

distribution of states and actions induced by the policy π and T is the time horizon.77

RL for Crop Management Building on RL’s success in robotics, autonomous driving, and health-78
care, there is growing interest in applying RL to optimize crop yield (Binas et al., 2019). While RL79
has proven effective in controlled greenhouse environments (An et al., 2021), its application in open-80
field agriculture remains limited due to reduced sensing capabilities and long growing seasons. Tao81
et al. (2023) proposed an imitation learning approach to learn expert actions under partial observ-82
ability, but it has not been tested in the real-world. To bridge this gap, several crop simulators have83
been developed. CropGym simulates winter wheat in a nitrogen-limited soil via a Gym wrapper84
around a CGM (Overweg et al., 2021). Gym-DSSAT focuses on maize growth optimization through85
fertilization and irrigation decisions (Gautron et al., 2022b). CyclesGym, built around the Cycles86
CGM (Kemanian et al., 2022), focuses on learning crop rotation strategies for annual crops but is87
limited to soybeans and maize, lacking support for perennial crop modeling (Turchetta et al., 2022).88
Table 1 summarizes the capabilities of different crop simulators.89

Existing crop simulators support RL training for fertilization and irrigation but lack support for90
perennial crops, a key research area (Gautron et al., 2022a). Additionally, customization is infeasi-91
ble without expert knowledge of the underlying CGMs, since most CGMs are run through separate92
executables. In contrast, WOFOSTGym offers easy domain customization for RL researchers while93
providing high-fidelity parameters for 23 annual and two perennial crops, high-fidelity model pa-94
rameters for grape phenology for 32 cultivars, and access to diverse soil types and weather patterns.95

Crop Growth Models Crop Growth Models (CGMs) simulate the growth of crops in varying en-96
vironments subject to different agromanagement decisions (Jones et al., 2017). Examples of widely-97
used CGMs include WOFOST (de Wit et al., 2019), DSSAT (Jones et al., 2003), APSIM (McCown98
et al., 1996), EPIC (Cabelguenne et al., 1990), CropSyst (Stockle et al., 1994), Cycles (Kemanian99
et al., 2022) and AquaCrop (Andarzian et al., 2011). None of the available CGMs support perennial100
crops. The relevant features of these CGMs are highlighted in the Supplementary Materials.101

Our simulator is built on WOFOST, a CGM that models annual crop growth subject to nutrient102
(nitrogen, phosphorus, and potassium) and water-limited conditions (van Diepen et al., 1989). We103
choose WOFOST CGM since it can model the growth of perennial crops with a high fidelity (Bai104
et al., 2020; Shi et al., 2022). It also accounts for varying CO2 concentrations, making it valuable105
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for climate-impacted agricultural research (Gilardelli et al., 2018). Additionally, its modular de-106
sign facilitates modifications to crop process models (de Wit, 2024), and its Python implementation107
enables seamless integration with OpenAI Gym (Brockman et al., 2016).108

3 WOFOSTGym109

WOFOSTGym is built on the WOFOST CGM (van Diepen et al., 1989) and interfaces with the110
OpenAI Gym API to create a high-fidelity and easy-to-use crop simulator for RL. Agromanagement111
decisions supported in WOFOSTGym are: fertilizing, irrigating, planting, and harvesting. In the112
interest of clarity, we focus on fertilization and irrigation decisions in the rest of the paper, since113
these tasks are supported by all existing crop simulators. In these tasks, the agent must optimize114
fertilization and irrigation strategies that maximize the cumulative yield of a crop subject to a set of115
penalties or constraints over one or more growing seasons and across one or more farms.116

The rest of this section is organized as follows. We begin with an overview of the environment117
design. We then propose a model calibration method to fine-tune the model parameters of the118
WOFOST CGM to increase the fidelity as a step towards sim-to-real transfer (Peng et al., 2018).119

3.1 Environment Design120

A WOFOSTGym instance is defined by its Gym environment ID, the reward wrapper, and an agro-121
management configuration file. WOFOSTGym contains 54 Gym environments that relate to annual122
and perennial crop simulation, single and multi-farm simulations, and six combinations of nutrient-123
limited environments. Our documentation includes three examples on how to modify the reward124
function, if needed, via the Gym reward wrappers. The agromanagement YAML file defines crop125
and soil dynamics and specifies the weather data which is provided by NASAPower. Gym envi-126
ronments, reward wrappers, and agromanagement files are configurable, allowing customization to127
simulate agromanagement decision problems across various crops, farms, and tasks.128

States and Observations The model state in WOFOSTGym is the concatenation of two feature129
vectors, c = (c1 . . . c203) and w = (w1, . . . , w7), where c contains the crop and soil state and w130
contains the weather state for a given day. However, most of these state features are not directly131
observable in the real-world. Thus, the state features available to the RL agent are a subset of the132
model state as observation o = (c1, ..., cn), with n ≪ 210. An observation could be: o = (Weight133
of Storage Organs, Development Stage, Leaf Area Index, Soil Moisture Content, Rainfall, Solar134
Irradiation, Daily Temperature). WOFOSTGym supports any combination of state features as an135
observation. In the multi-farm environments, the agent receives an observation for each farm and136
the daily weather observation is shared across farms.137

Action Space WOFOSTGym’s action space consists of fertilization (F): nitrogen (n), phosphorus138
(p), and potassium (k), and irrigation (I) actions. At each time step, an action can be chosen from139
A = {Fn, Fp, Fk, I} which corresponds to applying fertilizer (Fi) or water (I) in the following140
amounts, where f , n, i, and m can all be modified:141

Fi =
{
f · k kg

ha

∣∣∣k ∈ {0 . . . n}
}
, I =

{
i · k cm

ha

∣∣∣k ∈ {0 . . .m}
}

142

meaning that |A| = 3n+m. By default, a time step represents a single day, but can be modified to143
denote multiple weeks to model the varying length between agromanagement decisions.144

Reward Real-world agriculture requires balancing yield with constraints such as fertilizer costs,145
water usage limits, and surface runoff restrictions. WOFOSTGym includes reward wrappers to146
penalize the violation of these constraints. By default, positive reward is a function of crop yield,147
as profitability is the primary driver of agromanagement policy adoption (Turchetta et al., 2022).148
However, to enable wide configurability, WOFOSTGym’s reward wrapper design enables the reward149
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to be any function of the entire state space. An example reward function in WOFOSTGym is:150
Rt = Yield−C · (Ft + It), where C is a constant that modifies the penalty for nutrient application.151

Domain Randomization Domain randomization enables successful sim-to-real transfer (Mehta152
et al., 2020), a key feature missing from existing crop simulators. WOFOSTGym supports three153
types of domain randomization, which can be used individually, in combination, or not at all. They154
are: 1) adding small amounts of random uniform noise to parameters in the WOFOST GGM, 2)155
allowing RL agents to train on different crops and soil types simultaneously, and 3) enabling RL156
agents to train on a wide breadth of historical weather data.157

Available Crops and Modifications to WOFOST WOFOSTGym includes parameters for 23 an-158
nual crops and 2 perennial crops which were all calibrated empirically from field data (de Wit, 2025;159
Wang et al., 2022; Bai et al., 2019). For perennial crops, it is insufficient to model individual seasons160
of crop growth, as important agromanagement decisions are made during the dormant season (For-161
cella, 1998). It is more appropriate to model growth over multiple consecutive years, which requires162
modification to the phenology, crop organ, and nutrient balance modules WOFOST. We outline the163
modifications made to WOFOST and list all available crops in the Supplementary Materials.164

3.2 Parameter Calibration for Crop Growth Models165

Before a CGM can be used for sim-to-real transfer with RL, it must be calibrated (Bhatia, 2014).166
CGM parameters are typically derived from field experiments and optimized using regression to167
find the best fit (Berghuijs et al., 2024; Zapata et al., 2017). Parameter spaces for CGMs are high-168
dimensional and highly non-linear (Sinclair & Seligman, 2000), so brute force and regression tech-169
niques that are commonly used in agronomy research may be insufficient to find an optimal so-170
lution. To overcome the limitations in current CGM calibration methods, we propose a Bayesian171
optimization approach that requires minimal domain knowledge and outperforms the regression-172
based methods. When historical crop data is available, Bayesian optimization is a more principled173
way of exploring the parameter space to increase the model fidelity of WOFOSTGym.174

Example: Bayesian Optimization for Grape Phenology Calibration Grape phenology is di-175
vided into three key phenological stages: Bud Break, Bloom, and Veraison (Lorenz et al., 1995).176
Accurately predicting the onset of a phenological stage allows growers to implement effective agro-177
management strategies, and the Root Mean Squared Error (RMSE) is the widely accepted measure178
of performance in grape phenology modeling (Parker et al., 2013). We use an iterative optimiza-179
tion process that uses Bayesian optimization in each iteration to refine parameters and minimize180
error across all phenological stages. Phenology in WOFOSTGym is described by a set of seven181
parameters, θ. Each iteration aligns with minimizing RMSE for a stage k, where θk is a subset of θ.182

Using a dataset of six to 15 years of historical weather and phenology observations per cultivar183
collected by Zapata et al. (2017), we define the following loss function for Bayesian Optimization:184

LRMSE(θk) =

√
1
n

n∑
i=1

(
P k
i (θk)−Ok

i

)2
+ 1

n

n∑
i=1

(
P k−1
i (θk)−Ok−1

i

)2
185

where P k
i (θk) and Ok

i denote the predicted and observed onset day for phenological stage k for186
year i with parameter set θk. We run three iterations of Bayesian optimization (Noguiera, 2014)187
with a RBF kernel and the expected improvement acquisition function for 500 steps. By retaining188
the best-fit parameters found by each iteration, we obtain θ = {θBud Break, θBloom, θVeraison}, which189
minimizes the RMSE across all phenological stages. We compare our Bayesian Optimization results190
with Zapata et al. (2017) who use linear regression. They find parameter sets for grape phenology,191
BB-Tb and BL-Tb, that aim to minimize the error for Bud Break and Bloom, and report the RMSE192
for all stages. Our results in Table 2 show that our model outperforms others, providing a 10%193
reduction in RMSE over the next best parameter set, BB-Tb.194
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Cultivar Bud Break Bloom Veraison Cumulative Error
Ours BB-Tb BL-Tb Ours BB-Tb BL-Tb Ours BB-Tb BL-Tb Ours BB-Tb BL-Tb

Cabernet Franc 4.0 6.1 6.2 3.5 3.1 2.9 7.7 6.7 7.1 15.2 15.9 16.2
Cabernet Sauvignon 5.0 8.7 10.5 5.2 5.8 5.7 9.8 6.6 7.0 20.0 21.1 23.2
Malbec 3.7 5.6 6.2 2.8 3.2 2.9 8.3 5.7 6.0 14.8 14.5 15.1
Pinot Noir 3.6 4.2 3.9 2.4 2.6 2.3 8.6 6.6 7.7 14.6 13.4 13.9
Zinfandel 3.7 6.8 9.0 3.8 4.3 4.0 6.0 4.1 3.8 13.5 15.2 16.8
Chardonnay 7.2 6.3 5.9 4.1 3.7 3.2 7.8 5.6 5.9 19.1 15.6 15.0
Chenin Blanc 5.0 6.1 6.2 3.8 4.8 4.6 8.5 9.2 9.4 17.3 20.1 20.2
Sauvignon Blanc 3.4 6.4 5.7 5.9 3.7 3.5 1.6 7.7 8.5 10.9 17.8 17.7
Semillon 4.7 6.0 7.0 2.7 6.0 5.8 8.8 11.2 11.6 16.2 23.2 24.4
Riesling 3.7 4.2 5.7 3.8 4.1 3.7 8.5 8.5 9.0 16.0 16.8 18.4

Average 4.4 6.0 6.6 3.8 4.1 3.9 7.4 7.2 7.6 15.6 17.3 18.1

Table 2: RMSE in days when predicting the key phenological stages (Bud Break, Bloom, and Ve-
raison) in ten grape cultivars. The columns represent the RMSE between the model’s predicted
phenology for a given parameterization and the observed phenology. Ours: Using parameter set
tuned with Bayesian Optimization. BB-Tb: Parameter set tuned for Bud Break. BL-Tb: Parameter
set for Bloom. Values for BB-Tb and BL-Tb are columns 2 and 3 in Table 6 in Zapata et al. (2017).

The 32 calibrated grape phenology parameterizations included in WOFOSTGym increase model195
fidelity and represent a step towards sim-to-real transfer for crop management policies in open-field196
agriculture. Grape growers can use the high-fidelity phenology models in WOFOSTGym as a digital197
twin to examine the effects of different agromanagement policies on their grape vines without the198
risk of crop loss. As more crop data becomes widely available, our Bayesian optimization method199
can be used to calibrate CGM parameters to more accurately model a variety of crop processes.200

4 Experiments and Results201

To illustrate the use of WOFOSTGym, we run RL and IL experiments on diverse tasks to learn202
crop management policies for annual and perennial crops under realistic constraints. We present203
results using varied crops and soil types, demonstrating WOFOSTGym’s customizability. Overall,204
our results show that off-the-shelf RL algorithms struggle with hard constraints, long horizons, and205
delayed feedback—challenges inherent to agriculture and captured by WOFOSTGym, making it a206
valuable platform for both core RL research and agromanagement decision support.207

Our crop selection was guided by common agronomic challenges: wheat and barley for nutrient-208
limited growth due to their high nitrogen and water demands, and potatoes for soil nutrient runoff209
risks. We also test with pears and jujubes for the long-horizon decision-making challenges in peren-210
nial crop management, and maize as it is the only crop supported by other simulators.211

Agents in our experiments can choose from 16 actions, each corresponding to one of four discrete212
amounts of nitrogen, phosphorus, potassium, and water. Unless otherwise noted, the agent observes213
the state features: development stage; weight of storage organs; total nitrogen, phosphorus, potas-214
sium, and water applied; soil moisture content; nitrogen, phosphorus, and potassium in subsoil;215
solar irradiation; average temperature; and rainfall. For our RL experiments, we use PPO, SAC,216
and DQN (Schulman et al., 2017; Haarnoja et al., 2018; Mnih et al., 2013), using implementations217
from Huang et al. (2021) and hyperparameters tuned experimentally to yield best performance in the218
WOFOSTGym domain. For our IL experiments, we use implementations from Gleave et al. (2022)219
of BC, GAIL, and AIRL (Bain & Sammut, 2000; Ho & Ermon, 2016; Fu et al., 2018). GAIL and220
AIRL use a PPO policy, and BC uses an Actor Critic Policy, all written by Raffin et al. (2021). All221
experiments and code can be found on Google Drive: https://shorturl.at/DbLYf.222

Learning Efficiency Figure 2 presents learning curves for maximizing jujube growth over three223
seasons and wheat over one season in WOFOSTGym. We compare RL performance against the224
maximum potential yield and an agromanagement policy that alternates nitrogen fertilization and ir-225
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Figure 2: Unconstrained Control. The average reward, as seasonal yield, of different policies. The
BiWeekly NW policy alternates applying nitrogen and water biweekly while the Wheat Potential is
the maximum growth obtainable. We omit the Jujube Potential because it assumes daily intervention,
while we only allow biweekly intervention.

rigation biweekly. In the wheat experiment, the RL algorithms significantly outperform the baseline226
of a bi-weekly nitrogen and water application policy but fall short of reaching the potential pro-227
duction of an unlimited nutrient setting. For jujube, we see that RL agents are unable to match the228
performance of a monthly nitrogen and water application policy. These examples show the potential229
for off-the-shelf RL algorithms to achieve non-trivial performance for some crop scenarios, but also230
indicate that there is significant room for improvement in others.231

Learning Under Constraints In the real world, yield maximization is always subject to multiple232
constraints, such as a limit on the amount of fertilizer and water that can be applied per season. To233
model this, we reward total yield and apply a large negative penalty if the fertilization and irrigation234
thresholds (in kg/ha and cm/ha) are exceeded. Figure 3 shows the results of RL algorithms with this235
reward function; positive reward indicates no constraint violation, rewards less than zero indicate a236
constraint violation, and rewards less than −105 indicate more than 5 constraint violations. Note that237
unlike the previous experiment, there is no principled way to find the maximum reward obtainable in238
this setting. We compare the RL agents to a baseline that applies nitrogen fertilizer and water until239
it meets the same thresholds of 80 kg/ha of fertilizer or 40 cm/ha of water (Bushong et al., 2016).240
While this baseline satisfies constraints, it achieves a lower average reward than the trained RL241
agents. It is clear that this simple approach to handling constraints is insufficient for such real-world242
crop scenarios, which shows WOFOSTGym’s potential as a testbed for constrained RL research.243

Figure 3: Constrained Control. (Left) The running average of the reward during training. (Right)
The likelihood of fertilization or irrigation action each week. Likelihoods were computed over 30
episodes with darker colors signifying more likely nutrient application.

Effect of Partial Observability on Constraint Adherence Limitations on sensing capabilities244
are a constant source of uncertainty in agromanagement decisions. To illustrate the effects of par-245
tial observability in WOFOSTGym, we consider two relevant state features, RAIN and TOTN, the246
daily rainfall and fertilizer on the soil surface, respectively, and create four partially observable en-247
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Figure 4: Constrained Control Under Partial Observability. The average reward of PPO agents
during training and the average days of runoff after completing training over 15 seasons.

vironments based on the omission of the two variables from the observation space. We design a248
reward function that rewards crop yield subject to a −104 penalty if nutrient runoff occurs. Nutrient249
runoff happens when fertilizer amasses on the soil surface and irrigation or rainfall occur. We train250
a PPO agent to grow the potato crop in each environment and show the results in Figure 4. Access251
to all relevant features improves constraint adherence of an agent policy. However, even in the fully252
observable case, constraint satisfaction is not guaranteed, exhibited by the non-zero days of runoff253
on average. Future research could use WOFOSTGym to study constraint adherence in partially254
observable environments, and also inform the importance of obtaining costly field measurements.255

Imitation Learning for Agromanagement Decisions IL has been proposed as a method for sim-256
to-real transfer in agriculture, by learning from demonstrations of a trained RL agent (Tao et al.,257
2023). We investigate the ability of BC, GAIL, and AIRL to learn from demonstrations in WOFOS-258
TGym. We provide each IL agent with 100 seasons of data generated from an expert PPO agent259
trained to maximize barley yield subject to strict limits of 20 kg/ha of fertilizer and 20 cm/ha of260
water per season. Our results in Table 3 show that GAIL and AIRL failed to obtain similar yield261
to the expert and also exhibited very different behavior as shown by the differences in nitrogen and262
water application. Surprisingly, BC demonstrated the closest matching behavior, although it was263
unable to fully avoid constraint violations. This shows that WOFOSTGym can serve as a non-trivial264
benchmark for IL and in particular, research on implementing constraints into IL.265

Agent
Max Yield

(kg/ha)
Constraints

Violated
Nitrogen
(kg/ha)

Phosphorus
(kg/ha)

Potassium
(kg/ha)

Water
(cm/ha)

Expert (PPO) 4376± 805 0.00± 0.00 16.53± 3.3 6.13± 2.47 14.53± 3.46 3.33± 0.83
AIRL 2975± 335 4.53± 2.33 28.93± 5.56 2.67± 2.02 4.40± 2.65 1.80± 0.93
GAIL 2647± 562 0.67± 0.94 8.93± 2.72 9.47± 4.10 19.87± 4.29 4.00± 1.13
BC 4598± 790 0.33± 0.6 16.8± 3.56 6.53± 3.38 14.67± 2.98 4.3± 1.25

Table 3: Results of three IL agents trained to maximize barley yield subject to constraints on nutrient
application. The Constraints Violated column shows the number of days where excess nutrients were
applied after the threshold was reached. Results are averaged over 15 seasons.

Comparison of Agromanagement Decisions on Multiple Farms Comparing yield and nutrient266
levels under different agromanagement policies is desirable for farmers, but unrealistic to perform267
in the field due to the risk of exploratory actions decreasing crop yield. WOFOSTGym enables268
agromanagement policies to be evaluated in simulation which could be a useful tool for farmers269
to understand the impacts of agromanagement decisions on crop and soil health. WOFOSTGym270
instances describe the dynamics of a field growing a specific crop. Each field can represent a farm.271
Using WOFOSTGym, we compare joint multi-field policies with field-specific policies to analyze272
their trade-offs in accumulated yield.273
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Figure 5: (Left) The soil moisture content of each field under three joint RL agromanagement poli-
cies. (Right) The average yield obtained by trained multi-field agents. Lighter colors indicate the
yield obtained by an agent trained on that specific field as a baseline for obtainable crop yield.

As farmers often apply the same policy to multiple fields, we create a WOFOSTGym environment274
that simulates the growth of five sunflower fields experiencing the same weather. The observation275
space is the growth and soil variables for each field. The weather is shared between fields and the276
action selected is uniformly applied to each field. We train a PPO, DQN, and SAC agent in this multi-277
field scenario and report the soil moisture content and the average yield with each agent policy on278
each field in Figure 5. We then train the respective agents on each individual field to understand the279
value of using a specialized policy compared to a joint policy. The increased soil moisture content280
achieved under the DQN policy leads to the lowest yield across all fields, providing valuable insight281
into soil dynamics.282

Simulator Run Times Fast simulators are central to the successful application of RL given the283
high sampling complexity of RL algorithms (Lechner et al., 2023). We benchmark the run times284
of three crop simulators: WOFOSTGym, CyclesGym, and gym-DSSAT (Gautron et al., 2022b;285
Turchetta et al., 2022). We compare run times for a single episode of growing the maize crop (155286
episode steps). Given the large potential overhead when resetting the underlying CGM, we also mea-287
sure the run times of the step and reset functions. Our results in Table 4 show that WOFOSTGym288
outperforms CyclesGym, the only crop simulator that supports multi-year simulations, by an order289
of magnitude. WOFOSTGym is also faster than gym-DSSAT, due to its significantly faster reset290
function. Although gym-DSSAT has a faster step function, WOFOSTGym performs more compu-291
tations per step by maintaining nitrogen, phosphorus, and potassium balances, whereas gym-DSSAT292
maintains only a nitrogen balance.293

Run Time (s) WOFOSTGym CyclesGym gym-DSSAT

1 Episode 0.34±0.012 2.08±.221 0.38±0.018
Step Function 0.003±0.0005 0.04±.0020 0.001±0.0001
Reset Function 0.012±0.002 0.055±.002 0.191±0.012

Table 4: The average runtime and standard deviation, computed over 100 trials, of three different
crop simulators on an Nvidia 3080Ti.

5 Limitations and Future Work294

WOFOSTGym takes around two seconds to run a three-year simulation of a perennial jujube crop.295
Although WOFOSTGym offers an improved run time compared to other crop simulators, the run296
time quickly adds up when RL algorithms require millions of episodes to learn a good policy. As297
episode horizon increases for modeling perennial crop management decisions, accelerating the mod-298
eling of crop dynamics will become crucial.299
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WOFOSTGym is designed for modeling crop growth of a specific crop and currently does not sup-300
port optimizing long-term crop rotation strategies. As the WOFOST CGM supports crop rotations,301
extending WOFOSTGym to support such problems is a promising extension.302

Although the parameter sets in WOFOSTGym can be considered high-fidelity models as they were303
tuned against field data, sim-to-real transfer using WOFOSTGym should be attempted with caution.304
As research bridging RL to open-field agriculture advances and CGM fidelity improves through305
approaches like those in Section 3.2, direct sim-to-real transfer may become increasingly feasible.306

6 Summary307

We present WOFOSTGym, the first RL simulator for annual and perennial crop management de-308
cision support. The WOFOSTGym repository includes high-fidelity parameters for two perennial309
crops and 23 annual crops, along with diverse pre-specified agromanagement policies for bench-310
marking RL agents. Its customizable design enables researchers to conduct experiments without311
requiring agricultural domain expertise. To improve CGM fidelity and facilitate sim-to-real transfer312
in open-field agriculture, we propose a Bayesian optimization-based calibration method. Our results313
reveal the limitations of current RL and IL algorithms in this domain, emphasizing the need for314
further research to address the specific challenges presented in the agriculture domain. We outline315
realistic benchmarks to assess RL algorithms before deployment for agricultural decision support.316

Broader Impact Statement317

Reinforcement learning for crop modeling has the potential to help growers optimize yield while318
reducing costs and environmental impact. WOFOSTGym provides a high-fidelity platform for re-319
searchers to develop and evaluate agromanagement policies. However, due to the gap between320
simulation and real-world environments, RL policy performance in simulation may not translate321
directly to field trials.322
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7 WOFOSTGym Modified Perennial Crop Growth Model662

Prior works have shown that WOFOST CGM could be modified to model the growth of pear and663
jujube crops across multiple growing seasons de Wit (2024); Bai et al. (2019); Wang et al. (2022),664
establishing it as a solid foundation for developing a perennial crop simulator. Below, we outline the665
key modifications we made to WOFOST to support perennial crop modeling.666

Perennial Phenology We primarily focused on modifying the phenology submodule within the667
WOFOST CGM to account for the differences between annual and perennial crop phenology. Un-668
like annual crops, the phenology of perennial crops is characterized by a dormancy stage induced by669
day length in autumn and released by temperature in spring (Rohde & Bhalerao, 2007). To capture670
this behavior, we introduced parameters for dormancy induction based on day length, release tem-671
perature threshold, and minimum dormancy duration. In our modified WOFOST CGM, dormancy672
can also be triggered by prolonged growth stagnation, indicating insufficient ambient temperature673
for crop growth (Jones et al., 1978).674

Perennial Organ Growth In addition to differences in phenology, perennial crops exhibit differ-675
ences in their visible growth organs (Thomas et al., 2000). The roots and stems of perennial crops676
survive year-round, while the leaves and storage organs regrow each season subject to intercepted677
light and nutrient uptake. Crop organ death rates are modeled as a function of the development678
stage of the crop (Lindén et al., 1996). Notably, perennials exhibit a reduced seasonal growth as679
they age (Munné-Bosch, 2007). While the underlying mechanisms for reduced growth remain dif-680
ficult to quantify, we model this decline empirically through increased maintenance respiration and681
decreased carbon conversion efficiency as a function of age (Zhu et al., 2021). See Figure 6 for a682
visual overview of how key features evolve throughout the course of a perennial crop simulation.683

Figure 6: A simplified flowchart of the perennial crop growth in WOFOSTGym. Boxes highlighted
in green denote additions or areas of substantial change to the underlying WOFOST CGM to support
perennial crop growth. The development stage of the crop is driven by the daily ambient temperature.
The development stage determines how accumulated dry matter is partitioned to crop organs subject
to available nutrients. The weight of the living organs (yield) is calculated as the accumulated
difference between the growth and death rates.

Modified Nutrient Module A multi-layer nutrient balance is important for modeling the effects684
of fertilization stressors on the roots, stems, and nutrient partitioning (Albornoz, 2016). We extend685

19



Under review for RLC 2025, to be published in RLJ 2025

WOFOST’s single-layer nutrient balance to a multi-layered nutrient balance within the soil mod-686
ule (He et al., 2013). When nutrients are applied via fertilization, they reside on the soil surface. As687
the simulation evolves, nutrients are absorbed into the subsoil and then the roots of the plant. When688
surface nutrient levels are too high, the partitioning of dry matter is changed to limit allocation to689
the storage organs in favor of stems and leaves (He et al., 2013).690

8 Available Crops691

WOFOSTGym includes parameters for two perennial crops: pear and jujube, and 23 annual crops:692
barley, cassava, chickpea, cotton, cowpea, faba bean, groundnut, maize, millet, mung bean, pigeon693
pea, potato, rapeseed, rice, onion, sorghum, soybean, sugar beet, sugarcane, sunflower, sweet potato,694
tobacco, and wheat. Each crop contains between one and ten varieties. WOFOST CGM parameters695
for each variety were calibrated empirically from field data (de Wit, 2025). By modeling each crop696
variety as a task, agromanagement decisions for multiple crop varieties can be optimized with multi-697
task RL (Hessel et al., 2019).698

In addition to the high-fidelity models for 25 crops, WOFOSTGym also includes parameters for699
modeling the phenology of 32 grape cultivars. These cultivars are: Aligote, Alvarinho, Auxerrois,700
Barbera, Cabernet Franc, Cabernet Sauvignon, Chardonnay, Chenin Blanc, Concord, Dolcetto, Du-701
rif, Gewurztraminer, Green Veltliner, Grenache, Lemberger, Malbec, Melon, Merlot, Muscat Blanc,702
Nebbiolo, Petit Verdot, Pinot Blanc, Pinot Gris, Pinot Noir, Riesling, Sangiovese, Sauvignon Blanc,703
Semillon, Syrah, Tempranillo, Viognier, and Zinfandel.704

9 Crop Growth Models705

CGMs are typically one of three types: mechanistic, empirical, or hybrid. Mechanistic models simu-706
late canopy or nutrient level crop processes to validate scientific understanding of crop growth (Estes707
et al., 2013). Empirical models rely on observed field data, offering greater scalability with lower708
computational overhead (Di Paola et al., 2016). Hybrid crop models simulate crop growth using709
both mechanistic and empirical modeling decisions (Yang et al., 2004).710

WOFOST is a single-year and multi-crop agroecosystem model (Jones et al., 2017). It relies both on711
mechanistic and empirical processes to simulate crop growth (Di Paola et al., 2016). Crop growth712
in WOFOST is determined by the atmospheric CO2 concentration, irradiation, daily temperature,713
subject to limited water, nitrogen, phosphorus, and potassium. While WOFOST was designed for714
simulating the yield of annual crops (van Diepen et al., 1989), field studies have shown that it can715
be used to accurately predict yield in perennial fruit trees with some small modifications to the base716
model Wang et al. (2022); Bai et al. (2019)717

Given WOFOST’s ability to simulate a wide variety of crop and soil dynamics, and its modular im-718
plementation in Python, WOFOST is an ideal CGM candidate to be used to simulate perennial crop719
growth to address that lack of perennial CGMs available, and the lack of perennial crop benchmarks720
available for RL research (Gautron et al., 2022a). For an introduction to the WOFOST, we refer read-721
ers to the works of de Wit (2024) and de Wit (2019). There are a wide variety of CGMs available722
for use. Table 5 outlines the desiderata used to select WOFOST as the CGM for WOFOSTGym.723

10 Configurability of WOFOSTGym724

Other crop simulators are difficult for RL researchers to use because of their unfamiliarity with725
CGMs. WOFOSTGym aims to relieve the burden of domain knowledge required to use other crop726
simulators by streamlining configuration into readable YAML files. In this section, we highlight the727
features that make WOFOSTGym easy to use for RL researchers interested in agriculture.728
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Crop Model Model Type Nutrient Balance Water Balance Crop Type Language

WOFOST Hybrid
nitrogen,

phosphorus,
potassium

Single Layer,
Multi Layer Annual

Python,
FORTRAN

APSIM Mechanistic
nitrogen,

phosphorus,
potassium

Multi Layer Annual
FORTRAN,

C++

DSSAT Hybrid
nitrogen,

phosphorus,
potassium

Multi Layer Annual FORTRAN

CropSyst Mechanistic nitrogen Single Layer Annual C++

EPIC Hybrid
nitrogen,

phosphorus Multi Layer
Annual,

Rotations FORTRAN

STICS Empirical nitrogen Multi Layer Annual Executable

Cycles Mechanistic nitrogen Multi Layer
Annual,

Rotations Executable

AquaCrop Empirical abundant Multi Layer Annual
Python,

Executable
LINTUL3 Empirical nitrogen Abundant Annual Python

Table 5: Different CGMs and their strengths and weaknesses for modeling high fidelity crop growth,
interfacing with RL algorithms, and supporting perennial crop decision evaluation.

Simulation Configuration WOFOST CGM configuration is divided into three configuration files:729
the crop YAML file, site YAML file, and agromanagement YAML file. WOFOSTGym provides 25730
crop YAML files and three site YAML files. In the agromanagement YAML file, the specific crop731
and site configuration is specified, along with the length of the simulation, year, and geographic732
location. The agromanagement YAML file contains 14 entries, while still enabling a user to simulate733
25 different crops with one to ten varieties per crop. This feature is an improvement over other crop734
simulators which support only 1 crop.735

With domain knowledge, a crop or site can be added by calibrating the parameters in the crop and site736
YAML files against real-world data. Finally, every parameter can be modified from the command737
line and each simulation saves a configuration file, aiding reproducibility (see Figure 7).738

# Test Simulation of the Jujube crop
python3 test_wofost.py --save-folder test/ --data-file test --npk.ag.crop-name

jujube --npk.ag.crop-variety jujube_1 --env-id perennial-lnpkw-v0

# Generate data of the default crop (wheat) and modify a few crop parameters
python3 gen_data.py --save-folder data/ --data-file wheat_data --file-type npz --

npk.wf.TBASEM 2.0 --npk.wf.SMFCF 0.51

# Train a SAC agent to irrigate the wheat crop in an environment where nitrogen,
phosphorus and potassium nutrients are abundant and modify the SAC algorithm
parameters

python3 train_agent.py --save-folder RL/ --agent-type SAC --env-id lnw-v0 --SAC.
gamma 0.95

# Train a PPO agent given a WOFOSTGym Configuration file
python3 train_agent.py --save-folder RL --agent-type PPO --config-fpath RL/

ppo_test.yaml

Figure 7: Example for how to configure agent training and data generation in WOFOSTGym. Spe-
cific parameters can be modified by the command line. In addition, configuration YAML files can
also be loaded for reproducibility (and are automatically saved each time a simulation is run).
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Pre-Specified Agricultural Policies The goal of using RL for agriculture is to improve upon crop739
management strategies. However, to measure this improvement, common crop management policies740
must be available in a crop simulator to compare against. While other crop simulators do not include741
baselines, WOFOSTGym comes with 10 pre-specified agromanagement policies that are commonly742
used in agriculture. These policies include: "fertilize X amount every week," or "irrigate X amount743
if the soil moisture content is below Y ." In WOFOSTGym, X and Y are easily modifiable via744
command line or YAML file.745

Data Generation Offline data is used to for problems in Offline RL (Levine et al., 2020), Off746
Policy Evaluation (Thomas & Brunskill, 2016), and Transfer Learning (Zhuang et al., 2021). To747
facilitate research on these topics in the agriculture domain, data must be widely available. However,748
available agricultural data is inaccessible or requires substantial preprocessing to account for missing749
data. To address this problem, crop simulators are a promising direction, yet no other available crop750
simulator provides an efficient pipeline for data generation.751

WOFOSTGym addresses this shortcoming by providing a pipeline that can generate data from a752
variety of different crops and sites and supports generating data from both RL agent policies and753
the pre-specified policies described above. By including this data generation in WOFOSTGym, we754
hope to both facilitate research into these interesting RL related problems in agriculture, and set a755
standard of usability for crop simulators that follow WOFOSTGym.756
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