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Abstract

Robust Markov decision processes (MDPs) aim to handle changing or partially
known system dynamics. To solve them, one typically resorts to robust optimization
methods. However, this significantly increases computational complexity and limits
scalability in both learning and planning. On the other hand, regularized MDPs
show more stability in policy learning without impairing time complexity. Yet,
they generally do not encompass uncertainty in the model dynamics. In this work,
we aim to learn robust MDPs using regularization. We first show that regularized
MDPs are a particular instance of robust MDPs with uncertain reward. We thus
establish that policy iteration on reward-robust MDPs can have the same time
complexity as on regularized MDPs. We further extend this relationship to MDPs
with uncertain transitions: this leads to a regularization term with an additional
dependence on the value function. We finally generalize regularized MDPs to twice
regularized MDPs (R?> MDPs), i.e., MDPs with both value and policy regularization.
The corresponding Bellman operators enable developing policy iteration schemes
with convergence and robustness guarantees. It also reduces planning and learning
in robust MDPs to regularized MDPs.

1 Introduction

MDPs provide a practical framework for solving sequential decision problems under uncertainty
[30]. However, the chosen strategy can be very sensitive to sampling errors or inaccurate model
estimates. This can lead to complete failure in common situations where the model parameters
vary adversarially or are simply unknown [22]. Robust MDPs aim to mitigate such sensitivity by
assuming that the transition and/or reward function (P, r) varies arbitrarily inside a given uncertainty
set U [17,127]. In this setting, an optimal solution maximizes a performance measure under the
worst-case parameters. It can be thought of as a dynamic zero-sum game with an agent choosing
the best action while Nature imposes it the most adversarial model. As such, solving robust MDPs
involves max-min problems, which can be computationally challenging and limits scalability.

In recent years, several methods have been developed to alleviate the computational concerns raised
by robust reinforcement learning (RL). Apart from [23| 24] that consider specific types of coupled
uncertainty sets, all rely on a rectangularity assumption without which the problem can be NP-hard
[2,140]. This assumption is key to deriving tractable solvers of robust MDPs such as robust value
iteration [2} [11]] or more general robust modified policy iteration (MPI) [18]]. Yet, reducing time
complexity in robust Bellman updates remains challenging and is still researched today [15} [11]].

At the same time, the empirical success of regularization in policy search methods has motivated
a wide range of algorithms with diverse motivations such as improved exploration [12, 20] or
stability [34) [13]]. Geist et al. [[10] proposed a unified view from which many existing algorithms
can be derived. Their regularized MDP formalism opens the path to error propagation analysis
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in approximate MPI [33] and leads to the same bounds as for standard MDPs. Nevertheless, as
we further show in Sec. [3] policy regularization accounts for reward uncertainty only: it does not
encompass uncertainty in the model dynamics. Despite a vast literature on how regularized policy
search works and convergence rates analysis [36} 5], little attention has been given to understanding
why it can generate strategies that are robust to external perturbations [13].

To our knowledge, the only works that relate robustness to regularization in RL are [6}[16} 9]. Derman
& Mannor [6]] employ a distributionally robust optimization approach to regularize an empirical
value function. Unfortunately, computing this empirical value necessitates several policy evaluation
procedures, which is quickly unpractical. Husain et al. [16] provide a dual relationship with robust
MDPs under uncertain reward. Their duality result applies to general regularization methods and
gives a robust interpretation of soft-actor-critic [13]]. Although these two works justify the use
of regularization for ensuring robustness, they do not enclose any algorithmic novelty. Similarly,
Eysenbach & Levine [9] specifically focus on maximum entropy methods and relate them to either
reward or transition robustness. We shall further detail on these most related studies in Sec. [

The robustness-regularization duality is well established in statistical learning theory [41,135,[19]], as
opposed to RL theory. In fact, standard setups such as classification or regression may be considered
as single-stage decision-making problems, i.e., one-step MDPs, a particular case of RL setting.
Extending this robustness-regularization duality to RL would yield cheaper learning methods with
robustness guarantees. As such, we introduce a regularization function €2, that depends on the
uncertainty set ¢/ and is defined over both policy and value spaces, thus inducing a twice regularized
Bellman operator (see Sec. [5). We show that this regularizer yields an equivalence of the form
VUr i = Ur 0> Where vy g4 is the robust value function for policy 7 and v, q,, the regularized one.
This equivalence is derived through the objective function each value optimizes. More concretely, we
formulate the robust value function v, ;4 as an optimal solution of the robust optimization problem:

max (v, s.t.v< inf T7% v, RO
1;€R5< ,U/0> ~ (Pr)eu (Por) ( )
where T(”P . is the evaluation Bellman operator [30]. Then, we show that v ;; is also an optimal

solution of the convex (non-robust) optimization problem:
f)rel%‘é(v,uw s. v < Tp )0 — Qu(m,v), (CO)

where (Py,70) is the nominal model. This establishes equivalence between the two optimization
problems. Moreover, the inequality constraint of (CO) enables to derive a twice regularized (R?)
Bellman operator defined according to €24, a policy and value regularizer. For ball-constrained
uncertainty sets, (), has an explicit form and under mild conditions, the corresponding R?> Bellman
operators are contracting. The equivalence between the two problems (RO) and (CO)) together with
the contraction properties of R> Bellman operators enable to circumvent robust optimization problems
at each Bellman update. As such, it alleviates robust planning and learning algorithms by reducing
them to regularized ones, which are known to be as complex as classical methods.

To summarize, we make the following contributions: (i) We show that regularized MDPs are a
specific instance of robust MDPs with uncertain reward. Besides formalizing a general connection
between the two settings, our result enables to explicit the uncertainty sets induced by standard
regularizers. (ii) We extend this duality to MDPs with uncertain transition and provide the first
regularizer that recovers robust MDPs with s-rectangular balls and arbitrary norm. (iii) We introduce
twice regularized MDPs (R? MDPs) that apply both policy and value regularization to retrieve robust
MDPs. We establish contraction of the corresponding Bellman operators. This leads us to proposing
an R?> MPI algorithm with similar time complexity as vanilla MPI, thus opening new perspectives
towards practical and scalable robust RL.

Notations. We designate the extended reals by R := {—o0, cc}. Given a finite set Z, the class of

real-valued functions (resp. probability distributions) over Z is denoted by R? (resp. Az), while
the constant function equal to 1 over Z is denoted by 1z. Similarly, for any set X', AY denotes the

class of functions defined over X" and valued in A z. The inner product of two functions a, b € R
is defined as (a, b) := > __ > a(z) b(z), which induces the /;-norm ||a|| := \/(a, a). The £-norm
coincides with its dual norm, i.e., ||a]| = maxjp|<1(a,b) =: |al|,. Let a function f : RZ — R.
The Legendre-Fenchel transform (or convex conjugate) of f is f*(y) := max,crz{(a,y) — f(a)}.

Given a set 3 C RZ, the characteristic function 03 : RZ 5 Ris 03(a) = 0if a € 3; 400 otherwise.
The Legendre-Fenchel transform of ¢35 is the support function o3(y) = maxac3(a,y) [3} Ex. 1.6.1].



2 Preliminaries

This section describes the background material that we use throughout our work. Firstly, we recall
useful properties in convex analysis. Secondly, we address classical discounted MDPs and their
linear program (LP) formulation. Thirdly, we briefly detail on regularized MDPs and the associated
operators and lastly, we focus on the robust MDP setting.

Convex Analysis. Let Q : Az — R be a strongly convex function. Throughout this study, the
function (2 plays the role of a policy and/or value regularization function. Its Legendre-Fenchel
transform 2* satisfies several smoothness properties, hence its alternative name "smoothed max
operator" [25]. Our work makes use of the following result [[14} 25]].

Proposition 2.1. Given Q) : Az — R strongly convex, the following properties hold:

(i) VQ* is Lipschitz and satisfies VU (y) = arg maxaca . (a,y) — Q(a),Vy € RZ,

(ii) For any ¢c € R,y € R?, O*(y +clz) = Q*(y) +c.

(iii) The Legendre-Fenchel transform Q2 is non-decreasing.

Discounted MDPs and LP formulation. Consider an infinite horizon MDP (S, A, po, v, P, )
with § and A finite state and action spaces respectively, 0 < pg € Ag an initial state distribution
and v € (0,1) a discount factor. Denoting X' := S x A, P € A% is a transition kernel mapping
each state-action pair to a probability distribution over S and r € RY is a reward function. A policy
T e Ai maps any state s € S to an action distribution 7, € A 4, and we evaluate its performance
through the following measure:

o0

> (st ar) ’ fio, @, P
t=0

p(’/T) =E = <UZFP,T’)7NO>' (1)

Here, the expectation is conditioned on the process distribution determined by p, 7 and P, and for

alls €8, v(p,(s) = E[} 2o vir(se, ar)|so = s, m, P| is the value function at state s. Maximizing

(T) defines the standard RL objective, which can be solved thanks to the Bellman operators:
Tlppyvi=r"4+~vP"v Vv e RS, m e A,

— ™ S
Tipryv = 7{22% Tpv Yo €R?,
Gipry(v) == {me A : Tpmyv =Tprv} Yve RS,

where 1™ := [(7, (s, ))]|ses and PT = [P™(s'|s)]s ses With P7(s'|s) := (w5, P(s'|s,-)). Both
T(} " and T{p,,y are y-contractions with respect to (w.r.t.) the supremum norm, so each admits a
unique fixed point ’UETP " and UE‘P y respectively. The set of greedy policies w.r.t. value v defines
G(p,ry(v), and any policy m € G(p,) (vE"P T)) is optimal [30]]. For all v € RS, the associated function
q € RY is given by ¢(s,a) = 7(s,a) + y(P(:|s,a),v) ¥(s,a) € X. In particular, the fixed point
R satisfies Uip .y = (s, 4p.r) (s,-)) where 4p.ry is its associated g-function.

The problem in (T)) can also be formulated as an LP [30]. Given a policy 7 € Ai, we characterize its
performance p(7) by the following v-LP [30, 26]:

mir;(v, o) subject to (s.t.) v > ™ + yP™v. (P™)
veR
This primal objective provides a policy view on the problem. Alternatively, one may take a state
visitation perspective by studying the dual objective instead:

max (r", p) s. t. 4 > 0 and (Idgs — vP] )i = o, (D™)
HERS
where PT is the adjoint policy transition opemto [PTu)(s) := 3 scs PT(s|5)u(5) Vue RS,
and Ids is the identity function in RS. Let I(s'|s, a) := dy—s V(s,a,s') € X x S the trivial transi-
tion matrix and define its adjoint transition operator as Lju(s) := 3 4yex 1(s]5,a)u(s,a) Vs €

’It is the adjoint operator of P™ in the sense that (P™v,v') = (v, PTv') Vv,v’ € RS.



S. The correspondence between occupancy measures and policies lies in the one-to-one mapping
o (;;’('~)) =: 7, and its inverse 7 — fu, given by

pin(s,0) = 3 4P ( —sa=a

t=0

,uo,7r,P> V(s,a) € X.
As such, one can interchangeably work with the primal LP or the dual (D).

Regularized MDPs. A regularized MDP is a tuple (S, A, uo, v, P, r,Q) with (S, A, pwo,7, P, )
an infinite horizon MDP as above, and  := (£,)scs a finite set of functions such that for all
s €8, Qs Ay — Ris strongly convex. Each function € plays the role of a policy regularizer
Q4 (). With a slight abuse of notation, we shall denote by Q(7) := (Q4(7s))ses the family of
state-dependent regularizersﬂ The regularized Bellman evaluation operator is given by

[T5550,0)(8) = T(p,yo(s) = Qs(ms) Vo e RS s €8,

and the regularized Bellman optimality operator by T(*F’,%v = MaX;eas T(Tr F’,%v Vo € RS [10].
The unique fixed point of T(” P’SZ) (respectively T(*I;Qr)) is denoted by v?I;Qr) (resp. UEFI’DQT)) and defines the
regularized value function (resp. regularized optimal value function). Although the regularized MDP

formalism stems from the aforementioned Bellman operators in [[10]], it turns out that regularized
MDPs are MDPs with modified reward. Indeed, for any policy 7 € Aj, the regularized value
function is U?I;{i) = (Is — yP™)~Y(r™ — Q(m)), which corresponds to a non-regularized value
with expected reward 7™ := r™ — (7). Note that the modified reward 77 (s) is no longer linear
in 75 because of the strong convexity of 25. Also, this modification does not apply to the reward

function r but only to its expectation 7™, as we cannot regularize the original reward without making
it policy-independent.

Robust MDPs. In general, the MDP model is not explicitly known but rather estimated from
sampled trajectories. As this may result in over-sensitive outcome [22]], robust MDPs reduce such
performance variation. Formally, a robust MDP (S, A, 10, v, U) is an MDP with uncertain model
belonging to U := P x R, i.e., uncertain transition P € P C Ag andrewardr € R C RY (17, 140].
The uncertainty set I/ typically controls the confidence level of a model estimate, which in turn
determines the agent’s level of robustness. It is given to the agent, who seeks to maximize performance
under the worst-case model (P, r) € U. Although untractable in general, this problem can be solved
in polynomial time for rectangular uncertainty sets, i.e., when U = Xsesls = Xses(Ps X Rs)
[40, 23]. For any policy m € Ai and state s € S, the robust value function at s is v™Y(s) :=
minp ey Vip,,) (s) and the robust optimal value function v*¥(s) = maX, c a4 v™ 4 (s). Each of
them is the unique fixed point of the respective robust Bellman operators:

[T™Hv)(s) := (gnTi)relu Tpryv(s) Vv e RS se€S,meAf,

[T*Yv](s) := max [T™Yv](s) YveR® seS,

S
TEAG

which are vy-contractions. For all v € RS, the associated robust g-function is given by ¢(s,a) =
min p ey {r(s,a) + v(P(:|s,a),v)} V(s,a) € X, sothat v™¥ = (m,q™H(s,-)) where g™ is
the robust g-function associated to v™.

3 Reward-robust MDPs

This section focuses on reward-robust MDPs, i.e., robust MDPs with uncertain reward but known
transition model. We first show that regularized MDPs represent a particular instance of reward-robust
MDPs, as both solve the same optimization problem. This equivalence provides a theoretical
motivation for the heuristic success of policy regularization. Then, we explicit the uncertainty set

3In the formalism of Geist et al. [10], Qs is initially constant over S. However, later in the paper [10} Sec. 5],
it changes according to policy iterates. Here, we alternatively define a family 2 of state-dependent regularizers,
which accounts for state-dependent uncertainty sets (see Sec. E]below).



underlying some standard regularization functions, thus suggesting an interpretable explanation of
their empirical robustness.

We first show the following proposition [3.1} which applies to general robust MDPs and random
policies. It slightly extends [[17], as Lemma 3.2 there focuses on uncertain-transition MDPs and
deterministic policies. For completeness, we provide a proof of Prop.|3.1|in Appx.

Proposition 3.1. For any policy m € Ai, the robust value function v™ is the optimal solution of
the robust optimization problem:

max (v, po) s. t. v < T(p v forall (P,r) € U. (Py)
vERS ’

In the robust optimization problem (P,/)), the inequality constraint must hold over the whole uncertainty
set U. As such, a function v € R is said to be robust feasible for if v < T v for all

(P,r) € U or equivalently, if max p e {v(s) — T(”P’r)v(s)} < Oforall s € S. Therefore, checking
robust feasibility requires to solve a maximization problem. For properly structured uncertainty sets,
a closed form solution can be derived, as we shall see in the sequel. As standard in the robust RL
literature [32, |15} [1]], the remaining of this work focuses on uncertainty sets centered around a known
nominal model. Formally, given P, (resp. r¢) a nominal transition kernel (resp. reward function), we
consider uncertainty sets of the form (Py 4+ P) X (rg + R). The size of P x R quantifies our level
of uncertainty or alternatively, the desired degree of robustness.

Reward-robust and regularized MDPs: an equivalence. We now focus on reward-robust MDPs,
i.e., robust MDPs with & = {Py} x (ro + R). Thm.[3.1]establishes that reward-robust MDPs are
in fact regularized MDPs whose regularizer is given by a support function. Its proof can be found
in Appx. This result brings two take-home messages: (i) policy regularization is equivalent to
reward uncertainty; (ii) policy iteration on reward-robust MDPs has the same convergence rate as
regularized MDPs, which in turn is the same as standard MDPs [10].

Theorem 3.1 (Reward-robust MDP). Assume that U = {Py} X (1o + R). Then, for any policy
mE Ai, the robust value function v™Y is the optimal solution of the convex optimization problem:

1{161%?5(0,#0) s. 1. v(s) < T(p, 1oyv(8) — or, (=) forall s € S .

Thm. clearly highlights a convex regularizer Q(7,) := or_(—7s) Vs € S. We thus recover a
regularized MDP by setting [T7}v](s) = T(py re)V(8) = or.(=7s) Vs € S. In particular, when
Rs is a ball of radius «f, the support function (or regularizer) can be written in closed form as
Qq(ms) := af||ms]|, which is strongly convex. We formalize this below (see proof in Appx.|A.3).

Corollary 3.1. Let m € AS and U = {Py} x (ro + R). Further assume that for all s € S, the

reward uncertainty set at s is Ry := {r, € R : ||r || < aZ}. Then, the robust value function v™4
is the optimal solution of the convex optimization problem:

zrel%)é@,u()) 5. 1. v(s) < T(p, o v(8) — ag||ms|| forall s € S .

While regularization induces reward-robustness, Thm. [3.T]and Cor. [3.T|suggest that, on the other hand,
specific reward-robust MDPs recover well-known policy regularization methods. In the following
section, we explicit the reward-uncertainty sets underlying some of these regularizers.

Related Algorithms. Consider a reward uncertainty set of the form R := x4 4yexRs,q. This
defines an (s, a)-rectangular R (a particular type of s-rectangular R) whose rectangles R, , are
independently defined for each state-action pair. For the regularizers below, we derive appropriate
Rs,a-s that recover the same regularized value function. Detailed proofs are in Appx.[A.4] There,
we also include a summary table that reviews the properties of some RL regularizers, as well as
our R? function which we shall introduce later in Sec.|5| Note that the reward uncertainty sets here
depend on the policy. This is due to the fact that standard regularizers are defined over the policy
space and not at each state-action pair. It similarly explains why the reward modification induced
by regularization does not apply to the original reward function, as already mentioned in Sec.



Negative Shannon entropy. Let RY% () := [In (Y/r.(a)) ,+00) V(s,a) € X. The associated sup-
port function enables to write:

oRNs () (—7s) = max Z —r(s,a)ms(a) = Z 7s(a) In(ms(a)),

. ’ NS ’
r(s,;)ir(s,a’)ERS,/(m),a"€A acA acA

where the last equality comes from maximizing —r(s, a) over [In (1/x,(a)) , +00) for each a € A.
We thus recover the negative Shannon entropy Q(7s) = >, 4 Ts(a) In(ms(a)) [13].

Kullback-Leibler divergence. Given an action distribution 0 < d € A 4, let RY% () := In (d(a)) +
Rfi S(m) V(s,a) € X. It amounts to translating the interval RI;{ S by the given constant. Similarly
writing the support function yields Q(7s) = >, 4 7s(a) In (7=(a)/a(a)), which is exactly the KL
divergence [34].

Negative Tsallis entropy. Letting RY () := [1-7:(@)/2,+00) V(s,a) € X, we recover the
negative Tsallis entropy Q(,) = 3 (||7s[|> — 1) [20].

Policy-gradient for reward-robust MDPs. The equivalence between reward-robust and regular-
ized MDPs leads us to wonder whether we can employ policy-gradient [37]] on reward-robust MDPs
using regularization. The following result establishes that a policy-gradient theorem can indeed be
established for reward-robust MDPs (see proof in Appx.[A.5).

Proposition 3.2. Assume that U = {Py} % (ro + R) with Ry = {r, € R : ||r,|| < al}. Then, the
gradient of the reward-robust objective Jy (1) := (v™Y uo) is given by

VIu(1) = Bleaymp. [v In 7, (a) (q’r’u(s, a) —a” ”S(“)ﬂ :

* |

where i is the occupancy measure under the nominal model Py and policy .

Although Prop. [3.2]is an application of [10, Appx. D.3] for a specific regularized MDP, its reward-
robust formulation is novel and suggests another simplification of robust methods. Indeed, previous
works that exploit policy-gradient on robust MDPs involve the occupancy measure of the worst-
case model [21]], whereas our result sticks to the nominal. In practice, Prop. @] enables to learn
a robust policy by sampling transitions from the nominal model instead of all uncertain models.
This has a twofold advantage: (i) it avoids an additional computation of the minimum as done in
[29, 211 [7], where the authors sample next-state transitions and rewards based on all parameters from
the uncertainty set, then update a policy based on the worst outcome; (ii) it releases from restricting
to finite uncertainty sets. In fact, our regularizer accounts for robustness regardless of the sampling
procedure, whereas the parallel simulations of [29| 21} [7] require the uncertainty set to be finite.
Technical difficulties are yet to be addressed for generalizing our result to transition-uncertain MDPs,
because of the interdependence between the regularizer and the value function (see Secs. @l5). We
detail more on this issue in Appx.[A.5]

4 General robust MDPs

Now that we have established policy regularization as a reward-robust problem, we would like to
study the opposite question: can any robust MDP with both uncertain reward and transition be solved
using regularization instead of robust optimization? If so, is the regularization function easy to
determine? In this section, we answer positively to both questions for properly defined robust MDPs.
This greatly facilitates robust RL, as it avoids the increased complexity of robust planning algorithms
while still reaching robust performance.

The following theorem establishes that similarly to reward-robust MDPs, robust MDPs can be
formulated through regularization (see proof in Appx. [B.T). Although the regularizer is also a support
function in that case, it depends on both the policy and the value objective, which may further explain
the difficulty of dealing with robust MDPs.

Theorem 4.1 (General robust MDP). Assume that U = (Py + P) x (1o + R). Then, for any policy
mE Ai, the robust value function v™Y is the optimal solution of the convex optimization problem:

ma{g(v,u@ s. . v(s) < T(p, o) v(8) — or, (=7s) — op, (—yv - 75) forall s € S, ()
vER ’

where [v - T5](s',a) == v(s)ms(a) V(s',a) € X.



The upper-bound in the inequality constraint ) is of the same spirit as the regularized Bellman
operator: the first term is a standard, non-regularized Bellman operator on the nominal model (P, ro)
to which we subtract a policy and value-dependent function playing the role of regularization. This
function reminds that of [6, Thm. 3.1] also coming from conjugacy. This is the only similarity
between both regularizers: in [6], the Legendre-Fenchel transform is applied on a different type of
function and results in a regularization term that has no closed form but can only be bounded from
above. Moreover, the setup considered there is different since it studies distributionally robust MDPs.
As such, it involves general convex optimization, whereas we focus on the robust formulation of an LP.

The support function further simplifies when the uncertainty set is a ball, as shown below. Yet, the
dependence of the regularizer on the value function prevents us from readily applying the tool-set of
regularized MDPs. We shall study the properties of this new regularization function in Sec.[5]

Corollary 4.1. Assume thatU = (Py + P) x (ro + R) with Py := {P, ¢ RY : ||Py|| < aF} and

Ry = {rs € R : ||rs|| < o} forall s € S. Then, the robust value function v™ is the optimal
solution of the convex optimization problem:

max (v, o) . 1. v(s) < T, pyv(s) = aillmsl| = ady|ollims|l foratl s € 5. 3)
v

One can actually take two different norms for the reward and the transition uncertainty sets. Similarly,
Cor. 4.1 can be rewritten with an arbitrary norm, which would reveal a dual norm ||| instead of
||| in Eq. (@) (see proof in Appx.[B.2). Here, we restrict our statement to the £2-norm for notation
convenience only, the dual norm of /5 being ¢ itself. Thus, our regularization function recovers a
robust value function independently of the chosen norm, which extends previous results from [15} [11]].
Indeed, Ho et al. [15] lighten complexity of robust planning for the ¢;-norm only, while Grand-
Clément & Kroer [L1]] focus on KL and /5 ball-constrained uncertainty sets. Both works rely on the
specific structure induced by the divergence they consider to derive more efficient robust Bellman
updates. Differently, our method circumvents these updates using a generic, problem-independent
regularization function while still encompassing s-rectangular uncertainty sets as in [[15} [11].

5 R>MDPs

In Sec. [ we showed that for general robust MDPs, the optimization constraint involves a regular-
ization term that depends on the value function itself. This adds a difficulty to the reward-robust
case where the regularization only depends on the policy. Yet, we provided an explicit regularizer for
general robust MDPs that are ball-constrained. In this section, we introduce R2 MDPs, an extension
of regularized MDPs that combines policy and value regularization. The core idea is to further
regularize the Bellman operators with a value-dependent term that recovers the support functions
we derived from the robust optimization problems of Secs. [3}f4]

Definition 5.1 (R? Bellman operators). For all v € RS, define QU,RZ :Aq — Ras QU7R2(7TS) =

|l7sll(af + aF~||v||). The R? Bellman evaluation and optimality operators are defined as
[T750)(5) = Tl gy (5) — () s €S,
[T 0)(s) 1= max [T™v](s) = Q7 o(q.) Vs€S.
WEAi v

For any function v € RS, the associated unique greedy policy is defined as
s = arg max T”’sz(s) =V 2(gs), Vs€S,

TsEAA

that is, in vector form, m = VQ* ,(q) =: Go, (v) < T™Fy = TRy,

The R? Bellman evaluation operator is not linear because of the functional norm appearing in the
regularization function. Yet, under the following assumption, it is contracting and we can apply
Banach’s fixed point theorem to define the R? value function.

Assumption 5.1 (Bounded radius). Forall s € S, there exists €5 > 0 such that

IT—vy—es

; in
YVIS|  uaeRy jluall=1
vs€RS, vs=1

af < min uy Po(-|s,-)vs



Asm. [5.1|requires to upper bound the ball radius of transition uncertainty sets. The first term in the
minimum is needed for establishing contraction of R> Bellman operators (item (iii) in Prop. ,
while the second one is used for ensuring monotonicity (item (i) in Prop.[5.1). We remark that the
former depends on the original discount factor : radius o’ must be smaller as  tends to 1 but can
arbitrarily grow as -y decreases to 0, without altering contraction. Indeed, larger v implies longer
time horizon and higher stochasticity, which explains why we need tighter level of uncertainty then.
Otherwise, value and policy regularization seem unable to handle the mixed effects of parameter
and stochastic uncertainties. The additional dependence on the state-space size comes from the

£3-norm chosen for the ball constraints. In fact, for any £,-norm of dual ¢, |S |% replaces @
in the denominator, so it becomes independent of |S| as (p, ¢) tends to (1,00) (see Appx.|C.1).
Although we recognize a generalized Rayleigh quotient-type problem in the second minimum [2§]],
its interpretation in our context remains unclear. Asm.|5.1{enables the R? Bellman operators to admit
a unique fixed point, among other nice properties. We formalize this below (see proof in Appx. [C.I).

Proposition 5.1. Suppose that Asm.[5.1| holds. Then, we have the following properties:

(i) Monotonicity: For all vi,v9 € RS such that v1 < w9, we have T’“*szl < T”’szg and
T*’szl < T*’RZ’UQ.

(ii) Sub-distributivity: For all v, € RS, c € R, we have TR (v1 + clg) < T“’szl + velgs and
T*vRZ(Ul +cls) < T*’szl + vclg, Ve € R

(iii) Contraction: Let €, := mingeses > 0. Then, for all vi,v9 € RS,
T vy = T™ s o0 < (1= €2)|[v1 = valo and [|T*F vy = T*F va|og < (1 =€) 01 = va|oc-

We should note that the contracting coefficient in Prop. [5.1]is different from the original discount
factor +, since here we have 1 — €*. Yet, as Asm. @] suggests it, an intrinsic dependence between
and €* makes the R? Bellman updates similar to the standard ones: when ~ tends to 0, the value of
€* required for Asm.[5.T]to hold increases, which makes the contracting coefficient 1 — €* tend to 0
as well, i.e., the two contracting coefficients behave similarly. The contraction of both R? Bellman
operators finally leads us to introduce the R? value functions.

Definition 5.2 (R? value functions). (i) The R? value function V™R s defined as the unique fixed
point of the R? Bellman evaluation operator: ™R = TR YTR The associated q-function is
¢ (s,a) = ro(s,a) +¥{(Po(-|s, a), v™*). (ii) The R? optimal value function v**" is defined as the
unique fixed point of the R> Bellman optimal operator: v} = T*®* v*® The associated q-function
. R? *,R?

is q* (370') = 7AO(Sa CL) + 7<PO('|sa a)vv ’ >

The monotonicity of the R? Bellman operators plays a key role in reaching an optimal R? policy, as
we show in the following. A proof can be found in Appx.[C.2]

Theorem 5.1 (R? optimal policy). The greedy policy TR = Go, (v**Rz) is the unique optimal
R? policy, i.e., forall m € A, TR = R > TR

Remark 5.1. An optimal R’ policy may be stochastic. This is due to the fact that our R> MDP
framework builds upon the general s-rectangularity assumption. Robust MDPs with s-rectangular un-
certainty sets similarly yield an optimal robust policy that is stochastic [40, Table 1]. Nonetheless, the

R? MDP formulation recovers a deterministic optimal policy in the more specific (s, a)-rectangular
case, which is in accordance with the robust MDP setting (see proof in Appx. ) El']

All of the results above ensure convergence of MPI in RZ MDPs. . D2

We call that method R? MPI and provide its pseudo-code in Alg. Algorithm 1: R” MPI
The convergence proof follows the same lines as in [30]. More- Result: Tk 1, Vg1

over, the contracting property of the R? Bellman operator ensures  Initialize vy € R®;

the same convergence rate as in standard and robust MDPs, i.e.,a While not converged do
geometric convergence rate. On the other hand, R?> MPI reduces Th+1 < QQRZ (vr);

the computational complexity of robust MPI by avoiding to solve Vg1 < (T2 R2 )™
a max-min problem at each iteration, as this can take polynomial
time for general convex programs. Advantageously, the only
optimization involved in R> MPI lies in the greedy step: it amounts to projecting onto the simplex,

end

“The stochasticity of an optimal entropy-regularized policy as in the examples of Sec. is not contradicting.
Indeed, even though the corresponding uncertainty set is (s, a)-rectangular there, it is policy-dependent.



which can efficiently be performed in linear time [8]]. Still, such projection is not even necessary in
the (s, a)-rectangular case: as mentioned in Rmk. it then suffices to choose a greedy action in
order to eventually achieve an optimal R? value function.

6 Numerical Experiments

We aim to compare the computing time of R? MPI with that of MPI [30] and robust MPI [18]]. The
code is available at https://github. com/EstherDerman/r2mdp. To do so, we run experiments
on an Intel(R) Core(TM) i7-1068NG7 CPU @ 2.30GHz machine, which we test on a 5 x 5 grid-world
domain. In that environment, the agent starts from a random position and seeks to reach a goal state
in order to maximize reward. Thus, the reward function is zero in all states but two: one provides a
reward of 1 while the other gives 10. An episode ends when either one of those two states is attained.

The partial evaluation of each policy iterate is a building block of MPI. As a sanity check, we evaluate
the uniform policy through both R? and robust policy evaluation (PE) sub-processes, to ensure that
the two value outputs coincide. For simplicity, we focus on an (s, a)-rectangular uncertainty set and
take the same ball radius « (resp. ) at each state-action pair for the reward function (resp. transition
function). Parameter values and other implementation details are deferred to Appx.|Dl We obtain the
same value for R% PE and robust PE, which numerically confirms Thm. On the other hand, both
are strictly smaller than their non-robust, non-regularized counterpart, but as expected, they converge
to the standard value function when all ball radii tend to O (see Appx. @) More importantly, R? PE
converges in 0.02 seconds, whereas robust PE takes 54.8 seconds to converge, i.e., 2740 times longer.
This complexity gap comes from the minimization problems being solved at each iteration of robust
PE, something that R? PE avoids thanks to regularization. R? PE still takes 2.5 times longer than its
standard, non-regularized counterpart, because of the additional computation of regularization terms.
Table|l|shows the time spent by each algorithm until convergence.

Table 1: Computing time (in sec.) of planning algorithms using vanilla, R? and robust approaches.
Each cell displays the mean =+ standard deviation obtained from 5 running seeds.

Vanilla R? Robust
PE 0.008£0. | 0.02+0. | 54.8=+1.2

MPI(m=1)| 0.01£0. | 0.03£0. | 1186 £1.3

MPI(m=4) | 0.01£0. | 0.03£0. | 981 4.1

We then study the overall MPI process for each approach. We know that in vanilla MPI, the greedy
step is achieved by simply searching over deterministic policies [30]. Since we focus our experiments
on an (s, a)-rectangular uncertainty set, the same applies to robust MPI [40] and to R*> MPI, as
already mentioned in Rmk.[5.1] We can see in Table([I] that the increased complexity of robust MPI
is even more prominent than its PE thread, as robust MPI takes 3953 (resp. 3270) times longer
than R? MPI when m = 1 (resp. m = 4). Robust MPI with m = 4 is a bit more advantageous
than m = 1, as it needs less iterations (31 versus 67), i.e., less optimization solvers to converge.
Interestingly, for both m € {1,4}, progressing from PE to MPI did not cost much more computing
time to either the vanilla or the R? version: both take less than one second to run.

7 Related Work

Connections between regularization and robustness have been established in standard statistical
learning settings such as support vector machines [41], logistic regression [35] or maximum
likelihood estimation [[19]. As stated in Sec.[I] these represent particular RL problems as they concern
a single-stage decision-making process. In that regard, the generalization of robustness-regularization
duality to sequential decision-making has seldom been studied in the RL literature.

Two works that view policy regularization from a robustness perspective are [[L6] and [9]]. In [16],
regularization is applied on the dual objective instead of the primal. This has two shortcomings: (i)
It prevents from deriving regularized Bellman operators and dynamic programming methods; (ii)
The feasible set is that of occupancy measures, so the connection with standard policy regularization
remains unclear. Furthermore, their work focuses on reward robustness. Differently, Eysenbach &
Levine [9] address both reward and transition uncertainty by showing that policies with maximum


https://github.com/EstherDerman/r2mdp

entropy regularization solve a particular type of robust MDP. Yet, their analysis separately treats the
uncertainty on P and r, which questions the robustness of the resulting policy when the whole model
(P, r) is adversarial. Moreover, the dual relation they establish between entropy regularization and
transition-robust MDPs is weak and applies to specific uncertainty sets. Both of these works treat
robustness as a side-effect of regularization more than an objective on its own, whereas we aim to do
the opposite, namely, use regularization to solve robust RL problems.

Derman & Mannor [6] similarly use regularization as a tool for achieving robust policies. Through
distributionally robust MDPs, they show upper and lower bounds between transition-robustness and
regularization. There again, duality is weak and reward uncertainty is not addressed. Moreover, since
the exact regularization term has no explicit form, it is usable through its upper bound only. Finally,

regularization is applied on the mean of several value functions fuzrp "y where each P, is a transition

model estimated from an episode run. Computing this quantity reqhires as many policy evaluations
as the number of model estimates available, which results in a linear complexity blowup at least.

Previous studies analyze robust planning algorithms to provide convergence guarantees. The works
[2,27] propose robust value iteration, while [[17,40] introduce robust policy iteration. Kaufman &
Schaefer [18]] generalize both schemes by proposing a robust MPI and determine the conditions under
which it converges. The polynomial time within which all these works guarantee a robust solution is
often insufficient, as the complexity of a Bellman update grows cubically in the number of states [[15]].

In order to reduce the time complexity of robust planning algorithms, Ho et al. [15] propose two algo-
rithms that compute robust Bellman updates in O(|S||.A|log(|S||.A|)) operations for ¢;-constrained
uncertainty sets. Advantageously, our regularization approach reduces each such update to its stan-
dard, non-robust complexity of O(|S||.A|). Moreover, although Ho et al. [15] address both (s, a) and
s-rectangular uncertainty sets, they focus on transition uncertainty, whereas we tackle both reward
and transition uncertainties in the general s-rectangular case. Finally, their contribution relies on LP
formulations that necessitate restricting to the ¢;-norm while our method applies to any norm. This
may come from the fact that our main Theorems (Thms. [3.T]and [4.T)) use Fenchel-Rockafellar duality
(31, 4], a generalization of LP duality (see Appx. and [B.I). More recently, Grand-Clément
& Kroer [11]] propose a first-order method to accelerate robust value iteration under s-rectangular
uncertainty sets that are either ellipsoidal or KL-constrained. To our knowledge, our study is the first
one reducing the time complexity of robust planning when the uncertainty set is s-rectangular and
constrained with an arbitrary norm.

8 Conclusion and future work

In this work, we established a strong duality between robust MDPs and twice regularized MDPs.
This revealed that the regularized MDPs of [10] are in fact robust MDPs with uncertain reward,
which enabled us to derive a policy-gradient theorem for reward-robust MDPs. When extending this
robustness-regularization duality to general robust MDPs, we found that the regularizer depends on
the value function besides the policy. We thus introduced R? MDPs, a generalization of regularized
MDPs with both policy and value regularization. The related R? Bellman operators lead us to
propose a converging R? MPI algorithm that achieves the optimal robust value function within
similar computing time as standard MPL.

This study settles the theoretical foundations for scalable robust RL. We should note that our results
naturally extend to continuous but compact action spaces in the same manner as standard MDPs do
[30]. Extension to infinite state-space would be more involved because of the state-dependent regular-
izer in R> MDPs. In fact, it would be interesting to study the R?> MDP setting under function approx-
imation, as such approximation would have a direct effect on the regularizer. Similarly, one could an-
alyze approximate dynamic programming for R> MDPs in light of its robust analog [38} [1]]. Although
our theory focused on planning, the R? Bellman operators and their contracting properties open the
path to learning algorithms that can (i) use existing RL algorithms and robustify them by simply chang-
ing the regularizer; (ii) scale to deep learning settings. Apart from its practical effect, we believe our
work opens the path to more theoretical contributions in robust RL. For example, extending R MPI
to the approximate case [33] would be an interesting problem to solve because of the R? evaluation
operator being non-linear. So would be a sample complexity analysis for R> MDPs with a comparison
to robust MDPs [42]. Another line of research is to extend policy-gradient to R> MDPs, as this would
avoid parallel learning of adversarial models [7,39] and be very useful for continuous control.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The main contributions are consistently listed in the
abstract and introduction. These are: Showing that regularized MDPs are a particular
instance of robust MDPs with uncertain reward (Sec. [3); Extending this relationship to
MDPs with uncertain transitions (Sec. E]); Generalizing regularized MDPs to R MDPs
(Sec. ).

(b) Did you describe the limitations of your work? [Yes] These are described when
discussing Prop. [3.2]and Asm.[5.1] near the corresponding statements.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumptions
are introduced by "Assume that..." or "If..." in each theoretical result.

(b) Did you include complete proofs of all theoretical results? [Yes] All proofs can be
found in the Appendix. At each theoretical statement in the text body, we precisely
refer to the corresponding proof.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] The
code is available at https://github.com/EstherDerman/r2mdp, which includes
all instructions needed to reproduce the results.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] These are included in the experiments section (Sec. [6)) and
detailed in Appx.[D]

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] Table[I]displays mean + standard deviation for each
type of experiment. The figure plots in Appx.|D]also include error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Sec. @
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(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]
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