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Abstract

Large language models (LLMs) have rapidly advanced and are increasingly capable
of tackling complex scientific problems, including those in physics. Despite this
progress, current LLMs often fail to emulate the concise, principle-based reasoning
characteristic of human experts, instead generating lengthy and opaque solutions.
This discrepancy highlights a crucial gap in their ability to apply core physical prin-
ciples for efficient and interpretable problem solving. To systematically investigate
this limitation, we introduce PhySense, a novel principle-based physics reasoning
benchmark designed to be easily solvable by experts using guiding principles, yet
deceptively difficult for LLMs without principle-first reasoning. Our evaluation
across multiple state-of-the-art LLMs and prompt types reveals a consistent failure
to align with expert-like reasoning paths, providing insights for developing Al
systems with efficient, robust and interpretable principle-based scientific reasoning.

1 Introduction

Large language models (LLMs) have emerged as powerful tools, profoundly impacting numerous
aspects of scientific discovery [1, 2} 3| 4]]. Recent advancements in their reasoning capabilities have
been particularly transformative, with notable applications in the domain of physics [} 16} [7} [8]].
Within physics, LLMs have demonstrated the ability to engage with problems ranging from those
requiring real-world physical intuition [9]] to complex theoretical challenges [10].

Despite these impressive strides, a critical challenge lies in ensuring that the reasoning processes of
LLMs align with expert intuition and fundamental physical principles. Current LLMs tend to generate
solutions with long-horizon reasoning pathways, which are opaque, convoluted, or divergent from the
parsimonious and principle-driven thinking characteristic of human physicists. Such phenomena has
also been identified as over-thinking [[L1]. In contrast, physicists master principle-based reasoning
with principle-driven problem solving and principle-based verification. Principle-driven problem
solving is a forward process where fundamental principles simplify the problem-solving space,
directly guiding towards a solution. Principle-based verification is a routine where physics principles
establish criteria that a correct solution must meet, ensuring its validity. This divergence between
LLMs and human physicists raises concerns about the efficiency, robustness and interpretability of
current LLMs for scientific reasoning, especially in a field where clarity, intuition and explainability
of a solution is as crucial as the correctness of solution itself.

This work investigates LLMs’ tendency to miss simple, intuitive solutions in physics problems that
are apparent to human physicists. We posit that an incomplete grasp or misapplication of physical
principles leads LLMs to unnecessarily complex reasoning, contrasting with human experts who
leverage these fundamental ideas for elegant and efficient solutions (e.g., analyzing through symmetry
instead of intricate numerical computation). This expert approach, which organizes knowledge
around crystallized principles for efficient problem-solving, is well-documented in cognitive science
[12,[13}114]. Emulating this in LLMs could foster more aligned, efficient, and interpretable reasoning,
guiding them towards computationally leaner and conceptually sound ‘shorter paths.’
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Figure 1: Illustrating how LLMs use lengthy, complex reasoning for physics problems intuitively
straightforward to scientists applying core physical concepts.

To systematically analyze this, we introduce PhySense, a benchmark of 380 carefully curated physics
problems designed to be straightforward for human physicists with core principles but appears to
be challenging for LLMs to solve efficiently. In contrast to other physics reasoning benmark which
focuses on reasoning on specific domain or challenging calculations, PhySense focuses on short
reasoning chains where single principles are crucial. Our findings aim to highlight the need for
developing LLMs that are not only accurate, but also exhibit interpretable, robust reasoning aligned
with fundamental physical principles. Our key contributions are summarized as follows:

e We introduce PhySense, the first novel, human-curated principle-based physics reasoning
benchmarking dataset of over 380 problems that are straightforward for experts using fundamental
principles but challenging to LLMs unless they adopt direct, principle-first reasoning shortcuts.

* We quantify not only whether an LLM arrives at the correct answer, but also how closely its
reasoning cost matches with principle-based solutions via both accuracy and token efficiency metrics.

* We evaluate a range of state-of-the-art LLMs under zero-shot, hint, and no-computation prompts,
uncovering LLMSs’ systematic lack of capability in applying principles and offering guidance for
training LLMs toward more efficient, robust and interpretable principle-based physics reasoning.

2 Related Work

Benchmarks for General Scientific Reasoning As LLMs are increasingly considered as important
tools in scientific inquiry, understanding their true capabilities and limitations in scientific reasoning
becomes paramount. Early benchmarks such as AI2 ARC [15], MMLU [16], IconQA [17] and
ScienceQA [[18] focused on general scientific context, surface-level reasoning, and basic factual
knowledge. As model capabilities have grown, newer evaluations target deeper, multi-step problem
solving and domain-specific expertise—either by repurposing advanced human exams and problem
set (e.g., AGIEval [19], JEEBench [20]], SciBench [21]]) or by probing complex reasoning dimensions
(e.g., MMLU-Pro [22], SciEval [23]], TheoremQA [24]]), up to the extreme challenges posed by
capstone-style assessments like Humanity’s Last Exam [25]]. Some of the general science reasoning
datasets like OlympicBench [26] and OlympicAreana [27] provides advanced physics problems but
with limited scope.

Benchmarks for Physics Reasoning The landscape of physics-reasoning benchmarks for LLMs
has rapidly evolved from primarily general problem sets to multifaceted collections that probe
deeper conceptual, procedural, and physics-specific understanding. Efforts like PhyQA [28] and
UGPhysics[29] assemble thousands of structured introductory problems, while other benchmarks such
as PhysBench [30]] and PhysReason [31] introduce problems require longer reasoning steps. More
research-oriented suites like TP-Bench [[10], CURIE [32] and multi-modal benchmarks like MM-
PhyQA [33]] and domain specific benchmarks like FEABench [34]] further pushes the understanding
of LLM’s physics capability with more research-oriented settings. In contrast to multi-modal
approaches, our work deliberately focuses on theoretical, text-only problems where all relevant
information is conveyed textually. This design choice allows for a targeted evaluation of conceptual
and algebraic reasoning, isolating these core competencies from confounding factors of image or
diagram understanding. We discovered that single-modality benchmark already reveals significant
limitations in current LLMs. Increased attention is also being directed towards fine-grained evaluation
methodologies for the precise assessment of many-step reasoning including Expression Edit Distance
(EED) Score [30].

Reasoning in LLMs and "'Over-Thinking'' Recent advances in LLMs, sometimes characterized
by "slow thinking" capabilities demonstrated since models like GPT o1 [35l], have showcased stronger
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abilities in solving STEM problems. This improvement is often attributed to post-training techniques
and reinforcement learning. Models like DeepSeek-R1[36], Gemini-2.0-Flash-Thinking[37], and
versions of Claude [38] and Qwen [39] have demonstrated enhanced reasoning. However, while these
models can generate longer reasoning chains (i.e., use more tokens), this does not always equate to
more efficient or accurate reasoning. The phenomenon of "over-thinking" [11]], where models may
engage in unnecessarily complex or incorrect reasoning paths, remains a challenge.

3 Dataset Generation

“The universe is an enormous direct product of representations of symmetry groups.”
— Steven Weinberg, Nobel laureate in physics

Principle-based Reasoning Physics principles such as symmetries, conservation laws, and di-
mensional analysis remain cornerstones of modern physics research and problem solving. They not
only simplify complex systems and reduce computational costs, but also illuminate the nature of
various phenomena and provide a unified understanding across diverse contexts. Therefore, an LLM’s
proficiency in applying these principles serves as a reliable gauge of its understanding of physics.
Principle-based physics reasoning can (1) efficiently yield the correct answer (2) robustly validate
potential solutions (3) provide clear interpretability beyond calculation. We demonstrate this
with the following example.

Example 1

A 5x5 square grid of nodes: = € {0,1,2,3,4},y € {0,1,2,3,4} connected by resistors r
between nearest neighbors. Connect node V(g,0y = 0, node V4 4y = V, node V(g 4) = V/2.
Which of the following is true?

(@) Vi1,3) = V/2(b) Vig2) = V/2(c) Vi1,1) = V/4(d) Vi3 .3) = 3V/4 (e) Viu0) = V/2

Answer 1

Answer by symmetry principle:
A trained physicist would notice the circuit together with added voltages has a reflection
symmetry along the diagonal x + y = 4. One can then deduce directly that (a,b,e) is correct.

Answer by explicit calculation:

Without using symmetries, one has to solve Kirchhoff equations for the whole system (22
unknown voltages),
3Vo1—Vii—Vo2=0,3Vp2—Vig—Vo1—Vo3=0,3Vp3—Visg—Voo=V/2
3Vio—Voo—Vi1=0,3Vog—Vig—V30—Vo1=0,3V30—Va0—Vio—V31=0
2Vao— V30— V41 =0,3Va1 —Vig—Vio—V31=0,3Vio— Vi1 — Vi3 —V32=0
3Vig —Vao—Vas=V,3Via—Vou—Vig=V/2,3Vou —Viy—V34—Vo3=0
Va4 —Vou—Vasg =V, 4Vi; —Vi1; —Vig1; = Vij1 —Vijp1 =0forl1 <i,j <3.

Solving all the equations above numerically, one gets Vi 3 = Voo = Vag = V/2, V33 =
0.6702V, V1 1 ~ 0.3298V. Thus the answer is (a,b,e). Clearly, this “standard” approach is
much more complicated than using the symmetry principle.

Despite the power of physical principles, existing benchmarks (see e.g. Sec.[2), while challenging, do
not evaluate whether LLMs truly apply these principles. Do LLMs genuinely understand physics, or
are they merely leveraging greater computational power than humans? To address this gap, we have
developed a new problem set of 380 physics questions spanning electricity and magnetism, electric
circuits, quantum spin/fermion chains, quantum dynamics, topological insulators, the renormalization
group, and conformal field theory. These problems are crafted according to the following criteria.

Principle-based physics reasoning A key feature of PhySense is its design to test LLMs’ un-
derstanding on fundamental principles and capability on principle-based reasoning. Our dataset is
different than previous physics reasoning dataset, since we do not aim to test LLMs’ knowledge
in a specific domain or cabability of reasoning with long calculation. While our problems may be
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challenging or could be solved with lengthy calculation, we design the problems to be solved easily
using physics principle reasoning.

Novel problems from human experts Although
the underlying concepts in our problem set are Equation
widely available online, we have crafted entirely oymmetry Topology
new questions with physicists from top universi-

ties that cannot be found elsewhere, ensuring that
LLMs have not been exposed to similar problems.
This novelty is essential for testing an LLM’s ability

to generalize the application of physics principles.

Molecular
Symmetry

Limiting Case

RG
Power Counting

Unitary
Transformation

A wide range of difficulties The problems span
difficulty levels from undergraduate through gradu-
ate and research-level, yet none requires advanced
mathematical techniques, complicated integrals, or
large-scale numerical computations. This ensures
we evaluate how well LLMs can think like physi-
cists — using fundamental physical principles to o ) o )
understand problems — rather than merely assess- Figure 2: Distribution of physics principles in
ing raw computational capability. We also annotate the dataset.

each problem with a difficulty rating (as judged by humans) for subsequent analysis.

Dimensional
Analysis

Conciseness for evaluation Every problem is stated and solved entirely through textual description
and derivation. The physical setups are simple to describe, minimizing the risk of misinterpretation
by LLMs. To eliminate ambiguity in the outputs, each question offers either multiple-choice options
or expects a concise numerical answer.

3.1 Physical principles and models

Following the criteria above, we evaluate the LLM’s understanding and correct application of several
fundamental yet powerful principles in both classical and quantum physics. To do this, we design 19
distinct problem models

Symmetry Spatial symmetries can be leveraged to identify points where complicated integrals
vanish. To evaluate this, we construct problem sets involving two-dimensional and three-dimensional
electric (or magnetic) fields generated by symmetric charge (or current) distributions. These problems
are categorized into the following models, each with an abbreviation:

* 2D electric field (2DEF), 2D electric field on a lattice (2DEFL), 3D electric field (3DEF), 2D
magnetic field (2DBF), 3D magnetic field (3DBF)

We also devise problems that leverage symmetries to determine voltages of certain nodes in finite and
infinite circuits:

* Infinite resistive lattices (InfRes), Circuits on a square lattice (SqGrd), Circuits on other lattices
(OthGrd)

The symmetry of molecules can determine the solubility in solvents, which leads to another model of
problems:

* Solubility comparison (Solub)

Moreover, symmetries impose constraints on correlation functions in quantum many-body physics
and statistical mechanics. We have also developed problems involving quantum spin and fermion
chains and their dynamical variants, to test Zs, U(1), and time-reversal symmetries alongside spatial
symmetries such as translation and reflection:

* Quantum spin chains (Qspin), Fermionic chains (Ferm), Quantum dynamics with symmetry and
conservation laws (DynCon)

Dimensional analysis Dimensional analysis is a powerful tool in uncovering possible relations
between different physical quantities. Not only is it widely used in the context of thermodynamics,
fluid mechanics, etc., its applications also extend to quantum mechanics as well. We design problems
in two areas: (a) applying the II theorem in fluid and quantum mechanics, and (b) using power
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counting to determine relevance in the renormalization group. This yields the following problem
models:

* Dimensional analysis using 11 theorem, where we focus on testing LLM’s ability to compute di-
mensions in arguments of functions such as sin, log, etc. (DimLS), Dimensional analysis with artificial
irrelevant perturbations (WrdH), Power-counting in renormalization group analysis (RGPow)

Limiting case Irrelevant perturbations in physical problems can be omitted to simplify the physical
model. To test the LLM’s ability to do so, we introduce perturbations into Model (WrdH) above and
evaluate whether it correctly ignores the higher-order terms.

Conservation law  Conservation law plays a crucial role in quantum field theory. Especially in free
fermion conformal field theories, equation of motion, together with the fermionic statistics, provides
a powerful tool to determine whether an operator is primary, descendant, or merely vanishing.

* Operator properties in conformal field theories (CFTOp)

Topology Topological phases of matter is a central topic in modern condensed matter physics. It
typically exhibits gapless edge spectrum, and sensitive to the boundary condition of the system. We
design problems to evaluate if LLMs can understand the stability of symmetry-protected topological
phases from the edge spectrum perspective:

* Edge spectrum in topological insulators (GpEdg)

We also compose problems in counting the ground state degeneracy of (generalized) spin chain
with antiperiodic or periodic boundary condition. In particular, in these problems, applying finite-
depth local unitary circuits, which does not alter the topological property including the ground state
degeneracy, greatly simplifies the calculation.

* Ground state degeneracy of spin chains (GSDeq), Ground state degeneracy of generalized spin
chains (GSDGen)

4 Experiments

This section details the experiments conducted to evaluate the scientific problem-solving capabilities
of LLMs. We begin by outlining the experimental setup, including the models tested and the
prompting strategies employed to simulate scientific reasoning scenarios.

4.1 Experiment Setup

We evaluated seven unimodal LLMs on our benchmark. These included four reasoning models
optimized for reasoning: GPT 04-mini-high [40], Claude Sonnet 3.7 Thinking [38]], Gemini 2.5 Pro
[41], and DeepSeek R1 [36]. Additionally, we tested three regular non-reasoning models: GPT
4.1 [42], Claude 3.7 Sonnet [43]], and DeepSeek V3 [44]]. For all the models, we use the API-based
services with default hyperparameter setting. We utilized three common prompting strategies in
scientific applications to test LLMs:

Zeroshot Prompting Zero-shot prompting tests a model’s intrinsic reasoning by providing only
the problem statement, without examples or hints. This method gauges the model’s ability to apply
existing knowledge, making it a good test for scientific discovery.

Hint Prompting Hint prompting provides models with guidance on relevant physical principles,
helping to see if they can use explicit direction to solve problems. This is useful when models fail to
apply the correct principles on their own.

No Computation Prompting In this approach, models are instructed to avoid complex calculations
and instead focus on principle-based reasoning. This assesses their ability to prioritize simpler,
conceptual solutions over complicated computational methods.

4.2 Metrics

We employ two primary metrics for evaluation: accuracy and token usage. For accuracy, LLMs
were instructed to provide their final answer within a boxed environment for automated extraction
and comparison against ground truth solutions. The problems fall into two categories with different
evaluation implementation: (1) numerical: Answers are compared to the ground truth allowing for a
5% tolerance. (2) multiple choice: The selected option must exactly match the correct choice. For
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(a) Average accuracy across models. (b) Average token usage across models.

Figure 3: Average accuracy and token usage for different models.

token usage, we record the total number of tokens produced during the generation of the solution
for each problem and model. This is a crucial metric that provides insight into the computational
cost associated with each model’s problem-solving process, and reflects how much principle-based
reasoning each LLM acquires.

5 Results

In this section, we report the benchmarking results and present our primary observations regarding
the performance of various LLMs on PhySense.

5.1 Reasoning Accuracy

We report the model performance in terms of accu-
racy score fOr each SeCtiOn and an average accuracy Accuracy of LLMs by Difficulty (Zeroshot)

Difficulty

over all problems. We quantify model performance
using accuracy percentage, calculated for each dis-
tinct problem category within our benchmark, along-
side an overall average accuracy across all problems.
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This accuracy reflects the proportion of problems
correctly solved by each model according to our eval-
uation protocol. The accuracy results are compiled o+
in Table [} To provide a clearer visual summary
of the overall performance trends, we present his- EA ORI S »oP
tograms illustrating the distribution of average ac- &S &é‘“a & ¢
curacy scores across the cohort of tested models in °
Figure To further assess LLM alignment with
human physicist problem-solving, problems were cat-
egorized by human-judged difficulty (easy, medium,
difficult). Figure [] shows each model’s average zero-shot accuracy across these levels. While
reasoning models achieve better performance than non-reasoning models on average, all LLMs’
performances are not satisfactory, reflecting their incapability of mastering principle-based reasoning.
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Figure 4: Zeroshot accuracy of LLMs under
three difficulties.

5.2 Reasoning Token Efficiency

In parallel to accuracy, we report the average number of completion tokens produced by the models
for generating solutions, both for individual sections and on average. This token usage metric provides
an indication of the computational resources and reasoning complexity associated with each model’s
problem-solving attempts. The token usages are compiled in Table[2] Figure [3b|offers a comparative
overview of the token utilization patterns. Reasoning models, due to reaoning mechanisms, consume
about ten times more tokens (~ 10%) than non-reasoning models (~ 103). In stark contrast, human
physicists demonstrate far greater efficiency, often solving the same problems using about a hundered
times fewer tokens (~ 102) than reasoning models. It indicates a huge gap between LLMs and human
experts on efficient principle-based reasoning.



Table 1: LLM accuracy scores (as percentages) for reasoning models. The first subtable shows
accuracy for the first 10 problem sets, and the second subtable shows accuracy for the remaining 9
problem sets and the overall average (AVG). The best accuracy of each section is marked in bold font.
The full result, including non-reasoning models, is in the Appendix.

Model Prompt RGPow  SqGrd QSpin  CFTOp  3DBF  GSDGen  WrdH Ferm DynCon  3DEF
Hint 25.0 5.0 0.0 0.0 5.0 0.0 55.0 0.0 0.0 5.0
DeepSeek R1 No Comp 15.0 5.0 5.0 0.0 5.0 0.0 40.0 5.0 0.0 0.0
Zeroshot 10.0 0.0 10.0 5.0 10.0 0.0 30.0 5.0 0.0 5.0
Claude 3.7 Hint 5.0 30.0 35.0 30.0 40.0 0.0 65.0 20.0 5.0 50.0
Sonnet No Comp 10.0 25.0 30.0 20.0 45.0 0.0 25.0 10.0 0.0 30.0
(Thinking) Zeroshot 10.0 45.0 35.0 35.0 35.0 0.0 30.0 25.0 5.0 30.0
Hint 5.0 20.0 45.0 25.0 35.0 15.0 70.0 50.0 0.0 40.0
0O4-Mini-High ~ No Comp 25.0 10.0 45.0 20.0 45.0 20.0 50.0 35.0 5.0 50.0
Zeroshot 15.0 15.0 35.0 15.0 45.0 20.0 80.0 15.0 10.0 65.0
Gemini 2.5 Pro Hint 10.0 50.0 65.0 25.0 50.0 5.0 100.0 30.0 25.0 65.0
(Preview)' No Comp  20.0 40.0 65.0 25.0 50.0 25.0 100.0 25.0 20.0 70.0
Zeroshot 10.0 35.0 70.0 25.0 40.0 15.0 95.0 25.0 30.0 50.0
Model Prompt DimLS  GpEdg  GSDeg Solub 2DEF 2DEFL  OthGrd 2DBF InfRes AVG
Hint 15.0 5.0 30.0 0.0 10.0 5.0 10.0 10.0 40.0 11.6
DeepSeek R1 No Comp 0.0 0.0 20.0 0.0 5.0 0.0 15.0 5.0 70.0 10.0
Zeroshot 5.0 10.0 30.0 0.0 5.0 0.0 0.0 0.0 45.0 8.9
Claude 3.7 Hint 45.0 5.0 15.0 60.0 40.0 15.0 35.0 15.0 50.0 29.5
Sonnet No Comp 45.0 5.0 20.0 65.0 45.0 15.0 40.0 5.0 35.0 24.7
(Thinking) Zeroshot 50.0 5.0 30.0 65.0 35.0 15.0 40.0 15.0 35.0 28.4
Hint 55.0 10.0 45.0 45.0 45.0 45.0 65.0 30.0 35.0 35.8
O4-Mini-High ~ No Comp 40.0 5.0 25.0 40.0 35.0 40.0 75.0 35.0 15.0 324
Zeroshot 50.0 10.0 15.0 40.0 45.0 40.0 60.0 65.0 30.0 35.3
Genmini 2.5 Pro Hint 40.0 10.0 25.0 75.0 65.0 55.0 30.0 30.0 85.0 44.2
(Preview)' No Comp 55.0 15.0 30.0 80.0 60.0 40.0 35.0 30.0 85.0 45.8
Zeroshot 55.0 15.0 40.0 70.0 65.0 55.0 30.0 35.0 85.0 44.5

Table 2: LLM token usage for reasoning models. The first subtable shows the token usage for the
first 10 problem sets, and the second subtable shows the token usage for the remaining 9 problem sets
and the overall average (AVG). The full result, including non-reasoning models, is in the Appendix.
Model Prompt RGPow SqGrd QSpin CFTOp 3DBF GSDGen WrdH Ferm DynCon  3DEF

Hint 7748.4 6085.5 7632.0 6711.2 11371.5 12606.7 10490.3 9499.3 8516.8 9784.7
DeepSeek R1 No Comp 6183.9 3830.3 8215.8 7438.9 10062.0 10215.3 10626.1 9688.8 9623.3 9504.5
Zeroshot 7317.8 3968.2 6483.7 7647.8 11879.9 121934 10163.2 9927.0 8581.3 9954.6

Claude 3.7 Hint 17735.1 15298.6 18616.3 18987.8 19144.3 20767.3 202722 21516.2 13818.2 19036.2
Sonnet NoComp 16001.6 15081.4 17857.8 17108.1 20267.2 20318.4 221829 20201.1 15469.8 189774
(Thinking) Zeroshot  15936.0 17851.0 18357.8 15954.6 21768.8 20952.5 20672.1 18951.2 14550.9 15786.8

Hint 5345.0 6086.5 3813.3 1545.5 13739.4 10854.6 2566.3 8714.3 4469.3 8173.7

0O4-Mini-High ~ No Comp 4575.9 3702.1 3336.9 1624.8 15863.4 9539.9 2130.9 8756.7 4530.0 8640.5
Zeroshot 6536.9 5555.7 4028.6 2661.5 13835.6 13012.4 3477.8 8909.5 5576.7 11134.5

Hint 20051.2 21261.7 22041.2 19477.1 26954.0 26402.8 15640.6 26444.4 22526.0 21781.8

8;211;;”2)‘5 Pro NoComp 17567.4 18813.4 21876.5 17009.9 26479.1 24328.0 16612.9 23438.2 22199.9 22420.3
Zeroshot  20182.7 20409.2 20523.5 193944 26385.5 26236.2 16700.3 23850.2 21939.2 21351.4
Model Prompt DimLS GpEdg GSDeg Solub 2DEF 2DEFL OthGrd 2DBF InfRes Avg

Hint 6586.6 5079.4 117924 2220.4 8191.7 10516.3 3230.9 10219.9 10018.2 8331.7
DeepSeek R1 No Comp 5322.9 5178.9 10077.8 2745.5 7489.6 9865.0 2512.0 10132.3 6919.4 7664.8
Zeroshot 5014.1 5365.7 11397.6 2220.3 7621.5 10446.0 3458.6  11323.9 8649.0 8084.9

Claude 3.7 Hint 14052.6 17293.1 29709.8  8725.1 169254 25224.0 12846.5 19499.4 16712.8 18220.0
Sonnet NoComp 14565.5 19226.3 22652.3 11181.5 17803.3 24001.0 13721.2 187172 14371.0 17879.2
(Thinking) Zeroshot  11997.8 17201.9 26542.0 10072.3 16644.4 23130.3 12099.9 20960.1 14012.4 17549.6

Hint 3911.7  3958.7  9079.1 1754.2  7551.6 14260.4  4648.6 12895.1  9460.3  6990.9

O4-Mini-High ~ No Comp 3673.2 3792.0 6693.0 2427.8 6766.7  12709.1 4341.5 9266.6 9333.4 6405.5
Zeroshot 4134.4 5193.5 8080.3 1912.1 8318.4 13527.0 6437.0 12987.5 16460.9 7988.4

Hint 12844.7 18129.4 24595.4 8205.2 22265.6 24617.9 18649.2 28798.5 15979.4 20877.1
No Comp 12147.8 17457.0 248874 8073.3 21379.0 23503.0 19128.6 307104 17622.1 20297.6
Zeroshot ~ 13888.2 18554.4  25820.9 8387.2  22079.7 24866.8 18291.4 29737.3 18759.5 20913.5

Gemini 2.5 Pro
(Preview)
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5.3 LLM Failures in Applying Physical Principles

While many LLMs can state physical principles, they often struggle to apply them correctly or
comprehensively, particularly the principle of symmetry. Models frequently fail to identify relevant
symmetries or incorrectly assume symmetries that do not exist. This weakness is apparent in problems
where symmetry provides a significant shortcut.

Example 2: 2D Electric Field (2DEF)

There is a uniformly charged square plane in space with corners at (z,y, z) = (+1,£1,0).
At which of the following locations is the x-direction electric field strength equal to the
y-direction electric field strength (£, = E,)?

a) (0703 1)7 C) (]-7 ]-a 1)7 1) (_13 _]-a ]-)’ J) (O,Oa _1), Il) (]-a 13 _]-); I') (_17 _1, _]-); V)
(2,2,0); ... (other options omitted)

For a physicist, the solution is straightforward: by symmetry, any location where x = y will have
E, = E,. This insight immediately identifies the correct answers (a, €, i, j, n, 1, v). In contrast, one
LLM attempted to solve the problem by setting up complex 2D integrals, ultimately arriving at an
incorrect answer. This shows a failure to recognize and leverage the fundamental symmetry of the
setup.

The capability to reason with such principles varies across models. To illustrate this, we compare
responses from a reasoning and a non-reasoning model on a quantum mechanics problem.

Example 3: Quantum dynamics (DynCon)

Consider a L = 100 quantum spin chain prepared as the ground state of H = — ) j X; —
0.9>7; Z;Zj+1. Time-evolve this state under H(t) = >, Y;X;41X;12Yj 43 fromt =0 to
t = 100. Which of the following is true in the final state?

a) <Z60> = 0; b) <239Y40> = <Yv90Z91>; C) <239X40> = <X61Z62>; d) None of the above is
true.

In this problem, choices (a), (b), and (c) are all correct due to spin-flip, time-reversal, and reflection
symmetries, respectively. The reasoning model correctly identified spin-flip and reflection symmetries
but failed to apply time-reversal symmetry. The non-reasoning model also mentioned spin-flip and
reflection but showed a superficial grasp by failing to see that choice (c) follows from them. When
prompted with a hint, it incorrectly invoked translational symmetry (which is absent) and, like the
reasoning model, showed no awareness of time-reversal symmetry (see Appendix [A.2]for details).

Overall, while reasoning models are more effective at applying physical principles, they are still
imperfect. Non-reasoning models demonstrate a shallower understanding, often using terminology
without true comprehension.

6 Conclusion

We introduce PhySense, a comprehensive, novel, human-curated principle-based physics reasoning
benchmark for evaluating large language models on scientific problem-solving across diverse physics
domains. PhySense comprises 380 carefully designed problems spanning symmetry reasoning,
dimensional analysis, renormalization-group analysis, topology, quantum dynamics, and more,
together with three prompting strategies ("Zero shot", "Hint", and "No-computation"). Our extensive
evaluation of seven state-of-the-art LLMs, including reasoning and non-reasoning models, reveals
that while reasoning-focused LLMs outperform their non-reasoning counterparts, all models remain
substantially below expert human performance. We observe consistent deficits in token efficiency,
principled application of physical laws, and generalization across topics. Moreover, auxiliary
prompting strategies (e.g., hints or “no-computation” directives) yield only marginal improvements,
indicating the need for deeper integration of principle-based thinking to LLMs. For future directions,
it will be important to try improving LLM’s principle-based reasoning via supervised fine tuning or
reinforcement learning. Our study provides valuable insights and guidance for developing LLMs
with efficient, robust and interpretable principle-based reasoning, which are crucial for scientific
collaborations and discoveries.
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A Analysis of Several Examples

A.1 An example of LLM failing to apply principles

For some problems, even if the LLM is forced to use principle, it fails to figure out the correct way to
use it. In the following example, Gemini-2.5 Pro fails to find the correct symmetry of the system. In
general, the LLMs we test have better performance with symmetry group of a square lattice, but for
other cases like triangular or honeycomb lattices, the LLMs have difficulty finding out the symmetry
group to consider (see below).

Example 4: 2D Electric Field Lattice (2DEFL)

There are point charges on the infinite x-y plane in space. The coordinates of the charges
are {(z,y,2) = m - (v/3/2,-1/2,0) +n - (0,1,0)|(m +n) # 0 mod 3,m,n € Z}. i.e.
forming a 2D infinite honeycomb lattice on the x-y plane. Each point has charge of equal
amplitude. The charges with n being even integers are positive, and the charges with n being
odd integers are negative. Which of the following locations in space have the z-direction
electric field strength E, being zero?

a)(r=0,y=0,2z=1;5b) (z =0,y =1/2,z=1);¢) (x =0,y = —1/2,z = 1); d)
(z=0,y=1l,z=1)3e)(z=0,y=-1z2=1);) (z =V3/2,y=0,2=1);2) (z =
V3/2,y =1/2,z=1);h) (z = v3/2,y = —1/2,2 = 1);i) (v = —v/3/2,y = 0,2 = 1);
D(E=-V3/2,y=1/2,2=1);k (z = —V3/2,y = =1/2,2 = 1);]) (z = V3/4,y =
1/4,z = 1); m) (x = V3/4,y = —1/4,2 = 1); n) (x = V3/4,y = 3/4,2 = 1); 0)
(.Z‘ = \/3/4??4 = _3/472 = 1); p) (.13 = _\/3/4??4 = 1/472 = 1); Q) (.’L‘ - _\/3/4ay =
~1/4,2=1);1) (z = —V3/4,y = 3/4,2 =1);5) (x = —/3/4,y = —3/4,2 = 1);

Answer 2: “Hint” prompt

This problem requires a detailed analysis of the symmetries of the charge distribution. Given
the complexity and the lack of an obvious symmetry that leads to £, = 0 for the listed points
without extensive calculation, and the peculiarity that some listed solutions are locations of
charges themselves, it’s possible that the problem requires advanced techniques or there is a
specific property of this honeycomb lattice with alternating charges that is not immediately
apparent ...... Due to the difficulty and potential complexity, i am unable to provide a justified
answer. However, if this is from a known source, one might find existing literature on a

similar problem. The final answer is | b, e, g, 1,1, 0,p, 7 |.

The LLM does not even specify any symmetry to consider and the answer above is wrong. In
fact, the correct use of symmetry is: E, = 0 can be fixed by a reflection + charge-conjugation
combined symmetry, where the reflection plane includes a z-direction straight line, or by a rotation +
charge-conjugation combined symmetry, where the rotation axis is a z-direction straight line. The
charge configuration has such rotation + charge-conjugation combined symmetry at the middle points
of the edges that connect a pair of positive and negative charges. Among the choices, those points are
(f,i,0,r), which is our answer.

A.2 Answers of Example 3

Answer 3: o4-mini-high, “Zero-shot” prompt

Solution Outline 1. Symmetry 1: Global spin - flip in the X - basis

Define Q = I1; °X;. —QX,;Q = X;,QZ;Q = —Z;,QY;Q = —Y; - Both Hy = —¥X; —
0.9¥%;Z;11 and Hy = YY;X;,, X;,,Y;,, commute with Q = The state at all times is
Q-symmetric = (Z;) = 0 = statement (a) is true. 2. Symmetry 2: Reflection about the
chain center

Define R : j — 101 — j. One checks RHoR = Hgy and RH;R = H;. Thus the time -
evolved state is R - symmetric. Under R: Z39 X490 — Zg2X61 = Xe1Z62 (different - site
Pauli commute) = (Z39X40) = (X¢1Z62) = statement (c) is true. 3. Translation is not an
exact symmetry of the open - chain Hy or Hy, so (b) need not hold.
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Final answer:

Answer 4: 04-mini-high, “Hint”” prompt

Solution Outline: 1. Symmetry of the initial Hamiltonian Hy : - Hy = —%;%°X_j —
0.9%,%°Z_jZ_{j + 1} commutes with the global spin - flip P= [] X_j. - Hence its (unique)
ground state [to) is a P - eigenstate and (Z_j), = 0 for all j . 2. Time - evolution under
H(t) = S.27Y X _{j+ 13X _{j+2}Y_{j+3}: - H(t) also commutes with P = (Z_j) _t
remains zero = statement (a) is true. 3. Reflection symmetry R(j — 101 — j) : - Both Hy
and H(t) are invariant under R and |1)g) can be chosen R - symmetric. - Hence (A; Bi11): =
(RA;Bi11R), = (A101-iBioo—i),. - For (¢): i=39 gives (101-39,100-39)=(62,61), so
(Z390X40) = (Zs2X61) = (X61Z62) (operators on different sites commute) = (c) is true. 4.
Statement (b) involves (39, 40) vs (90, 91), which are neither related by P nor by R = false.

Final Answer:
Answer 5: 04-mini-high, “No Comp” prompt

Step-by-step: 1. Define the global "spin - flip" operator
G =[[{i = 13" {100}X_j.

Note GZ;G = —Z; and GX;G = +Xj, so G flips the sign of Z and Y and leaves X
invariant. 2. Check symmetries: - Hypitiaqr = —XX_j — 0.9X2Z_jZ_{j + 1} commutes
with G (the usual Z5 symmetry of the transverse - field Ising model). - Hgpipe = > {j =
DMOTYY_ i X{j + 1} X_{j + 2}Y_{j + 3} also commutes with G (each term has two
Y’s). = The time - evolved state remains a +1 eigenstate of G for all ¢. 3. Consequences for
expectation values: - Any operator O with GOG = —O has (O) = 0 at all times.

In particular Z_j is G-odd = (Z_j) = 0 = (a) is true. —Z_jX_{j + 1} is G-odd (one
Z)= (Z_jX_{j+1}) = 0, and likewise (X_jZ_{j +1}) = 0 = (c) holds (0 = 0).
-Z_jY_{j+ 1} and Y_jZ_{j + 1} are each G-even, but there is no symmetry forcing
(Z_jY_{j+1}) = (Y_kZ_{k + 1}) for different string orderings => (b) is not guaranteed.

Answer:

Answer 6: GPT-4.1, ¢“Zero-shot” prompt

Let’s analyze each statement:

Hamiltonians: - Initial: Hy = — 2}101 X; —09 Z?il Z;Zj11 (Transverse field Ising). -
Time-evolution: H(t) = 357, V; X, 11 X;42Yj4s

Statement a: (Zg) = 0 of the initial Hamiltonian has (Z;) = 0 due to the symmetry. Time
evolution with a symmetric Hamiltonian preserves this. So, this statement IS true.
Statement b: <Z39Y2;0> = <Y90291>

Statement c: (Z39X40) = (X¢1Z62) Similarly, unless there is special symmetry (e.g.,
reflection through the center of the chain), these correlators will NOT be equal. Sites ( 39,40 )
and ( 61,62 ) are not mirror images either, so this is also FALSE. Statement d: None of above
is true. Since (a) is true, this is FALSE.

Final Answer: [a |

Answer 7: GPT-4.1, “Hint” prompt

Let’s analyze the situation step-by-step using symmetries: 1. Initial Hamiltonian:

100 99
H=->"X;-09> Z;Zj
j=1 j=1

The ground state of this Hamiltonian is unique and respects all the symmetries of the
Hamiltonian (e.g., parity symmetry). 2. Time-evolution Hamiltonian:

14
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H(t) = YjXj11Xj42Yjes

j=1
This Hamiltonian is uniform and translation-invariant by 1 site. Let’s check for parity
symmetries and other symmetries. a) (Zgo) = 0
Let’s check if the evolved state is invariant under some symmetry that would force this
expectation value to vanish. - The time evolution Hamiltonian is even in Y and X but is odd
under Z — —Z (since it contains only Y and X operators). - The initial state is unique and
symmetric; under the global spin-flip Z — —Z, the initial state’s expectation of any single
Z; vanishes, i.e., <Z7> = 0. - The time-evolution Hamiltonian does not break this symmetry,
soforall ¢, (Z;) = 0.
Thus, statement a) is TRUE. b) (Z39Yy0) = (Y90 Zg1) - The time-evolution Hamiltonian
is translation-invariant. - The initial state is translation-invariant. - However, after time
evolution, the system is still translation-invariant, so for any displacement k, (Z ij+1> should
be the same for all valid j. - However, notice the indices: (39, 40) and (90, 91). Both are in
the bulk (well away from the boundaries), where translation invariance definitely holds.
So, statement b) is TRUE. ¢) (Z39X40) = (X1Z62) - Similarly, translation invariance
applies. - However, under certain reflection symmetries or if the operator is odd under any
symmetry not respected by the Hamiltonian, the mean value could vanish or be related
differently. - But since both correlators are related by exactly the same relative placement, and
the evolution/initial state are symmetric under translation, these expectation values should be
equal.
Thus, statement c) is TRUE. d) None of above is true.

At least one statement is true, so d) is FALSE. Final Answer

Answer 8: GPT-4.1, “No comp’ prompt

Let’s analyze each statement step-by-step:

Hamiltonians: - Ground state prepared with: H = — 2}0:01 X; —09 2?9:1 Z;Zjq - Time

evolution under: H (t) = Z?; Y; Xj41X42Y 43 - Time range: t = 0 to ¢t = 100, so this is
a long time evolution, likely causing full thermalization or strong scrambling. (a) (Zgo) = 0
? - The evolution Hamiltonian does not conserve Zgg. - Quantum thermalization in such a
system would drive a single-site expectation like (Zgo) to zero in the absence of conserved
quantities or symmetries. - The initial state is even under spin flip, the evolution is also even
under global Y flip, but there is no protection for Z-no field acts to bias it.

So (a) is likely true.

(b) (Z39Y40) = (Y90 Zo1) ? this is crucial). - The Hamiltonians are translationally invariant
in the bulk, but 39-40 and 90-91 are separated by 51 sites, so are not related by any symmetry.
- No argument for equality of those two-point functions by symmetry.

(b) is not necessarily true.

(¢) (Z39X40) = (X61Z62) ?

Look at the operators: - Sites (39,40) and (61, 62) are separated by 22 sites. Again, in an
open chain, these are not related by any symmetry. - No evident symmetry or conservation
relates these two correlators.

(c) is not necessarily true.

(d) None of the above is true?

Since (a) is true (generic local observable under thermalizing evolution approaches zero
expectation in the absence of conservation laws), (d) is not true.

Final Answer: [a |
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195 B Full Experiment Results

Table 3: LLM accuracy scores (as percentages). The first table shows accuracy for the first 10 problem
sets, and the second table shows accuracy for the remaining 9 problem sets and the overall average
(AVG).

Model Prompt RGPow  SqGrd QSpin  CFTOp  3DBF  GSDGen  WrdH Ferm DynCon  3DEF
Claude 3.7 Hint 15.0 10.0 15.0 20.0 10.0 0.0 10.0 10.0 5.0 30.0
Sonnet No Comp 10.0 5.0 10.0 10.0 15.0 0.0 20.0 25.0 5.0 20.0
Zeroshot 15.0 5.0 5.0 15.0 15.0 0.0 0.0 15.0 10.0 25.0
Hint 25.0 5.0 0.0 0.0 5.0 0.0 55.0 0.0 0.0 5.0
DeepSeek R1 No Comp 15.0 5.0 5.0 0.0 5.0 0.0 40.0 5.0 0.0 0.0
Zeroshot 10.0 0.0 10.0 5.0 10.0 0.0 30.0 5.0 0.0 5.0
Claude 3.7 Hint 5.0 30.0 35.0 30.0 40.0 0.0 65.0 20.0 5.0 50.0
Sonnet No Comp 10.0 25.0 30.0 20.0 45.0 0.0 25.0 10.0 0.0 30.0
(Thinking) Zeroshot 10.0 45.0 35.0 35.0 35.0 0.0 30.0 25.0 5.0 30.0
DeepSeek Hint 10.0 0.0 30.0 5.0 15.0 0.0 15.0 15.0 15.0 10.0
Chat V3 No Comp  20.0 0.0 25.0 20.0 15.0 0.0 35.0 25.0 15.0 10.0
Zeroshot 10.0 0.0 30.0 15.0 15.0 0.0 10.0 25.0 20.0 20.0
Hint 10.0 10.0 15.0 25.0 30.0 5.0 75.0 25.0 10.0 20.0
GPT-4.1 No Comp 0.0 0.0 25.0 20.0 20.0 0.0 30.0 25.0 10.0 35.0
Zeroshot 0.0 0.0 10.0 10.0 30.0 0.0 55.0 30.0 10.0 25.0
Hint 5.0 20.0 45.0 25.0 35.0 15.0 70.0 50.0 0.0 40.0
O4-Mini-High ~ No Comp 25.0 10.0 45.0 20.0 45.0 20.0 50.0 35.0 5.0 50.0
Zeroshot 15.0 15.0 35.0 15.0 45.0 20.0 80.0 15.0 10.0 65.0
Gemini 2.5 Pro Hint 10.0 50.0 65.0 25.0 50.0 5.0 100.0 30.0 25.0 65.0
(Preview)‘ No Comp  20.0 40.0 65.0 25.0 50.0 25.0 100.0 25.0 20.0 70.0
Zeroshot 10.0 35.0 70.0 25.0 40.0 15.0 95.0 25.0 30.0 50.0
Model Prompt DimLS  GpEdg  GSDeg Solub 2DEF 2DEFL  OthGrd 2DBF InfRes AVG
Claude 3.7 Hint 15.0 10.0 25.0 70.0 10.0 5.0 55.0 5.0 25.0 18.2
Sonnet No Comp  25.0 10.0 25.0 50.0 15.0 10.0 40.0 5.0 20.0 16.8
Zeroshot 25.0 0.0 20.0 55.0 15.0 10.0 50.0 0.0 25.0 16.1
Hint 15.0 5.0 30.0 0.0 10.0 5.0 10.0 10.0 40.0 11.6
DeepSeek R1 No Comp 0.0 0.0 20.0 0.0 5.0 0.0 15.0 5.0 70.0 10.0
Zeroshot 5.0 10.0 30.0 0.0 5.0 0.0 0.0 0.0 45.0 8.9
Claude 3.7 Hint 45.0 5.0 15.0 60.0 40.0 15.0 35.0 15.0 50.0 29.5
Sonnet No Comp  45.0 5.0 20.0 65.0 45.0 15.0 40.0 5.0 35.0 24.7
(Thinking) Zeroshot 50.0 5.0 30.0 65.0 35.0 15.0 40.0 15.0 35.0 28.4
DeepSeck Hint 25.0 10.0 10.0 50.0 0.0 10.0 45.0 0.0 50.0 16.6
Chat V3 No Comp 15.0 5.0 15.0 40.0 15.0 0.0 25.0 5.0 35.0 16.8
Zeroshot 30.0 10.0 20.0 25.0 5.0 0.0 35.0 5.0 35.0 16.3
Hint 35.0 10.0 20.0 45.0 10.0 10.0 50.0 0.0 30.0 22.9
GPT-4.1 No Comp  30.0 5.0 10.0 40.0 10.0 10.0 50.0 5.0 30.0 18.7
Zeroshot 35.0 0.0 10.0 35.0 15.0 5.0 25.0 0.0 10.0 16.1
Hint 55.0 10.0 45.0 45.0 45.0 45.0 65.0 30.0 35.0 35.8
O4-Mini-High  No Comp  40.0 5.0 25.0 40.0 35.0 40.0 75.0 35.0 15.0 32.4
Zeroshot 50.0 10.0 15.0 40.0 45.0 40.0 60.0 65.0 30.0 35.3
Genmini 2.5 Pro Hint 40.0 10.0 25.0 75.0 65.0 55.0 30.0 30.0 85.0 44.2
(Preview)' No Comp 55.0 15.0 30.0 80.0 60.0 40.0 35.0 30.0 85.0 45.8
Zeroshot 55.0 15.0 40.0 70.0 65.0 55.0 30.0 35.0 85.0 44.5
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Table 4: LLM performance scores across problem sets (H: Hint, N: No Comp, Z: Zeroshot). Table (a)
shows results for the first 10 problem sets, and Table (b) shows results for the remaining 9 problem
sets and the overall average score for each model configuration.

Model Prompt RGPow SqGrd QSpin CFTOp 3DBF GSDGen WrdH Ferm DynCon 3DEF
Claude 3.7 Hint 512.8 349.1 468.8 343.6 392.3 354.3 768.6 471.1 454.9 447.9
Sonnet No Comp 469.6 403.3 474.3 401.3 445.7 398.5 724.9 507.7 530.0 485.2
Zeroshot 400.7 382.7 462.5 341.8 405.9 376.0 718.5 459.9 510.3 469.6
Hint 77484 60855  7632.0 67112 113715 12606.7 10490.3  9499.3  8516.8  9784.7
DeepSeek R~ NoComp  6183.9  3830.3 82158 74389 10062.0 10215.3 10626.1  9688.8  9623.3  9504.5
Zeroshot 7317.8  3968.2  6483.7  7647.8 11879.9 121934 10163.2  9927.0  8581.3  9954.6
Claude 3.7 Hint 17735.1 15298.6 18616.3 18987.8 19144.3 20767.3 20272.2 215162 13818.2 19036.2
Sonnet No Comp 16001.6 15081.4 17857.8 17108.1 20267.2 20318.4 22182.9 20201.1 15469.8 18977.4
(Thinking) Zeroshot  15936.0 17851.0 18357.8 15954.6 21768.8 20952.5 20672.1 18951.2 14550.9 15786.8
DeepSeck Hint 665.1 475.6 623.8 382.8  1064.0 665.0 1274.8 717.8  1048.8 1144.8
Chat V3 No Comp 623.1 475.8 562.2 407.7 930.8 756.7 1325.4 668.3  1008.4  1437.7
Zeroshot 627.5 670.2 716.3 411.3 850.1 604.2 1291.4 742.2 823.2  1489.7
Hint 633.6 678.4 671.2 480.4 869.6 1091.4 1300.4 715.6 709.1 1112.2
GPT-4.1 No Comp 674.9 733.0 725.9 587.4  1058.3 1024.2 1188.9 839.8 913.5  1278.7
Zeroshot 516.8 577.8 541.9 466.5 878.4 914.3 1234.8 684.2 678.1 1044.8
Hint 5345.0  6086.5  3813.3 15455 13739.4 10854.6 2566.3  8714.3  4469.3  8173.7
04-Mini-High ~ NoComp 45759  3702.1 33369  1624.8 15863.4  9539.9 2130.9  8756.7  4530.0  8640.5
Zeroshot 6536.9  5555.7  4028.6  2661.5 13835.6 13012.4 3477.8  8909.5  5576.7 11134.5
Gemini 2.5 pro  Hint 20051.2 21261.7 22041.2 19477.1 26954.0 26402.8 15640.6 26444.4 22526.0 21781.8
(Preview) No Comp 17567.4 18813.4 21876.5 17009.9 26479.1 24328.0 16612.9 23438.2 22199.9 22420.3
Zeroshot ~ 20182.7 20409.2 20523.5 193944 26385.5 26236.2 16700.3 23850.2 21939.2 21351.4
Model Prompt DimLS  GpEdg  GSDeg Solub 2DEF 2DEFL  OthGrd 2DBF InfRes Avg
Claude 3.7 Hint 528.8 435.2 404.1 334.6 374.5 368.1 351.8 404.5 340.9 426.6
Sonnet No Comp 617.8 462.3 397.9 392.2 427.1 422.4 422.5 403.8 357.7 460.2
Zeroshot 509.7 426.3 351.1 316.9 400.8 375.9 363.9 382.3 322.7 419.9
Hint 6586.6  5079.4 117924 22204  8191.7 10516.3  3230.9 10219.9 10018.2  8331.7
DeepSeek R1 NoComp  5322.9  5178.9 10077.8 27455  7489.6  9865.0  2512.0 101323  6919.4  7664.8
Zeroshot 5014.1  5365.7 11397.6  2220.3  7621.5 10446.0  3458.6 11323.9  8649.0  8084.9
Claude 3.7 Hint 14052.6  17293.1 29709.8  8725.1 16925.4 25224.0 12846.5 19499.4 16712.8 18220.0
Sonnet NoComp 14565.5 19226.3 22652.3 11181.5 17803.3 24001.0 13721.2 187172 14371.0 17879.2
(Thinking) Zeroshot  11997.8 17201.9 26542.0 10072.3 16644.4 23130.3 12099.9 20960.1 140124 17549.6
DeepSeck Hint 1140.4 482.6 928.0 369.7 975.3 832.9 625.2 866.8 863.9 797.2
Chat V3 No Comp 955.9 433.8  1094.7 337.0 714.1 744.6 541.3 827.2 770.2 769.2
Zeroshot 987.7 456.4 729.3 292.7 839.4 831.5 597.1 839.3 424.4 748.6
Hint 1340.6 467.9  1269.8 262.1 692.8 941.3 548.5 677.0 348.3 779.5
GPT-4.1 No Comp  1378.8 646.7 880.8 305.6 831.0 11444 594.1 833.7 438.7 846.2
Zeroshot 1209.9 482.3 686.0 193.0 643.8 922.7 432.8 752.0 352.8 695.4
Hint 3911.7  3958.7  9079.1 1754.2  7551.6 14260.4  4648.6 12895.1  9460.3  6990.9
04-Mini-High  NoComp  3673.2  3792.0  6693.0  2427.8  6766.7 12709.1  4341.5  9266.6  9333.4  6405.5
Zeroshot 41344 51935  8080.3 19121  8318.4 13527.0  6437.0 12987.5 16460.9  7988.4
Gemini 2.5 pro  Hint 12844.7 18129.4 245954 82052 22265.6 24617.9 18649.2 28798.5 15979.4 20877.1
(Preview) NoComp 12147.8 17457.0 248874  8073.3 21379.0 23503.0 19128.6 30710.4 17622.1 20297.6
Zeroshot  13888.2 18554.4 25820.9  8387.2 22079.7 24866.8 18291.4 29737.3 18759.5 20913.5
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