PhySense: Evaluating LLMs on Foundational Physics Principles

Anonymous Author(s)

Affiliation Address email

Abstract

Large language models (LLMs) have rapidly advanced and are increasingly capable of tackling complex scientific problems, including those in physics. Despite this progress, current LLMs often fail to emulate the concise, principle-based reasoning characteristic of human experts, instead generating lengthy and opaque solutions. This discrepancy highlights a crucial gap in their ability to apply core physical principles for efficient and interpretable problem solving. To systematically investigate this limitation, we introduce *PhySense*, a novel *principle-based physics reasoning* benchmark designed to be easily solvable by experts using guiding principles, yet deceptively difficult for LLMs without principle-first reasoning. Our evaluation across multiple state-of-the-art LLMs and prompt types reveals a consistent failure to align with expert-like reasoning paths, providing insights for developing AI systems with efficient, robust and interpretable principle-based scientific reasoning.

1 Introduction

2

5

6

8

9

10

11

12

13

15

17

Large language models (LLMs) have emerged as powerful tools, profoundly impacting numerous aspects of scientific discovery [1, 2, 3, 4]. Recent advancements in their reasoning capabilities have been particularly transformative, with notable applications in the domain of physics [5, 6, 7, 8]. Within physics, LLMs have demonstrated the ability to engage with problems ranging from those requiring real-world physical intuition [9] to complex theoretical challenges [10].

Despite these impressive strides, a critical challenge lies in ensuring that the reasoning processes of 19 LLMs align with expert intuition and fundamental physical principles. Current LLMs tend to generate 20 solutions with long-horizon reasoning pathways, which are opaque, convoluted, or divergent from the 21 parsimonious and principle-driven thinking characteristic of human physicists. Such phenomena has 22 also been identified as over-thinking [11]. In contrast, physicists master principle-based reasoning 23 with principle-driven problem solving and principle-based verification. Principle-driven problem 24 solving is a forward process where fundamental principles simplify the problem-solving space, directly guiding towards a solution. Principle-based verification is a routine where physics principles 26 establish criteria that a correct solution must meet, ensuring its validity. This divergence between 27 LLMs and human physicists raises concerns about the efficiency, robustness and interpretability of 28 current LLMs for scientific reasoning, especially in a field where clarity, intuition and explainability 29 of a solution is as crucial as the correctness of solution itself. 30

This work investigates LLMs' tendency to miss simple, intuitive solutions in physics problems that are apparent to human physicists. We posit that an incomplete grasp or misapplication of physical principles leads LLMs to unnecessarily complex reasoning, contrasting with human experts who leverage these fundamental ideas for elegant and efficient solutions (e.g., analyzing through symmetry instead of intricate numerical computation). This expert approach, which organizes knowledge around crystallized principles for efficient problem-solving, is well-documented in cognitive science [12, 13, 14]. Emulating this in LLMs could foster more aligned, efficient, and interpretable reasoning, guiding them towards computationally leaner and conceptually sound 'shorter paths.'

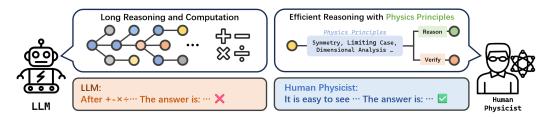


Figure 1: Illustrating how LLMs use lengthy, complex reasoning for physics problems intuitively straightforward to scientists applying core physical concepts.

To systematically analyze this, we introduce *PhySense*, a benchmark of 380 carefully curated physics problems designed to be straightforward for human physicists with core principles but appears to be challenging for LLMs to solve efficiently. In contrast to other physics reasoning benmark which focuses on reasoning on specific domain or challenging calculations, *PhySense* focuses on short reasoning chains where single principles are crucial. Our findings aim to highlight the need for developing LLMs that are not only accurate, but also exhibit interpretable, robust reasoning aligned with fundamental physical principles. Our key contributions are summarized as follows:

- We introduce *PhySense*, the first novel, human-curated principle-based physics reasoning benchmarking dataset of over 380 problems that are straightforward for experts using fundamental principles but challenging to LLMs unless they adopt direct, principle-first reasoning shortcuts.
- We quantify not only whether an LLM arrives at the correct answer, but also how closely its reasoning cost matches with principle-based solutions via both accuracy and token efficiency metrics.
- We evaluate a range of state-of-the-art LLMs under zero-shot, hint, and no-computation prompts, uncovering LLMs' systematic lack of capability in applying principles and offering guidance for training LLMs toward more efficient, robust and interpretable principle-based physics reasoning.

2 Related Work

Benchmarks for General Scientific Reasoning As LLMs are increasingly considered as important tools in scientific inquiry, understanding their true capabilities and limitations in scientific reasoning becomes paramount. Early benchmarks such as AI2 ARC [15], MMLU [16], IconQA [17] and ScienceQA [18] focused on general scientific context, surface-level reasoning, and basic factual knowledge. As model capabilities have grown, newer evaluations target deeper, multi-step problem solving and domain-specific expertise—either by repurposing advanced human exams and problem set (e.g., AGIEval [19], JEEBench [20], SciBench [21]) or by probing complex reasoning dimensions (e.g., MMLU-Pro [22], SciEval [23], TheoremQA [24]), up to the extreme challenges posed by capstone-style assessments like Humanity's Last Exam [25]. Some of the general science reasoning datasets like OlympicBench [26] and OlympicAreana [27] provides advanced physics problems but with limited scope.

Benchmarks for Physics Reasoning The landscape of physics-reasoning benchmarks for LLMs has rapidly evolved from primarily general problem sets to multifaceted collections that probe deeper conceptual, procedural, and physics-specific understanding. Efforts like PhyQA [28] and UGPhysics[29] assemble thousands of structured introductory problems, while other benchmarks such as PhysBench [30] and PhysReason [31] introduce problems require longer reasoning steps. More research-oriented suites like TP-Bench [10], CURIE [32] and multi-modal benchmarks like MM-PhyQA [33] and domain specific benchmarks like FEABench [34] further pushes the understanding of LLM's physics capability with more research-oriented settings. In contrast to multi-modal approaches, our work deliberately focuses on theoretical, text-only problems where all relevant information is conveyed textually. This design choice allows for a targeted evaluation of conceptual and algebraic reasoning, isolating these core competencies from confounding factors of image or diagram understanding. We discovered that single-modality benchmark already reveals significant limitations in current LLMs. Increased attention is also being directed towards fine-grained evaluation methodologies for the precise assessment of many-step reasoning including Expression Edit Distance (EED) Score [30].

Reasoning in LLMs and "Over-Thinking" Recent advances in LLMs, sometimes characterized by "slow thinking" capabilities demonstrated since models like GPT o1 [35], have showcased stronger

abilities in solving STEM problems. This improvement is often attributed to post-training techniques and reinforcement learning. Models like DeepSeek-R1[36], Gemini-2.0-Flash-Thinking[37], and versions of Claude [38] and Qwen [39] have demonstrated enhanced reasoning. However, while these models can generate longer reasoning chains (i.e., use more tokens), this does not always equate to more efficient or accurate reasoning. The phenomenon of "over-thinking" [11], where models may engage in unnecessarily complex or incorrect reasoning paths, remains a challenge.

3 Dataset Generation

89

90

91

92

93

94

95

96

97

98

100

101

102

103

104

105

106

107

108

109

"The universe is an enormous direct product of representations of symmetry groups."

— Steven Weinberg, Nobel laureate in physics

Principle-based Reasoning Physics principles such as symmetries, conservation laws, and dimensional analysis remain cornerstones of modern physics research and problem solving. They not only simplify complex systems and reduce computational costs, but also illuminate the nature of various phenomena and provide a unified understanding across diverse contexts. Therefore, an LLM's proficiency in applying these principles serves as a reliable gauge of its understanding of physics. Principle-based physics reasoning can (1) **efficiently yield the correct answer** (2) **robustly validate potential solutions** (3) **provide clear interpretability beyond calculation**. We demonstrate this with the following example.

Example 1

A 5x5 square grid of nodes: $x \in \{0, 1, 2, 3, 4\}$, $y \in \{0, 1, 2, 3, 4\}$ connected by resistors r between nearest neighbors. Connect node $V_{(0,0)} = 0$, node $V_{(4,4)} = V$, node $V_{(0,4)} = V/2$. Which of the following is true?

(a)
$$V_{(1,3)} = V/2$$
 (b) $V_{(2,2)} = V/2$ (c) $V_{(1,1)} = V/4$ (d) $V_{(3,3)} = 3V/4$ (e) $V_{(4,0)} = V/2$

Answer 1

Answer by symmetry principle:

A trained physicist would notice the circuit together with added voltages has a reflection symmetry along the diagonal x + y = 4. One can then deduce directly that (a,b,e) is correct.

Answer by explicit calculation:

Without using symmetries, one has to solve Kirchhoff equations for the whole system (22 unknown voltages),

$$\begin{aligned} &3V_{0,1}-V_{1,1}-V_{0,2}=0,\ 3V_{0,2}-V_{1,2}-V_{0,1}-V_{0,3}=0,\ 3V_{0,3}-V_{1,3}-V_{0,2}=V/2\\ &3V_{1,0}-V_{2,0}-V_{1,1}=0,\ 3V_{2,0}-V_{1,0}-V_{3,0}-V_{2,1}=0,\ 3V_{3,0}-V_{2,0}-V_{4,0}-V_{3,1}=0\\ &2V_{4,0}-V_{3,0}-V_{4,1}=0,\ 3V_{4,1}-V_{4,0}-V_{4,2}-V_{3,1}=0,\ 3V_{4,2}-V_{4,1}-V_{4,3}-V_{3,2}=0\\ &3V_{4,3}-V_{4,2}-V_{3,3}=V,\ 3V_{1,4}-V_{2,4}-V_{1,3}=V/2,\ 3V_{2,4}-V_{1,4}-V_{3,4}-V_{2,3}=0\\ &3V_{3,4}-V_{2,4}-V_{3,3}=V,\ 4V_{i,j}-V_{i-1,j}-V_{i+1,j}-V_{i,j-1}-V_{i,j+1}=0\ \text{for}\ 1\leq i,j\leq 3. \end{aligned}$$

Solving all the equations above numerically, one gets $V_{1,3}=V_{2,2}=V_{4,0}=V/2, V_{3,3}\approx 0.6702V, V_{1,1}\approx 0.3298V$. Thus the answer is (a,b,e). Clearly, this "standard" approach is much more complicated than using the symmetry principle.

Despite the power of physical principles, existing benchmarks (see e.g. Sec. 2), while challenging, do not evaluate whether LLMs truly apply these principles. Do LLMs genuinely understand physics, or are they merely leveraging greater computational power than humans? To address this gap, we have developed a new problem set of 380 physics questions spanning electricity and magnetism, electric circuits, quantum spin/fermion chains, quantum dynamics, topological insulators, the renormalization group, and conformal field theory. These problems are crafted according to the following criteria.

Principle-based physics reasoning A key feature of *PhySense* is its design to test LLMs' understanding on fundamental principles and capability on principle-based reasoning. Our dataset is different than previous physics reasoning dataset, since we do not aim to test LLMs' knowledge in a specific domain or cabability of reasoning with long calculation. While our problems may be

challenging or could be solved with lengthy calculation, we design the problems to be solved easily 112 using physics principle reasoning. 113

Novel problems from human experts Although 114 the underlying concepts in our problem set are 115 widely available online, we have crafted entirely new questions with physicists from top universi-117 ties that cannot be found elsewhere, ensuring that 118 LLMs have not been exposed to similar problems. 119 This novelty is essential for testing an LLM's ability 120 to generalize the application of physics principles. 121

A wide range of difficulties The problems span 122 difficulty levels from undergraduate through gradu-123 ate and research-level, yet none requires advanced 124 mathematical techniques, complicated integrals, or 125 large-scale numerical computations. This ensures 126 we evaluate how well LLMs can think like physi-127 cists — using fundamental physical principles to 128 understand problems — rather than merely assess-129 ing raw computational capability. We also annotate

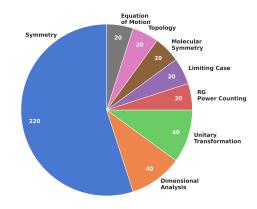


Figure 2: Distribution of physics principles in the dataset.

each problem with a difficulty rating (as judged by humans) for subsequent analysis. 131

Conciseness for evaluation Every problem is stated and solved entirely through textual description 132 and derivation. The physical setups are simple to describe, minimizing the risk of misinterpretation 133 by LLMs. To eliminate ambiguity in the outputs, each question offers either multiple-choice options 134 or expects a concise numerical answer. 135

3.1 Physical principles and models

130

136

144

145

152

153

154

155

156

157

158

159

160

161

Following the criteria above, we evaluate the LLM's understanding and correct application of several 137 fundamental yet powerful principles in both classical and quantum physics. To do this, we design 19 138 distinct problem models 139

Symmetry Spatial symmetries can be leveraged to identify points where complicated integrals 140 vanish. To evaluate this, we construct problem sets involving two-dimensional and three-dimensional 141 electric (or magnetic) fields generated by symmetric charge (or current) distributions. These problems 142 are categorized into the following models, each with an abbreviation: 143

 2D electric field (2DEF), 2D electric field on a lattice (2DEFL), 3D electric field (3DEF), 2D magnetic field (2DBF), 3D magnetic field (3DBF)

We also devise problems that leverage symmetries to determine voltages of certain nodes in finite and 146 infinite circuits: 147

• Infinite resistive lattices (InfRes), Circuits on a square lattice (SqGrd), Circuits on other lattices 148

The symmetry of molecules can determine the solubility in solvents, which leads to another model of 150 problems: 151

Solubility comparison (Solub)

Moreover, symmetries impose constraints on correlation functions in quantum many-body physics and statistical mechanics. We have also developed problems involving quantum spin and fermion chains and their dynamical variants, to test \mathbb{Z}_2 , U(1), and time-reversal symmetries alongside spatial symmetries such as translation and reflection:

 Quantum spin chains (Ospin), Fermionic chains (Ferm), Quantum dynamics with symmetry and conservation laws (DynCon)

Dimensional analysis Dimensional analysis is a powerful tool in uncovering possible relations between different physical quantities. Not only is it widely used in the context of thermodynamics, fluid mechanics, etc., its applications also extend to quantum mechanics as well. We design problems in two areas: (a) applying the Π theorem in fluid and quantum mechanics, and (b) using power

counting to determine relevance in the renormalization group. This yields the following problem models:

- Dimensional analysis using Π theorem, where we focus on testing LLM's ability to compute dimensions in arguments of functions such as \sin , \log , etc. (DimLS), Dimensional analysis with artificial irrelevant perturbations (WrdH), Power-counting in renormalization group analysis (RGPow)
- Limiting case Irrelevant perturbations in physical problems can be omitted to simplify the physical model. To test the LLM's ability to do so, we introduce perturbations into Model (WrdH) above and evaluate whether it correctly ignores the higher-order terms.
- Conservation law Conservation law plays a crucial role in quantum field theory. Especially in free fermion conformal field theories, equation of motion, together with the fermionic statistics, provides a powerful tool to determine whether an operator is primary, descendant, or merely vanishing.
 - Operator properties in conformal field theories (CFTOp)
- Topology Topological phases of matter is a central topic in modern condensed matter physics. It typically exhibits gapless edge spectrum, and sensitive to the boundary condition of the system. We design problems to evaluate if LLMs can understand the stability of symmetry-protected topological phases from the edge spectrum perspective:
- Edge spectrum in topological insulators (GpEdg)
- We also compose problems in counting the ground state degeneracy of (generalized) spin chain with antiperiodic or periodic boundary condition. In particular, in these problems, applying finite-depth local unitary circuits, which does not alter the topological property including the ground state degeneracy, greatly simplifies the calculation.
- Ground state degeneracy of spin chains (GSDeq), Ground state degeneracy of generalized spin chains (GSDGen)

186 4 Experiments

This section details the experiments conducted to evaluate the scientific problem-solving capabilities of LLMs. We begin by outlining the experimental setup, including the models tested and the prompting strategies employed to simulate scientific reasoning scenarios.

4.1 Experiment Setup

190

- We evaluated seven unimodal LLMs on our benchmark. These included four **reasoning models** optimized for reasoning: GPT o4-mini-high [40], Claude Sonnet 3.7 Thinking [38], Gemini 2.5 Pro [41], and DeepSeek R1 [36]. Additionally, we tested three regular **non-reasoning models**: GPT 4.1 [42], Claude 3.7 Sonnet [43], and DeepSeek V3 [44]. For all the models, we use the API-based services with default hyperparameter setting. We utilized three common prompting strategies in scientific applications to test LLMs:
- Zeroshot Prompting Zero-shot prompting tests a model's intrinsic reasoning by providing only
 the problem statement, without examples or hints. This method gauges the model's ability to apply
 existing knowledge, making it a good test for scientific discovery.
- Hint Prompting Hint prompting provides models with guidance on relevant physical principles, helping to see if they can use explicit direction to solve problems. This is useful when models fail to apply the correct principles on their own.
- No Computation Prompting In this approach, models are instructed to avoid complex calculations and instead focus on principle-based reasoning. This assesses their ability to prioritize simpler, conceptual solutions over complicated computational methods.

4.2 Metrics

206

We employ two primary metrics for evaluation: **accuracy** and **token usage**. For accuracy, LLMs were instructed to provide their final answer within a boxed environment for automated extraction and comparison against ground truth solutions. The problems fall into two categories with different evaluation implementation: (1) numerical: Answers are compared to the ground truth allowing for a 5% tolerance. (2) multiple choice: The selected option must exactly match the correct choice. For

(b) Average token usage across models.

Prompt Type

Zeroshot

Human Average (124.28)

Figure 3: Average accuracy and token usage for different models.

token usage, we record the total number of tokens produced during the generation of the solution for each problem and model. This is a crucial metric that provides insight into the computational cost associated with each model's problem-solving process, and reflects how much principle-based reasoning each LLM acquires.

Results 5

213

214

215

216

219

220

221

222

223

224

225

226

227

228

229 230

231

232

233

234

235

236

237

238

239

240 241

242

243

244

245

246

247

In this section, we report the benchmarking results and present our primary observations regarding 217 the performance of various LLMs on PhySense. 218

5.1 Reasoning Accuracy

We report the model performance in terms of accuracy score for each section and an average accuracy over all problems. We quantify model performance using accuracy percentage, calculated for each distinct problem category within our benchmark, alongside an overall average accuracy across all problems. This accuracy reflects the proportion of problems correctly solved by each model according to our evaluation protocol. The accuracy results are compiled in Table 1. To provide a clearer visual summary of the overall performance trends, we present histograms illustrating the distribution of average accuracy scores across the cohort of tested models in Figure 3a. To further assess LLM alignment with human physicist problem-solving, problems were categorized by human-judged difficulty (easy, medium,

(a) Average accuracy across models.

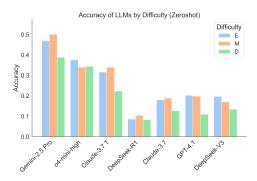


Figure 4: Zeroshot accuracy of LLMs under three difficulties.

difficult). Figure 4 shows each model's average zero-shot accuracy across these levels. While reasoning models achieve better performance than non-reasoning models on average, all LLMs' performances are not satisfactory, reflecting their incapability of mastering principle-based reasoning.

5.2 Reasoning Token Efficiency

In parallel to accuracy, we report the average number of completion tokens produced by the models for generating solutions, both for individual sections and on average. This token usage metric provides an indication of the computational resources and reasoning complexity associated with each model's problem-solving attempts. The token usages are compiled in Table 2. Figure 3b offers a comparative overview of the token utilization patterns. Reasoning models, due to reaoning mechanisms, consume about ten times more tokens ($\sim 10^4$) than non-reasoning models ($\sim 10^3$). In stark contrast, human physicists demonstrate far greater efficiency, often solving the same problems using about a hundered times fewer tokens ($\sim 10^2$) than reasoning models. It indicates a huge gap between LLMs and human experts on efficient principle-based reasoning.

Table 1: LLM accuracy scores (as percentages) for reasoning models. The first subtable shows accuracy for the first 10 problem sets, and the second subtable shows accuracy for the remaining 9 problem sets and the overall average (AVG). The best accuracy of each section is marked in bold font. The full result, including non-reasoning models, is in the Appendix.

Model	Prompt	RGPow	SqGrd	QSpin	CFTOp	3DBF	GSDGen	WrdH	Ferm	DynCon	3DEF
	Hint	25.0	5.0	0.0	0.0	5.0	0.0	55.0	0.0	0.0	5.0
DeepSeek R1	No Comp	15.0	5.0	5.0	0.0	5.0	0.0	40.0	5.0	0.0	0.0
_	Zeroshot	10.0	0.0	10.0	5.0	10.0	0.0	30.0	5.0	0.0	5.0
Claude 3.7	Hint	5.0	30.0	35.0	30.0	40.0	0.0	65.0	20.0	5.0	50.0
Sonnet	No Comp	10.0	25.0	30.0	20.0	45.0	0.0	25.0	10.0	0.0	30.0
(Thinking)	Zeroshot	10.0	45.0	35.0	35.0	35.0	0.0	30.0	25.0	5.0	30.0
-	Hint	5.0	20.0	45.0	25.0	35.0	15.0	70.0	50.0	0.0	40.0
O4-Mini-High	No Comp	25.0	10.0	45.0	20.0	45.0	20.0	50.0	35.0	5.0	50.0
	Zeroshot	15.0	15.0	35.0	15.0	45.0	20.0	80.0	15.0	10.0	65.0
Gemini 2.5 Pro	Hint	10.0	50.0	65.0	25.0	50.0	5.0	100.0	30.0	25.0	65.0
(Preview)	No Comp	20.0	40.0	65.0	25.0	50.0	25.0	100.0	25.0	20.0	70.0
(Fleview)	Zeroshot	10.0	35.0	70.0	25.0	40.0	15.0	95.0	25.0	30.0	50.0
Model	Prompt	DimLS	GpEdg	GSDeg	Solub	2DEF	2DEFL	OthGrd	2DBF	InfRes	AVG
DeenSeek R1	Hint	15.0	5.0	30.0	0.0	10.0	5.0	10.0	10.0	40.0	11.6
	THIII	15.0	0.0	50.0			0.0			40.0	
DeepSeek R1		$\frac{15.0}{0.0}$	0.0	20.0	0.0	5.0	0.0	15.0	5.0	$40.0 \\ 70.0$	10.0
DeepSeek R1	No Comp Zeroshot										
DeepSeek R1 Claude 3.7	No Comp	0.0	0.0	20.0	0.0	5.0	0.0	15.0	5.0	70.0	10.0
	No Comp Zeroshot	0.0 5.0	0.0 10.0	20.0 30.0	0.0	5.0 5.0	0.0 0.0	15.0 0.0	5.0 0.0	70.0 45.0	10.0 8.9
Claude 3.7	No Comp Zeroshot Hint	0.0 5.0 45.0	0.0 10.0 5.0	20.0 30.0 15.0	0.0 0.0 60.0	5.0 5.0 40.0	0.0 0.0 15.0	15.0 0.0 35.0	5.0 0.0 15.0	70.0 45.0 50.0	10.0 8.9 29.5
Claude 3.7 Sonnet	No Comp Zeroshot Hint No Comp	0.0 5.0 45.0 45.0	0.0 10.0 5.0 5.0	20.0 30.0 15.0 20.0	0.0 0.0 60.0 65.0	5.0 5.0 40.0 45.0	0.0 0.0 15.0 15.0	15.0 0.0 35.0 40.0	5.0 0.0 15.0 5.0	70.0 45.0 50.0 35.0	10.0 8.9 29.5 24.7
Claude 3.7 Sonnet	No Comp Zeroshot Hint No Comp Zeroshot	0.0 5.0 45.0 45.0 50.0	0.0 10.0 5.0 5.0 5.0	20.0 30.0 15.0 20.0 30.0	0.0 0.0 60.0 65.0 65.0	5.0 5.0 40.0 45.0 35.0	0.0 0.0 15.0 15.0 15.0	15.0 0.0 35.0 40.0 40.0	5.0 0.0 15.0 5.0 15.0	70.0 45.0 50.0 35.0 35.0	10.0 8.9 29.5 24.7 28.4
Claude 3.7 Sonnet (Thinking)	No Comp Zeroshot Hint No Comp Zeroshot Hint	0.0 5.0 45.0 45.0 50.0	0.0 10.0 5.0 5.0 5.0 10.0	20.0 30.0 15.0 20.0 30.0 45.0	0.0 0.0 60.0 65.0 65.0 45.0	5.0 5.0 40.0 45.0 35.0	0.0 0.0 15.0 15.0 15.0 45.0	15.0 0.0 35.0 40.0 40.0 65.0	5.0 0.0 15.0 5.0 15.0 30.0	70.0 45.0 50.0 35.0 35.0 35.0	10.0 8.9 29.5 24.7 28.4 35.8
Claude 3.7 Sonnet (Thinking)	No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp	0.0 5.0 45.0 45.0 50.0 55.0 40.0	0.0 10.0 5.0 5.0 5.0 10.0 5.0	20.0 30.0 15.0 20.0 30.0 45.0 25.0	0.0 0.0 60.0 65.0 65.0 45.0 40.0	5.0 5.0 40.0 45.0 35.0 45.0 35.0	0.0 0.0 15.0 15.0 15.0 45.0 40.0	15.0 0.0 35.0 40.0 40.0 65.0 75.0	5.0 0.0 15.0 5.0 15.0 30.0 35.0	70.0 45.0 50.0 35.0 35.0 35.0 15.0	10.0 8.9 29.5 24.7 28.4 35.8 32.4
Claude 3.7 Sonnet (Thinking)	No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot	0.0 5.0 45.0 45.0 50.0 55.0 40.0 50.0	0.0 10.0 5.0 5.0 5.0 10.0 5.0	20.0 30.0 15.0 20.0 30.0 45.0 25.0 15.0	0.0 0.0 60.0 65.0 65.0 45.0 40.0	5.0 5.0 40.0 45.0 35.0 45.0 35.0 45.0	0.0 0.0 15.0 15.0 15.0 45.0 40.0 40.0	15.0 0.0 35.0 40.0 40.0 65.0 75.0 60.0	5.0 0.0 15.0 5.0 15.0 30.0 35.0 65.0	70.0 45.0 50.0 35.0 35.0 35.0 15.0 30.0	10.0 8.9 29.5 24.7 28.4 35.8 32.4 35.3

Table 2: LLM token usage for reasoning models. The first subtable shows the token usage for the first 10 problem sets, and the second subtable shows the token usage for the remaining 9 problem sets and the overall average (AVG). The full result, including non-reasoning models, is in the Appendix.

Model	Prompt	RGPow	SqGrd	QSpin	CFTOp	3DBF	GSDGen	WrdH	Ferm	DynCon	3DEF
DeepSeek R1	Hint No Comp Zeroshot	7748.4 6183.9 7317.8	6085.5 3830.3 3968.2	7632.0 8215.8 6483.7	6711.2 7438.9 7647.8	11 371.5 10 062.0 11 879.9	12 606.7 10 215.3 12 193.4	10 490.3 10 626.1 10 163.2	9499.3 9688.8 9927.0	8516.8 9623.3 8581.3	9784.7 9504.5 9954.6
Claude 3.7 Sonnet (Thinking)	Hint No Comp Zeroshot	17 735.1 16 001.6 15 936.0	15 298.6 15 081.4 17 851.0	18 616.3 17 857.8 18 357.8	18 987.8 17 108.1 15 954.6	19 144.3 20 267.2 21 768.8	$20767.3 \\ 20318.4 \\ 20952.5$	$20272.2 \\ 22182.9 \\ 20672.1$	$21516.2 \\ 20201.1 \\ 18951.2$	13 818.2 15 469.8 14 550.9	19 036.2 18 977.4 15 786.8
O4-Mini-High	Hint No Comp Zeroshot	5345.0 4575.9 6536.9	6086.5 3702.1 5555.7	3813.3 3336.9 4028.6	1545.5 1624.8 2661.5	13 739.4 15 863.4 13 835.6	10 854.6 9539.9 13 012.4	2566.3 2130.9 3477.8	8714.3 8756.7 8909.5	4469.3 4530.0 5576.7	8173.7 8640.5 11 134.5
Gemini 2.5 Pro (Preview)	Hint No Comp Zeroshot	20 051.2 17 567.4 20 182.7	21 261.7 18 813.4 20 409.2	22 041.2 21 876.5 20 523.5	19 477.1 17 009.9 19 394.4	26 954.0 26 479.1 26 385.5	26 402.8 24 328.0 26 236.2	15 640.6 16 612.9 16 700.3	26 444.4 23 438.2 23 850.2	22 526.0 22 199.9 21 939.2	21 781.8 22 420.3 21 351.4
Model	Prompt	DimLS	GpEdg	GSDeg	Solub	2DEF	2DEFL	OthGrd	2DBF	InfRes	Avg
Model DeepSeek R1	Prompt Hint No Comp Zeroshot	DimLS 6586.6 5322.9 5014.1	GpEdg 5079.4 5178.9 5365.7	GSDeg 11 792.4 10 077.8 11 397.6	Solub 2220.4 2745.5 2220.3	2DEF 8191.7 7489.6 7621.5	2DEFL 10 516.3 9865.0 10 446.0	OthGrd 3230.9 2512.0 3458.6	2DBF 10 219.9 10 132.3 11 323.9	InfRes 10 018.2 6919.4 8649.0	Avg 8331.7 7664.8 8084.9
	Hint No Comp	6586.6 5322.9	5079.4 5178.9	11 792.4 10 077.8	2220.4 2745.5	8191.7 7489.6	10 516.3 9865.0	3230.9 2512.0	10 219.9 10 132.3	10 018.2 6919.4	8331.7 7664.8
DeepSeek R1 Claude 3.7 Sonnet	Hint No Comp Zeroshot Hint No Comp	6586.6 5322.9 5014.1 14 052.6 14 565.5	5079.4 5178.9 5365.7 17 293.1 19 226.3	11 792.4 10 077.8 11 397.6 29 709.8 22 652.3	2220.4 2745.5 2220.3 8725.1 11 181.5	8191.7 7489.6 7621.5 16 925.4 17 803.3	10 516.3 9865.0 10 446.0 25 224.0 24 001.0	3230.9 2512.0 3458.6 12846.5 13721.2	10 219.9 10 132.3 11 323.9 19 499.4 18 717.2	10 018.2 6919.4 8649.0 16 712.8 14 371.0	8331.7 7664.8 8084.9 18 220.0 17 879.2

5.3 LLM Failures in Applying Physical Principles

While many LLMs can state physical principles, they often struggle to apply them correctly or comprehensively, particularly the principle of symmetry. Models frequently fail to identify relevant symmetries or incorrectly assume symmetries that do not exist. This weakness is apparent in problems where symmetry provides a significant shortcut.

Example 2: 2D Electric Field (2DEF)

There is a uniformly charged square plane in space with corners at $(x,y,z)=(\pm 1,\pm 1,0)$. At which of the following locations is the x-direction electric field strength equal to the y-direction electric field strength $(E_x=E_y)$? a) (0,0,1); e) (1,1,1); i) (-1,-1,1); j) (0,0,-1); n) (1,1,-1); r) (-1,-1,-1); v) (2,2,0); ... (other options omitted)

For a physicist, the solution is straightforward: by symmetry, any location where x=y will have $E_x=E_y$. This insight immediately identifies the correct answers (a, e, i, j, n, r, v). In contrast, one LLM attempted to solve the problem by setting up complex 2D integrals, ultimately arriving at an incorrect answer. This shows a failure to recognize and leverage the fundamental symmetry of the setup.

The capability to reason with such principles varies across models. To illustrate this, we compare responses from a reasoning and a non-reasoning model on a quantum mechanics problem.

Example 3: Quantum dynamics (DynCon)

Consider a L=100 quantum spin chain prepared as the ground state of $H=-\sum_j X_j-0.9\sum_j Z_jZ_{j+1}$. Time-evolve this state under $H(t)=\sum_j Y_jX_{j+1}X_{j+2}Y_{j+3}$ from t=0 to t=100. Which of the following is true in the final state? a) $\langle Z_{60}\rangle=0$; b) $\langle Z_{39}Y_{40}\rangle=\langle Y_{90}Z_{91}\rangle$; c) $\langle Z_{39}X_{40}\rangle=\langle X_{61}Z_{62}\rangle$; d) None of the above is true.

In this problem, choices (a), (b), and (c) are all correct due to spin-flip, time-reversal, and reflection symmetries, respectively. The reasoning model correctly identified spin-flip and reflection symmetries but failed to apply time-reversal symmetry. The non-reasoning model also mentioned spin-flip and reflection but showed a superficial grasp by failing to see that choice (c) follows from them. When prompted with a hint, it incorrectly invoked translational symmetry (which is absent) and, like the reasoning model, showed no awareness of time-reversal symmetry (see Appendix A.2 for details).

Overall, while reasoning models are more effective at applying physical principles, they are still imperfect. Non-reasoning models demonstrate a shallower understanding, often using terminology without true comprehension.

6 Conclusion

We introduce *PhySense*, a comprehensive, novel, human-curated principle-based physics reasoning benchmark for evaluating large language models on scientific problem-solving across diverse physics domains. *PhySense* comprises 380 carefully designed problems spanning symmetry reasoning, dimensional analysis, renormalization-group analysis, topology, quantum dynamics, and more, together with three prompting strategies ("Zero shot", "Hint", and "No-computation"). Our extensive evaluation of seven state-of-the-art LLMs, including reasoning and non-reasoning models, reveals that while reasoning-focused LLMs outperform their non-reasoning counterparts, all models remain substantially below expert human performance. We observe consistent deficits in token efficiency, principled application of physical laws, and generalization across topics. Moreover, auxiliary prompting strategies (e.g., hints or "no-computation" directives) yield only marginal improvements, indicating the need for deeper integration of principle-based thinking to LLMs. For future directions, it will be important to try improving LLM's principle-based reasoning via supervised fine tuning or reinforcement learning. Our study provides valuable insights and guidance for developing LLMs with efficient, robust and interpretable principle-based reasoning, which are crucial for scientific collaborations and discoveries.

References

- 289 [1] Yu Zhang, Xiusi Chen, Bowen Jin, Sheng Wang, Shuiwang Ji, Wei Wang, and Jiawei Han. A 290 comprehensive survey of scientific large language models and their applications in scientific 291 discovery, 2024. URL https://arxiv.org/abs/2406.10833.
- [2] B. Romera-Paredes, M. Barekatain, A. Novikov, and et al. Mathematical discoveries from program search with large language models. *Nature*, 625:468–475, Jan 2024. doi: 10.1038/s41586-023-06924-6. URL https://doi.org/10.1038/s41586-023-06924-6.
- [3] Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist: Towards fully automated open-ended scientific discovery, 2024. URL https://arxiv.org/abs/2408.06292.
- Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy. Llm-sr: Scientific equation discovery via programming with large language models, 2025. URL https://arxiv.org/abs/2404.18400.
- [5] Haining Pan, Nayantara Mudur, William Taranto, Maria Tikhanovskaya, Subhashini Venugopalan, Yasaman Bahri, Michael P. Brenner, and Eun-Ah Kim. Quantum many-body physics calculations with large language models. *Communications Physics*, 8(1):49, December 2025. doi: 10.1038/s42005-025-01956-y. URL https://doi.org/10.1038/s42005-025-01956-y.
- Zhilong Song, Minggang Ju, Chunjin Ren, Qiang Li, Chongyi Li, Qionghua Zhou, and Jinlan
 Wang. Llm-feynman: Leveraging large language models for universal scientific formula and
 theory discovery. arXiv preprint arXiv:2503.06512, 2025.
- [7] Kristian G Barman, Sascha Caron, Emily Sullivan, Henk W de Regt, Roberto Ruiz de Austri,
 Mieke Boon, Michael Färber, Stefan Fröse, Faegheh Hasibi, Andreas Ipp, et al. Large physics
 models: Towards a collaborative approach with large language models and foundation models.
 arXiv preprint arXiv:2501.05382, 2025.
- [8] Yinggan Xu, Hana Kimlee, Yijia Xiao, and Di Luo. Advancing ai-scientist understanding: Making llm think like a physicist with interpretable reasoning. *arXiv preprint arXiv:2504.01911*, 2025.
- [9] Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montser-316 rat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza, 317 Michiel Blokzijl, Steven Bohez, Konstantinos Bousmalis, Anthony Brohan, Thomas Buschmann, 318 Arunkumar Byravan, Serkan Cabi, Ken Caluwaerts, Federico Casarini, Oscar Chang, Jose En-319 rique Chen, Xi Chen, Hao-Tien Lewis Chiang, Krzysztof Choromanski, David D'Ambrosio, 320 Sudeep Dasari, Todor Davchev, Coline Devin, Norman Di Palo, Tianli Ding, Adil Dostmo-321 hamed, Danny Driess, Yilun Du, Debidatta Dwibedi, Michael Elabd, Claudio Fantacci, Cody 322 323 Fong, Erik Frey, Chuyuan Fu, Marissa Giustina, Keerthana Gopalakrishnan, Laura Graesser, Leonard Hasenclever, Nicolas Heess, Brandon Hernaez, Alexander Herzog, R. Alex Hofer, 324 325 Jan Humplik, Atil Iscen, Mithun George Jacob, Deepali Jain, Ryan Julian, Dmitry Kalashnikov, M. Emre Karagozler, Stefani Karp, Chase Kew, Jerad Kirkland, Sean Kirmani, Yuheng 326 Kuang, Thomas Lampe, Antoine Laurens, Isabel Leal, Alex X. Lee, Tsang-Wei Edward Lee, 327 Jacky Liang, Yixin Lin, Sharath Maddineni, Anirudha Majumdar, Assaf Hurwitz Michaely, 328 Robert Moreno, Michael Neunert, Francesco Nori, Carolina Parada, Emilio Parisotto, Peter 329 Pastor, Acorn Pooley, Kanishka Rao, Krista Reymann, Dorsa Sadigh, Stefano Saliceti, Pannag 330 Sanketi, Pierre Sermanet, Dhruv Shah, Mohit Sharma, Kathryn Shea, Charles Shu, Vikas 331 Sindhwani, Sumeet Singh, Radu Soricut, Jost Tobias Springenberg, Rachel Sterneck, Raz-332 van Surdulescu, Jie Tan, Jonathan Tompson, Vincent Vanhoucke, Jake Varley, Grace Vesom, 333 Giulia Vezzani, Oriol Vinyals, Ayzaan Wahid, Stefan Welker, Paul Wohlhart, Fei Xia, Ted 334 Xiao, Annie Xie, Jinyu Xie, Peng Xu, Sichun Xu, Ying Xu, Zhuo Xu, Yuxiang Yang, Rui 335 Yao, Sergey Yaroshenko, Wenhao Yu, Wentao Yuan, Jingwei Zhang, Tingnan Zhang, Allan 336 Zhou, and Yuxiang Zhou. Gemini robotics: Bringing ai into the physical world, 2025. URL 337 https://arxiv.org/abs/2503.20020. 338

- Janiel JH Chung, Zhiqi Gao, Yurii Kvasiuk, Tianyi Li, Moritz Münchmeyer, Maja Rudolph,
 Frederic Sala, and Sai Chaitanya Tadepalli. Theoretical physics benchmark (tpbench)–a dataset
 and study of ai reasoning capabilities in theoretical physics. arXiv preprint arXiv:2502.15815,
 2025.
- Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient reasoning for large language models. *arXiv preprint arXiv:2503.16419*, 2025.
- [12] Jill Larkin, John McDermott, Dorothea P Simon, and Herbert A Simon. Expert and novice
 performance in solving physics problems. *Science*, 208(4450):1335–1342, 1980. ISSN 0036 8075.
- Michelene T. H. Chi, Paul J. Feltovich, and Robert Glaser. Categorization and representation of physics problems by experts and novices. *Cognitive Science*, 5(2):121–152, apr 1981. doi: 10.1207/s15516709cog0502_2.
- John Sweller. Cognitive load during problem solving: Effects on learning. *Cognitive Science*, 12(2):257–285, apr 1988. doi: 10.1207/s15516709cog1202_4.
- [15] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
 and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
 challenge. arXiv preprint arXiv:1803.05457, 2018.
- [16] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
 arXiv:2009.03300, 2020.
- In Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao, Wei Zhang, Zhou Yu, Xiaodan Liang,
 and Song-Chun Zhu. Iconqa: A new benchmark for abstract diagram understanding and visual language reasoning. arXiv preprint arXiv:2110.13214, 2021.
- [18] Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind
 Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought
 chains for science question answering. Advances in Neural Information Processing Systems, 35:
 2507–2521, 2022.
- [19] Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
 Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
 models. arXiv preprint arXiv:2304.06364, 2023.
- 270 [20] Daman Arora, Himanshu Singh, and Mausam. Have LLMs advanced enough? a challenging problem solving benchmark for large language models. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 7527–7543, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.468. URL https://aclanthology.org/2023.emnlp-main.468/.
- Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
 Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level
 scientific problem-solving abilities of large language models. arXiv preprint arXiv:2307.10635,
 2023.
- Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
 Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and
 challenging multi-task language understanding benchmark. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024.
- Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan Shen, Baocai Chen, Lu Chen, and Kai
 Yu. Scieval: A multi-level large language model evaluation benchmark for scientific research. In
 Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 19053–19061,
 2024.

- Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony Xia. Theoremqa: A theorem-driven question answering dataset. *arXiv preprint* arXiv:2305.12524, 2023.
- [25] Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
 Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity's last exam. arXiv preprint
 arXiv:2501.14249, 2025.
- Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
 arXiv:2402.14008, 2024.
- Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li, Haoyang Zou, Ruijie Xu, Run-Ze Fan,
 Lyumanshan Ye, Ethan Chern, Yixin Ye, et al. Olympicarena: Benchmarking multi-discipline
 cognitive reasoning for superintelligent ai. Advances in Neural Information Processing Systems,
 37:19209–19253, 2024.
- 402 [28] Jingzhe Ding, Yan Cen, and Xinyuan Wei. Using large language model to solve and explain physics word problems approaching human level. *arXiv preprint arXiv:2309.08182*, 2023.
- 404 [29] Xin Xu, Qiyun Xu, Tong Xiao, Tianhao Chen, Yuchen Yan, Jiaxin Zhang, Shizhe Diao, Can 405 Yang, and Yang Wang. Ugphysics: A comprehensive benchmark for undergraduate physics 406 reasoning with large language models. *arXiv preprint arXiv:2502.00334*, 2025.
- 407 [30] Shi Qiu, Shaoyang Guo, Zhuo-Yang Song, Yunbo Sun, Zeyu Cai, Jiashen Wei, Tianyu Luo, Yixuan Yin, Haoxu Zhang, Yi Hu, et al. Phybench: Holistic evaluation of physical perception and reasoning in large language models. *arXiv preprint arXiv:2504.16074*, 2025.
- 410 [31] Xinyu Zhang, Yuxuan Dong, Yanrui Wu, Jiaxing Huang, Chengyou Jia, Basura Fernando,
 411 Mike Zheng Shou, Lingling Zhang, and Jun Liu. Physreason: A comprehensive benchmark
 412 towards physics-based reasoning. *arXiv preprint arXiv:2502.12054*, 2025.
- Hao Cui, Zahra Shamsi, Gowoon Cheon, Xuejian Ma, Shutong Li, Maria Tikhanovskaya, Peter Norgaard, Nayantara Mudur, Martyna Plomecka, Paul Raccuglia, et al. Curie: Evaluating llms on multitask scientific long context understanding and reasoning. *arXiv preprint* arXiv:2503.13517, 2025.
- 417 [33] Avinash Anand, Janak Kapuriya, Apoorv Singh, Jay Saraf, Naman Lal, Astha Verma, Rushali
 418 Gupta, and Rajiv Shah. Mm-phyqa: Multimodal physics question-answering with multi-image
 419 cot prompting. In *Pacific-Asia Conference on Knowledge Discovery and Data Mining*, pages
 420 53–64. Springer, 2024.
- [34] Nayantara Mudur, Hao Cui, Subhashini Venugopalan, Paul Raccuglia, Michael P Brenner, and
 Peter Norgaard. Feabench: Evaluating language models on multiphysics reasoning ability.
 arXiv preprint arXiv:2504.06260, 2025.
- 424 [35] OpenAI. Learning to reason with llms, September 2024. URL https://openai.com/index/ 425 learning-to-reason-with-llms/. Accessed: 2025-05-12.
- [36] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
 llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.
- 429 [37] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, 430 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly 431 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- 432 [38] Anthropic. Claude 3.7 sonnet and extended thinking mode. https://www.anthropic.com/ 433 news/claude-3-7-sonnet, February 2025. Accessed: 2025-05-10.
- 434 [39] Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL https://qwenlm.github.io/blog/qwq-32b-preview/. Accessed: 2025-05-12.

- 436 [40] OpenAI. Openai o3 and o4-mini system card. https://openai.com/index/ 437 o3-o4-mini-system-card/, April 2025. Accessed: 2025-05-10.
- 438 [41] Google DeepMind, March 2025. URL https://blog.google/technology/ 439 google-deepmind/gemini-model-thinking-updates-march-2025/.
- [42] OpenAI. Introducing gpt-4.1 in the api, April 2025. URL https://openai.com/index/
 gpt-4-1/.
- 442 [43] Anthropic. Claude 3.7 sonnet and claude code, February 2025. URL https://www.anthropic.com/news/claude-3-7-sonnet. Accessed: 2025-05-12.
- [44] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, 444 Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian 445 Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, 446 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, 447 Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong 449 Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean 450 Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, 451 Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, 452 Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, 453 R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu 454 Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, 455 Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng 456 Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, 457 Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, 458 X. O. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, 459 Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, 460 Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi 461 Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, 462 Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng 463 Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying 464 He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, 465 466 Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, 467 Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, 468 Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong 469 Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, 470 Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 471 472 2025. URL https://arxiv.org/abs/2412.19437.

73 A Analysis of Several Examples

4 A.1 An example of LLM failing to apply principles

For some problems, even if the LLM is forced to use principle, it fails to figure out the correct way to use it. In the following example, Gemini-2.5 Pro fails to find the correct symmetry of the system. In general, the LLMs we test have better performance with symmetry group of a square lattice, but for other cases like triangular or honeycomb lattices, the LLMs have difficulty finding out the symmetry group to consider (see below).

Example 4: 2D Electric Field Lattice (2DEFL)

There are point charges on the infinite x-y plane in space. The coordinates of the charges are $\{(x,y,z)=m\cdot(\sqrt{3}/2,-1/2,0)+n\cdot(0,1,0)|(m+n)\not\equiv 0\mod 3, m,n\in Z\}$. i.e. forming a 2D infinite honeycomb lattice on the x-y plane. Each point has charge of equal amplitude. The charges with n being even integers are positive, and the charges with n being odd integers are negative. Which of the following locations in space have the z-direction electric field strength E_z being zero?

```
a) (x=0,y=0,z=1); b) (x=0,y=1/2,z=1); c) (x=0,y=-1/2,z=1); d) (x=0,y=1,z=1); e) (x=0,y=-1,z=1); f) (x=\sqrt{3}/2,y=0,z=1); g) (x=\sqrt{3}/2,y=1/2,z=1); h) (x=\sqrt{3}/2,y=-1/2,z=1); i) (x=-\sqrt{3}/2,y=0,z=1); j) (x=-\sqrt{3}/2,y=1/2,z=1); k) (x=-\sqrt{3}/2,y=-1/2,z=1); l) (x=\sqrt{3}/4,y=1/4,z=1); m) (x=\sqrt{3}/4,y=-1/4,z=1); n) (x=\sqrt{3}/4,y=3/4,z=1); o) (x=\sqrt{3}/4,y=3/4,z=1); p) (x=-\sqrt{3}/4,y=1/4,z=1); q) (x=-\sqrt{3}/4,y=1/4,z=1); r) (x=-\sqrt{3}/4,y=3/4,z=1); s) (x=-\sqrt{3}/4,y=3/4,z=1);
```

Answer 2: "Hint" prompt

This problem requires a detailed analysis of the symmetries of the charge distribution. Given the complexity and the lack of an obvious symmetry that leads to $E_z=0$ for the listed points without extensive calculation, and the peculiarity that some listed solutions are locations of charges themselves, it's possible that the problem requires advanced techniques or there is a specific property of this honeycomb lattice with alternating charges that is not immediately apparent Due to the difficulty and potential complexity, i am unable to provide a justified answer. However, if this is from a known source, one might find existing literature on a similar problem. The final answer is b, e, g, i, l, o, p, r.

The LLM does not even specify any symmetry to consider and the answer above is wrong. In fact, the correct use of symmetry is: $E_z=0$ can be fixed by a reflection + charge-conjugation combined symmetry, where the reflection plane includes a z-direction straight line, or by a rotation + charge-conjugation combined symmetry, where the rotation axis is a z-direction straight line. The charge configuration has such rotation + charge-conjugation combined symmetry at the middle points of the edges that connect a pair of positive and negative charges. Among the choices, those points are (f,i,o,r), which is our answer.

9 A.2 Answers of Example 3

Answer 3: o4-mini-high, "Zero-shot" prompt

Solution Outline 1. Symmetry 1: Global spin - flip in the X - basis Define $Q = \Pi_1{}^{00}X_j$. $-QX_jQ = X_j, QZ_jQ = -Z_j, QY_jQ = -Y_j$ - Both $H_0 = -\Sigma X_j - 0.9\Sigma Z_jZ_{j+1}$ and $H_1 = \Sigma Y_jX_{j+1}X_{j+2}Y_{j+3}$ commute with $Q \Rightarrow$ The state at all times is Q-symmetric $\Rightarrow \langle Z_j \rangle = 0 \Rightarrow$ statement (a) is true. 2. Symmetry 2: Reflection about the chain center

Define R: j \rightarrow 101 – j. One checks RH₀R = H₀ and RH₁R = H₁. Thus the time evolved state is R - symmetric. Under R: $Z_{39}X_{40} \rightarrow Z_{62}X_{61} = X_{61}Z_{62}$ (different - site Pauli commute) $\Rightarrow \langle Z_{39}X_{40} \rangle = \langle X_{61}Z_{62} \rangle \Rightarrow$ statement (c) is true. 3. Translation is not an exact symmetry of the open - chain H₀ or H₁, so (b) need not hold.

480

481

482

483

485

486

487

488

Final answer: a, c

491

492

493

Answer 4: o4-mini-high, "Hint" prompt

Solution Outline: 1. Symmetry of the initial Hamiltonian H_0 : - $H_0 = -\Sigma_1^{00} X_{-j}$ $0.9\Sigma_1{}^{99}Z_{-}jZ_{-}\{j+1\}$ commutes with the global spin - flip P= $\prod X_{-}j$. - Hence its (unique) ground state $|\psi_0\rangle$ is a P - eigenstate and $\langle Z_-j\rangle_0=0$ for all j. 2. Time - evolution under $H(t)=\Sigma_1{}^{97}Y_-jX_-\{j+1\}X_-\{j+2\}Y_-\{j+3\}:$ - H(t) also commutes with $P\Rightarrow \langle Z_-j\rangle_-$ tremains zero \Rightarrow statement (a) is true. 3. Reflection symmetry $R(j \rightarrow 101 - j)$: - Both H_0 and H(t) are invariant under R and $|\psi_0\rangle$ can be chosen R - symmetric. - Hence $\langle A_i B_{i+1} \rangle_t =$ $\langle RA_iB_{i+1}R\rangle_t = \langle A_{101-i}B_{100-i}\rangle_t$. - For (c): i=39 gives (101-39,100-39)=(62,61), so $\langle Z_{39}X_{40}\rangle = \langle Z_{62}X_{61}\rangle = \langle X_{61}Z_{62}\rangle$ (operators on different sites commute) \Rightarrow (c) is true. 4. Statement (b) involves (39, 40) vs (90, 91), which are neither related by P nor by $R \Rightarrow$ false. Final Answer: a, c

Answer 5: o4-mini-high, "No Comp" prompt

Step-by-step: 1. Define the global "spin - flip" operator

$$G = \prod \{j = 1\}^{\land} \{100\} X_{-}j.$$

Note $GZ_jG = -Z_j$ and $GX_jG = +X_j$, so G flips the sign of Z and Y and leaves X invariant. 2. Check symmetries: $-H_{initial} = -\Sigma X_- \mathbf{j} - 0.9\Sigma Z_- \mathbf{j} Z_- \{\mathbf{j}+1\}$ commutes with G (the usual Z_2 symmetry of the transverse - field Ising model). - $H_{drive} = \sum \{j = 1\}$ 1}^{97} $Y_{-j}X\{j+1\}X_{-}\{j+2\}Y_{-}\{j+3\}$ also commutes with G (each term has two Y's). \Rightarrow The time - evolved state remains a +1 eigenstate of G for all t. 3. Consequences for expectation values: - Any operator O with GOG = -O has $\langle O \rangle = 0$ at all times. In particular Z_{-j} is G-odd $\Rightarrow \langle Z_{-j} \rangle = 0 \Rightarrow (a)$ is true. $-Z_{-j}X_{-j}\{j+1\}$ is G-odd (one $(Z) \Rightarrow \langle Z_{-j}X_{-j}\{j+1\}\rangle = 0$, and likewise $\langle X_{-j}Z_{-j}\{j+1\}\rangle = 0 \Rightarrow (c)$ holds (0=0). - $Z_{-j}Y_{-j}\{j+1\}$ and $Y_{-j}Z_{-j}\{j+1\}$ are each G-even, but there is no symmetry forcing $\langle Z_{-j}Y_{-}\{j+1\}\rangle = \langle Y_{-}kZ_{-}\{k+1\}\rangle$ for different string orderings \Rightarrow (b) is not guaranteed. Answer: a, c

Answer 6: GPT-4.1, "Zero-shot" prompt

Let's analyze each statement:

Hamiltonians: - Initial: $H_0 = -\sum_{j=1}^{100} X_j - 0.9 \sum_{j=1}^{99} Z_j Z_{j+1}$ (Transverse field Ising). -

Time-evolution: $H(t) = \sum_{j=1}^{97} Y_j X_{j+1} X_{j+2} Y_{j+3}$ Statement a: $\langle Z_{60} \rangle = 0$ of the initial Hamiltonian has $\langle Z_j \rangle = 0$ due to the symmetry. Time evolution with a symmetric Hamiltonian preserves this. So, this statement IS true.

Statement b: $\langle Z_{39}Y_{40}\rangle = \langle Y_{90}Z_{91}\rangle$

Statement c: $\langle Z_{39}X_{40}\rangle = \langle X_{61}Z_{62}\rangle$ Similarly, unless there is special symmetry (e.g., reflection through the center of the chain), these correlators will NOT be equal. Sites (39,40) and (61,62) are not mirror images either, so this is also FALSE. Statement d: None of above is true. Since (a) is true, this is FALSE.

Final Answer: a

Answer 7: GPT-4.1, "Hint" prompt

Let's analyze the situation step-by-step using symmetries: 1. Initial Hamiltonian:

$$H = -\sum_{j=1}^{100} X_j - 0.9 \sum_{j=1}^{99} Z_j Z_{j+1}$$

The ground state of this Hamiltonian is unique and respects all the symmetries of the Hamiltonian (e.g., parity symmetry). 2. Time-evolution Hamiltonian:

495

494

$$H(t) = \sum_{j=1}^{97} Y_j X_{j+1} X_{j+2} Y_{j+3}$$

This Hamiltonian is uniform and translation-invariant by 1 site. Let's check for parity symmetries and other symmetries. a) $\langle Z_{60} \rangle = 0$

Let's check if the evolved state is invariant under some symmetry that would force this expectation value to vanish. - The time evolution Hamiltonian is even in Y and X but is odd under $Z \to -Z$ (since it contains only Y and X operators). - The initial state is unique and symmetric; under the global spin-flip $Z \to -Z$, the initial state's expectation of any single Z_j vanishes, i.e., $\langle Z_j \rangle = 0$. - The time-evolution Hamiltonian does not break this symmetry, so for all $t, \langle Z_j \rangle = 0$.

Thus, statement a) is TRUE. b) $\langle Z_{39}Y_{40}\rangle=\langle Y_{90}Z_{91}\rangle$ - The time-evolution Hamiltonian is translation-invariant. - The initial state is translation-invariant. - However, after time evolution, the system is still translation-invariant, so for any displacement $k,\langle Z_jY_{j+1}\rangle$ should be the same for all valid j. - However, notice the indices: (39,40) and (90,91). Both are in the bulk (well away from the boundaries), where translation invariance definitely holds.

So, statement b) is TRUE. c) $\langle Z_{39}X_{40}\rangle = \langle X_{61}Z_{62}\rangle$ - Similarly, translation invariance applies. - However, under certain reflection symmetries or if the operator is odd under any symmetry not respected by the Hamiltonian, the mean value could vanish or be related differently. - But since both correlators are related by exactly the same relative placement, and the evolution/initial state are symmetric under translation, these expectation values should be equal.

Thus, statement c) is TRUE. d) None of above is true.

At least one statement is true, so d) is FALSE. Final Answer a, b, c

496

Answer 8: GPT-4.1, "No comp" prompt

Let's analyze each statement step-by-step:

Hamiltonians: - Ground state prepared with: $H = -\sum_{j=1}^{100} X_j - 0.9 \sum_{j=1}^{99} Z_j Z_{j+1}$ - Time evolution under: $H(t) = \sum_{j=1}^{97} Y_j X_{j+1} X_{j+2} Y_{j+3}$ - Time range: t=0 to t=100, so this is a long time evolution, likely causing full thermalization or strong scrambling. (a) $\langle Z_{60} \rangle = 0$? - The evolution Hamiltonian does not conserve Z_{60} . - Quantum thermalization in such a system would drive a single-site expectation like $\langle Z_{60} \rangle$ to zero in the absence of conserved quantities or symmetries. - The initial state is even under spin flip, the evolution is also even under global Y flip, but there is no protection for Z-no field acts to bias it. So (a) is likely true.

- (b) $\langle Z_{39}Y_{40}\rangle = \langle Y_{90}Z_{91}\rangle$? this is crucial). The Hamiltonians are translationally invariant in the bulk, but 39-40 and 90-91 are separated by 51 sites, so are not related by any symmetry. No argument for equality of those two-point functions by symmetry.
- (b) is not necessarily true.
- (c) $\langle Z_{39}X_{40}\rangle = \langle X_{61}Z_{62}\rangle$?

Look at the operators: - Sites (39,40) and (61,62) are separated by 22 sites. Again, in an open chain, these are not related by any symmetry. - No evident symmetry or conservation relates these two correlators.

- (c) is not necessarily true.
- (d) None of the above is true?

Since (a) is true (generic local observable under thermalizing evolution approaches zero expectation in the absence of conservation laws), (d) is not true.

Final Answer: a

497

498 B Full Experiment Results

Table 3: LLM accuracy scores (as percentages). The first table shows accuracy for the first 10 problem sets, and the second table shows accuracy for the remaining 9 problem sets and the overall average (AVG).

Model	Prompt	RGPow	SqGrd	QSpin	CFTOp	3DBF	GSDGen	WrdH	Ferm	DynCon	3DEF
Claude 3.7	Hint	15.0	10.0	15.0	20.0	10.0	0.0	10.0	10.0	5.0	30.0
Sonnet	No Comp	10.0	5.0	10.0	10.0	15.0	0.0	20.0	25.0	5.0	20.0
	Zeroshot	15.0	5.0	5.0	15.0	15.0	0.0	0.0	15.0	10.0	25.0
	Hint	25.0	5.0	0.0	0.0	5.0	0.0	55.0	0.0	0.0	5.0
DeepSeek R1	No Comp	15.0	5.0	5.0	0.0	5.0	0.0	40.0	5.0	0.0	0.0
	Zeroshot	10.0	0.0	10.0	5.0	10.0	0.0	30.0	5.0	0.0	5.0
Claude 3.7	Hint	5.0	30.0	35.0	30.0	40.0	0.0	65.0	20.0	5.0	50.0
Sonnet	No Comp	10.0	25.0	30.0	20.0	45.0	0.0	25.0	10.0	0.0	30.0
(Thinking)	Zeroshot	10.0	45.0	35.0	35.0	35.0	0.0	30.0	25.0	5.0	30.0
DeepSeek	Hint	10.0	0.0	30.0	5.0	15.0	0.0	15.0	15.0	15.0	10.0
Chat V3	No Comp	20.0	0.0	25.0	20.0	15.0	0.0	35.0	25.0	15.0	10.0
Chat V3	Zeroshot	10.0	0.0	30.0	15.0	15.0	0.0	10.0	25.0	20.0	20.0
	Hint	10.0	10.0	15.0	25.0	30.0	5.0	75.0	25.0	10.0	20.0
GPT-4.1	No Comp	0.0	0.0	25.0	20.0	20.0	0.0	30.0	25.0	10.0	35.0
	Zeroshot	0.0	0.0	10.0	10.0	30.0	0.0	55.0	30.0	10.0	25.0
	Hint	5.0	20.0	45.0	25.0	35.0	15.0	70.0	50.0	0.0	40.0
O4-Mini-High	No Comp	25.0	10.0	45.0	20.0	45.0	20.0	50.0	35.0	5.0	50.0
5 · · · · · · · · · · · · · · · · · · ·	Zeroshot	15.0	15.0	35.0	15.0	45.0	20.0	80.0	15.0	10.0	65.0
G :: 25 B	Hint	10.0	50.0	65.0	25.0	50.0	5.0	100.0	30.0	25.0	65.0
Gemini 2.5 Pro			40.0	CF O	25.0	50.0	25.0	100.0	25.0	20.0	70.0
	No Comp	20.0	40.0	65.0	20.0						
(Preview)	No Comp Zeroshot	20.0 10.0	40.0 35.0	70.0	25.0	40.0	15.0	95.0	25.0	30.0	50.0
											50.0 AVG
(Preview) Model	Zeroshot Prompt	DimLS	35.0 GpEdg	70.0 GSDeg	25.0 Solub	40.0 2DEF	15.0 2DEFL	95.0 OthGrd	25.0 2DBF	30.0 InfRes	AVG
(Preview) Model Claude 3.7	Zeroshot Prompt Hint	10.0 DimLS 15.0	35.0 GpEdg 10.0	70.0 GSDeg 25.0	25.0 Solub 70.0	40.0 2DEF 10.0	15.0 2DEFL 5.0	95.0 OthGrd 55.0	25.0 2DBF 5.0	30.0 InfRes 25.0	AVG 18.2
(Preview) Model Claude 3.7	Zeroshot Prompt	DimLS	35.0 GpEdg	70.0 GSDeg	25.0 Solub	40.0 2DEF	15.0 2DEFL	95.0 OthGrd	25.0 2DBF	30.0 InfRes	AVG
(Preview) Model Claude 3.7	Prompt Hint No Comp Zeroshot	10.0 DimLS 15.0 25.0 25.0	35.0 GpEdg 10.0 10.0 0.0	70.0 GSDeg 25.0 25.0 20.0	25.0 Solub 70.0 50.0 55.0	40.0 2DEF 10.0 15.0 15.0	15.0 2DEFL 5.0 10.0 10.0	95.0 OthGrd 55.0 40.0 50.0	25.0 2DBF 5.0 5.0 0.0	30.0 InfRes 25.0 20.0 25.0	AVG 18.2 16.8 16.1
Model Claude 3.7 Sonnet	Prompt Hint No Comp Zeroshot Hint	10.0 DimLS 15.0 25.0 25.0 15.0	35.0 GpEdg 10.0 10.0 0.0 5.0	70.0 GSDeg 25.0 25.0 20.0 30.0	25.0 Solub 70.0 50.0 55.0	2DEF 10.0 15.0 15.0	15.0 2DEFL 5.0 10.0 10.0 5.0	95.0 OthGrd 55.0 40.0 50.0	25.0 2DBF 5.0 5.0 0.0 10.0	30.0 InfRes 25.0 20.0 25.0 40.0	AVG 18.2 16.8 16.1 11.6
Model Claude 3.7 Sonnet	Prompt Hint No Comp Zeroshot	10.0 DimLS 15.0 25.0 25.0	35.0 GpEdg 10.0 10.0 0.0	70.0 GSDeg 25.0 25.0 20.0	25.0 Solub 70.0 50.0 55.0	40.0 2DEF 10.0 15.0 15.0	15.0 2DEFL 5.0 10.0 10.0	95.0 OthGrd 55.0 40.0 50.0	25.0 2DBF 5.0 5.0 0.0	30.0 InfRes 25.0 20.0 25.0	AVG 18.2 16.8 16.1
Model Claude 3.7 Sonnet DeepSeek R1	Prompt Hint No Comp Zeroshot Hint No Comp Zeroshot	10.0 DimLS 15.0 25.0 25.0 15.0 0.0 5.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0	40.0 2DEF 10.0 15.0 15.0 10.0 5.0 5.0	15.0 2DEFL 5.0 10.0 10.0 5.0 0.0 0.0	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9
Model Claude 3.7 Sonnet DeepSeek R1 Claude 3.7	Prompt Hint No Comp Zeroshot Hint No Comp Zeroshot Hint Hint Hint Hint	10.0 DimLS 15.0 25.0 25.0 15.0 0.0 5.0 45.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0 5.0	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0 15.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0 0.0 60.0	40.0 2DEF 10.0 15.0 15.0 10.0 5.0 5.0 40.0	2DEFL 5.0 10.0 10.0 5.0 0.0 0.0 15.0	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0 15.0	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0 50.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9 29.5
Model Claude 3.7 Sonnet DeepSeek R1 Claude 3.7	Prompt Hint No Comp Zeroshot Hint No Comp Zeroshot	10.0 DimLS 15.0 25.0 25.0 15.0 0.0 5.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0	40.0 2DEF 10.0 15.0 15.0 10.0 5.0 5.0	15.0 2DEFL 5.0 10.0 10.0 5.0 0.0 0.0	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9
Model Claude 3.7 Sonnet DeepSeek R1 Claude 3.7 Sonnet (Thinking)	Prompt Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp	10.0 DimLS 15.0 25.0 25.0 15.0 0.0 5.0 45.0 45.0 50.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0 5.0 5.0 5.0	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0 15.0 20.0 30.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0 0.0 65.0 65.0	2DEF 10.0 15.0 15.0 10.0 5.0 5.0 40.0 45.0 35.0	2DEFL 5.0 10.0 10.0 5.0 0.0 0.0 15.0 15.0 15.	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0 35.0 40.0 40.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0 15.0 5.0 15.0	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0 50.0 35.0 35.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9 29.5 24.7 28.4
Model Claude 3.7 Sonnet Claude 3.7 Sonnet Claude 3.7 Sonnet (Thinking) DeepSeek	Prompt Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot Hint Hint Hint Hint Hint	10.0 DimLS 15.0 25.0 25.0 15.0 0.0 5.0 45.0 45.0 50.0 25.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0 5.0 5.0 5.0 10.0	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0 15.0 20.0 30.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0 60.0 65.0 65.0 65.0 50.0	2DEF 10.0 15.0 15.0 10.0 5.0 5.0 40.0 45.0 35.0 0.0	2DEFL 5.0 10.0 10.0 5.0 0.0 0.0 15.0 15.0 15.	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0 35.0 40.0 40.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0 15.0 5.0 15.0 0.0	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0 50.0 35.0 35.0 50.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9 29.5 24.7 28.4 16.6
Model Claude 3.7 Sonnet DeepSeek R1 Claude 3.7 Sonnet (Thinking) DeepSeek	Prompt Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp	10.0 DimLS 15.0 25.0 25.0 15.0 0.0 5.0 45.0 45.0 50.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0 5.0 5.0 5.0	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0 15.0 20.0 30.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0 0.0 65.0 65.0	2DEF 10.0 15.0 15.0 10.0 5.0 5.0 40.0 45.0 35.0	2DEFL 5.0 10.0 10.0 5.0 0.0 0.0 15.0 15.0 15.	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0 35.0 40.0 40.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0 15.0 5.0 15.0	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0 50.0 35.0 35.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9 29.5 24.7 28.4
Model Claude 3.7 Sonnet DeepSeek R1 Claude 3.7 Sonnet (Thinking)	Prompt Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp	10.0 DimLS 15.0 25.0 25.0 0.0 5.0 45.0 45.0 50.0 25.0 15.0 30.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0 5.0 5.0 5.0 10.0 10	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0 15.0 20.0 30.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0 60.0 65.0 65.0 40.0 25.0	2DEF 10.0 15.0 15.0 15.0 5.0 5.0 40.0 45.0 35.0 0.0 15.0 5.0	15.0 2DEFL 5.0 10.0 10.0 5.0 0.0 0.0 15.0 15.0 15.	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0 35.0 40.0 40.0 45.0 25.0 35.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0 15.0 5.0 15.0 5.0 5.0 15.0	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0 50.0 35.0 35.0 35.0 35.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9 29.5 24.7 28.4 16.6 16.8 16.3
Model Claude 3.7 Sonnet DeepSeek R1 Claude 3.7 Sonnet (Thinking) DeepSeek Chat V3	Prompt Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot Hint Hint Hint Hint Hint Hint Hint Hin	10.0 DimLS 15.0 25.0 25.0 0.0 5.0 45.0 45.0 25.0 25.0 30.0 35.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0 5.0 5.0 5.0 10.0 10	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0 15.0 20.0 10.0 15.0 20.0 20.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0 60.0 65.0 65.0 50.0 40.0 25.0 45.0	2DEF 10.0 15.0 15.0 15.0 10.0 5.0 40.0 45.0 35.0 0.0 15.0 5.0	15.0 2DEFL 5.0 10.0 10.0 5.0 0.0 0.0 15.0 15.0	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0 35.0 40.0 40.0 45.0 25.0 35.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0 15.0 5.0 15.0 0.0 5.0 0.0	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0 50.0 35.0 35.0 35.0 35.0 30.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9 29.5 24.7 28.4 16.6 16.8 16.3
Model Claude 3.7 Sonnet DeepSeek R1 Claude 3.7 Sonnet (Thinking) DeepSeek Chat V3	Prompt Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp	10.0 DimLS 15.0 25.0 25.0 0.0 5.0 45.0 45.0 50.0 25.0 15.0 30.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0 5.0 5.0 5.0 10.0 10	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0 15.0 20.0 30.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0 60.0 65.0 65.0 40.0 25.0	2DEF 10.0 15.0 15.0 15.0 5.0 5.0 40.0 45.0 35.0 0.0 15.0 5.0	15.0 2DEFL 5.0 10.0 10.0 5.0 0.0 0.0 15.0 15.0 15.	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0 35.0 40.0 40.0 45.0 25.0 35.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0 15.0 5.0 15.0 5.0 5.0 15.0	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0 50.0 35.0 35.0 35.0 35.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9 29.5 24.7 28.4 16.6 16.8 16.3
Model Claude 3.7 Sonnet DeepSeek R1 Claude 3.7 Sonnet (Thinking) DeepSeek	Prompt Hint No Comp Zeroshot Area of the comp Zeroshot No Comp Zeroshot Hint No Comp Zeroshot	10.0 DimLS 15.0 25.0 25.0 0.0 5.0 45.0 45.0 50.0 25.0 30.0 35.0 35.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0 5.0 5.0 10.0 10	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0 15.0 20.0 15.0 20.0 10.0 10.0 10.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0 0.0 65.0 65.0 50.0 40.0 25.0 45.0 40.0 35.0	40.0 2DEF 10.0 15.0 15.0 5.0 5.0 40.0 45.0 35.0 0.0 15.0 10.0 10.0 15.0	15.0 2DEFL 5.0 10.0 10.0 5.0 0.0 0.0 15.0 15.0 15.	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0 35.0 40.0 40.0 45.0 25.0 35.0 50.0 50.0 25.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0 15.0 5.0 15.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0 35.0 35.0 35.0 35.0 30.0 30.0 10.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9 29.5 24.7 28.4 16.6 16.8 16.3 22.9 18.7 16.1
Model Claude 3.7 Sonnet DeepSeek R1 Claude 3.7 Sonnet Claude 3.7 Sonnet (Thinking) DeepSeek Chat V3 GPT-4.1	Prompt Hint No Comp Zeroshot Hint Hint Hint Hint Hint Hint Hint Hin	10.0 DimLS 15.0 25.0 25.0 15.0 0.0 5.0 45.0 45.0 25.0 15.0 30.0 35.0 35.0 55.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0 5.0 5.0 10.0 10	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0 15.0 20.0 15.0 20.0 10.0 15.0 20.0 45.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0 0.0 65.0 65.0 40.0 25.0 45.0 45.0 45.0	40.0 2DEF 10.0 15.0 15.0 5.0 5.0 40.0 45.0 35.0 0.0 15.0 10.0 15.0 45.0 45.0	15.0 2DEFL 5.0 10.0 10.0 5.0 0.0 0.0 15.0 15.0 15.	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0 35.0 40.0 45.0 25.0 35.0 50.0 50.0 65.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0 15.0 5.0 15.0 0.0 5.0 15.0 0.0 3.0 3.0 3.0 3.0 3.0 3.0 3	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0 50.0 35.0 35.0 35.0 35.0 30.0 10.0 35.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9 29.5 24.7 28.4 16.6 16.8 16.3 22.9 18.7 16.1
Model Claude 3.7 Sonnet DeepSeek R1 Claude 3.7 Sonnet (Thinking) DeepSeek Chat V3	Prompt Hint No Comp Zeroshot Hint No Comp	10.0 DimLS 15.0 25.0 25.0 15.0 0.0 5.0 45.0 45.0 25.0 15.0 30.0 35.0 35.0 55.0 40.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0 5.0 5.0 5.0 10.0 10	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0 15.0 20.0 10.0 15.0 20.0 10.0 10.0 45.0 25.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0 65.0 65.0 65.0 40.0 25.0 40.0 35.0 45.0 40.0	40.0 2DEF 10.0 15.0 15.0 5.0 5.0 40.0 45.0 35.0 0.0 15.0 5.0 10.0 45.0 35.0 45.0 35.0 10.0 45.0 35.0 45.0 35.0 45.0 45.0 35.0 45.0	15.0 2DEFL 5.0 10.0 10.0 5.0 0.0 0.0 15.0 15.0 15	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0 35.0 40.0 40.0 45.0 25.0 50.0 50.0 75.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0 15.0 5.0 15.0 5.0 15.0 0.0 5.0 15.0 0.0 3.0 30.0 30.0 30.0 30.0	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0 50.0 35.0 35.0 35.0 30.0 30.0 10.0 35.0 15.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9 29.5 24.7 28.4 16.6 16.8 16.3 22.9 18.7 16.1
Model Claude 3.7 Sonnet DeepSeek R1 Claude 3.7 Sonnet Claude 3.7 Sonnet (Thinking) DeepSeek Chat V3 GPT-4.1	Prompt Hint No Comp Zeroshot	10.0 DimLS 15.0 25.0 25.0 15.0 0.0 5.0 45.0 45.0 25.0 35.0 35.0 35.0 40.0 50.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0 5.0 5.0 10.0 10	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0 15.0 20.0 10.0 15.0 20.0 10.0 10.0 15.0 25.0 10.0 10.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0 65.0 65.0 50.0 40.0 25.0 45.0 40.0 35.0 45.0 40.0 40.0	40.0 2DEF 10.0 15.0 15.0 5.0 5.0 40.0 45.0 35.0 0.0 15.0 10.0 15.0 45.0 35.0 45.0 45.0 45.0 45.0	15.0 2DEFL 5.0 10.0 10.0 5.0 0.0 0.0 15.0 15.0 15.	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0 35.0 40.0 45.0 25.0 35.0 50.0 25.0 65.0 75.0 60.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0 15.0 5.0 15.0 0.0 5.0 15.0 0.0 35.0 0.0 5.0 0.0 5.0 15.0 5.0 15.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0 50.0 35.0 35.0 35.0 30.0 30.0 10.0 35.0 35.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9 29.5 24.7 28.4 16.6 16.8 16.3 22.9 18.7 16.1 35.8 32.4 35.3
Model Claude 3.7 Sonnet DeepSeek R1 Claude 3.7 Sonnet Claude 3.7 Sonnet (Thinking) DeepSeek Chat V3 GPT-4.1	Prompt Hint No Comp Zeroshot Hint No Comp	10.0 DimLS 15.0 25.0 25.0 15.0 0.0 5.0 45.0 45.0 25.0 15.0 30.0 35.0 35.0 55.0 40.0	35.0 GpEdg 10.0 10.0 0.0 5.0 0.0 10.0 5.0 5.0 5.0 10.0 10	70.0 GSDeg 25.0 25.0 20.0 30.0 20.0 30.0 15.0 20.0 10.0 15.0 20.0 10.0 10.0 45.0 25.0	25.0 Solub 70.0 50.0 55.0 0.0 0.0 65.0 65.0 65.0 40.0 25.0 40.0 35.0 45.0 40.0	40.0 2DEF 10.0 15.0 15.0 5.0 5.0 40.0 45.0 35.0 0.0 15.0 5.0 10.0 45.0 35.0 45.0 35.0 10.0 45.0 35.0 45.0 35.0 45.0 45.0 35.0 45.0	15.0 2DEFL 5.0 10.0 10.0 5.0 0.0 0.0 15.0 15.0 15	95.0 OthGrd 55.0 40.0 50.0 10.0 15.0 0.0 35.0 40.0 40.0 45.0 25.0 50.0 50.0 75.0	25.0 2DBF 5.0 5.0 0.0 10.0 5.0 0.0 15.0 5.0 15.0 5.0 15.0 0.0 5.0 15.0 0.0 3.0 30.0 30.0 30.0 30.0	30.0 InfRes 25.0 20.0 25.0 40.0 70.0 45.0 50.0 35.0 35.0 35.0 30.0 30.0 10.0 35.0 15.0	AVG 18.2 16.8 16.1 11.6 10.0 8.9 29.5 24.7 28.4 16.6 16.8 16.3 22.9 18.7 16.1

Table 4: LLM performance scores across problem sets (H: Hint, N: No Comp, Z: Zeroshot). Table (a) shows results for the first 10 problem sets, and Table (b) shows results for the remaining 9 problem sets and the overall average score for each model configuration.

Model	Prompt	RGPow	SqGrd	QSpin	CFTOp	3DBF	GSDGen	WrdH	Ferm	DynCon	3DEF
Claude 3.7 Sonnet	Hint No Comp Zeroshot	512.8 469.6 400.7	349.1 403.3 382.7	468.8 474.3 462.5	343.6 401.3 341.8	392.3 445.7 405.9	354.3 398.5 376.0	768.6 724.9 718.5	471.1 507.7 459.9	454.9 530.0 510.3	447.9 485.2 469.6
DeepSeek R1	Hint No Comp Zeroshot	7748.4 6183.9 7317.8	6085.5 3830.3 3968.2	7632.0 8215.8 6483.7	6711.2 7438.9 7647.8	11 371.5 10 062.0 11 879.9	12 606.7 10 215.3 12 193.4	10 490.3 10 626.1 10 163.2	9499.3 9688.8 9927.0	8516.8 9623.3 8581.3	9784.7 9504.5 9954.6
Claude 3.7 Sonnet (Thinking)	Hint No Comp Zeroshot	17 735.1 16 001.6 15 936.0	15 298.6 15 081.4 17 851.0	18 616.3 17 857.8 18 357.8	18 987.8 17 108.1 15 954.6	19 144.3 20 267.2 21 768.8	20 767.3 20 318.4 20 952.5	20 272.2 22 182.9 20 672.1	21 516.2 20 201.1 18 951.2	13 818.2 15 469.8 14 550.9	19 036.2 18 977.4 15 786.8
DeepSeek Chat V3	Hint No Comp Zeroshot	665.1 623.1 627.5	475.6 475.8 670.2	623.8 562.2 716.3	382.8 407.7 411.3	1064.0 930.8 850.1	665.0 756.7 604.2	1274.8 1325.4 1291.4	717.8 668.3 742.2	1048.8 1008.4 823.2	1144.8 1437.7 1489.7
GPT-4.1	Hint No Comp Zeroshot	633.6 674.9 516.8	678.4 733.0 577.8	671.2 725.9 541.9	480.4 587.4 466.5	869.6 1058.3 878.4	1091.4 1024.2 914.3	1300.4 1188.9 1234.8	715.6 839.8 684.2	709.1 913.5 678.1	1112.2 1278.7 1044.8
O4-Mini-High	Hint No Comp Zeroshot	5345.0 4575.9 6536.9	6086.5 3702.1 5555.7	3813.3 3336.9 4028.6	1545.5 1624.8 2661.5	13 739.4 15 863.4 13 835.6	10 854.6 9539.9 13 012.4	2566.3 2130.9 3477.8	8714.3 8756.7 8909.5	4469.3 4530.0 5576.7	8173.7 8640.5 11 134.5
Gemini 2.5 Pro (Preview)	Hint No Comp Zeroshot	20 051.2 17 567.4 20 182.7	21 261.7 18 813.4 20 409.2	$\begin{array}{c} 22041.2 \\ 21876.5 \\ 20523.5 \end{array}$	19 477.1 17 009.9 19 394.4	$26954.0 \\ 26479.1 \\ 26385.5$	26 402.8 24 328.0 26 236.2	15 640.6 16 612.9 16 700.3	26 444.4 23 438.2 23 850.2	22 526.0 22 199.9 21 939.2	21 781.8 22 420.3 21 351.4
Model	Prompt	DimLS	GpEdg	GSDeg	Solub	2DEF	2DEFL	OthGrd	2DBF	InfRes	Avg
Model Claude 3.7 Sonnet	Prompt Hint No Comp Zeroshot	DimLS 528.8 617.8 509.7	GpEdg 435.2 462.3 426.3	GSDeg 404.1 397.9 351.1	334.6 392.2 316.9	2DEF 374.5 427.1 400.8	2DEFL 368.1 422.4 375.9	OthGrd 351.8 422.5 363.9	2DBF 404.5 403.8 382.3	340.9 357.7 322.7	426.6 460.2
Claude 3.7	Hint No Comp	528.8 617.8	435.2 462.3	404.1 397.9	334.6 392.2	374.5 427.1	368.1 422.4	351.8 422.5	404.5 403.8	340.9 357.7	426.6 460.2 419.9 8331.7 7664.8
Claude 3.7 Sonnet	Hint No Comp Zeroshot Hint No Comp	528.8 617.8 509.7 6586.6 5322.9	435.2 462.3 426.3 5079.4 5178.9	404.1 397.9 351.1 11 792.4 10 077.8	334.6 392.2 316.9 2220.4 2745.5	374.5 427.1 400.8 8191.7 7489.6	368.1 422.4 375.9 10 516.3 9865.0	351.8 422.5 363.9 3230.9 2512.0	404.5 403.8 382.3 10 219.9 10 132.3	340.9 357.7 322.7 10018.2 6919.4	426.6 460.2 419.9 8331.7 7664.8 8084.9 18 220.0 17 879.2
Claude 3.7 Sonnet DeepSeek R1 Claude 3.7 Sonnet	Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp	528.8 617.8 509.7 6586.6 5322.9 5014.1 14 052.6 14 565.5	435.2 462.3 426.3 5079.4 5178.9 5365.7 17 293.1 19 226.3	404.1 397.9 351.1 11 792.4 10 077.8 11 397.6 29 709.8 22 652.3	334.6 392.2 316.9 2220.4 2745.5 2220.3 8725.1 11 181.5	374.5 427.1 400.8 8191.7 7489.6 7621.5 16 925.4 17 803.3	368.1 422.4 375.9 10.516.3 9865.0 10.446.0 25.224.0 24.001.0	351.8 422.5 363.9 3230.9 2512.0 3458.6 12 846.5 13 721.2	404.5 403.8 382.3 10 219.9 10 132.3 11 323.9 19 499.4 18 717.2	340.9 357.7 322.7 10 018.2 6919.4 8649.0 16 712.8 14 371.0	Avg 426.6 460.2 419.9 8331.7 7664.8 8084.9 18 220.0 17 879.2 17 549.6 797.2 748.6
Claude 3.7 Sonnet DeepSeek R1 Claude 3.7 Sonnet (Thinking) DeepSeek	Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp	528.8 617.8 509.7 6586.6 5322.9 5014.1 14052.6 14565.5 11997.8 1140.4 955.9	435.2 462.3 426.3 426.3 5079.4 5178.9 5365.7 17 293.1 19 226.3 17 201.9 482.6 433.8	404.1 397.9 351.1 11 792.4 10 077.8 11 397.6 29 709.8 22 652.3 26 542.0 928.0 1094.7	334.6 392.2 316.9 2220.4 2745.5 2220.3 8725.1 11 181.5 10 072.3 369.7 337.0	374.5 427.1 400.8 8191.7 7489.6 7621.5 16 925.4 17 803.3 16 644.4 975.3 714.1	368.1 422.4 375.9 10 516.3 9865.0 10 446.0 25 224.0 24 001.0 23 130.3 832.9 744.6	351.8 422.5 363.9 3230.9 2512.0 3458.6 12.846.5 13.721.2 12.099.9 625.2 541.3	404.5 403.8 382.3 10 219.9 10 132.3 11 323.9 19 499.4 18 717.2 20 960.1 866.8 827.2	340.9 357.7 322.7 10018.2 6919.4 8649.0 16712.8 14371.0 14012.4 863.9 770.2	426.6 460.2 419.9 8331.7 7664.8 8084.9 18 220.0 17 879.2 17 549.6 797.2 769.2 748.6
Claude 3.7 Sonnet DeepSeek R1 Claude 3.7 Sonnet (Thinking) DeepSeek Chat V3	Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Zeroshot Hint No Comp Teroshot Hint No Comp	528.8 617.8 509.7 6586.6 5322.9 5014.1 14 052.6 14 565.5 11 997.8 1140.4 955.9 987.7 1340.6 1378.8	435.2 462.3 426.3 5079.4 5178.9 5365.7 17 293.1 19 226.3 17 201.9 482.6 433.8 456.4 467.9 646.7	404.1 397.9 351.1 11 792.4 10 077.8 11 397.6 29 709.8 22 652.3 26 542.0 928.0 1094.7 729.3 1269.8 880.8	334.6 392.2 316.9 2220.4 2745.5 2220.3 8725.1 11 181.5 10 072.3 369.7 337.0 292.7 262.1 305.6	374.5 427.1 400.8 8191.7 7489.6 7621.5 16 925.4 17 803.3 16 644.4 975.3 714.1 839.4 692.8 831.0	368.1 422.4 375.9 10 516.3 9865.0 10 446.0 25 224.0 24 001.0 23 130.3 832.9 744.6 831.5	351.8 422.5 363.9 3230.9 2512.0 3458.6 12 846.5 13 721.2 12 099.9 625.2 541.3 597.1 548.5	404.5 403.8 382.3 10 219.9 10 132.3 11 323.9 19 499.4 18 717.2 20 960.1 866.8 827.2 839.3 677.0 833.7	340.9 357.7 322.7 10018.2 6919.4 8649.0 16712.8 14371.0 14012.4 863.9 770.2 424.4 348.3 438.7	426.6 460.2 419.9 8331.7 7664.8 8084.9 18 220.0 17 879.2 17 549.6 797.2 769.2