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Abstract
Large language models (LLMs) have rapidly advanced and are increasingly capable1

of tackling complex scientific problems, including those in physics. Despite this2

progress, current LLMs often fail to emulate the concise, principle-based reasoning3

characteristic of human experts, instead generating lengthy and opaque solutions.4

This discrepancy highlights a crucial gap in their ability to apply core physical prin-5

ciples for efficient and interpretable problem solving. To systematically investigate6

this limitation, we introduce PhySense, a novel principle-based physics reasoning7

benchmark designed to be easily solvable by experts using guiding principles, yet8

deceptively difficult for LLMs without principle-first reasoning. Our evaluation9

across multiple state-of-the-art LLMs and prompt types reveals a consistent failure10

to align with expert-like reasoning paths, providing insights for developing AI11

systems with efficient, robust and interpretable principle-based scientific reasoning.12

1 Introduction13

Large language models (LLMs) have emerged as powerful tools, profoundly impacting numerous14

aspects of scientific discovery [1, 2, 3, 4]. Recent advancements in their reasoning capabilities have15

been particularly transformative, with notable applications in the domain of physics [5, 6, 7, 8].16

Within physics, LLMs have demonstrated the ability to engage with problems ranging from those17

requiring real-world physical intuition [9] to complex theoretical challenges [10].18

Despite these impressive strides, a critical challenge lies in ensuring that the reasoning processes of19

LLMs align with expert intuition and fundamental physical principles. Current LLMs tend to generate20

solutions with long-horizon reasoning pathways, which are opaque, convoluted, or divergent from the21

parsimonious and principle-driven thinking characteristic of human physicists. Such phenomena has22

also been identified as over-thinking [11]. In contrast, physicists master principle-based reasoning23

with principle-driven problem solving and principle-based verification. Principle-driven problem24

solving is a forward process where fundamental principles simplify the problem-solving space,25

directly guiding towards a solution. Principle-based verification is a routine where physics principles26

establish criteria that a correct solution must meet, ensuring its validity. This divergence between27

LLMs and human physicists raises concerns about the efficiency, robustness and interpretability of28

current LLMs for scientific reasoning, especially in a field where clarity, intuition and explainability29

of a solution is as crucial as the correctness of solution itself.30

This work investigates LLMs’ tendency to miss simple, intuitive solutions in physics problems that31

are apparent to human physicists. We posit that an incomplete grasp or misapplication of physical32

principles leads LLMs to unnecessarily complex reasoning, contrasting with human experts who33

leverage these fundamental ideas for elegant and efficient solutions (e.g., analyzing through symmetry34

instead of intricate numerical computation). This expert approach, which organizes knowledge35

around crystallized principles for efficient problem-solving, is well-documented in cognitive science36

[12, 13, 14]. Emulating this in LLMs could foster more aligned, efficient, and interpretable reasoning,37

guiding them towards computationally leaner and conceptually sound ‘shorter paths.’38
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Figure 1: Illustrating how LLMs use lengthy, complex reasoning for physics problems intuitively
straightforward to scientists applying core physical concepts.

To systematically analyze this, we introduce PhySense, a benchmark of 380 carefully curated physics39

problems designed to be straightforward for human physicists with core principles but appears to40

be challenging for LLMs to solve efficiently. In contrast to other physics reasoning benmark which41

focuses on reasoning on specific domain or challenging calculations, PhySense focuses on short42

reasoning chains where single principles are crucial. Our findings aim to highlight the need for43

developing LLMs that are not only accurate, but also exhibit interpretable, robust reasoning aligned44

with fundamental physical principles. Our key contributions are summarized as follows:45

• We introduce PhySense, the first novel, human-curated principle-based physics reasoning46

benchmarking dataset of over 380 problems that are straightforward for experts using fundamental47

principles but challenging to LLMs unless they adopt direct, principle-first reasoning shortcuts.48

• We quantify not only whether an LLM arrives at the correct answer, but also how closely its49

reasoning cost matches with principle-based solutions via both accuracy and token efficiency metrics.50

• We evaluate a range of state-of-the-art LLMs under zero-shot, hint, and no-computation prompts,51

uncovering LLMs’ systematic lack of capability in applying principles and offering guidance for52

training LLMs toward more efficient, robust and interpretable principle-based physics reasoning.53

2 Related Work54

Benchmarks for General Scientific Reasoning As LLMs are increasingly considered as important55

tools in scientific inquiry, understanding their true capabilities and limitations in scientific reasoning56

becomes paramount. Early benchmarks such as AI2 ARC [15], MMLU [16], IconQA [17] and57

ScienceQA [18] focused on general scientific context, surface-level reasoning, and basic factual58

knowledge. As model capabilities have grown, newer evaluations target deeper, multi-step problem59

solving and domain-specific expertise—either by repurposing advanced human exams and problem60

set (e.g., AGIEval [19], JEEBench [20], SciBench [21]) or by probing complex reasoning dimensions61

(e.g., MMLU-Pro [22], SciEval [23], TheoremQA [24]), up to the extreme challenges posed by62

capstone-style assessments like Humanity’s Last Exam [25]. Some of the general science reasoning63

datasets like OlympicBench [26] and OlympicAreana [27] provides advanced physics problems but64

with limited scope.65

Benchmarks for Physics Reasoning The landscape of physics-reasoning benchmarks for LLMs66

has rapidly evolved from primarily general problem sets to multifaceted collections that probe67

deeper conceptual, procedural, and physics-specific understanding. Efforts like PhyQA [28] and68

UGPhysics[29] assemble thousands of structured introductory problems, while other benchmarks such69

as PhysBench [30] and PhysReason [31] introduce problems require longer reasoning steps. More70

research-oriented suites like TP-Bench [10], CURIE [32] and multi-modal benchmarks like MM-71

PhyQA [33] and domain specific benchmarks like FEABench [34] further pushes the understanding72

of LLM’s physics capability with more research-oriented settings. In contrast to multi-modal73

approaches, our work deliberately focuses on theoretical, text-only problems where all relevant74

information is conveyed textually. This design choice allows for a targeted evaluation of conceptual75

and algebraic reasoning, isolating these core competencies from confounding factors of image or76

diagram understanding. We discovered that single-modality benchmark already reveals significant77

limitations in current LLMs. Increased attention is also being directed towards fine-grained evaluation78

methodologies for the precise assessment of many-step reasoning including Expression Edit Distance79

(EED) Score [30].80

Reasoning in LLMs and "Over-Thinking" Recent advances in LLMs, sometimes characterized81

by "slow thinking" capabilities demonstrated since models like GPT o1 [35], have showcased stronger82
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abilities in solving STEM problems. This improvement is often attributed to post-training techniques83

and reinforcement learning. Models like DeepSeek-R1[36], Gemini-2.0-Flash-Thinking[37], and84

versions of Claude [38] and Qwen [39] have demonstrated enhanced reasoning. However, while these85

models can generate longer reasoning chains (i.e., use more tokens), this does not always equate to86

more efficient or accurate reasoning. The phenomenon of "over-thinking" [11], where models may87

engage in unnecessarily complex or incorrect reasoning paths, remains a challenge.88

3 Dataset Generation89

“The universe is an enormous direct product of representations of symmetry groups.”90

— Steven Weinberg, Nobel laureate in physics91

Principle-based Reasoning Physics principles such as symmetries, conservation laws, and di-92

mensional analysis remain cornerstones of modern physics research and problem solving. They not93

only simplify complex systems and reduce computational costs, but also illuminate the nature of94

various phenomena and provide a unified understanding across diverse contexts. Therefore, an LLM’s95

proficiency in applying these principles serves as a reliable gauge of its understanding of physics.96

Principle-based physics reasoning can (1) efficiently yield the correct answer (2) robustly validate97

potential solutions (3) provide clear interpretability beyond calculation. We demonstrate this98

with the following example.99

Example 1

A 5x5 square grid of nodes: x ∈ {0, 1, 2, 3, 4}, y ∈ {0, 1, 2, 3, 4} connected by resistors r
between nearest neighbors. Connect node V(0,0) = 0, node V(4,4) = V , node V(0,4) = V/2.
Which of the following is true?
(a) V(1,3) = V/2 (b) V(2,2) = V/2 (c) V(1,1) = V/4 (d) V(3,3) = 3V/4 (e) V(4,0) = V/2

100

Answer 1
Answer by symmetry principle:
A trained physicist would notice the circuit together with added voltages has a reflection
symmetry along the diagonal x+ y = 4. One can then deduce directly that (a,b,e) is correct.

Answer by explicit calculation:
Without using symmetries, one has to solve Kirchhoff equations for the whole system (22
unknown voltages),

3V0,1 − V1,1 − V0,2 = 0, 3V0,2 − V1,2 − V0,1 − V0,3 = 0, 3V0,3 − V1,3 − V0,2 = V/2

3V1,0 − V2,0 − V1,1 = 0, 3V2,0 − V1,0 − V3,0 − V2,1 = 0, 3V3,0 − V2,0 − V4,0 − V3,1 = 0

2V4,0 − V3,0 − V4,1 = 0, 3V4,1 − V4,0 − V4,2 − V3,1 = 0, 3V4,2 − V4,1 − V4,3 − V3,2 = 0

3V4,3 − V4,2 − V3,3 = V, 3V1,4 − V2,4 − V1,3 = V/2, 3V2,4 − V1,4 − V3,4 − V2,3 = 0

3V3,4 − V2,4 − V3,3 = V, 4Vi,j − Vi−1,j − Vi+1,j − Vi,j−1 − Vi,j+1 = 0 for 1 ≤ i, j ≤ 3.

Solving all the equations above numerically, one gets V1,3 = V2,2 = V4,0 = V/2, V3,3 ≈
0.6702V , V1,1 ≈ 0.3298V . Thus the answer is (a,b,e). Clearly, this “standard” approach is
much more complicated than using the symmetry principle.

101

Despite the power of physical principles, existing benchmarks (see e.g. Sec. 2), while challenging, do102

not evaluate whether LLMs truly apply these principles. Do LLMs genuinely understand physics, or103

are they merely leveraging greater computational power than humans? To address this gap, we have104

developed a new problem set of 380 physics questions spanning electricity and magnetism, electric105

circuits, quantum spin/fermion chains, quantum dynamics, topological insulators, the renormalization106

group, and conformal field theory. These problems are crafted according to the following criteria.107

Principle-based physics reasoning A key feature of PhySense is its design to test LLMs’ un-108

derstanding on fundamental principles and capability on principle-based reasoning. Our dataset is109

different than previous physics reasoning dataset, since we do not aim to test LLMs’ knowledge110

in a specific domain or cabability of reasoning with long calculation. While our problems may be111

3



challenging or could be solved with lengthy calculation, we design the problems to be solved easily112

using physics principle reasoning.113

Figure 2: Distribution of physics principles in
the dataset.

Novel problems from human experts Although114

the underlying concepts in our problem set are115

widely available online, we have crafted entirely116

new questions with physicists from top universi-117

ties that cannot be found elsewhere, ensuring that118

LLMs have not been exposed to similar problems.119

This novelty is essential for testing an LLM’s ability120

to generalize the application of physics principles.121

A wide range of difficulties The problems span122

difficulty levels from undergraduate through gradu-123

ate and research-level, yet none requires advanced124

mathematical techniques, complicated integrals, or125

large-scale numerical computations. This ensures126

we evaluate how well LLMs can think like physi-127

cists — using fundamental physical principles to128

understand problems — rather than merely assess-129

ing raw computational capability. We also annotate130

each problem with a difficulty rating (as judged by humans) for subsequent analysis.131

Conciseness for evaluation Every problem is stated and solved entirely through textual description132

and derivation. The physical setups are simple to describe, minimizing the risk of misinterpretation133

by LLMs. To eliminate ambiguity in the outputs, each question offers either multiple-choice options134

or expects a concise numerical answer.135

3.1 Physical principles and models136

Following the criteria above, we evaluate the LLM’s understanding and correct application of several137

fundamental yet powerful principles in both classical and quantum physics. To do this, we design 19138

distinct problem models139

Symmetry Spatial symmetries can be leveraged to identify points where complicated integrals140

vanish. To evaluate this, we construct problem sets involving two-dimensional and three-dimensional141

electric (or magnetic) fields generated by symmetric charge (or current) distributions. These problems142

are categorized into the following models, each with an abbreviation:143

• 2D electric field (2DEF), 2D electric field on a lattice (2DEFL), 3D electric field (3DEF), 2D144

magnetic field (2DBF), 3D magnetic field (3DBF)145

We also devise problems that leverage symmetries to determine voltages of certain nodes in finite and146

infinite circuits:147

• Infinite resistive lattices (InfRes), Circuits on a square lattice (SqGrd), Circuits on other lattices148

(OthGrd)149

The symmetry of molecules can determine the solubility in solvents, which leads to another model of150

problems:151

• Solubility comparison (Solub)152

Moreover, symmetries impose constraints on correlation functions in quantum many-body physics153

and statistical mechanics. We have also developed problems involving quantum spin and fermion154

chains and their dynamical variants, to test Z2, U(1), and time-reversal symmetries alongside spatial155

symmetries such as translation and reflection:156

• Quantum spin chains (Qspin), Fermionic chains (Ferm), Quantum dynamics with symmetry and157

conservation laws (DynCon)158

Dimensional analysis Dimensional analysis is a powerful tool in uncovering possible relations159

between different physical quantities. Not only is it widely used in the context of thermodynamics,160

fluid mechanics, etc., its applications also extend to quantum mechanics as well. We design problems161

in two areas: (a) applying the Π theorem in fluid and quantum mechanics, and (b) using power162
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counting to determine relevance in the renormalization group. This yields the following problem163

models:164

• Dimensional analysis using Π theorem, where we focus on testing LLM’s ability to compute di-165

mensions in arguments of functions such as sin, log, etc. (DimLS), Dimensional analysis with artificial166

irrelevant perturbations (WrdH), Power-counting in renormalization group analysis (RGPow)167

Limiting case Irrelevant perturbations in physical problems can be omitted to simplify the physical168

model. To test the LLM’s ability to do so, we introduce perturbations into Model (WrdH) above and169

evaluate whether it correctly ignores the higher-order terms.170

Conservation law Conservation law plays a crucial role in quantum field theory. Especially in free171

fermion conformal field theories, equation of motion, together with the fermionic statistics, provides172

a powerful tool to determine whether an operator is primary, descendant, or merely vanishing.173

• Operator properties in conformal field theories (CFTOp)174

Topology Topological phases of matter is a central topic in modern condensed matter physics. It175

typically exhibits gapless edge spectrum, and sensitive to the boundary condition of the system. We176

design problems to evaluate if LLMs can understand the stability of symmetry-protected topological177

phases from the edge spectrum perspective:178

• Edge spectrum in topological insulators (GpEdg)179

We also compose problems in counting the ground state degeneracy of (generalized) spin chain180

with antiperiodic or periodic boundary condition. In particular, in these problems, applying finite-181

depth local unitary circuits, which does not alter the topological property including the ground state182

degeneracy, greatly simplifies the calculation.183

• Ground state degeneracy of spin chains (GSDeq), Ground state degeneracy of generalized spin184

chains (GSDGen)185

4 Experiments186

This section details the experiments conducted to evaluate the scientific problem-solving capabilities187

of LLMs. We begin by outlining the experimental setup, including the models tested and the188

prompting strategies employed to simulate scientific reasoning scenarios.189

4.1 Experiment Setup190

We evaluated seven unimodal LLMs on our benchmark. These included four reasoning models191

optimized for reasoning: GPT o4-mini-high [40], Claude Sonnet 3.7 Thinking [38], Gemini 2.5 Pro192

[41], and DeepSeek R1 [36]. Additionally, we tested three regular non-reasoning models: GPT193

4.1 [42], Claude 3.7 Sonnet [43], and DeepSeek V3 [44]. For all the models, we use the API-based194

services with default hyperparameter setting. We utilized three common prompting strategies in195

scientific applications to test LLMs:196

Zeroshot Prompting Zero-shot prompting tests a model’s intrinsic reasoning by providing only197

the problem statement, without examples or hints. This method gauges the model’s ability to apply198

existing knowledge, making it a good test for scientific discovery.199

Hint Prompting Hint prompting provides models with guidance on relevant physical principles,200

helping to see if they can use explicit direction to solve problems. This is useful when models fail to201

apply the correct principles on their own.202

No Computation Prompting In this approach, models are instructed to avoid complex calculations203

and instead focus on principle-based reasoning. This assesses their ability to prioritize simpler,204

conceptual solutions over complicated computational methods.205

4.2 Metrics206

We employ two primary metrics for evaluation: accuracy and token usage. For accuracy, LLMs207

were instructed to provide their final answer within a boxed environment for automated extraction208

and comparison against ground truth solutions. The problems fall into two categories with different209

evaluation implementation: (1) numerical: Answers are compared to the ground truth allowing for a210

5% tolerance. (2) multiple choice: The selected option must exactly match the correct choice. For211
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(a) Average accuracy across models. (b) Average token usage across models.

Figure 3: Average accuracy and token usage for different models.

token usage, we record the total number of tokens produced during the generation of the solution212

for each problem and model. This is a crucial metric that provides insight into the computational213

cost associated with each model’s problem-solving process, and reflects how much principle-based214

reasoning each LLM acquires.215

5 Results216

In this section, we report the benchmarking results and present our primary observations regarding217

the performance of various LLMs on PhySense.218

5.1 Reasoning Accuracy219

Figure 4: Zeroshot accuracy of LLMs under
three difficulties.

We report the model performance in terms of accu-220

racy score for each section and an average accuracy221

over all problems. We quantify model performance222

using accuracy percentage, calculated for each dis-223

tinct problem category within our benchmark, along-224

side an overall average accuracy across all problems.225

This accuracy reflects the proportion of problems226

correctly solved by each model according to our eval-227

uation protocol. The accuracy results are compiled228

in Table 1. To provide a clearer visual summary229

of the overall performance trends, we present his-230

tograms illustrating the distribution of average ac-231

curacy scores across the cohort of tested models in232

Figure 3a. To further assess LLM alignment with233

human physicist problem-solving, problems were cat-234

egorized by human-judged difficulty (easy, medium,235

difficult). Figure 4 shows each model’s average zero-shot accuracy across these levels. While236

reasoning models achieve better performance than non-reasoning models on average, all LLMs’237

performances are not satisfactory, reflecting their incapability of mastering principle-based reasoning.238

5.2 Reasoning Token Efficiency239

In parallel to accuracy, we report the average number of completion tokens produced by the models240

for generating solutions, both for individual sections and on average. This token usage metric provides241

an indication of the computational resources and reasoning complexity associated with each model’s242

problem-solving attempts. The token usages are compiled in Table 2. Figure 3b offers a comparative243

overview of the token utilization patterns. Reasoning models, due to reaoning mechanisms, consume244

about ten times more tokens (∼ 104) than non-reasoning models (∼ 103). In stark contrast, human245

physicists demonstrate far greater efficiency, often solving the same problems using about a hundered246

times fewer tokens (∼ 102) than reasoning models. It indicates a huge gap between LLMs and human247

experts on efficient principle-based reasoning.248
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Table 1: LLM accuracy scores (as percentages) for reasoning models. The first subtable shows
accuracy for the first 10 problem sets, and the second subtable shows accuracy for the remaining 9
problem sets and the overall average (AVG). The best accuracy of each section is marked in bold font.
The full result, including non-reasoning models, is in the Appendix.
Model Prompt RGPow SqGrd QSpin CFTOp 3DBF GSDGen WrdH Ferm DynCon 3DEF

DeepSeek R1
Hint 25.0 5.0 0.0 0.0 5.0 0.0 55.0 0.0 0.0 5.0
No Comp 15.0 5.0 5.0 0.0 5.0 0.0 40.0 5.0 0.0 0.0
Zeroshot 10.0 0.0 10.0 5.0 10.0 0.0 30.0 5.0 0.0 5.0

Claude 3.7
Sonnet
(Thinking)

Hint 5.0 30.0 35.0 30.0 40.0 0.0 65.0 20.0 5.0 50.0
No Comp 10.0 25.0 30.0 20.0 45.0 0.0 25.0 10.0 0.0 30.0
Zeroshot 10.0 45.0 35.0 35.0 35.0 0.0 30.0 25.0 5.0 30.0

O4-Mini-High
Hint 5.0 20.0 45.0 25.0 35.0 15.0 70.0 50.0 0.0 40.0
No Comp 25.0 10.0 45.0 20.0 45.0 20.0 50.0 35.0 5.0 50.0
Zeroshot 15.0 15.0 35.0 15.0 45.0 20.0 80.0 15.0 10.0 65.0

Gemini 2.5 Pro
(Preview)

Hint 10.0 50.0 65.0 25.0 50.0 5.0 100.0 30.0 25.0 65.0
No Comp 20.0 40.0 65.0 25.0 50.0 25.0 100.0 25.0 20.0 70.0
Zeroshot 10.0 35.0 70.0 25.0 40.0 15.0 95.0 25.0 30.0 50.0

Model Prompt DimLS GpEdg GSDeg Solub 2DEF 2DEFL OthGrd 2DBF InfRes AVG

DeepSeek R1
Hint 15.0 5.0 30.0 0.0 10.0 5.0 10.0 10.0 40.0 11.6
No Comp 0.0 0.0 20.0 0.0 5.0 0.0 15.0 5.0 70.0 10.0
Zeroshot 5.0 10.0 30.0 0.0 5.0 0.0 0.0 0.0 45.0 8.9

Claude 3.7
Sonnet
(Thinking)

Hint 45.0 5.0 15.0 60.0 40.0 15.0 35.0 15.0 50.0 29.5
No Comp 45.0 5.0 20.0 65.0 45.0 15.0 40.0 5.0 35.0 24.7
Zeroshot 50.0 5.0 30.0 65.0 35.0 15.0 40.0 15.0 35.0 28.4

O4-Mini-High
Hint 55.0 10.0 45.0 45.0 45.0 45.0 65.0 30.0 35.0 35.8
No Comp 40.0 5.0 25.0 40.0 35.0 40.0 75.0 35.0 15.0 32.4
Zeroshot 50.0 10.0 15.0 40.0 45.0 40.0 60.0 65.0 30.0 35.3

Gemini 2.5 Pro
(Preview)

Hint 40.0 10.0 25.0 75.0 65.0 55.0 30.0 30.0 85.0 44.2
No Comp 55.0 15.0 30.0 80.0 60.0 40.0 35.0 30.0 85.0 45.8
Zeroshot 55.0 15.0 40.0 70.0 65.0 55.0 30.0 35.0 85.0 44.5

Table 2: LLM token usage for reasoning models. The first subtable shows the token usage for the
first 10 problem sets, and the second subtable shows the token usage for the remaining 9 problem sets
and the overall average (AVG). The full result, including non-reasoning models, is in the Appendix.
Model Prompt RGPow SqGrd QSpin CFTOp 3DBF GSDGen WrdH Ferm DynCon 3DEF

DeepSeek R1
Hint 7748.4 6085.5 7632.0 6711.2 11 371.5 12 606.7 10 490.3 9499.3 8516.8 9784.7
No Comp 6183.9 3830.3 8215.8 7438.9 10 062.0 10 215.3 10 626.1 9688.8 9623.3 9504.5
Zeroshot 7317.8 3968.2 6483.7 7647.8 11 879.9 12 193.4 10 163.2 9927.0 8581.3 9954.6

Claude 3.7
Sonnet
(Thinking)

Hint 17 735.1 15 298.6 18 616.3 18 987.8 19 144.3 20 767.3 20 272.2 21 516.2 13 818.2 19 036.2
No Comp 16 001.6 15 081.4 17 857.8 17 108.1 20 267.2 20 318.4 22 182.9 20 201.1 15 469.8 18 977.4
Zeroshot 15 936.0 17 851.0 18 357.8 15 954.6 21 768.8 20 952.5 20 672.1 18 951.2 14 550.9 15 786.8

O4-Mini-High
Hint 5345.0 6086.5 3813.3 1545.5 13 739.4 10 854.6 2566.3 8714.3 4469.3 8173.7
No Comp 4575.9 3702.1 3336.9 1624.8 15 863.4 9539.9 2130.9 8756.7 4530.0 8640.5
Zeroshot 6536.9 5555.7 4028.6 2661.5 13 835.6 13 012.4 3477.8 8909.5 5576.7 11 134.5

Gemini 2.5 Pro
(Preview)

Hint 20 051.2 21 261.7 22 041.2 19 477.1 26 954.0 26 402.8 15 640.6 26 444.4 22 526.0 21 781.8
No Comp 17 567.4 18 813.4 21 876.5 17 009.9 26 479.1 24 328.0 16 612.9 23 438.2 22 199.9 22 420.3
Zeroshot 20 182.7 20 409.2 20 523.5 19 394.4 26 385.5 26 236.2 16 700.3 23 850.2 21 939.2 21 351.4

Model Prompt DimLS GpEdg GSDeg Solub 2DEF 2DEFL OthGrd 2DBF InfRes Avg

DeepSeek R1
Hint 6586.6 5079.4 11 792.4 2220.4 8191.7 10 516.3 3230.9 10 219.9 10 018.2 8331.7
No Comp 5322.9 5178.9 10 077.8 2745.5 7489.6 9865.0 2512.0 10 132.3 6919.4 7664.8
Zeroshot 5014.1 5365.7 11 397.6 2220.3 7621.5 10 446.0 3458.6 11 323.9 8649.0 8084.9

Claude 3.7
Sonnet
(Thinking)

Hint 14 052.6 17 293.1 29 709.8 8725.1 16 925.4 25 224.0 12 846.5 19 499.4 16 712.8 18 220.0
No Comp 14 565.5 19 226.3 22 652.3 11 181.5 17 803.3 24 001.0 13 721.2 18 717.2 14 371.0 17 879.2
Zeroshot 11 997.8 17 201.9 26 542.0 10 072.3 16 644.4 23 130.3 12 099.9 20 960.1 14 012.4 17 549.6

O4-Mini-High
Hint 3911.7 3958.7 9079.1 1754.2 7551.6 14 260.4 4648.6 12 895.1 9460.3 6990.9
No Comp 3673.2 3792.0 6693.0 2427.8 6766.7 12 709.1 4341.5 9266.6 9333.4 6405.5
Zeroshot 4134.4 5193.5 8080.3 1912.1 8318.4 13 527.0 6437.0 12 987.5 16 460.9 7988.4

Gemini 2.5 Pro
(Preview)

Hint 12 844.7 18 129.4 24 595.4 8205.2 22 265.6 24 617.9 18 649.2 28 798.5 15 979.4 20 877.1
No Comp 12 147.8 17 457.0 24 887.4 8073.3 21 379.0 23 503.0 19 128.6 30 710.4 17 622.1 20 297.6
Zeroshot 13 888.2 18 554.4 25 820.9 8387.2 22 079.7 24 866.8 18 291.4 29 737.3 18 759.5 20 913.5
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5.3 LLM Failures in Applying Physical Principles249

While many LLMs can state physical principles, they often struggle to apply them correctly or250

comprehensively, particularly the principle of symmetry. Models frequently fail to identify relevant251

symmetries or incorrectly assume symmetries that do not exist. This weakness is apparent in problems252

where symmetry provides a significant shortcut.253

Example 2: 2D Electric Field (2DEF)

There is a uniformly charged square plane in space with corners at (x, y, z) = (±1,±1, 0).
At which of the following locations is the x-direction electric field strength equal to the
y-direction electric field strength (Ex = Ey)?
a) (0, 0, 1); e) (1, 1, 1); i) (−1,−1, 1); j) (0, 0,−1); n) (1, 1,−1); r) (−1,−1,−1); v)
(2, 2, 0); ... (other options omitted)

254

For a physicist, the solution is straightforward: by symmetry, any location where x = y will have255

Ex = Ey. This insight immediately identifies the correct answers (a, e, i, j, n, r, v). In contrast, one256

LLM attempted to solve the problem by setting up complex 2D integrals, ultimately arriving at an257

incorrect answer. This shows a failure to recognize and leverage the fundamental symmetry of the258

setup.259

The capability to reason with such principles varies across models. To illustrate this, we compare260

responses from a reasoning and a non-reasoning model on a quantum mechanics problem.261

Example 3: Quantum dynamics (DynCon)

Consider a L = 100 quantum spin chain prepared as the ground state of H = −
∑

j Xj −
0.9

∑
j ZjZj+1. Time-evolve this state under H(t) =

∑
j YjXj+1Xj+2Yj+3 from t = 0 to

t = 100. Which of the following is true in the final state?
a) ⟨Z60⟩ = 0; b) ⟨Z39Y40⟩ = ⟨Y90Z91⟩; c) ⟨Z39X40⟩ = ⟨X61Z62⟩; d) None of the above is
true.

262

In this problem, choices (a), (b), and (c) are all correct due to spin-flip, time-reversal, and reflection263

symmetries, respectively. The reasoning model correctly identified spin-flip and reflection symmetries264

but failed to apply time-reversal symmetry. The non-reasoning model also mentioned spin-flip and265

reflection but showed a superficial grasp by failing to see that choice (c) follows from them. When266

prompted with a hint, it incorrectly invoked translational symmetry (which is absent) and, like the267

reasoning model, showed no awareness of time-reversal symmetry (see Appendix A.2 for details).268

Overall, while reasoning models are more effective at applying physical principles, they are still269

imperfect. Non-reasoning models demonstrate a shallower understanding, often using terminology270

without true comprehension.271

6 Conclusion272

We introduce PhySense, a comprehensive, novel, human-curated principle-based physics reasoning273

benchmark for evaluating large language models on scientific problem-solving across diverse physics274

domains. PhySense comprises 380 carefully designed problems spanning symmetry reasoning,275

dimensional analysis, renormalization-group analysis, topology, quantum dynamics, and more,276

together with three prompting strategies ("Zero shot", "Hint", and "No-computation"). Our extensive277

evaluation of seven state-of-the-art LLMs, including reasoning and non-reasoning models, reveals278

that while reasoning-focused LLMs outperform their non-reasoning counterparts, all models remain279

substantially below expert human performance. We observe consistent deficits in token efficiency,280

principled application of physical laws, and generalization across topics. Moreover, auxiliary281

prompting strategies (e.g., hints or “no-computation” directives) yield only marginal improvements,282

indicating the need for deeper integration of principle-based thinking to LLMs. For future directions,283

it will be important to try improving LLM’s principle-based reasoning via supervised fine tuning or284

reinforcement learning. Our study provides valuable insights and guidance for developing LLMs285

with efficient, robust and interpretable principle-based reasoning, which are crucial for scientific286

collaborations and discoveries.287
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A Analysis of Several Examples473

A.1 An example of LLM failing to apply principles474

For some problems, even if the LLM is forced to use principle, it fails to figure out the correct way to475

use it. In the following example, Gemini-2.5 Pro fails to find the correct symmetry of the system. In476

general, the LLMs we test have better performance with symmetry group of a square lattice, but for477

other cases like triangular or honeycomb lattices, the LLMs have difficulty finding out the symmetry478

group to consider (see below).479

Example 4: 2D Electric Field Lattice (2DEFL)

There are point charges on the infinite x-y plane in space. The coordinates of the charges
are {(x, y, z) = m · (

√
3/2,−1/2, 0) + n · (0, 1, 0)|(m + n) ̸≡ 0 mod 3,m, n ∈ Z}. i.e.

forming a 2D infinite honeycomb lattice on the x-y plane. Each point has charge of equal
amplitude. The charges with n being even integers are positive, and the charges with n being
odd integers are negative. Which of the following locations in space have the z-direction
electric field strength Ez being zero?
a) (x = 0, y = 0, z = 1); b) (x = 0, y = 1/2, z = 1); c) (x = 0, y = −1/2, z = 1); d)
(x = 0, y = 1, z = 1); e) (x = 0, y = −1, z = 1); f) (x =

√
3/2, y = 0, z = 1); g) (x =√

3/2, y = 1/2, z = 1); h) (x =
√
3/2, y = −1/2, z = 1); i) (x = −

√
3/2, y = 0, z = 1);

j) (x = −
√
3/2, y = 1/2, z = 1); k) (x = −

√
3/2, y = −1/2, z = 1); l) (x =

√
3/4, y =

1/4, z = 1); m) (x =
√
3/4, y = −1/4, z = 1); n) (x =

√
3/4, y = 3/4, z = 1); o)

(x =
√
3/4, y = −3/4, z = 1); p) (x = −

√
3/4, y = 1/4, z = 1); q) (x = −

√
3/4, y =

−1/4, z = 1); r) (x = −
√
3/4, y = 3/4, z = 1); s) (x = −

√
3/4, y = −3/4, z = 1);

480

Answer 2: “Hint” prompt

This problem requires a detailed analysis of the symmetries of the charge distribution. Given
the complexity and the lack of an obvious symmetry that leads to Ez = 0 for the listed points
without extensive calculation, and the peculiarity that some listed solutions are locations of
charges themselves, it’s possible that the problem requires advanced techniques or there is a
specific property of this honeycomb lattice with alternating charges that is not immediately
apparent ...... Due to the difficulty and potential complexity, i am unable to provide a justified
answer. However, if this is from a known source, one might find existing literature on a
similar problem. The final answer is b, e, g, i, l, o, p, r .

481

The LLM does not even specify any symmetry to consider and the answer above is wrong. In482

fact, the correct use of symmetry is: Ez = 0 can be fixed by a reflection + charge-conjugation483

combined symmetry, where the reflection plane includes a z-direction straight line, or by a rotation +484

charge-conjugation combined symmetry, where the rotation axis is a z-direction straight line. The485

charge configuration has such rotation + charge-conjugation combined symmetry at the middle points486

of the edges that connect a pair of positive and negative charges. Among the choices, those points are487

(f,i,o,r), which is our answer.488

A.2 Answers of Example 3489

Answer 3: o4-mini-high, “Zero-shot” prompt

Solution Outline 1. Symmetry 1: Global spin - flip in the X - basis
Define Q = Π1

00Xj. −QXjQ = Xj , QZjQ = −Zj , QYjQ = −Yj - Both H0 = −ΣXj −
0.9ΣZjZj+1 and H1 = ΣYjXj+1

Xj+2
Yj+3

commute with Q ⇒ The state at all times is
Q-symmetric ⇒ ⟨Zj⟩ = 0 ⇒ statement (a) is true. 2. Symmetry 2: Reflection about the
chain center
Define R : j → 101 − j. One checks RH0R = H0 and RH1R = H1. Thus the time -
evolved state is R - symmetric. Under R: Z39X40 → Z62X61 = X61Z62 (different - site
Pauli commute) ⇒ ⟨Z39X40⟩ = ⟨X61Z62⟩ ⇒ statement (c) is true. 3. Translation is not an
exact symmetry of the open - chain H0 or H1, so (b) need not hold.

490
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Final answer: a, c
491

Answer 4: o4-mini-high, “Hint” prompt

Solution Outline: 1. Symmetry of the initial Hamiltonian H0 : - H0 = −Σ1
00X−j −

0.9Σ1
99Z−jZ−{j + 1} commutes with the global spin - flip P=

∏
X_j. - Hence its (unique)

ground state |ψ0⟩ is a P - eigenstate and ⟨Z−j⟩0 = 0 for all j . 2. Time - evolution under
H(t) = Σ1

97Y_jX_{j+1}X_{j+2}Y_{j+3} : - H(t) also commutes with P ⇒ ⟨Z−j⟩− t
remains zero ⇒ statement (a) is true. 3. Reflection symmetry R(j → 101− j) : - Both H0

and H(t) are invariant under R and |ψ0⟩ can be chosen R - symmetric. - Hence ⟨AiBi+1⟩t =
⟨RAiBi+1R⟩t = ⟨A101−iB100−i⟩t. - For (c): i=39 gives (101-39,100-39)=(62,61), so
⟨Z39X40⟩ = ⟨Z62X61⟩ = ⟨X61Z62⟩ (operators on different sites commute) ⇒ (c) is true. 4.
Statement (b) involves (39, 40) vs (90, 91), which are neither related by P nor by R⇒ false.
Final Answer: a, c

492

Answer 5: o4-mini-high, “No Comp” prompt

Step-by-step: 1. Define the global "spin - flip" operator

G =
∏
−
{j = 1}∧{100}X−j.

Note GZjG = −Zj and GXjG = +Xj , so G flips the sign of Z and Y and leaves X
invariant. 2. Check symmetries: - Hinitial = −ΣX−j − 0.9ΣZ−jZ−{j + 1} commutes
with G (the usual Z2 symmetry of the transverse - field Ising model). - Hdrive =

∑
{j =

1}∧{97}Y−jX{j + 1}X_{j + 2}Y−{j + 3} also commutes with G (each term has two
Y’s). ⇒ The time - evolved state remains a +1 eigenstate of G for all t. 3. Consequences for
expectation values: - Any operator O with GOG = −O has ⟨O⟩ = 0 at all times.
In particular Z−j is G-odd ⇒ ⟨Z−j⟩ = 0 ⇒ (a) is true. −Z−jX_{j + 1} is G-odd (one
Z) ⇒ ⟨Z−jX_{j + 1}⟩ = 0, and likewise ⟨X−jZ−{j + 1}⟩ = 0 ⇒ (c) holds (0 = 0).
- Z−jY−{j + 1} and Y−jZ−{j + 1} are each G-even, but there is no symmetry forcing
⟨Z−jY−{j + 1}⟩ = ⟨Y−kZ−{k + 1}⟩ for different string orderings ⇒ (b) is not guaranteed.
Answer: a, c

493

Answer 6: GPT-4.1, “Zero-shot” prompt

Let’s analyze each statement:
Hamiltonians: - Initial: H0 = −

∑100
j=1Xj − 0.9

∑99
j=1 ZjZj+1 (Transverse field Ising). -

Time-evolution: H(t) =
∑97

j=1 YjXj+1Xj+2Yj+3

Statement a: ⟨Z60⟩ = 0 of the initial Hamiltonian has ⟨Zj⟩ = 0 due to the symmetry. Time
evolution with a symmetric Hamiltonian preserves this. So, this statement IS true.
Statement b: ⟨Z39Y40⟩ = ⟨Y90Z91⟩
Statement c: ⟨Z39X40⟩ = ⟨X61Z62⟩ Similarly, unless there is special symmetry (e.g.,
reflection through the center of the chain), these correlators will NOT be equal. Sites ( 39,40 )
and ( 61,62 ) are not mirror images either, so this is also FALSE. Statement d: None of above
is true. Since (a) is true, this is FALSE.
Final Answer: a

494

Answer 7: GPT-4.1, “Hint” prompt

Let’s analyze the situation step-by-step using symmetries: 1. Initial Hamiltonian:

H = −
100∑
j=1

Xj − 0.9

99∑
j=1

ZjZj+1

The ground state of this Hamiltonian is unique and respects all the symmetries of the
Hamiltonian (e.g., parity symmetry). 2. Time-evolution Hamiltonian:

495
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H(t) =

97∑
j=1

YjXj+1Xj+2Yj+3

This Hamiltonian is uniform and translation-invariant by 1 site. Let’s check for parity
symmetries and other symmetries. a) ⟨Z60⟩ = 0
Let’s check if the evolved state is invariant under some symmetry that would force this
expectation value to vanish. - The time evolution Hamiltonian is even in Y and X but is odd
under Z → −Z (since it contains only Y and X operators). - The initial state is unique and
symmetric; under the global spin-flip Z → −Z, the initial state’s expectation of any single
Zj vanishes, i.e., ⟨Zj⟩ = 0. - The time-evolution Hamiltonian does not break this symmetry,
so for all t, ⟨Zj⟩ = 0.
Thus, statement a) is TRUE. b) ⟨Z39Y40⟩ = ⟨Y90Z91⟩ - The time-evolution Hamiltonian
is translation-invariant. - The initial state is translation-invariant. - However, after time
evolution, the system is still translation-invariant, so for any displacement k, ⟨ZjYj+1⟩ should
be the same for all valid j. - However, notice the indices: (39, 40) and (90, 91). Both are in
the bulk (well away from the boundaries), where translation invariance definitely holds.
So, statement b) is TRUE. c) ⟨Z39X40⟩ = ⟨X61Z62⟩ - Similarly, translation invariance
applies. - However, under certain reflection symmetries or if the operator is odd under any
symmetry not respected by the Hamiltonian, the mean value could vanish or be related
differently. - But since both correlators are related by exactly the same relative placement, and
the evolution/initial state are symmetric under translation, these expectation values should be
equal.
Thus, statement c) is TRUE. d) None of above is true.
At least one statement is true, so d) is FALSE. Final Answer a, b, c

496

Answer 8: GPT-4.1, “No comp” prompt

Let’s analyze each statement step-by-step:
Hamiltonians: - Ground state prepared with: H = −

∑100
j=1Xj − 0.9

∑99
j=1 ZjZj+1 - Time

evolution under: H(t) =
∑97

j=1 YjXj+1Xj+2Yj+3 - Time range: t = 0 to t = 100, so this is
a long time evolution, likely causing full thermalization or strong scrambling. (a) ⟨Z60⟩ = 0
? - The evolution Hamiltonian does not conserve Z60. - Quantum thermalization in such a
system would drive a single-site expectation like ⟨Z60⟩ to zero in the absence of conserved
quantities or symmetries. - The initial state is even under spin flip, the evolution is also even
under global Y flip, but there is no protection for Z-no field acts to bias it.
So (a) is likely true.
(b) ⟨Z39Y40⟩ = ⟨Y90Z91⟩ ? this is crucial). - The Hamiltonians are translationally invariant
in the bulk, but 39-40 and 90-91 are separated by 51 sites, so are not related by any symmetry.
- No argument for equality of those two-point functions by symmetry.
(b) is not necessarily true.
(c) ⟨Z39X40⟩ = ⟨X61Z62⟩ ?
Look at the operators: - Sites (39, 40) and (61, 62) are separated by 22 sites. Again, in an
open chain, these are not related by any symmetry. - No evident symmetry or conservation
relates these two correlators.
(c) is not necessarily true.
(d) None of the above is true?
Since (a) is true (generic local observable under thermalizing evolution approaches zero
expectation in the absence of conservation laws), (d) is not true.
Final Answer: a
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B Full Experiment Results498

Table 3: LLM accuracy scores (as percentages). The first table shows accuracy for the first 10 problem
sets, and the second table shows accuracy for the remaining 9 problem sets and the overall average
(AVG).
Model Prompt RGPow SqGrd QSpin CFTOp 3DBF GSDGen WrdH Ferm DynCon 3DEF

Claude 3.7
Sonnet

Hint 15.0 10.0 15.0 20.0 10.0 0.0 10.0 10.0 5.0 30.0
No Comp 10.0 5.0 10.0 10.0 15.0 0.0 20.0 25.0 5.0 20.0
Zeroshot 15.0 5.0 5.0 15.0 15.0 0.0 0.0 15.0 10.0 25.0

DeepSeek R1
Hint 25.0 5.0 0.0 0.0 5.0 0.0 55.0 0.0 0.0 5.0
No Comp 15.0 5.0 5.0 0.0 5.0 0.0 40.0 5.0 0.0 0.0
Zeroshot 10.0 0.0 10.0 5.0 10.0 0.0 30.0 5.0 0.0 5.0

Claude 3.7
Sonnet
(Thinking)

Hint 5.0 30.0 35.0 30.0 40.0 0.0 65.0 20.0 5.0 50.0
No Comp 10.0 25.0 30.0 20.0 45.0 0.0 25.0 10.0 0.0 30.0
Zeroshot 10.0 45.0 35.0 35.0 35.0 0.0 30.0 25.0 5.0 30.0

DeepSeek
Chat V3

Hint 10.0 0.0 30.0 5.0 15.0 0.0 15.0 15.0 15.0 10.0
No Comp 20.0 0.0 25.0 20.0 15.0 0.0 35.0 25.0 15.0 10.0
Zeroshot 10.0 0.0 30.0 15.0 15.0 0.0 10.0 25.0 20.0 20.0

GPT-4.1
Hint 10.0 10.0 15.0 25.0 30.0 5.0 75.0 25.0 10.0 20.0
No Comp 0.0 0.0 25.0 20.0 20.0 0.0 30.0 25.0 10.0 35.0
Zeroshot 0.0 0.0 10.0 10.0 30.0 0.0 55.0 30.0 10.0 25.0

O4-Mini-High
Hint 5.0 20.0 45.0 25.0 35.0 15.0 70.0 50.0 0.0 40.0
No Comp 25.0 10.0 45.0 20.0 45.0 20.0 50.0 35.0 5.0 50.0
Zeroshot 15.0 15.0 35.0 15.0 45.0 20.0 80.0 15.0 10.0 65.0

Gemini 2.5 Pro
(Preview)

Hint 10.0 50.0 65.0 25.0 50.0 5.0 100.0 30.0 25.0 65.0
No Comp 20.0 40.0 65.0 25.0 50.0 25.0 100.0 25.0 20.0 70.0
Zeroshot 10.0 35.0 70.0 25.0 40.0 15.0 95.0 25.0 30.0 50.0

Model Prompt DimLS GpEdg GSDeg Solub 2DEF 2DEFL OthGrd 2DBF InfRes AVG

Claude 3.7
Sonnet

Hint 15.0 10.0 25.0 70.0 10.0 5.0 55.0 5.0 25.0 18.2
No Comp 25.0 10.0 25.0 50.0 15.0 10.0 40.0 5.0 20.0 16.8
Zeroshot 25.0 0.0 20.0 55.0 15.0 10.0 50.0 0.0 25.0 16.1

DeepSeek R1
Hint 15.0 5.0 30.0 0.0 10.0 5.0 10.0 10.0 40.0 11.6
No Comp 0.0 0.0 20.0 0.0 5.0 0.0 15.0 5.0 70.0 10.0
Zeroshot 5.0 10.0 30.0 0.0 5.0 0.0 0.0 0.0 45.0 8.9

Claude 3.7
Sonnet
(Thinking)

Hint 45.0 5.0 15.0 60.0 40.0 15.0 35.0 15.0 50.0 29.5
No Comp 45.0 5.0 20.0 65.0 45.0 15.0 40.0 5.0 35.0 24.7
Zeroshot 50.0 5.0 30.0 65.0 35.0 15.0 40.0 15.0 35.0 28.4

DeepSeek
Chat V3

Hint 25.0 10.0 10.0 50.0 0.0 10.0 45.0 0.0 50.0 16.6
No Comp 15.0 5.0 15.0 40.0 15.0 0.0 25.0 5.0 35.0 16.8
Zeroshot 30.0 10.0 20.0 25.0 5.0 0.0 35.0 5.0 35.0 16.3

GPT-4.1
Hint 35.0 10.0 20.0 45.0 10.0 10.0 50.0 0.0 30.0 22.9
No Comp 30.0 5.0 10.0 40.0 10.0 10.0 50.0 5.0 30.0 18.7
Zeroshot 35.0 0.0 10.0 35.0 15.0 5.0 25.0 0.0 10.0 16.1

O4-Mini-High
Hint 55.0 10.0 45.0 45.0 45.0 45.0 65.0 30.0 35.0 35.8
No Comp 40.0 5.0 25.0 40.0 35.0 40.0 75.0 35.0 15.0 32.4
Zeroshot 50.0 10.0 15.0 40.0 45.0 40.0 60.0 65.0 30.0 35.3

Gemini 2.5 Pro
(Preview)

Hint 40.0 10.0 25.0 75.0 65.0 55.0 30.0 30.0 85.0 44.2
No Comp 55.0 15.0 30.0 80.0 60.0 40.0 35.0 30.0 85.0 45.8
Zeroshot 55.0 15.0 40.0 70.0 65.0 55.0 30.0 35.0 85.0 44.5
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Table 4: LLM performance scores across problem sets (H: Hint, N: No Comp, Z: Zeroshot). Table (a)
shows results for the first 10 problem sets, and Table (b) shows results for the remaining 9 problem
sets and the overall average score for each model configuration.
Model Prompt RGPow SqGrd QSpin CFTOp 3DBF GSDGen WrdH Ferm DynCon 3DEF

Claude 3.7
Sonnet

Hint 512.8 349.1 468.8 343.6 392.3 354.3 768.6 471.1 454.9 447.9
No Comp 469.6 403.3 474.3 401.3 445.7 398.5 724.9 507.7 530.0 485.2
Zeroshot 400.7 382.7 462.5 341.8 405.9 376.0 718.5 459.9 510.3 469.6

DeepSeek R1
Hint 7748.4 6085.5 7632.0 6711.2 11 371.5 12 606.7 10 490.3 9499.3 8516.8 9784.7
No Comp 6183.9 3830.3 8215.8 7438.9 10 062.0 10 215.3 10 626.1 9688.8 9623.3 9504.5
Zeroshot 7317.8 3968.2 6483.7 7647.8 11 879.9 12 193.4 10 163.2 9927.0 8581.3 9954.6

Claude 3.7
Sonnet
(Thinking)

Hint 17 735.1 15 298.6 18 616.3 18 987.8 19 144.3 20 767.3 20 272.2 21 516.2 13 818.2 19 036.2
No Comp 16 001.6 15 081.4 17 857.8 17 108.1 20 267.2 20 318.4 22 182.9 20 201.1 15 469.8 18 977.4
Zeroshot 15 936.0 17 851.0 18 357.8 15 954.6 21 768.8 20 952.5 20 672.1 18 951.2 14 550.9 15 786.8

DeepSeek
Chat V3

Hint 665.1 475.6 623.8 382.8 1064.0 665.0 1274.8 717.8 1048.8 1144.8
No Comp 623.1 475.8 562.2 407.7 930.8 756.7 1325.4 668.3 1008.4 1437.7
Zeroshot 627.5 670.2 716.3 411.3 850.1 604.2 1291.4 742.2 823.2 1489.7

GPT-4.1
Hint 633.6 678.4 671.2 480.4 869.6 1091.4 1300.4 715.6 709.1 1112.2
No Comp 674.9 733.0 725.9 587.4 1058.3 1024.2 1188.9 839.8 913.5 1278.7
Zeroshot 516.8 577.8 541.9 466.5 878.4 914.3 1234.8 684.2 678.1 1044.8

O4-Mini-High
Hint 5345.0 6086.5 3813.3 1545.5 13 739.4 10 854.6 2566.3 8714.3 4469.3 8173.7
No Comp 4575.9 3702.1 3336.9 1624.8 15 863.4 9539.9 2130.9 8756.7 4530.0 8640.5
Zeroshot 6536.9 5555.7 4028.6 2661.5 13 835.6 13 012.4 3477.8 8909.5 5576.7 11 134.5

Gemini 2.5 Pro
(Preview)

Hint 20 051.2 21 261.7 22 041.2 19 477.1 26 954.0 26 402.8 15 640.6 26 444.4 22 526.0 21 781.8
No Comp 17 567.4 18 813.4 21 876.5 17 009.9 26 479.1 24 328.0 16 612.9 23 438.2 22 199.9 22 420.3
Zeroshot 20 182.7 20 409.2 20 523.5 19 394.4 26 385.5 26 236.2 16 700.3 23 850.2 21 939.2 21 351.4

Model Prompt DimLS GpEdg GSDeg Solub 2DEF 2DEFL OthGrd 2DBF InfRes Avg

Claude 3.7
Sonnet

Hint 528.8 435.2 404.1 334.6 374.5 368.1 351.8 404.5 340.9 426.6
No Comp 617.8 462.3 397.9 392.2 427.1 422.4 422.5 403.8 357.7 460.2
Zeroshot 509.7 426.3 351.1 316.9 400.8 375.9 363.9 382.3 322.7 419.9

DeepSeek R1
Hint 6586.6 5079.4 11 792.4 2220.4 8191.7 10 516.3 3230.9 10 219.9 10 018.2 8331.7
No Comp 5322.9 5178.9 10 077.8 2745.5 7489.6 9865.0 2512.0 10 132.3 6919.4 7664.8
Zeroshot 5014.1 5365.7 11 397.6 2220.3 7621.5 10 446.0 3458.6 11 323.9 8649.0 8084.9

Claude 3.7
Sonnet
(Thinking)

Hint 14 052.6 17 293.1 29 709.8 8725.1 16 925.4 25 224.0 12 846.5 19 499.4 16 712.8 18 220.0
No Comp 14 565.5 19 226.3 22 652.3 11 181.5 17 803.3 24 001.0 13 721.2 18 717.2 14 371.0 17 879.2
Zeroshot 11 997.8 17 201.9 26 542.0 10 072.3 16 644.4 23 130.3 12 099.9 20 960.1 14 012.4 17 549.6

DeepSeek
Chat V3

Hint 1140.4 482.6 928.0 369.7 975.3 832.9 625.2 866.8 863.9 797.2
No Comp 955.9 433.8 1094.7 337.0 714.1 744.6 541.3 827.2 770.2 769.2
Zeroshot 987.7 456.4 729.3 292.7 839.4 831.5 597.1 839.3 424.4 748.6

GPT-4.1
Hint 1340.6 467.9 1269.8 262.1 692.8 941.3 548.5 677.0 348.3 779.5
No Comp 1378.8 646.7 880.8 305.6 831.0 1144.4 594.1 833.7 438.7 846.2
Zeroshot 1209.9 482.3 686.0 193.0 643.8 922.7 432.8 752.0 352.8 695.4

O4-Mini-High
Hint 3911.7 3958.7 9079.1 1754.2 7551.6 14 260.4 4648.6 12 895.1 9460.3 6990.9
No Comp 3673.2 3792.0 6693.0 2427.8 6766.7 12 709.1 4341.5 9266.6 9333.4 6405.5
Zeroshot 4134.4 5193.5 8080.3 1912.1 8318.4 13 527.0 6437.0 12 987.5 16 460.9 7988.4

Gemini 2.5 Pro
(Preview)

Hint 12 844.7 18 129.4 24 595.4 8205.2 22 265.6 24 617.9 18 649.2 28 798.5 15 979.4 20 877.1
No Comp 12 147.8 17 457.0 24 887.4 8073.3 21 379.0 23 503.0 19 128.6 30 710.4 17 622.1 20 297.6
Zeroshot 13 888.2 18 554.4 25 820.9 8387.2 22 079.7 24 866.8 18 291.4 29 737.3 18 759.5 20 913.5
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