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ABSTRACT

Multimodal large language models (MLLMs) have made rapid progress in recent
years, yet continue to struggle with low-level visual perception—particularly the
ability to accurately describe the geometric details of an image. This capability
is crucial for applications in areas such as robotics, medical image analysis, and
manufacturing. To address this challenge, we first introduce Geoperception, a
benchmark designed to evaluate an MLLM’s ability to accurately transcribe 2D
geometric information from an image. Using this benchmark, we demonstrate
the limitations of leading MLLMs, and then conduct a comprehensive empirical
study to explore strategies for improving their performance on geometric tasks.
Our findings highlight the benefits of certain model architectures, training tech-
niques, and data strategies, including the use of high-fidelity synthetic data and
multi-stage training with a data curriculum. Notably, we find that a data curricu-
lum enables models to learn challenging geometry understanding tasks which they
fail to learn from scratch. Leveraging these insights, we develop Euclid, a fam-
ily of models specifically optimized for strong low-level geometric perception.
Although purely trained on synthetic multimodal data, Euclid shows strong gen-
eralization ability to novel geometry shapes. For instance, Euclid outperforms the
best closed-source model, Gemini-1.5-Pro, by up to 54.52% on benchmark tasks.

1 INTRODUCTION

Multimodal large language models (MLLMs) have rapidly progressed in recent years, demonstrat-
ing remarkable potential in understanding and reasoning about the visual world through the powerful
capabilities of large language models (LLMs) (Liu et al., 2024c;a; Achiam et al., 2023; Team et al.,
2023; Hu et al., 2023; Tong et al., 2024a; Wang et al., 2024a). These models have showcased
strong performance in tasks such as visual question answering (VQA) (Goyal et al., 2017), image
captioning (Lin et al., 2014), and multimodal reasoning (Liu et al., 2023). As one recent exam-
ple, LLaVA-NeXT-34B (Liu et al., 2024b) achieves an impressive 83.7% accuracy on the VQAv2
benchmark (Goyal et al., 2017), a comprehensive benchmark on natural image question answering.

While MLLMs achieve impressive results on tasks like VQA, their performance relies on high-
level semantic extraction (Tong et al., 2024b); in contrast, they often fall short on low-level visual
perception—i.e., the ability to accurately describe the geometric details of an image, such as the
points, lines, angles, shapes, and spatial relationships among its constituent objects. This limitation
becomes especially apparent in tasks requiring precise descriptions, such as mathematical visual
problem solving (Zhang et al., 2024a; Lu et al., 2023), scientific visual understanding (Yue et al.,
2024; Fu et al., 2024a), abstract visual reasoning (Jiang et al., 2024; Ahrabian et al., 2024), and even
simple visual comprehension (Rahmanzadehgervi et al., 2024; Wang et al., 2024b). For example,
when interpreting a graph diagram, precise recognition of edges is essential for extracting reliable
information, and in geometry problem-solving, accurate identification of relationships between line
segments and points is fundamental (Fu et al., 2024a). Beyond abstract tasks, precise visual per-
ception is also vital in real-world applications, including spatial understanding for robotics, medical
image analysis for accurate diagnosis, quality control in manufacturing to detect subtle defects,
autonomous driving systems that rely on exact object localization or distance estimation, and aug-
mented reality applications that demand precise overlay of virtual objects onto the real world.
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In this paper, we aim to study the challenges of low-level visual perception in MLLMs, take steps
to understand the root cause of their performance, and improve the models’ capabilities in this area.
We begin by developing a benchmark dataset specifically designed to evaluate precise geometric
perception, which we call Geoperception. As a focused test bed, this benchmark targets 2D geometry
tasks. Using this benchmark, we demonstrate the limitations of leading closed and open MLLMs,
followed by a comprehensive empirical study to explore strategies for significantly improving their
performance on geometric perception tasks. Our findings show the benefits of key factors such as
model architecture, training techniques, and data strategies, including the use of synthetic data and
multi-stage training with a data curriculum. Notably, we find that a data curriculum enables models
to learn challenging low-level geometry understanding tasks, which they fail to learn from scratch,
even when trained on a very large dataset. Using these lessons learned, we then train a family of
models—using a carefully designed curriculum of synthetic data—that are specifically optimized
for strong low-level geometric perception, which we call Euclid. We evaluate this family of models,
and show that it excels on a variety of low-level geometric perception tasks.

Our main technical contributions are as follows:

• Geoperception Benchmark: We introduce a new benchmark dataset, Geoperception, derived
from the Geometry-3K corpus (Lu et al., 2021), specifically designed to evaluate MLLMs’ ability
to accurately perceive surface-level geometric information without requiring complex inference
or reasoning. Our benchmark reveals significant shortcomings in precise geometric perception
across all leading visual-language models, both closed and open-source.

• Empirical Study and Synthetic Data Engine: To investigate the root cause of this performance,
we conduct a detailed empirical exploration of MLLM architecture and training strategies. To aid
in our investigation, we develop a synthetic data engine capable of generating high-fidelity visual
representations of fundamental geometric elements. This study leads to key insights, such as the
importance of certain architectural choices and the use of curriculum-based, multi-stage training
with progressively more complex visual descriptions for improving low-level visual perception.

• Euclid Model: Leveraging the insights from our exploration and our synthetic data engine, we
train Euclid, a series of multimodal LLMs tailored for high-quality geometric perception. Al-
though purely trained on synthetic multimodal data and simple geometry shapes, Euclid achieves
strong performance on the Geoperception benchmark, for instance, outperforming the best closed-
source model, Gemini-1.5-Pro, by up to 54.52% on certain benchmark tasks.

2 BACKGROUND AND RELATED WORK

We provide an overview of prior efforts that assess and improve low-level perception and geometric
reasoning in MLLMs, and highlight our contributions in data synthesis, evaluation, and training.

Vision-Language MLLMs. While recent iterations of LLMs feature a standardized model archi-
tecture and pretraining recipe, MLLMs still often differ in design choices for infusing visual inputs.
One popular design is to align continuous visual features with the embedding space of a backbone
LLM (Liu et al., 2024a;b; Dubey et al., 2024; McKinzie et al., 2024; Tong et al., 2024a; Beyer et al.,
2024; AI, 2023; Wang et al., 2024a); another approach involves tokenizing visual inputs to be trained
jointly with language tokens (Team et al., 2023; Team, 2024). These modules are often infused with
a decoder-only LLM, but others have explored encoder-decoder architectures to integrate a more
varied collection of modalities (Alayrac et al., 2022; Mizrahi et al., 2024; Ormazabal et al., 2024;
Bachmann et al., 2024). Our study focuses on decoder MLLMs with a continuous visual encoder,
and we carry out an empirical study to explore the effect of synthetic dataset mixture, training recipe,
and encoder design (Liu et al., 2022; Radford et al., 2021; Zhai et al., 2023; Oquab et al., 2023).

Geometry-Oriented MLLMs. At the core of these choices is the hardness in designing a module
adept in general visual reasoning (McKinzie et al., 2024; Tong et al., 2024a). In this work, we
explore the optimal design of MLLMs specialized in low-level visual perception, a crucial aspect for
(among other applications) multimodal mathematical understanding (Lu et al., 2023; Zhang et al.,
2024a). This paper supplements prior efforts in improving mathematical reasoning (Gao et al., 2023;
Zhang et al., 2024b; Zhuang et al., 2024; Li et al., 2024; Peng et al., 2024; Shi et al., 2024b) with a
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detailed study on the effect of dataset mixture, curriculum, and visual encoder, to reach a recipe that
elicits strong performance on geometric tasks (Kazemi et al., 2023) that require low-level perception.

Evaluating Low-Level Perception. Many benchmarks (Rahmanzadehgervi et al., 2024) have re-
ported that frontier-class MLLMs struggle with visual perception tasks, which are prerequisites for
applications that emphasize low-level geometric perception (Chen et al., 2024; Fu et al., 2024b),
including mathematical (Yue et al., 2024; Lu et al., 2023; Zhang et al., 2024a; Jiang et al., 2024)
and spatial reasoning (Chen et al., 2024). These findings collectively identify that MLLMs exhibit
a language prior (Lin et al., 2023)—a preference of textual inputs over visual inputs—leading to
a performance gap between modalities (Wang et al., 2024b; Zhang et al., 2024a; Fu et al., 2024a).
Meanwhile, there lacks a high-quality benchmark that evaluates low-level geometric perception in
MLLMs, and the Geoperception benchmark represents a first effort to narrow this gap.

Improving Low-Level Visual Perception. Many prior works study data-driven approaches to
improve low-level perception skills. For example, Gao et al. (2023); Li et al. (2024); Zhuang et al.
(2024) employ a standardized supervised finetuning recipe, and optionally adjust the training data
mixture. This type of training data is often synthesized from text-only math problems (Lu et al.,
2021; Trinh et al., 2024) or via rule-based systems (Kazemi et al., 2023). In parallel, Vishniakov
et al. (2023); Shi et al. (2024a); Tong et al. (2024b) have explored the design space of visual encoders
for general-purpose vision-language reasoning. We identify best practices over the union of these
design spaces, and then train small MLLMs with strong performance in low-level perception tasks.

Lastly, several works (Schick et al., 2024; Surı́s et al., 2023; Hu et al., 2024) have opted to augment
an MLLM with external APIs that process low-level features with specialized vision modules, such
as object detection (Redmon et al., 2016), segmentation (Kirillov et al., 2023), and depth estima-
tion (Yang et al., 2024b). While these agentic frameworks (Wu et al., 2023) present a promising
alternative that directly addresses the shortcomings of visual encoders, they are limited by their
scalability to novel use cases, and may be insufficient for precise tool routing that requires low-level
perception as a primer (Picard et al., 2023; Wu et al., 2024; Buehler, 2024).

3 GEOPERCEPTION BENCHMARK

Recently, there has been a growing number of multimodal benchmarks across diverse domains be-
yond natural image understanding, including mathematical reasoning (Zhang et al., 2024a; Lu et al.,
2023) and abstract visual reasoning (Jiang et al., 2024; Chia et al., 2024). Many of these prior works
have realized the importance of accurate low-level visual perception. Specifically, Marvel (Jiang
et al., 2024) introduces perception questions for various abstract reasoning patterns, and finds that
the main bottleneck of MLLMs’ performance on abstract visual reasoning is that they fail to accu-
rately transcribe visual information into concepts; Mathverse (Zhang et al., 2024a) and IsoBench (Fu
et al., 2024a) both test MLLMs on equivalent question represented by language and visual modal-
ities, respectively. Both works find that language-only input always outperforms vision-language
input, and that the vision component of MLLMs always fails to utilize low-level visual features.
VDLM (Wang et al., 2024b) transcribes raster images into vector graphics and uses LLMs to reason
over the SVG code. They find that although SVG code is not straightforward to understand, using
LLMs to reason over SVG is consistently more effective than directly using MLLMs on original
raster images. Blind-test (Rahmanzadehgervi et al., 2024) and BLINK (Fu et al., 2024b) also share
similar findings with the works above.

A Benchmark for Geometric Perception. Although such shortcomings of MLLMs are commonly
recognized, there is a lack of comprehensive benchmark that purely focuses on these abilities of
MLLMs. Our goal is to construct a benchmark focusing solely on the perception ability of MLLMs,
which is also representative enough of real-world applications. When humans perceive and memo-
rize visual information, it is well-recognized that this procedure relies crucially on searching for the
closest and simplest corresponding geometric shapes (Sablé-Meyer et al., 2022). We posit that geo-
metric perception is a fundamental and broadly representative low-level visual perception ability in
many applications. Hence, we select geometry understanding as our domain of dataset construction.

Benchmark Tasks. Over two thousand years ago, Euclid introduced five axioms that underpin all
further geometric reasoning. These axioms involve establishing and extending lines using points
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Q: What is the point lying o-
     n line YB?
A: D, G

PointLiesOnLine

Q: What is the point lying o-
     n circle with center G?
A: L, H, F

PointLiesOnCircle

Q: Is angle BAC acute or obt-
     use?
A: acute

AngleClassification

Q: Which line is longer, QS -
     or SP?
A: QS

LineComparison

Figure 1: Four examples from our Geoperception dataset. The questions are sourced from the
Geometry-3K corpus (Lu et al., 2021), which compiles problems from two widely-used high school
textbooks. We perform filtering, validation, and generate question-and-answer text for each image.

(Axioms 1 and 2), constructing circles from a point and a radius (Axiom 3), and defining perpen-
dicularity (Axiom 4) and parallelism (Axiom 5). Additionally, Euclid provided common notions
regarding the properties of equality. To capture these aspects, we define five tasks in our Geoper-
ception dataset: PointLiesOnLine, PointLiesOnCircle, Parallel, Perpendicular
and Equal, and aditionally define AngleClassification and LengthComparison tasks
to assess the model’s understanding of angle and length measurements, resulting in a total of
seven tasks. In geometric diagrams, perpendicularity, parallelism, and equality are often indi-
cated by annotation symbols. Thus, we classify Parallel, Perpendicular, and Equal as
annotated geometry understanding. Meanwhile, PointLiesOnLine, PointLiesOnCircle,
AngleClassification, and LengthComparison fall under primitive geometry shape un-
derstanding, which includes both logical (PointLiesOnLine, PointLiesOnCircle) and nu-
merical (AngleClassification, LengthComparison) tasks.

Table 1: Statistics of the seven tasks in our Geop-
erception dataset, including the number of ques-
tions and images.

Predicate # Q # I

PointLiesOnLine 1901 924
PointLiesOnCircle 359 322

Parallel 106 101
Perpendicular 1266 456

Equals 4436 1202
AngleClassification 2193 1389
LengthComparison 1394 1394

Data Filtering. Geoperception is sourced from
the Geometry-3K (Lu et al., 2021) corpus,
which offers precise logical forms for geo-
metric diagrams, compiled from popular high-
school textbooks. However, certain points in
these logical forms are absent in the corre-
sponding diagrams. To resolve this, we use
GPT-4o-mini MLLM to confirm the presence
of all points listed in the logical forms. This
process filters the 3,002 diagrams to retain
1,584, where at least one logical form fully rep-
resents its points in the diagram. A random in-
spection of 100 annotations reveals only two er-
rors, indicating high annotation accuracy.

Converting Logical Forms Into Questions. We convert logical forms into question-and-answer
pairs for each of the seven tasks in Geoperception. In the Equals task, for example, we directly
convert the logical form (e.g., Equals(LengthOf(Line(Q, T)), 86)) into a question-
answer pair (e.g., Q: What is the length of line QT as annotated? A: 86).
For PointLiesOnLine, two points on the line are chosen to form the question, with the remain-
ing points on the line as the answer. Similarly, for PointLiesOnCircle, we ask which points lie
on the circle, using its center as the basis for the question. For Parallel and Perpendicular,
we represent each line by two points and query which other lines are parallel or perpendicular to it.
In AngleClassification, we ensure the queried angle is in the range of [10, 80] ∪ [100, 170]
degrees to avoid ambiguity. For LengthComparison, we ensure that the shorter line is less than
70% of the length of the longer line. Since multiple equivalent questions can be generated for a
single logical form (e.g., a line containing five points generates 5P2 equivalent questions), we ran-
domly select one to avoid redundancy. Table 5 summarizes the question statistics for each task, as
well as the number of images involved. Four examples from Geoperception are illustrated in Fig. 1

Evaluation Details. We evaluate seven leading MLLMs, both open source and closed source. The
open source models include Molmo-7B-D (Deitke et al., 2024), Qwen2-VL-7B (Wang et al., 2024a),
Llama-3.2-11B (Dubey et al., 2024), and Pixtral-12B (AI, 2023). The closed-source models include
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GPT-4o-mini (Achiam et al., 2023), GPT-4o (Achiam et al., 2023), Claude-3.5-Sonnet (Anthropic,
2024), Gemini-1.5-flash (Team et al., 2023), and Gemini-1.5-pro (Team et al., 2023). Additionally,
GPT-4o-mini without image input is used for generating the random baseline, employing the same
textual instructions. To prevent stretching, all images are padded to square dimensions before being
fed into the models. During evaluation of a given question by an MLLM, let G denote the ground
truth set of answers, and let P denote the predicted set of answers; then the evaluation score is
defined as

Evaluation score =


|P |
|G|

if P ⊆ G,

0 otherwise.
(1)

Current MLLMs struggle to perceive low-level geometry annotations and relationships. De-
spite the simplicity of Geoperception for humans, it remains a considerable challenge for even
the most advanced commercial MLLMs. Notably, all models fall short of achieving 30% accu-
racy on the PointLiesOnLine task and do not outperform the text-only GPT-4o mini model in
AngleClassification task. Closed source models generally outperform open source ones,
with Gemini-1.5-pro attaining the highest overall score of 57.24%, followed by gemini-1.5-flash at
55.03%. Among open source models, Pixtral-12B achieves the best performance with an overall
score of 41.84%. We show a comparison of all models on Geoperception in Table 2.

Certain models, such as GPT-4o-mini (Achiam et al., 2023) and Molmo-7B-D (Deitke et al., 2024),
frequently either enumerate all potential components (e.g., all points in a diagram instead of the one
on the lines) or every potential answer, leading to their poor accuracy scores.

Table 2: Performance (average evaluation score) of different models on Geoperception benchmark
tasks. POL: PointLiesOnLine, POC: PointLiesOnCircle, ALC: AngleClassification, LHC: LineCom-
parison, PEP: Perpendicular, PRA: Parallel, EQL: Equals. As the Random Baseline method, we use
GPT-4o-mini, given the same textual instruction but without an image.

Logical Numerical Annotations

Model POL POC ALC LHC PEP PRA EQL Overall

Random Baseline 0.43 2.63 59.92 51.36 0.25 0.00 0.02 16.37

Open Source
Molmo-7B-D (Deitke et al., 2024) 1.75 35.73 56.77 16.79 1.10 0.00 0.81 16.14
Llama-3.2-11B (Dubey et al., 2024) 16.22 37.12 59.46 52.08 8.64 22.41 49.86 35.11
Qwen2-VL-7B (Wang et al., 2024a) 21.89 41.60 46.60 63.27 26.86 30.66 54.37 40.75
Pixtral-12B (AI, 2023) 22.85 53.21 47.33 51.43 22.53 37.11 58.45 41.84

Closed Source
GPT-4o-mini (Achiam et al., 2023) 1.65 61.19 48.84 69.51 10.04 4.25 44.75 34.32
GPT-4o (Achiam et al., 2023) 9.81 71.49 55.63 74.39 25.36 60.77 44.71 48.88
Claude 3.5 Sonnet (Anthropic, 2024) 25.44 68.34 42.95 70.73 22.00 64.39 66.36 51.46
Gemini-1.5-Flash (Team et al., 2023) 29.30 67.75 49.89 76.69 30.92 64.39 66.31 55.03
Gemini-1.5-Pro (Team et al., 2023) 24.42 69.80 57.96 79.05 39.60 77.59 52.27 57.24

4 EMPIRICAL STUDY ON MLLM DESIGN SPACE

We hypothesize that the lack of high-fidelity geometric visual perception data is one of the major
reasons for the inability of today’s MLLMs to effectively perceive basic geometric annotations and
relationships. Although large-scale web-crawled image-text pairs cover a variety of domains, includ-
ing geometry, the textual descriptions often lack the necessary specificity and depth. To address this
issue, current studies in this domain (Gao et al., 2023; Shi et al., 2024b; Zhang et al., 2024b) typi-
cally construct a geometry or mathematical domain dataset and apply the same training strategy used
for general-purpose MLLMs. For example, Math-LLaVA (Shi et al., 2024b) and multi-math (Peng
et al., 2024) rely on GPT-4v or GPT-4o’s vision ability to generate most of the question and answer
pairs and image captions, which is essentially a form of model distillation. However, as evidenced
by Table 2, GPT-4o and Gemini-1.5-Pro often struggle to answer certain types of questions, limiting
the performance potential of resulting models. Furthermore, while works such as G-LLaVA (Gao
et al., 2023), MAVIS (Zhang et al., 2024b), and Math-PUMA (Zhuang et al., 2024) utilize human
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crafted logical forms or synthetic multimodal data to ensure the reliability of textual annotations,
they often conflate low-level perception with problem-solving, and train models to directly solve
multimodal geometry problems, without verifying if the model’s low-level perception abilities are
sufficient. As evidence, the best models in MAVIS (Zhang et al., 2024b) and Math-PUMA (Zhuang
et al., 2024) evaluation results on Mathverse (Zhang et al., 2024a) still have a substantial gap of
26.8% and 28.7% between text-dominant versions and vision-only versions of problems1, respec-
tively. Furthermore, attempts to train MLLMs on low-level visual perception tasks (Wang et al.,
2024b; Rahmanzadehgervi et al., 2024) have also struggled to achieve satisfactory in-domain per-
formance or generalize effectively. In this section, we aim to address these challenges.

Shape 2Shape 1 Shape 3

F B N = triangle F B N;
  G = midpoint B N

  Connect(B,N), Connect(N,F)
  Connect(B,F), Connect(G,F)

  Corr(B), Corr(N)…

S O L = triangle S O L;
  N = midpoint O L;
  K = midpoint S L

  Connect(O,S), Connect(O,L)
  Connect(S,L), Connect(N,K)

  Corr(O), Corr(S)…

C Y L = triangle C Y L;
  Z = midpoint C L;
  V = midpoint C Y;
  P = intersection_ll V L Z Y

  Connect(C,Y), Connect(L,Y)
  Connect(C,L), Connect(Y,L)
  Connect(Z,Y)

  Corr(C), Corr(L)…

Figure 2: Three synthetic geometry shapes used for training,
and their corresponding high-fidelity visual descriptions, which in-
clude the relationships between each geometry component, the ex-
istence of line connections, and numerical attributes such as point
coordinates. Our dataset generation engine generates question and
answer pairs based on these visual descriptions. The specific pro-
cess of question answer pair generation is detailed in Appendix C.

In recent work, the design space
for MLLMs has been closely ex-
plored (McKinzie et al., 2024; Tong
et al., 2024a; Shi et al., 2024a). How-
ever, most studies rely on general
multimodal benchmarks to evaluate
design efficacy, which often do not
effectively assess visual understand-
ing capabilities (Tong et al., 2024a),
thereby limiting their utility in evalu-
ating precise visual perception. Ad-
ditionally, our findings indicate that,
under the current multimodal instruc-
tion tuning paradigm, MLLMs ex-
hibit significant challenges in per-
forming zero-shot basic visual per-
ception tasks. Therefore, we revisit
the design space of MLLMs and em-
ploy task-specific tuning to investi-
gate the potential of diverse multi-
modal designs.

Table 3: Summary of Visual Encoders

Model Params Objective

ConvNeXt Large@512 200M CLIP
ConvNeXt XXLarge@512 847M CLIP
ViT-g/14@224 1.01B CLIP
ViT-H/14@224 632M CLIP
ViT-L/14@336 304M CLIP
ViT-L/14@224 303M CLIP
SigLIP@384 (ViT) 428M CLIP-like
SigLIP@224 (ViT) 428M CLIP-like
DINOv2 Giant@224 (ViT) 1.14B Self-Sup
DINOv2 Large@224 (ViT) 304M Self-Sup

Geometry Shape Generation Engine. Unlike
natural images, geometric images can be gen-
erated programmatically, enabling the creation
of nearly infinite numerical instances for each
conceptual shape. Our geometry shape gener-
ation engine builds on Alphageometry (Trinh
et al., 2024) due to the superior performance
of the language model trained on the dataset
generated by this engine. Specifically, we in-
troduce three visualization enhancements: (1)
an additional input to control the connections
between points, (2) increased randomness in
deriving numerical instances from conceptual
shapes, and (3) adjustments to the canvas range
to ensure visibility of all geometry components.

Exploration Overview. We study the choice of visual encoder architecture, the choice between tun-
ing or freezing the encoder, and different data composition/training strategies. For visual encoders,
we investigate two families of architectures: Vision Transformer (ViT) (Dosovitskiy, 2020) and
ConvNeXT (Liu et al., 2022); as well as two visual representation learning objectives: language-
supervised learning (Radford et al., 2021) and self-supervised learning (Oquab et al., 2023). Ad-
ditionally, we examine the impact of varying encoder sizes and the number of visual tokens. The
list of visual encoders and their parameters are shown in Table 3. For LLMs, we use Qwen-2-1.5B-
instruct (Yang et al., 2024a). For the multimodal connection, we use a two layer MLP as multimodal
encoder following LLaVA-1.5 (Liu et al., 2024a). We leave exploring visual connector choices and
scaling the size of LLMs as future work.

1In Mathverse, text-dominant is the version where the problem is mainly represented by text, while in the
vision-only version an equivalent problem is represented purely by image.
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Figure 3: Training loss curve comparing ten visual encoders, with a fixed multimodal encoder and
LLM. Training losses are window-smoothed using a window size of 10 for better visibility. Losses
are log-scaled to demonstrate their difference in smaller values.
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Figure 4: Training loss curve comparing freezing versus unfreezing the visual encoder. This is
shown on the four best-performing architectures. Loss curves are window-smoothed with a window
size of 10 for better visibility. Losses are log-scaled to demonstrate their difference in smaller values.

4.1 RESULTS OF EMPIRICAL STUDY AND LESSONS

We use learning efficacy as the measure for evaluating visual encoders. The task chosen
for this exploration is PointLiesOnLine, the most fundamental task in Geoperception. In
PointLiesOnLine questions, each line must have at least three points to form a valid query.
To support this evaluation, we designed three basic geometric conceptual shapes of increasing com-
plexity, containing 1, 2, and 4 valid lines respectively. These shapes are illustrated in Fig. 2. We
separately train our models on three shapes, each shape for 500 steps with a batch size of 64. In
addition, we mix together data of the three shapes and train our models on 1,500 steps, as our fourth
experiment. We now present the three main lessons that we determined via our empirical study.

Lesson 1: CNN architecture performs better than ViT. We actively tune all of the parameters
in the MLLM, including the visual encoder, and show the training loss curve of ten different vi-
sual encoders in Fig. 3. We find that ConvNeXt-XXLarge consistently learns the geometric con-
cept the fastest among all of the visual encoders. Moreover, although with only 200M parameters,
ConvNeXT-Large shows competitive learning performance with the vision transformers which are
3-5 times larger. Self-supervised learning (SSL) visual encoders, DINO-v2, struggles to learn the ge-
ometry concept; we hypothesis this is due to the weak vision-language representation in these mod-
els. Surprisingly, although the SigLIP-family is widely-recognized as a better visual encoder (Tong
et al., 2024a), we find that their performance in learning basic visual geometry attributes is limited.

In addition, image resolution does not make a significant role on such potential. Specifically, CLIP-
L@336 and SigLIP@384, higher-resolution visual encoders, learn the task consistently slower than
CLIP-L@224 and SigLIP@224, respectively. Moving forward, our analysis will focus on four top-
performing visual encoders: ConvNeXt-Large, ConvNeXt-XXLarge, ViT-g and ViT-H.
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Figure 6: Comparison between four training strategies with the objective of effectively learning a
task on a complex shape. For all curves we show the validation loss on the same held-out dataset
(comprising samples of shape 3).

Lesson 2: Tuning the visual encoder is beneficial. We next study the effect of tuning versus freez-
ing the visual encoder. In Fig. 4, we show the loss curves of tuning and freezing visual encoders.
We find that tuning the visual encoder consistently helps the model learn low-level geometry rela-
tionships faster and better, in comparison with using a frozen encoder.

Lesson 3: Curriculum learning unleashes full potential. Finally, we study training data compo-
sition. In Fig. 3, we observe that all models fail to converge on Shape 3 (the most challenging shape
in our experimental setup with four valid query lines). However, when using a mixed training set of
all three shapes, some visual encoders achieve convergence, despite using the same amount of data
for Shape 3. We hypothesize that including simpler shapes (Shape 1 and Shape 2) aids the model
in learning more complex shapes (Shape 3). To test this hypothesis, we report the loss functions for
Shapes 1, 2, and 3 separately during the mixed training of ConvNeXt-XXLarge, in Fig. 5. We notice
a plateau in the loss curve for Shape 3 until the model has trained on approximately 20K samples.
During this period, the losses for Shape 1 and Shape 2 continue to decrease. This suggests that learn-
ing easier shapes can significantly help the model tackle more challenging shapes, comparing with
directly learning the challenging ones, this finding align with the principles of curriculum learning.
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Figure 5: The breakdown of training loss
curve of shape 1,2 and 3 during the mixed
training of three shapes.

While mixed training enables effective spontaneous
curriculum learning, we investigate whether a struc-
tured curriculum can further enhance model effi-
ciency on challenging shapes. To this end, we train
the model sequentially from simple to more complex
shapes and compare the loss on a separate valida-
tion set of Shape 3. To avoid forgetting, we apply
smoothed data at each stage: 80% from the current
shape and 10% from each of the others. We refer to
this as a staged curriculum strategy. The results are
shown in Fig. 6. We find that all of the models fail
to converge when trained purely on Shape 3, In con-
trast, the staged curriculum strategy, shown by the
yellow curve, consistently reaches a good validation
loss on Shape 3 after training. To further optimize its
efficiency, we reduce the training data for the two simpler shapes to 40% of their original volume.
This approach, represented by the orange line in Fig. 6, proves more efficient than mixed training.
For even greater efficiency, we propose adapting the dataset on-the-fly based on monitoring the loss
during training on generated images, as described in Section 5.

5 EUCLID

In this section, we take all of the lessons we learned in the previous sections and train Euclid, a
family of MLLMs specifically designed for strong low-level geometric perception.

On-the-fly progressive training. Drawing inspiration from the effectiveness of curriculum learning,
instead of constructing a static training data, we introduce an adaptive dataset generation method-
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ology with our dataset engine, where we monitor the model’s performance and dynamically adjust
the distribution of training data (i.e., the curriculum stage) based on this performance. Specifically,
for a certain task, we create N stages of training dataset shapes with progressively increasing geo-
metric complexity. During training, the model starts by training on the first (simplest) dataset stage.
The model is evaluated when it finishes a training round, using a held-out validation set from the
same distribution as the current dataset stage. Upon evaluation, if the model achieves an accuracy
exceeding a predefined threshold θ, the framework advances the task to the next stage. Formally, the
update rule for advancing stages is given by:

if accuracys > θ ⇒ c← c+ 1. (2)

The model is trained on a total of M rounds and K steps within each round. Similar to Section 4,
we smooth our dataset distribution over all stages using an exponential attenuation function:

ratios = exp (−α · |stages − c|) , (3)

where α denotes the attenuation rate. Eq. (3) ensures that stages proximal to the current stage receive
higher sampling probabilities.

Specifications. For models, we select the best visual encoder architecture we found in our investi-
gation, ConvNeXt, including ConvNeXt-Large@512 and ConvNeXt-XXLarge@512, and keep the
same multimodal connector (2 layers MLP) and LLM (Qwen2-1.5B-instruct). For tasks, we focus on
four primitive tasks from the Geoperception benchmark which are easily scalable using our dataset
generation engine : PointLiesOnLine, PointLiesOnCircle, AngleClassification,
and LengthComparison. We both separately and jointly train our model on each of the tasks,
and test our resulting model on the corresponding tasks in Geoperception that the model is trained
on. The accuracy threshold for advancing training stage θ is set to 0.99. All models are trained on
N = 3 stages with manually curated geometry shapes and M = 6 rounds with K = 500 steps in
each round, and the batch size is 64 for each training step.

Table 4: Performance comparison between Euclid and the best leading open source and closed
source MLLMs on the four tasks: POL, POC, ALC, LHC. Note that Euclid is not trained on any of
the in-distribution data from the benchmark tasks below. We report the performance of both the
separately trained model and the jointly trained models.

Model POL POC ALC LHC Average

Pixtral-12B (AI, 2023) 22.85 53.21 47.33 51.43 43.71
Gemini-1.5-Pro (Team et al., 2023) 24.42 69.80 57.96 79.05 57.81

Euclid-ConvNeXt-Large@512 77.17 73.06 61.06 77.12 72.10
Euclid-all in one-ConvNeXt-Large@512 59.52 66.18 71.41 74.96 68.02
Euclid-ConvNeXt-XXLarge@512 78.94 67.94 61.51 78.19 71.65
Euclid-all in one-ConvNeXt-XXLarge@512 55.22 70.65 66.85 74.03 66.69

Question: What is the point 
lying on line TY?

Ground truth: W     Prediction: X

Figure 7: An error case
where Euclid fails to pre-
dict the correct point on
a line, potentially dis-
tracted by the annotation
“x”.

Evaluation results. The results are shown in Table 4. While Euclid
is trained on simple synthetic geometric shapes and uses only a 1.5B
language model, demonstrates superior performance on average across
four primitive tasks compared to existing leading MLLMs, exhibiting
strong generalization to real-world geometric shapes. Notably, in the
PointLiesOnLine task, which is particularly challenging for ex-
isting MLLMs, Euclid achieves up to 78.94% accuracy, nearly three
times the performance of Gemini-1.5-Pro. On LengthComparison
tasks, Euclid’s performance is slightly outclassed by Gemini-1.5-pro, on
other tasks, Euclid keeps higher or similar performance with the leading
MLLMs. Interestingly, when models are jointly trained on multiple tasks,
certain tasks, such as PointLiesOnLine, show slightly reduced perfor-
mance compared with only training on the given task, which contrasts with
the expected benefits of multi-task training (Liu et al., 2024a; Wei et al.,
2021). We hypothesize two main reasons for this phenomenon. First, in
general multimodal instruction tuning, datasets are often limited or insuffi-
cient, and training on multiple tasks can compensate for this by expanding

9
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the data volume. However, our dataset generation engine can produce infinite samples for exhaustive
task-specific training, thus diminishing the advantage of multi-task learning. Second, the decrease
in performance may be related to the limitations of our 1.5B language model. For example, many
PointLiesOnLine questions in Geoperception involve circles, which could lead the model to
confuse these with PointLiesOnCircle.

Error analysis. We take a deep look into Euclid’s prediction on Geoperception, we find that our
model’s performance is hindered when diagrams are heavily annotated. An example is shown
in Fig. 7, where a line is annotated by “x”, confusing the model from choosing the correct point.
Incorporating training data that distinguish different diagram annotation types could potentially help
the model with such scenarios.

6 CONCLUSION AND FUTURE WORK

In this work, we highlight the importance of accurate low-level visual perception in MLLMs. To
this end, we first introduce Geoperception, a large-scale multimodal benchmark focused exclusively
on geometry-domain visual perception. We evaluate leading MLLMs on Geoperception, find that
even top models such as Gemini-1.5-Pro struggle significantly it, although it is straightforward for
humans. We then conduct an empirical study to explore the design space of MLLM training and
architectures using the dataset generated by a geometric high-fidelity synthetic-data engine that we
develop. Our study indicate that convolutional neural network visual encoders outperform vision
transformers in our tasks; tuning the visual encoder generally enhances performance; and employ-
ing a curriculum-based training approach yields much more model potential than direct task training.
Based on insights from this study, we develop Euclid, a model trained purely on high-fidelity syn-
thetic generated data, which generalizes effectively to real-world geometric shape understanding
tasks, surpassing the leading MLLMs by a substantial margin.

Future work. Our work examines the potential of using synthetic multimodal data to improve
MLLM performance in low-level geometric perception tasks. However, there are still directions that
remain under-explored: (1) Using a more-diverse training dataset. Currently, the text portion of our
synthetic multimodal training data uses a restricted set of templates, and the model trained on such
templates could fail to generalize to other question types; it could therefore be beneficial to increase
the diversity of our instruction-following formats. (2) Automatic curriculum learning. Incorporating
a more diverse dataset, including varied geometric shapes and different domain dataset, introduces
challenges in defining the learning order. Rule based definition and manual curation may become
impractical, necessitating automated strategies like hard negative sampling to organize the curricu-
lum based on training loss or testing accuracy. This approach could streamline the process, reduce
human effort, provide more suitable and efficient curriculum learning orders. (3) Generalizing to
other task domains. In this work, our study is focused on data from 2D geometry, as it provides
a focused test bed of fundamental tasks. We believe the lessons we learn from this domain can
be effectively generalized to a broader set of downstream domains that benefit from high-quality
low-level visual perception.

REPRODUCIBILITY STATEMENT

In Section 3, we provide a comprehensive description of the procedure for generating the Geop-
erception benchmark. This includes employing GPT-4o-mini for dataset filtering and detailing the
conversion of logical forms into questions and answers. Evaluation prompts for MLLMs on different
types of Geoperception questions are presented in Appendix B. For model architecture exploration,
we specify the visual encoders and provide corresponding Hugging Face links in Table 3. Addition-
ally, we outline the LLMs and multimodal connector architectures used. For our Euclid model, we
include all geometry shape code used for training, along with demonstration diagrams and pseudo-
code for generating training questions and answers.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Kian Ahrabian, Zhivar Sourati, Kexuan Sun, Jiarui Zhang, Yifan Jiang, Fred Morstatter, and Jay
Pujara. The curious case of nonverbal abstract reasoning with multi-modal large language models.
arXiv preprint arXiv:2401.12117, 2024.

Mistral AI. Pixtral 12b. https://mistral.ai/news/pixtral-12b/, 2023. Accessed:
2024-09-27.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–
23736, 2022.

Anthropic. The claude 3 model family: Opus, Sonnet, Haiku, March 2024. URL https://
www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf.
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APPENDIX

A GEOPERCEPTION BENCHMARK DETAILS

In Table 5, we provide more details on the Geoperception benchmark, such as the number of
logic forms present before and after filtering, the number of questions, and the number of images.
AngleClassification and LineComparison are directly derived from points coordinates
without filtering.

Predicate # LF Before Filter # LF After Filter # Q # I

PointLiesOnLine 6988 2567 1901 924
PointLiesOnCircle 1966 1240 359 322

Parallel 222 123 106 101
Perpendicular 1111 680 1266 456

Equals 6434 4123 4436 1202

Table 5: Statistics of the five predicates in our Geoperception dataset. Including number of logic
forms before filter, after filter and the number of questions and images.
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Q: What is the point lying o-
     n line JL?
A: R

Q: What is the point lying o-
     n line ZX?
A: N

                                                  PointLiesOnLine

Q: What is the point lying o-
     n line AB?
A: E

Q: What is the point lying o-
     n line RN?
A: Q

Q: What is the point lying o-
     n circle with center P?
A: T, S, R, Q

Q: What is the point lying o-
     n circle with center K?
A: L, J

                                                  PointLiesOnCircle

Q: What is the point lying o-
     n circle with center Z?
A: X, C

Q: What is the point lying o-
     n circle with center F?
A: A, C, B, D, E

Q: What is the line parallel-
      to line BE?
A: CD

Q: What is the line parallel-
      to line NQ?
A: OP

                                                  Parallel

Q: What is the line parallel-
      to line EB?
A: CD

Q: What is the line parallel-
      to line CD?
A: BE, AB, AE

Q: What is the line perpendi-
     cular to line ZW?
A: YZ

Q: What is the line perpendi-
     cular to line CB?
A: AC

                                                  Perpendicular

Q: What is the line perpendi-
     cular to line LF?
A: LM, KM, GH, HJ, KL, GJ

Q: What is the line perpendi-
     cular to line VS?
A: RT, TV, RV

Q: What is the length of lin-
     e NM as annotated?
A: 39

Q: What is the measure of an-
     gle ABC as annotated?
A: 2x

                                                  Equals

Q: What is the measure of an-
     gle JKL as annotated?
A: 70

Q: What is the line in the d-
     iagram that is equal to l-
     ine VU?
A: ZV, VZ

Q: Is angle SUV acute or obt-
     use?
A: obtuse

Q: Is angle JKL acute or obt-
     use?
A: obtuse

                                                  AngleClassification

Q: Is angle CBD acute or obt-
     use?
A: acute

Q: Is angle WVX acute or obt-
     use?
A: acute

Q: Which line is longer, AB -
     or AC?
A: AC

Q: Which line is longer, AE -
     or ED?
A: AE

                                                  LineComparison

Q: Which line is longer, JM -
     or JL?
A: JL

Q: Which line is longer, RQ -
     or QT?
A: RQ

Figure 8: Examples of our Geoperception dataset.
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B PROMPTS FOR THE GEOPERCEPTION DATASET EVALUATION

PROMPT TEMPLATE FOR THE POINTLIESONLINE TASK

Answer me directly just with the all points lie on the line
mentioned in the question (do not include the point mentioned in
the question).
Answer template:
(If only one point) The other point is: "your point".

Or
(if multiple points) The other points are: "your points".

For example:
The other point is: A

Or
The other points are: A, B, C

Figure 9: TEMPLATE FOR THE POINTLIESONLINE TASKS

PROMPT TEMPLATE FOR THE POINTLIESONCIRCLE TASK

Answer me directly just with the all points lie on the circle
mentioned in the question.
Answer template:
(If only one point) The point is: "your point".

Or
(If multiple points) The points are: "your points".

For example:
The point is: A

Or:
The points are: A, B, C

Figure 10: TEMPLATE FOR THE POINTLIESONCIRCLE TASKS

PROMPT TEMPLATE FOR THE PARALLEL TASK

Answer me directly just with the all lines which are parallel
to the line mentioned in the question (do not include the line
mentioned in the question).
Answer template:
(If only one line) The line is: "your line".

Or
(If multiple lines) The lines are: "your lines".

For example:
The line is: BC

Or:
The lines are: BC, DE

Figure 11: TEMPLATE FOR THE PARALLEL TASKS
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PROMPT TEMPLATE FOR THE PERPENDICULAR TASK

Answer me directly just with the all lines which are perpendicular
to the line mentioned in the question (do not include the line
mentioned in the question).
Answer template:
(If only one line) The line is: "your line".

Or
(If multiple lines) The lines are: "your lines".

For example:
The line is: BC

Or:
The lines are: BC, DE

Figure 12: TEMPLATE FOR THE PERPENDICULAR TASKS

PROMPT TEMPLATE FOR THE EQUALS TASK

Answer me directly just with the annotations presented on the
image.
Answer template:
The annotation is: "your annotation".

For example:
The annotation is: 2x+4

Or:
The annotations is: 90

Figure 13: TEMPLATE FOR THE EQUALS TASKS

PROMPT TEMPLATE FOR THE ANGLE CLASSIFICATION TASK

Answer me directly just with the classification of the angle
mentioned in the question.
Answer template:
The angle is: "your angle".

For example:
The angle is: acute

Or:
The angle is: obtuse

Figure 14: TEMPLATE FOR THE ANGLE CLASSIFICATION TASKS

PROMPT TEMPLATE FOR THE LENGTH COMPARISON TASK

Answer me directly just with the longer line mentioned in the
question.
Answer template:
The longer line is: "your line".

For example:
The longer line is: BC

Or:
The longer line is: DE

Figure 15: TEMPLATE FOR THE LENGTH COMPARISON TASKS
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C DETAILS FOR TRAINING DATA ENGINE

In this section, we provide all geometry shapes we use for Euclid training, including the pseudocode
for generating text describing the geometry shapes and diagram examples.

C.1 PSEUDOCODE FOR TRAINING TEXTUAL DATASET SYNTHESIS

Algorithm 1 Data Synthesis for the POINTLIESONLINE Task

1: Input: data info, points set
2: Output: data
3: for points set ∈ data info do
4: for (A, B) ∈ permutations(points set, 2) do
5: all rest points ← [p for p in points set if p not in [A,

B]]
6: for rest points ∈ permutations(all rest points) do
7: verb agreement ← ’is’ if len(rest points) == 1 else

’are’
8: rest points ← [f"{p}" for p in rest points]
9: rest points ← sorted(rest points)

10: question ← ’What is the point lying on line ’ + A + B +
’?’

11: answer ← ’The point lying on line ’ + A + B + ’ ’ +
verb agreement + ’ ’ + ’, ’.join(rest points)

12: gt ← ’’.join(rest points)
13: data ← {’question’: question, ’answer’: answer, ’gt’:

gt}
14: end for
15: end for
16: end for

Algorithm 2 Data Synthesis for the POINTLIESONCIRCLE Task

1: Input: data info
2: Output: data
3: point set ← random.choice(list(data info.items()))
4: center point ← point set[0]
5: target points ← point set[1]
6: target points ← sorted(target points)
7: question ← ’What are the point lying on circle ’ + center point

+ ’?’
8: answer ← ’The point lying on circle ’ + center point + ’ are ’

+ ’, ’.join(target points)
9: gt ← ’’.join(target points)

10: data ← {’question’: question, ’answer’: answer, ’gt’: gt}
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Algorithm 3 Data Synthesis for the ANGLECLASSIFICATION Task

1: Input: data info
2: Output: data
3: angle ← data info
4: angle options ← [f’{angle[1][0]}{angle[1][1]}{angle[1][2]}’,

f’{angle[1][2]}{angle[1][1]}{angle[1][0]}’]
5: angle letter ← random.choice(angle options)
6: angle class ← ’acute’ if angle[0] < 90 else ’obtuse’
7: question ← ’Is angle ’ + angle letter + ’ acute or obtuse?’
8: answer ← ’Angle ’ + angle letter + ’ is ’ + angle class
9: gt ← angle class

10: data ← {’question’: question, ’answer’: answer, ’gt’: gt}

Algorithm 4 Data Synthesis for the LINECOMPARISON Task

1: Input: data info
2: Output: data
3: names ← [data info[0][1], data info[1][1]]
4: lengths ← [data info[0][0], data info[1][0]]
5: if lengths[0] > lengths[1] then
6: longer name, shorter name ← names[0], names[1]
7: else
8: longer name, shorter name ← names[1], names[0]
9: end if

10: data ← [
11: { ’question’: ’Which line is longer, ’ + longer name + ’ or ’

+ shorter name + ’?’,
12: ’answer’: ’The longer line is ’ + longer name,
13: ’gt’: longer name },
14: { ’question’: ’Which line is longer, ’ + shorter name + ’ or

’ + longer name + ’?’,
15: ’answer’: ’The longer line is ’ + longer name,
16: ’gt’: longer name }
17: ]
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C.2 GEOMETRY SHAPES USED FOR EUCLID TRAINING

GEOMETRY SHAPE GENERATION CODE

PointLiesOnLine:
(stage 1) A B C = triangle A B C; D = midpoint B C
(stage 2) A B C = triangle A B C; D = midpoint A B; E = midpoint A C
(stage 3) A B C = triangle A B C; D = midpoint B C; E = midpoint A C; F =

intersection ll A D B E
PointLiesOnCircle:
(stage 1) A B = segment A B; C = on circle C A B
(stage 1) A B = segment A B; C = on circle C A B
(stage 1) A B = segment A B; C = on circle C A B; D = on circle D A B
(stage 1) A B = segment A B; C = on circle C A B; D = on circle D A B; E = on circle E

A B
(stage 1) A B = segment A B; C = on circle C A B; D = on circle D A B; E = on circle E

A B; F = on circle F A B
(stage 1) A B = segment A B; C = on circle C A B; D = on circle D A B; E = on circle E

A B; F = on circle F A B; G = on circle G A B
(stage 2) A B = segment A B; C = on circle C A B; D = midpoint A B
(stage 2) A B = segment A B; C = on circle C A B; D = midpoint A B
(stage 2) A B = segment A B; C = on circle C A B; D = midpoint A B; E = on circle E A

B
(stage 2) A B = segment A B; C = on circle C A B; D = midpoint A B; E = on circle E A

B; F = on circle F A B
(stage 2) A B = segment A B; C = on circle C A B; D = midpoint A B; E = on circle E A

B; F = on circle F A B; G = on circle G A B
(stage 2) A B = segment A B; C = on circle C A B; D = midpoint A B; E = on circle E A

B; F = on circle F A B; G = on circle G A B; H = on circle H A B
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = midpoint A C
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = midpoint A C;

F = on circle F A B
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = midpoint A C;

F = on circle F A B; G = on circle G A B
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = midpoint A C;

F = on circle F A B; G = on circle G A B; H = on circle H A B
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = midpoint A C;

F = on circle F A B; G = on circle G A B; H = on circle H A B; I = on circle I A B
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = on circle E A

B; F = on circle F A B; G = on circle G A B; H = on circle H A B; I = midpoint B C
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = midpoint B C
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = lc tangent E C

A
(stage 3) A B = segment A B; C = on circle C A B; D = midpoint A B; E = on circle E A

B; F = on circle F A B; G = on circle G A B; H = lc tangent H C A
AngleClassification:
(stage 1) A B C = triangle A B C
(stage 2) A B = segment A B; C D = segment C D
(stage 3) A B C = triangle A B C
(stage 3) A B C = triangle A B C; D = midpoint B C

LineComparison:
(stage 1) A B C = triangle A B C
(stage 1) A B C = triangle A B C
(stage 1) A B C = triangle A B C
(stage 2) A B C = triangle A B C; D = midpoint B C

(stage 3) A B C = triangle A B C; D = midpoint A B; E = midpoint A C

Figure 16: GEOMETRY SHAPE GENERATION CODE FOR EUCLID TRAINING
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Stage 1

PointLiesOnLine

Stage 2 Stage 3

Stage 1

PointLiesOnCircle

Stage 2 Stage 3

Stage 1

AngleClassification

Stage 2 Stage 3

Stage 1

LineComparison

Stage 2 Stage 3

Figure 17: Examples of the geometry diagrams used to train Euclid, the diagrams are generated by
our dataset engine.
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D ADDITIONAL RESULT FIGURES IN REBUTTAL PHASE
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Figure 18: Training loss and testing accuracy curve comparing three choices of LLM size with
a fixed visual encoder and multimodal connector. Training losses are window-smoothed using a
window size of 10 for better visibility.
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Figure 19: The test accuracy curve when expanding our training dataset volume to 1 million dataset,
the model and dataset setting is the same as the last sub-figure in Fig. 3.
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Table 6: Performance (average evaluation score) of different models on Geoperception benchmark
tasks. The evaluation score is computed as a binary indicator where Evaluation score = 1 if predic-
tions (P ) are a subset of ground truth (G), and Evaluation score = 0 otherwise. POL: PointLiesOn-
Line, POC: PointLiesOnCircle, ALC: AngleClassification, LHC: LineComparison, PEP: Perpendic-
ular, PRA: Parallel, EQL: Equals. As the Random Baseline method, we use GPT-4o-mini, given the
same textual instruction but without an image.

Logical Numerical Annotations

Model POL POC ALC LHC PEP PRA EQL Overall

Random Baseline 1.53 3.90 59.92 51.36 0.47 0.00 0.02 16.74

Open Source
Molmo (Deitke et al., 2024) 12.84 37.60 56.77 16.79 1.89 0.00 0.81 18.10
Llama32 (Dubey et al., 2024) 17.36 40.67 59.46 52.08 14.59 23.58 49.91 36.81
Qwen2VL (Wang et al., 2024a) 22.83 41.78 46.60 63.27 32.89 33.02 54.40 42.11
Pixtral (AI, 2023) 26.20 60.45 47.33 51.43 29.97 38.68 58.50 44.65

Closed Source
GPT-4omini (Achiam et al., 2023) 10.52 62.95 48.84 69.51 12.22 4.72 44.77 36.22
GPT-4o (Achiam et al., 2023) 17.10 76.88 55.63 74.39 32.18 65.09 44.75 52.29
Claude (Anthropic, 2024) 26.41 74.93 42.95 70.73 34.07 71.70 66.41 55.31
Gemini Flash (Team et al., 2023) 30.83 71.31 49.89 76.69 42.59 71.70 66.32 58.47
Gemini Pro (Team et al., 2023) 25.14 71.31 57.96 79.05 52.37 85.85 52.32 60.57

Table 7: Performance (average evaluation score) of different models on Geoperception benchmark
tasks. The evaluation score is computed as the ratio of the intersection of predictions (P ) and ground
truth (G) to the size of the ground truth (|G|): Evaluation score = |P∩G|

|G| , . POL: PointLiesOnLine,
POC: PointLiesOnCircle, ALC: AngleClassification, LHC: LineComparison, PEP: Perpendicular,
PRA: Parallel, EQL: Equals. As the Random Baseline method, we use GPT-4o-mini, given the same
textual instruction but without an image.

Logical Numerical Annotations

Model POL POC ALC LHC PEP PRA EQL Overall

Random Baseline 21.11 13.97 59.92 51.36 3.92 8.65 0.01 22.70

Open Source
Molmo (Deitke et al., 2024) 50.25 72.21 56.77 76.61 15.01 14.43 51.27 48.08
Llama32 (Dubey et al., 2024) 41.43 84.60 59.46 52.22 7.43 22.21 50.56 45.42
Qwen2VL (Wang et al., 2024a) 22.16 90.46 46.60 63.27 18.69 18.16 54.38 44.82
Pixtral (AI, 2023) 36.92 80.57 47.33 51.43 11.79 21.34 57.69 43.87

Closed Source
GPT-4o-mini (Achiam et al., 2023) 57.32 90.53 48.84 69.51 18.09 24.92 44.42 50.52
GPT-4o (Achiam et al., 2023) 49.47 89.36 55.63 74.39 20.17 31.88 44.21 52.16
Claude 3.5 Sonnet (Anthropic, 2024) 48.95 88.67 42.95 70.73 11.25 32.35 65.80 51.53
Gemini-1.5-Flash (Team et al., 2023) 44.36 85.33 49.89 76.69 19.22 32.19 65.85 53.36
Gemini-1.5-Pro (Team et al., 2023) 54.44 90.83 57.96 79.05 21.52 38.80 50.32 56.13
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