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Abstract

Annealed Importance Sampling (AIS) synthesizes
weighted samples from an intractable distribution
given its unnormalized density function. This al-
gorithm relies on a sequence of interpolating dis-
tributions bridging the target to an initial tractable
distribution such as the well-known geometric
mean path of unnormalized distributions which
is assumed to be suboptimal in general. In this
paper, we prove that the geometric annealing cor-
responds to the distribution path that minimizes
the KL divergence between the current particle
distribution and the desired target when the fea-
sible change in the particle distribution is con-
strained. Following this observation, we derive
the constant rate discretization schedule for this
annealing sequence, which adjusts the schedule
to the difficulty of moving samples between the
initial and the target distributions. We further
extend our results to f-divergences and present
the respective dynamics of annealing sequences
based on which we propose the Constant Rate AIS
(CR-AIS) algorithm and its efficient implementa-
tion for a-divergences. We empirically show that
CR-AIS performs well on multiple benchmark
distributions while avoiding the computationally
expensive tuning loop in existing Adaptive AIS.

1. Introduction

Annealed Importance Sampling (AIS) (Neal, 2001) is one of
the most popular sampling methods to estimate intractable
expectations given an unnormalized density of a distribu-
tion. Together with its other variants such as thermodynamic
integration (Ogata, 1989; Gelman & Meng, 1998) and Se-
quential Monte Carlo (SMC) (Del Moral et al., 20006) this
algorithm has vast applications, such as marginal likelihood
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estimation (Salakhutdinov & Murray, 2008; Grosse et al.,
2015; 2016), moment estimation (Johansen et al., 2015;
Jasra et al., 2011), generative model evaluation (Wu et al.,
2017) and more recently it has been incorporated in varia-
tional inference and training of deep generative networks
(Maddison et al., 2017; Naesseth et al., 2018; Wu et al.,
2020; Thin et al., 2021; Masrani et al., 2019).

To perform annealing, this algorithm uses a sequence of
bridging distributions between proposal distribution and the
target which is chosen in advance. Gelman & Meng (1998)
have demonstrated that the optimal path with lowest vari-
ance for thermodynamic integral estimator depends on the
Hellinger distance of the distributions and it is intractable
in complex setups. Instead, the geometric mean path has
been utilized for years (Neal, 2001; 1996). As alternatives,
moment-averaging have been proposed for exponential fam-
ily distributions (Grosse et al., 2013) and further generalized
to power mean for arbitrary endpoint distributions (Masrani
et al., 2021; Brekelmans et al., 2020). These heuristic an-
nealing paths achieve viable estimation results even though
they are considered to be suboptimal.

In this work, we analyze a version of AIS algorithm where
we apply infinitesimal changes to the initial density along
the annealing distribution path to get to the target distribu-
tion. We take a greedy approach and modify the particle
distribution in the direction that optimally reduces the re-
maining estimation bias at every instance. The remaining
bias is equivalent to the inverse KL-divergence between
current particle distribution and the target distribution under
common assumptions (Grosse et al., 2013) and we prove
that in this setup the optimal greedy strategy is achieved us-
ing the geometric mean path. Extending our analysis to the
larger class of f-divergences, we are able to derive an Or-
dinary Differential Equation (ODE) for the optimal greedy
annealing dynamics. In the subclass of a-divergences, this
ODE has a closed form solution and we show that power
mean annealing is a solution to this equation.

While other variational representations of geometric and
power mean paths have been provided in the previous work
(Grosse et al., 2013; Masrani et al., 2021), to the best of
our knowledge, we are the first to show the relation of
these annealing sequences with the functional derivatives
of various probability divergences. Using this framework,
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we are able to derive the constant rate schedule along the
steepest descent annealing path.

Our greedy strategy is similar to existing Adaptive AIS
in that we look ahead and measure the impact of each an-
nealing step base on an objective function. However, in a
typical Adaptive AIS algorithm, the schedule is adjusted
in each step to keep the reduction of the Effective Sample
Size (ESS) (Kong, 1992; Neal, 2001) or the Conditional
ESS (CESS) (Johansen et al., 2015) at a constant rate using
iterative search algorithms. Instead, we derive the anneal-
ing distribution path and its corresponding schedule using
the same objective derivative. Therefore, the constant rate
schedule is tightly connected to the bridging distributions
and is able to account for the difficulty of synthesis along
each annealing sequence.

Finally, we design the Constant Rate AIS (CR-AIS) al-
gorithm to approximate the constant rate schedule of the
variational objectives. We present multiple considerations
for its practical implementation. CR-AIS does not rely on
searching algorithms and excessive target density function
evaluations as in adaptive versions of AIS and uses the in-
formation from the derivative of the objective to choose the
bridging distributions. Using this algorithm we empirically
verify our findings on high dimensional targets and illustrate
how CR-AIS is able to trade-off computation complexity
with estimation accuracy while improving adaptivity.

2. Annealed Importance Sampling

Formally, suppose P and (o are two probability distri-
butions on RY with density functions 7 and o, respec-
tively. We assume evaluation of ¢qq is tractable while
m = w/Z pis only known up to the normalization con-
stant Z = 4 7(2)dz. To sample from 7, AIS uses a se-
quence of annealing distributions defined by the density path
v:[0,1] RY ¥ R, where v(t, ) 2 P forall t 2 [0, 1]
starting from (0, ) = go(') and reaching to v(1, ) = 7()
and P is the family of normalized density functions. This
path is discretized with the schedule 0 = tg < ... < tpm = 1.
Common choices for schedule are linear discretization with
ti =14/M, exponential with t; =1 ¢' and sigmoidal with
ti = o(c(i/M  0.5)) for hyperparameters e < 1,0 < ¢
ando(z) =1/(L+e *).

A Markov process Z'] (zo:m) = qo(20) Qi2[|v|] 5 izijzi 1)
is used for sampling such that particles sampled from the
initial distribution, zp _qo, gradually move following each
transition probability g ; to have a marginal distribution
close to y(ti, ). An auxiliary backward Markov chain
qi(zi 1jzi) allows us to compute the unnormalized im-
portance weights corresponding to each particle trajectory

Z0:M »

Qi qi(zi 1)z)
i 2izijzi 1)

_ m(z2m)
w(zo:m) =
q0(20)
It is common to define the transition probabilities z'] j to
be reversible with respect to v(¢j, ) (e.g. a Markov chain
with Metropolis-Hastings corrected transition kernels) and
select ¢ i as its reversal (Neal, 2001). Let us denote the
unnormalizedg density path with v(t,) = Z ., (¢, ).
where Z = .4 7(t, 2)dz, Therefore, with reversible tran-
- . i .

sitions, ¢ i(zi 1Jzi) = qi(zijzi )7,z 1)/7(is z0),
gy can rewrite the importance weights as w(zo:m) =

i 7(i,zi 1)/7(i 1,2 1)- The unbiased Monte Carlo
(MC) estimator of the partitial function from N sampled
particle instances zéj,z,' do 5ifor 1 4 Nis

>
A Q:i
N

w(zéj,)vI

Although, to avoid numerical underflow, log space compu-
tations are preferred and log Z is bounded from below by
(Grosse et al., 2015; Domke & Sheldon, 2018)

logZ EZ&[logw(zo:m)] D

1 X )
i j log w(zg:pg

It is possible to estimate the expectation of a test function A :
RY ¥ R under the target distribution via self-normalized
weighted average of h(z,(\J,,) ) or equivalently by resampling
the particles according to a multinomial distribution where

z,gl) is sampled proportional to w(zg,)\,,

3. Adaptive Annealing Dynamics from
Divergence Derivative

. . . [ |
Given the particle trajectory, zo:m g , we denote the
density of the marginal distribution of zj with gy, (zi). It is
common to analyze the AIS algorithm in perfect transition
regime (i.e. when gy, (2) = ~v(ti, 2) qr,-a.8.) with reversible
transition kernels (Grosse et al., 2013; Kiwaki, 2015). This
is not unrealistic if t;  tj 1 is sufficiently small and the
consecutive annealing distributions are close to each other.
We assume the same conditions apply in our paper. Under
this setup, Grosse et al. (2013) decomposed the bias of the
estimator in Equation (1) as the sum of KL divergences
between consecutive annealing distributions (Grosse et al.,
2013),

|Og Z E a [Iog w(ZOZM )] = DKL(qti 1jthi )a (2)

i=1
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R
whereDg, (gjp) = q(z)log(a(z)=p(z))dz. In fact, as corresponds to the path following this direction and is opti-
M 'l the asymptotic bias decreases as mal in this sense.

X B 1 Z1 To take the derivative odi._, we transform the negative
M D @ g ! 5 Varg [a logg]dt: (3)  energy . by a small perturbation in direction of the smooth
i=1 0 function :RY! R with a small step size> 0.

The end-to-end asymptotic bias in Equation (3) was use4€mma 3.1. Assume (z) and~(2) are positive unnormal-
to compare the ef ciency of moment-averaging and geol2€d density functions and let. (z) = (2)+  (2) for
metric mean paths in (Grosse et al., 2013) and optimizedt(Z) = 109 &(2). Then we have,

with respect to the single dimensional schedule function for &(2)

a given density path in (Kiwaki, 2015). Their method — [ t+ ] =Covq, (2);log—= ; (7
does not scale to higher dimensional function space to op- d =0 -2

timize the annealing density path. Instead, we propose a\'ﬂvhereCovq[  1is the covariance under distribution of

adaptive approach to maximize the reduction in bias with, » 4 \ve use the de nition of &eaux differential for the
every in nitesimal transition and we use the derivative of derivative

KL-divergence at the current particle distribution to nd the

optimal change in the annealing density path. By doing so, d L
we are able to extend the optimization space from the spacaTJKL[ e+ ] - B I!m?y
of discretization schedules to the space of unnormalized B
annealing density paths. In the following, we explain theTO identi

details of our method. Proof of the results are provided in

Il @+ @] Il .

fy trp]e optimal pertprbation direction, . , we min-

Appendix A. imize Covg,  (2);log qj((zz)) with respect to in the space
of smooth functions with bounded variance. Using a bound
3.1. Inverse KL Divergence Dynamics on the variance of the perturbation as opposed to its norm

_ ) _is explained by the fact that the expectation of the perturba-
Lete(z) = ~(t; z) be the unnormalized marginal density tion only impacts the normalization factor of the bridging

at instantt andJi. [ ] de ne the functional of (z) = density function and does not affect the performance of

log & (2) corresponding to the inverse KL divergence, AIS. Therefore, by constraining the perturbations to have

I «]=Dw (@i ) 4) boundgd variance, we are acco.untmg for the eqqulency of
7 annealing paths with different time dependent scaling.

&(z)log 25} dz _ . . .
= +logZ log e(z)dz: The optimal perturbation,. is the steepest descent di-
& (2)dz rection of the inverse KL divergence which we can use to

derive the annealing dynamics via

In our greedy strategy, at stépwe x all the previous
annealing distributions up tg, and consider none of the d _ )

subsequent ones other than= . We choose the next g lo9u2) = o (2)+ Bb): (8)
distribution,,, as an in nitesimal modi cation ofq,

which minimizes the updated sampling bias. We can deriveyote thath(t) : R! R in Equation (8) is an arbitrary log
the updated bias recursively from Equation (2) starting fromscale function of which can be absorbed by,. (z) for
by = D (pjj ) and repeating eacht without loss of generality. In the following, we show
b=b 1+ Dk (GG, ) Fhat_ wit.h initial distripution de_nsit;_q) and following the
) Lo in nitesimal perturbations in direction of, . we recover
D@l ) Dl ); ®)  an arbitrarily scaled geometric mean path. In addition to the

fori <M . To nd q,,, we take the directional func- dynamics of the optimal greedy annealing path, we derive a
tional derivative ofy and minimize it in a compact space discretization schedule in the following proposition which
to nd the steepest descent direction that leads to the optBnsures a steady decreasdji as AlS algorithm proceeds.

mal annealing. As the rst and last terms in Equation (5)Proposition 3.2. Assume the same conditions as in
are constant with respect¢p,, and the derivative of the | emma 3.1. Additionally, consider the set of smooth pertur-
second term is zero, the directional derivative is equivalenpation directions with bounded variance
to the directional derivative afx. [ +,]. First, we derive the
directional derivative ofik, in the following Lemma. Then, Mg, =f 2C:Var[ (2] ot g
in Proposition 3.2, we show that the geometric path, ekt log(~(2=(2)]. Th
for B Oandcy: = B=Varg[log(~(z)=&(z))]. Then
logef*™™z) = (1 t)logp(2) + tlog~(2);  (6)  the steepest descent direction that minimizes the derivative
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in Equation(7)in M ¢, is Following a similar approach to the previous section, we can
KL @) nd the optimal perturbation of ; and use Equation (8) to
q: (2)= = log——= + b; (9)  obtain the annealing unnormalized density dynamics along
B &2 the steepest descent direction. In Lemma 3.3 we derive the

for arbitrary b 2 R. A solution to the Ordinary Differen- steepest descent directionfoiivergence.

tial Equation (ODE)g +(2) = ,; (2) withinitial condi- | emma 3.3. Assume (z) and~(z) are positive unnormal-

tion o(z) = log €(2) is the scaled geometric mean path jzeq density functions arfd: R! R be convex and differ-

log &f**";, (2) which for (t) setas entiable. Let (.+z) = (2)+ (2)for ((2) =log &(2).
KL(t) = e Rox o =" 5. (10) Then we have,

decreases the inverse KL divergence in Equat®rwith EJf[ v ] =Cov (2); 9(u(2)) ;

constant rate. =0

ereg(u) = uffu) f(u) andffu) = d (u)=du.
reover, consider the set of smooth perturba-
fion directions with bounded varianceM { . =

wh
Note that the annealing process described by Proposition 34 o
encompasses the duratibre t as opposed tb 2 [0; 1]
in the original AIS algorithm. This is due to taking in-

nitesimal annealing steps along the derivativesief . In 2Ct:Varg[ (2] ¢, forB Oand
particular, the annealing schedule in Proposition 3.2 is de- ¢ o _
nedwith (t)=1 (t)andfor ()= K(t)ast!l |, Cq; = B=Varg g(u(2)) :

(t)! 1 andq(z)! (z)forallz2 RY, althoughthe Then the steepest descent direction that minimizes this
normalization factor ofy may grow to in nity. Additionally,  derivative inM Ehi is
due to the derivative of(t),

f
7 @ (1)=Varg [log(=&)]; a; (D)= %%Q(Ut(z)ﬂ b;

annealing is slower when _the particl_e d.istribution is furtherfor arbitrary b2 R.

away from the target (i.e. in the beginning of the annealing

process). The constant rate schedule enforces a balancegfortunately, the solution of ODE in Equation (8) with
division of the sampling dif culty per annealing step in com- the optimal perturbation direction does not have a closed
parison to the heuristics such as linear. In other words, téorm for generaf functions. However, we can get a set
converge to the target, in each iteration, the particle distribuef solutions for the speci ¢ case of-divergences in the
tion is altered by doing an equal amount of work which isfollowing Proposition, which correspond to the power mean
measured in terms of the reduction of the KL-divergence. annealing path previously proposed in (Brekelmans et al.,

Due to the logarithmic term in the derivative, annealing i52020)1,

slower vyhe_n tr_le particle distrik_)ution_extends beyqr_ld the & "2)= t-(2) +(1 Do) L . (11)

target distribution support, while being less sensitive to

unexplored modes in the target distribution with a dampedroposition 3.4. Assume the same conditions as in

sensitivity as t grows. However, in Section 5.1 we show thiskemma 3.3 and (u) = (u 1 (u 1)=( 1)

not to be an issue as using this schedule results in coverad@’ 62 D;1gor f(u) = ulogu for = 1. Then -

of all of the modes of multimodal targets in the experimentsPower mean pathoge; ™) is a solution to the ODE
% t(2) = . (2) withinitial condition o(z) = log € (z)

3.2. Extension tof -Divergences and setting (t) to

R p—
In this section, we extend our methodftadivergences to t)=e o(Cq; Zq = BZ )ar. 12)
explore other dynamics that are optimal with respect to alter- . .
. . o . results in constant rate decreasefirdivergence.
native step-wise objectives. Thedivergence between two

distributions with unnormalized densitie¢z) ande (z) is  Here, the annealing speed is inversely related to
de ned as R Varg [g( =q¢)]. With =1 the annealing dynamics corre-
: Lo q(Qf u(z) dz spond to the arithmetic mean path (moment-averaging path
Ji[ «=Ds( jia) = a(dz in the exponential family (Grosse et al., 2013)). We have
listed a few of the popular choices ofdivergences with
their respectivé andg functions in Table 1.

wheref : R! R s convex, lower-semicontinuous function
with f (1) =0 and

~(2) ~(2) For illustrations of bridging distributions with different
ui(z) = =Eq —— values we refer the readers to the works of Brekelmans et al. (2020)
& (2) & (2) and Masrani et al. (2021)
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Table 1.List of f -divergences

NAME f (u) g(u)
KL DIVERGENCE ulogu u 1
INVERSEKL DIVERGENCE logu logu 1 0
PEARSON 2 (u 12)2 u? 1 2
NEYMAN 2 (U 1" 2 1
SQUARED HELLINGER (pﬁu 1)2 pZU 1 1=
-DIv ( 62 D;10) Lt Ll +1)

4. Constant Rate AIS

Using Proposition 3.4, we can design an adaptive AlS algoz 2:
rithm with constant rate decrease irdivergence at each 13:
annealing iteration. In Algorithm 1, we provide a pseu-14:
docode for Constant Rate AIS (CR-AIS) where we alternate; 5
between updating the particle location with standard AlS16:
steps and tuning the schedule. Evaluation of the constant;.
(t) given in Equation (12)

rate schedule (t) = 1
at timet requires the values af, . andZ =z, for all
O r
up to stepi to estimate the integrand in (tj). We set
ti=i
Riemann sum

Zi p_ X p_
(ch,. Zg,= BZ )dr Ch . Zq = BZ ;
k=0

wheregc = g, ", | is the normalized density of power

mean path in Equation (11). We d&t= 1 for simplicity.
We can rewrite the above equation incrementally,
that

(e O (e zg 2

=Z ):

((i+1) )=

(iyexp( ¢l .z (13)

qi
In the Algorithm 1, To cogputeexp( cfi Ly =Z)
we use pér_ticleszo;i VR !
W(Z0i) = "o & (Zk 1)=&, (2« 1) given by the AIS
algorithm up to iteratiom to estimat&Z,, =Z (line 7-9) and

the empirical variance undey (line 10-11). We reduce the
variance of the estimated integrand by reusing the same set
of particles to perform both estimations for all transitions

Having these estimates, we can approximat§i +1) )

recursively from approximation of (i ) in the previous

iteration using Equation (13) (line 12).

for small > 0and approximate the integral with

k=1 dk and their weights

Algorithm 1 CR-AIS tuning for -divergences

1: Input: Target~, proposal density, ,
: Output: Discretization sequende; );
:Seti 0, o landg O
: Drawzy  qo(z) forj 2 [N]and concatenate inm.
Set logw log oo (2})-
: while not converged and< maxstepsdo
SetlogZ  logsumexglogw + log ~(zi)).
Setlogﬁql logsumexfglogw + log § (z;)).
Setr;  exp(logZ  logZyg ).

i ~(2) ; _
Setu; e (D) forj 2 [N]and concat. ta;.
\@arQi [g(ul)] .

i exp(

A
e

11:  Sety;
Set (i)
Set i+ =1 (i) -
Setejivy =€ from Equation (11).
Seti i+|1. ,

Construct'aqi(zjzl ;) invariant w.rt.g .
Drawz ' qi(zjZ ,)forj 2 [N].

=vir; ).

t and integration. We use weighted AIS particles 19: end while

. j i ai(zl ,iz})
18: Setlogw logw +Iog!m.
20: SetlogWw  logw +log ~(2)).

To ensure stability of the numerical computations we abort
the algorithm when the empirical variance becomes lower
than a given threshold. This condition indicates that the last
annealing density is suf ciently close to the target. However,
the empirical variance given by the particles may be much
lower than the true value and mislead the algorithm to termi-

noting,5te the annealing process in a handful of steps especially

for largerj j. We recommend to mitigate this problem by
constraining the maximum step size in the schedule as we
did in our experiments with high dimensional targets.

Another consideration is to use disjoint sets of particles
for adjusting the schedule and testing. We recommend to
perform the nal estimation after the tuning phase and xing
the schedule to ensure the independence between samples
and the consistency of the importance weighted estimate.

When Equation (8) does not have a closed form solution,
we can use CR-AIS with numerical approximation of its
Solution instead (line 14 of Algorithm 1). New annealing
paths may result in more robust estimation in practice as
we can optimize functioh more effectively. We leave an

ef cient implementation of this extension to the future work.

Using the constant rate schedule estimate, the next annegl- Experiments

ing density is updated (line 13-14) and partioﬂe-#)i are

transitioned to their new location with a transition kernel In this section, we run a number of experiments to il-
which is invariant with respect ty; ;1) (line 16-17). We  lustrate the performance of CR-AIS on support coverage
update the importance weights with standard AIS procedurand adaptivity with 2d distributions and we asses its ef-
(line 18) and repeat the process until convergence. ciency and accuracy with estimation of the log normal-



Adaptive Annealed Importance Sampling with Constant Rate Progress

Figure 1.Target distributions and resampled particles with CR-AIS, with geometric mean path=afid32. CR-AIS adjusts the number
of iterationsM to the dif culty of the target and covers the support of the targets. The plot in top right corner is the initial distribution
used for annealing with the same scale.

ization constant of high dimensional synthetic targets andargets: the very narrow Gaussian target, Gaussian ring, the
the posterior of Bayesian models. Code is available atlual mode Bananas and the Gaussian mixture distribution

https://github.com/shgoshtasb/cr_ais . with 4 components. We vary betweerf 0:5;0; 0:5; 1; 29
to obtain different annealing paths. We compare the sched-
5.1. 2D Distribution Synthesis ules to the ones obtained from Adaptive AIS where the

, , - ) schedule is adjusted to decrease CESS at an approximate
Here, we investigate the adaptability of our algorithm to var4ie of 0.7. We constrain the maximum step size in Adaptive

ious target distributions. We evaluate CR-AIS on complexa|g since large steps cause severe weight degeneracy and
2d distributions which are often used to benchmark Sa”bremature termination of annealing.

pling (Rezende et al., 2014) and three other distributions.

With 2D targets, we can plot the synthesized samples ant Figure 2, we show the constant rate schedule ))i
assess if indeed the particle distribution converges to themerging from CR-AIS (solid curves) and Adaptive AlS
targets. We use the inverse KL objective £ 0), initial schedules (dashed curves) for different targets and bridging
distributionN (0; 1) and set = 1=32for all the targets as distributions. The constant rate schedule varies considerably
we aim to show the performance differences caused by theetween targets and depends explicitly on the similarity of

dif culty of the sampling task (setup details in Appendix B). the target distribution and the particle distribution at each
, ) o time. Consider the second plot from left with= 0. As

Figure 1 depicts the target distributions next to resamplegl, o ntioned before, when majority of particles are in the

particles according to the importance weights of the CR-AIS

_ Lo e . _ regions with small annealing slows down signi cantly,
algorithm. The initial distribution is shown in top right cor- e.g. in the beginning of annealing for the narrow Gaussian

nc_er of Figure 1 with the s_ame _scale. Each plotis annoFategxample_ It also explains why a much larger number of
with the number qf AlS |terat|on$_/l , and the ESS ratio iterations are required to sample from this targét €

to number of particles. The algorithm adapts the numbeg g7 while for the others the number of iterations remain
of iterations to the dif culty of sampling from the target - qerate (487, 139 and 17). In contrast, Adaptive AIS
distribution with the Narrow Gaussian distribution requir-p, -« close to linear schedule on the geometric path for 3 of
ing the longest annealing sequence. Additionally, the plotghe gistributions as CESS depends on weighted averages

show that particles have reached all the modes of the targefsyich may be misleading due to the weight degeneracy
and cover their support. In Appendix D we compare the

g i X - ““problem. For the narrow Gaussian where the target and
SMC variant of our algorithm and adaptive SMC on widerjnisia| gistributions are far apart, Adaptive AlS recovers a

muItimodaI target distributions. Our simila_r results con rm g hadule similar to CR-AIS.
superiority of the constant rate schedule in mode coverage

despite using shorter annealing sequences. Across different values of, the constant rate schedule grad-
ually changes its form depending on the target distribution.
5.2. Adjusting the Schedule to the Annealing Path For Gaussian mixture, which has overlapping high density

regions with the initial distribution, the initial annealing
In a setup similar to the previous experiment, we investigatepeed reduces monotonically with For Gaussian Ring
how the constant rate schedule adapts across different targghd Bananas, which have modes outside the typical region
distributions and annealing paths. We plot the emergingf q,, the initial speed grows from =0 to = 0:5 and
approximated schedule in CR-AIS for four of the previousdecreases for largervalues. Whereas, Adaptive AIS sched-
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Figure 2.Annealing schedules of CR-AIS (solid curves) and Adaptive AIS (dashed curves) across different annealing gatlas (
to 0:5;0;0:5;1 and 2 from left to right) and targets,= 1=32. CR-AIS shows higher adaptivity while Adaptive AlS is essentially
indifferent to the annealing path.

ule is relatively indifferent to the changes in the annealingmeasure of complexity counts one schedule update per iter-
path and has to infer the path characteristics through CESS&tion during tuning in CR-AIS and one schedule update for
The high exibility may lead to stability problems with large each pass through the sequence for each annealing step in
variances (e.g. for Gaussian Ring and 0:50r =2)  MCD during training.

where the schedule grows very glowly and the algonthn]VICD has a clear advantage for the Normal target as the
reaches the maximum number of iteration, or when the vari-

ance is underestimated (e.g. for the Normal distribution Withparameters of its initial distribution are trained to match
= 05) leading to a Ia.rg.e step to the target. To avoidthe target. However, it's performance drops drastically on

. ) ..~ “the other distributions with insuf cient training and it is
these pathologies we recommend to constrain the minimum,. S ) L .
) . : . if cult to justify its expensive training overhead without
and maximum of step size as in Adaptive AIS.

amortization.

5.3. Estimation oflogZ in High Dimensions As expected, the performance of the heuristic schedules

o depend on the target. The exponential schedule is superior
We explore the absolute error of log normalization factort, . the Normal target in botd = 128 andd = 512. The
estimation for simpl@l = 128 and512 dimensional dis-  jnear schedule and the sigmodal schedule are more accurate
tributions. For the following targets: narrow Gaussian,, ihe student-T and the Laplace distributions, respectively,
N (0;0:01!), a mixture of 8 Gaussian components with \yije their ranking changes witthon the Gaussian mixture.

variance 1, a standard Laplace distribution and a Student-¢ o5 validating the heuristic would reduce the ef ciency by
distribution with 3 degrees of freedom, we compare CR-AlSy, e foids. On the other hand, at least one of the CR-AIS
with four baselines in Table 2: Adaptive AIS with CESS |4 jations is able to beat the linear, the exponential, and the

decrease ratio of 0.6 (Ada. 0.6C), heuristic AIS with lineargjqmgidal schedules in 7, 7 and 6 out of the 8 targets with
(Lin.), exponential (Exp.) and sigmoidal (Sigm.) schedules, oerage overhead of %40 due to tuning with interpolated
and Monte Carlo Diffusion (MCD) sampler (Doucet et al., schedule and %70 without it.

2022a) where the mean and diagonal variancg,pthe

schedule and the transitions are trained for 100 epochs ma§R-AlIS is able to improve over Adaptive AlS while having
mizing the evidence lower bound. As CR-AIS and Adaptive@ higher ef ciency. In particular, computation complexity
AlS generate sequences of varying lengths, for better con®f non-interpolated Adaptive AIS is aboB% more than
parability, we also report a version of the algorithms with CR-AIS on average, while CR-AIS estimations are more
interpolated schedules indicated by asterigk Gee Ap- accurate for 5 of the 8 experiments. As the constant rate

pendix E for implementation details and further comparisonschedule preserves its form with differenscales (see e.qg.
with other adaptive baselines. Appendix F) CR-AIS can exploit this property leading to a

. . . better performance in comparison to interpolated Adaptive
The average computation complexity of the sampling algoa s in all 8 of the distributions.

rithms are reported in terms of the number of tines~

is evaluated during tuning and testing. This value is proz . . :
portional to the number of timdeg ~ or its gradient are >.4. Bayesian Logistic Regression

evaluated which are generally the expensive part of the sanm this section, we compare the computation ef ciency of
pling. In Adaptive AIS this corresponds to the number of CR-AIS to heuristic and Adaptive AlS by evaluating the log
iterations in the search process of every update to the scheatarginal likelihood of two Bayesian models. We use two
ule for every step during tuning and the nal number of UCI datasets, Pima Indians diabetes datdset (768 and
discretization steps! for the estimation phase. A parallel d = 8) and Sonar datasetl(= 207 andd = 60) with bi-

7
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Table 2.AbsolutelogZ estimation error for (Topyl = 128 and (Bottom)d = 512 dimensional distributions witiv close to64
(schedules with use a shorter sequence for tuning and interpolate the reultt064 ). Results are cross validated over different values
of . Smallest error is in bold.

NORMAL N (0;0:011) MIXTURE LAPLACE STUDENT-T

EST. ERR. COMPUT. EST. ERR. CoOMPUT.| EST. ERR. COMPUT.| EST. ERR. COMPUT.
LIN. 991.90 69.87 64.0 230.65 .16 64.0 [0.36 o022 64.0 |1.37 o019 64.0
SIGM. 907.57 24.04 64.0 270.55 6.42 64.0 | 0.07 114 64.0 |1.46 o014 64.0
EXP. 780.58 40.02 64.0 507.43 15.04 64.0 1.21 o512 64.0 2.04 o031 64.0

ADA. 0.6C 853.39 3687 424.1 | 268.89 2124 316.6 | 0.45 o075 297.5 | 1.37 o024 296.6
ADA. 0.6C 856.33 2096 125.8 250.06 .14 99.6 | 0.37 o9 73.4 |1.66 o015 73.8
MCD 114.18 1583 12800.0| 680.60 1368 12800.0| 1.01 133 12800.0/ 1.99 126 12800.0
CR-AIS (OuRS) | 788.67 36.25 78.0 308.82 .31 112.0 [ 0.68 o031 117.2 [0.69 o027 98.4
CR-AIS (OuRSs) | 807.77 436 88.2 228.54 o.00 72.0 | 0.01 o000 72.0 |1.53 o000 73.0

LIN. 5279.55 7956 64.0 |1087.38 2268 64.0 9.03 o.77 64.0 8.16 o045 64.0
SIGM. 4757.13 5934 64.0 |1022.60 2355 64.0 6.95 248 64.0 8.71 124 64.0
EXP. 4435.05 11036 64.0 |1683.21 1373 64.0 |13.17 o040 64.0 [13.98 108 64.0

ADA. 0.6C 5181.95 23209 503.8 |1147.02 14266 367.2 | 9.12 301 413.8 |9.72 241 247.7
ADA. 0.6C 4423.42 20404 117.4 |1272.70 15861 85.2 8.27 133 94.8 9.30 o056 81.6
MCD 707.85 11002 12800.0[ 2173.25 43.78 12800.0/16.94 251 12800.0/20.95 o0.93 12800.0
CR-AIS (OURS) | 4413.95 9575 129.6 | 1200.12 2712 140.0 | 8.75 184 110.8 |8.40 128 98.4
CR-AIS (OuRs) | 4546.65 s780 128.8 | 1069.32 1.96 75.0 | 7.93 o074 78.6 |8.98 o000 73.0

nary labels and a setup similar to (Chopin et al., 2020) with
AlS. We consider a Bayesian logistic regression model with
bormal priorp(z) = N (0;51) and likelihoodp(Djz) =

o P(YniXn;2) for p(ynjxn;z) = Bern( (xz)). We use
CR-AIS to gstimate the log marginal likelihodagZ =
p(D) =log p(z)p(Djz)dz corresponding to the normal-
ization factor of the posterior distribution of the parameters

(2) = p(ziD) /' p(2)p(Dj2).

For computation complexity we use a similar measure as

described in Section 5.3 and plot the average of estimated

logZ vs the computation complexity for Pima and Sonar

datasets in Figure 3. The estimation of all samplers corkigure 3.Log marginal likelihood estimates of Bayesian logistic
verges exponentially as the computation budget increaseiegression model vs computation complexity for CR-AIS, Adap-
while CR-AIS has tighter lower bound estimator in compar-tiVe AIS with ESS decrease rate of 0.5 on Pima (Left) and Sonar
ison to other samplers, especially when computation budgdRight) datasets.

is limited and it roughly requires 4 fewer ~ evaluations

for similar performance as Adaptive AlS.
exponential schedule is more accurate than the rest of the

5 5. Latent Variable Model samplers. CR—AI$ gives a clos.e.estimate to it by doupling
the computation time and requirityy fewer resources in

We estimate the log marginal likelihood of a Variational Au- comparison to Adaptive AlS. For the longer sequences with
toEncoder trained on binarized MNIST dataset (Salakhutdip close to 512, the performance of samplers is harder to
nov & Murray, 2008) with a conditional Bernoullilikelihood  distinguish and the gain of tuning diminishes.
model. We consider an architecture similar to the one used
|(;1_ (Burda et al., 2016) where the latent variable das50 6. Related Work and Discussion

imensions and both the decoder and the encoder are neural
networks with 3 fully-connected layers and we use the sam@ur work is similar to the rst order optimization meth-
set of hyperparameters as in section 5.3. The estimategis used to learn generative probability models. Optimiz-
lower bound of log marginal likelihood are presented ining functional of probability measures has been studied for
table 3 forM close to 64 and close to 512. decades. Functional gradients are computed in the space

With M close to 64, the samplers are far off from the esti-Of probability distributions endowed with Hilbert structure

mation of the variational encoder which is -95.80 nats. The LU & Wang, 2016; Liu, 2017; Dai et al., 2016; Dai, 2018)
or Wasserstein structure (Frogner & Poggio, 2020; Lin et al.,
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divergence with the intended target distribution and we are
able to provide a long missing understanding of the reasons
underlying the popularity of heuristic annealing paths and

demonstrate their limitations due to the greedy nature of the

Table 3.Estimated VAE log marginal likelihood withl close to
64 (Top) andM close to 512 (Bottom). Results are cross validated
over . Higher is better.

EST. ERR. M  COMPUT. optimization.
LIN. -141.76 0.07 64.0 64.0
SIGM. -130.65 0.14 64.0 64.0 .
EXP. -121.04 0.07 64.0 64.0 7. Conclusion
ADA.c0.7 |-123.04 3.66 81.6 395.6 . .
CR-AIS (OURS)[-124.63 0.20 63.4 126.8 In th_ls Work_, we stl_de the connectlon_betweeq th_e geo-
TN 10644 0045120 5120 metric density path in AIS and the functional derivative of
SIGM. -104.01 0.07 512.0 512.0 inverse KL divergence of marginal particle distribution and
EXP. -102.70 0.06512.0 512.0 the target. We prove that the geometric mean path is the
ADA.c0.7 |-103.26 0.20 609.7 2560.0 solution to an ODE corresponding to the steepest descent
CR-AIS (OuRrs)[-104.24 0.11 428.6 857.2 direction of this objective. The analysis can be extended to

f -divergences and the ODE has a closed form solution for

divergences in the form of power mean paths (Brekelmans
2021). Optimization of deep generative models is genef€! @ 2020). We derived constant rate schedule and de-
alized as linearization of functional gradients (Chu et aI.S'gn,G_d an aIgothm that a(?h|eve§ gompara}ble results tp the
2019). However, their application in bridging distributions traditional adaptive AIS vv_hHe avoiding the time consuming
has not received suf cient attention. These works focusS€arch procedure for tuning.
on developing a Wasserstein gradient ow or particle ow While our theory is motivated by reduction of the immediate
to optimally reduce the objective. By contrast our work hias of the log marginal likelihood estimator, the geometric
focuses on optimization of the intermediary unnormalizedpath is not optimal with respect to the overall sampler bias as
densities which are required for annealing in particle methit doesn't use information from the possible future steps in
ods such as Annealed Stein Variational Gradient Descenhe updates. Similarly, power mean path does not translate
(D'Angelo & Fortuin, 2021), Parallel Tempering (Earl & to an optimal end-to-end statistic of AIS importance weights.
Deem, 2005), or Sequential Monte Carlo (Del Moral et al. However, our optimization method is similar to a continuous
2006; Naesseth et al., 2018). time version of Adaptive AlS where instead of searching for
annealing schedule was tuned with ESS ofhe next discretization step size, we optimize the succeeding
its variants (Jasra et al., 2011; Johansen et al., 2015; E|V"%nnealir_1g densities in the functi_on space. As a consequence,
et al., 2018). A variational optimization of the annealing W& Provide a better understanding of the performance of the
schedule was proposed in (Kiwaki, 2015) with xed point geometric mean hegrlst!c and demonstrate the underlying
iteration algorithm to minimize the asymptotic estimation "€as0n for its suboptimality. We hope our work helps future
bias/variance. In comparison, CR-AIS uses an analyticall;yesearch to de"_e'Pp alternative annealing paths with better
interpretable schedule and is able to replace the expensii1d-t0-end statistics.
numerical search or optimization loop with a simple Monte
Carlo estimation. Acknowledgements
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A. Proofs

Here, we provide the proofs of the lemmas and propositions in the paper.

LemmaA.l. Let + (2)= (2)+ (2)for ((2)=log & (z) whereg (z) and~(z) are positive unnormalized density
functions. Then we have,

‘ @(2)
d ' ) log Zoy 14
g Ikl ] . Cov, (2);log o 14)
whereCoyy[ ; ]is the covariance under distribution gfand we use the de nition of &eaux differential for the derivative,
d : J Z)+ Z J
gdal ] = |I”T2)+ kel t(2) @1 Jwel 4.

0

Proof. We take the derivative as follows,

R @@y, R

d _ &(2)(2)log 75 dz &(2) (2)dz
kel e+ ] = R + —R

d -0 & (z)dz & (z)dz

a(2)log 1 dz a(2) ()02 "g(2) (2)dz
T g(2)dz g(z)dz g (2)dz
=Covy, (z);IogeE((ZZ)) ;
concluding the proof. O

Proposition A.2. Assume the same conditions as in Lemma 3.1. Additionally, consider the set of smooth perturbation
directions with bounded variance
M Qs

t

=1 2Ch:Var[ (2] o o

forB 0Oand cﬁ} = B=Vary [log(~(z)=e&(2))]. Then the steepest descent direction that minimizes the derivative in
Equation(7)inM g is

s
v @= Bllog b, (15)

for arbitrary b 2 R. A solution to the Ordinary Differential Equation (OD%’} t(2) = 4. (2) with initial condition
0(2) = log & (2) is the scaled geometric mean path and results in constant rate decrease in the inverse KL divergence in
Equation(4).

Proof. It is straight forward to derive the equation for the steepest descent direction using Cauchy-Schwarz inequality. The
solution to the ODE is given by

(@)= Olga@+@  (©)log~()
Z )
O 2T (16)

™ (2) plus az-independent scale for 0 and for (t) setas

which is equivalent téog &,
R, p—

KL (t) = e o Cslr‘; dr=" B : (17)

it leads in constant derivative value form Equation (7). O
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LemmaA3. Let (v ) = (2)+ (2)for ((z) =log & (z) whereg (z) and~(z) are positive unnormalized density
functions and lef : R! R be convex and differentiable. Then we have,

dg\]f[ t+ ] =Cov (2); 9(u(2))
=0

whereg(u) = uf{u) f(u)@ndfL{u) = d (u)=du. Morgover, consider the set of smooth perturbation directions with
bounded varianc$/ gt; = 2 Cl: Varg [ (2)] c{h; forB  Oand
Ch; = B=Var, g(u(2)) :

Gt 5

Then the steepest descent direction that minimizes this derivaﬂhaegti’n is

d .
o (2= 1%‘51%591(ut(2))+ b;
for arbitrary b2 R.

Proof. With the perturbed negative energy
t+ (2)=log g+ (2) = (2)+ (2)

in direction , u;(2) is updated tax (z)e (2 Eq [e (P]. Consequently,

R R
d, (o] = &(2)f2)f w(z) dz &(2) g f Uf2) u(2) Eql (2)]dz
a>'rtel R e (2)dz R”q(z)dz .
@) af (@) W@ @dz @ w@ dz g(2) (»)dz
& (z)dz & (z)dz " g(2)dz
=Cov  (2); 9(u(2)) :
The rest of the proof follows due to Cauchy-Schwarz inequality. O

Proposition A.4. Assume the same conditions as in Lemma 3.3dnjl = (u 1 (u )= ( 1)for 620;1g
orf(u)= ulogufor =1.Then -power mean path is the solution to the OI%’[E t(2) = . (2) with initial condition
0(2) = log & (z) and with a particular schedule it results in constant rate decreadedlivergence.

Proof. We prove the proposition for 62 D; 1g in the following which can be easly extended to the case with1. Using
the derivative of we haveg(u) = (u 1)= , therefore,

f
o @7 B D+ b:
In the ODE

Sloga@) = 4 @)+ K |
S |
- iﬂ% q((zz)) iq‘ 1 + b (18)

We use the change of varialdgz) = € (z) and rewrite the ODE as
!
d c . d. z,~(2)
—s(2)+ P= Dbt z)= dp & ;
G2+ o b0 8@ =
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which has a solution of the form
" 7, 4

s@= O @ P g+ g
o BZ (r)

for

R p—
(t) = e[;(b(r) . = B)dr.
Therefore, without loss of generality, we choose
p_
bty =, (Ze=Z) 1= B

and get the annealing sequelﬁpg‘))ow(z) for the schedule(t) = 1 (t) and with (t) setto

Riel z. "Bz )a
(t)=e o0(Cqr; Zg = )r; (29)

The -divergence decreases with a steady rate along the steepest descent direction. O

B. 2D Distributions Implementation Details

Here we give the implementation details of our experiments on 2d benchmark dataset. We initialize CR-AIS with a standard
normal distribution foigy which is plotted in the top right corner of Figure 1 for scale and we use the same valuelof32

for all the targets. Each AIS transition is a single Hamiltonian Monte Carlo (HMC) step with step size WN5ai624

particles are used to approximate the constant rate schedule. We abort sampling when the empiricalfeagiaiga)] is
below0:001 We use =0 for the results in Section 5.1.

In Section 5.2, for Adaptive AIS, we tune the schedule on each iteration using binary search with constrained maximum
step size set th=128avoid large steps. This value is chosen to give the search algorithm suf cient exibility to effect the
schedule while larger values would result in big steps and premature annealing.

C. Accuracy of the Approximations in CR-AIS

To assess the accuracy of the approximations used in the CR-AIS algorithm, we depict the Monte Carlo estimation of
the objective during a run of the algorithm for the same setup as Section 5.2 in Figure 4. The curves indicate an almost
static decrease of the inverse KL divergence and the ef ciency of the approximations in CR-AIS with combination of
self-normalized normalization factor ratio estimation and Riemann sum.

Figure 4.Mean objective vs normalized AIS iterations in four distributions used in Section 5.2, with geometric mean path hr@2.
Meanf is normalized by the initial divergence to tin the same plot. Best seen in color.
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