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ABSTRACT

Contrastive vision-language models (e.g. CLIP) are typically created by updat-
ing all the parameters of a vision model and language model through contrastive
training. Can such models be created by a small number of parameter updates
to an already-trained language model and vision model? The literature describes
techniques that can create vision-language models by updating a small number of
parameters in a language model, but these require already aligned visual represen-
tations and are non-contrastive, hence unusable for latency-sensitive applications
such as neural search. We explore the feasibility and benefits of parameter-efficient
contrastive vision-language alignment through transfer learning: creating a model
such as CLIP by minimally updating an already-trained vision and language model.
We find that a minimal set of parameter updates (<7%) can achieve the same per-
formance as full-model training, and updating specific components (<1% of param-
eters) can match 75% of full-model training. We describe a series of experiments:
we show that existing knowledge is conserved more strongly in parameter-efficient
training and that parameter-efficient scaling scales with model and dataset size.
Where paired-image text data is scarce but strong multilingual language models
exist (e.g. low resource languages), parameter-efficient training is even prefer-
able to full-model training. Given a fixed compute budget, parameter-efficient
training allows training larger models on the same hardware, achieving equivalent
performance in less time. Parameter-efficient training hence constitutes an energy-
efficient and effective training strategy for contrastive vision-language models that
may be preferable to the full-model training paradigm for common use cases. Code
and weights at https://github.com/codezakh/LilT.

1 INTRODUCTION

Advances in transfer learning within the field of natural language processing (Houlsby et al., 2019b;
Ben Zaken et al., 2022) have shown that when adapting to a novel task, updates to a small percentage
of neurons (< 1%) in large, pretrained transformer-based language models can achieve nearly
equivalent results to finetuning the entire model. Sung et al. (2021) showed that given the existence
of already-aligned visual representations (e.g. CLIP’s visual encoder) only a small number (4%) of
parameters in a pretrained language model need to be updated for the language model to complete
tasks such as visual question answering using the already-aligned visual representations. However, the
creation of aligned vision and language representations typically involves updating all the parameters
of a language model and a vision model, often randomly initialized (Radford et al., 2021). Zhai et al.
(2021) find that if the weights of a pretrained vision model are used as an initialization, only the
neurons of the language model need to be updated to align the visual and language representations
and match or exceed the performance of full-model training, resulting in a 50% reduction in trainable
parameters. We take this line of investigation to its natural conclusion, asking — given that strong,
pretrained vision and language models both exist, can we minimally update both of their parameters
to align their representations?

Answering this question is valuable for two reasons. From a practical perspective, contrastive
vision-language alignment constitutes a form of large-scale pretraining and hence a heavy energy
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Figure 1: A conceptual diagram. After unimodal pretraining, parameter-efficient transfer to con-
trastive vision-language alignment is achieved by changing as few as 0.3% of the parameters from
initialization, matching the performance of full model training.

expenditure. Methods for parameter-efficient transfer learning result in significantly reduced GPU
memory requirements, and can therefore lower energy costs. Second, collecting millions of images
with textual annotations is prohibitively expensive when millions of image-text pairs cannot be
scraped from the internet, such as in the case of low resource languages or images from domains that
require expert descriptions. In these cases, transfer learning by maximally preserving knowledge
from strong, unimodal pretraining becomes compelling. Our contributions can be summarized as
follows.

• We show contrastive vision-language models can be created by updates to a relatively small
(<7%) set of parameters in pretrained vision and language models, which we dub LilT
(Locked image-language tuning) for brevity.

• We conduct an detailed empirical study of combinations and interactions of various methods
for parameter-efficient transfer learning.

• We show that contrastive vision-language models created with parameter-efficient transfer
learning conserve useful existing knowledge from their initializations better than full model
finetuning, and this has benefits in realistic scenarios.

Limitations Similar to Desai & Johnson (2021), we conduct most of our experiments on the COCO
dataset, and conduct additional scaling experiments with a larger dataset of 1.5M pairs. There is
a possibility that our conclusions may not hold beyond this range. Second, we choose to focus on
zero-shot classification and information retrieval tasks. Our conclusions may not hold for other uses
of image-text embeddings, such as using them as input for downstream vision-language tasks. Finally,
we explicitly limit the scope of the study to transformer-based contrastive vision-language models.
Thus, our conclusions may not apply to those based on other architectures. Despite these limitations,
we believe our conclusions are useful because there are realistic situations in which there are much
fewer than 1.5M image-text pairs (e.g. low resource languages) available.

Outline First, we cover background material (§2.1), then introduce our approach of parameter-
efficient transfer learning for contrastive vision-language alignment (§2). We then describe experi-
ments and a discussion of experimental results (§3), followed by related work (§4).

2 METHODS

The basic idea of our approach is to align a vision model and a language model by updating a small
percentage of their parameters by gradient descent. This involves four main elements. First, the vision
and language model must initialized from strong, pretrained vision and language models, rather than
random initialization. Second, we lock all the parameters in each model. Third, we selectively unlock
critical parameters. Fourth, we insert small trainable modules into each model to aid adaptation.
There are multiple ways of implementing these strategies, which we cover in this section.
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2.1 BACKGROUND

In this section, we briefly cover the mechanics of contrastive language image alignment as used
by (Radford et al., 2021), as well as the common ”two-tower” (Zhai et al., 2021), dual transformer
encoder architectures employed by CLIP-style models. Contrastive language image alignment pulls
representations of matched image-text pairs together, while pushing those of unmatched pairs apart.
The goal is to learn an image encoder fθ and a text encoder gϕ such that given an image-text pair
(xI ,xT ), the encoded representations fθ

(
xI

)
and gϕ

(
xT

)
are close under a distance metric if they

are semantically similar and far apart if not. Let
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T
k

}b
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}
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where sIk,j is the similarity of the k-th image to the j-th text. The similarity function is usually taken
to be the cosine similarity, which can be easily computed as fθ

(
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)
· gϕ

(
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)
if the representations

are normalized to unit length. Conversely, the text-to-image contrastive loss for xT
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The complete training loss then becomes

L =
1

2

b∑
k=1

(
LI
k + LT

k

)
. (1)

Architectures for contrastive language image alignment must encode both texts and images to vector
representations. This is usually implemented using separate text encoder and image encoders. A
variety of choices are possible for these encoders, but we restrict ourselves to the popular (Radford
et al., 2021; Li et al., 2021a;b; Yao et al., 2021; Khan et al., 2022; Zhai et al., 2021; Yang et al.,
2022; Wang et al., 2021) choice of transformer (Vaswani et al., 2017) architectures, specifically, the
BERT (Devlin et al., 2019) family of language models for the text encoder, and the ViT (Dosovitskiy
et al., 2021) family for the image encoder. Let t(·) denote an arbitrary architecture from one of the
above families. After consuming an input x, the transformer t(·) produces a sequence of vectors
t(x) = {zcls, z1, . . . , zN}, where zcls is the embedding of the [CLS] token, which is taken to be
the representation of the input x following dimensionality reduction by a trainable linear projection.

2.2 ADDING ADAPTERS

Aligning the representations of a language transformer and a vision transformer is typically done
by updating 100% of the parameters in one (Zhai et al., 2021) or both (Radford et al., 2021) of
the transformers. By freezing the transformers, we exclude full-model training, and must use an
alternative strategy to align the image and text representations. A promising approach is inserting a
small (relative to each transformer), trainable module into the frozen, pretrained transformers that
can learn to modify the internal representations of the transformer it is placed within, such that the
representation spaces of the frozen vision and language transformers become aligned while leaving
the pretrained parameters untouched. We explore two such modules: layerwise adapters (Houlsby
et al., 2019a; He et al., 2021) and ”deep” adapters.

Layerwise adapters (Houlsby et al., 2019a) have been used to adapt pretrained transformer-based
language models to new tasks while only updating 2 − 3% of model parameters. A layerwise
adapter is inserted before each layer normalization (Ba et al., 2016) layer in a transformer, and
consists of a weight matrix that downsamples the input, followed by an activation function (we use
GELU (Hendrycks & Gimpel, 2016)) and a weight matrix that restores the input to the original
dimensionality, and finally, a residual connection. We depict the architecture / placement of layerwise
adapters in Fig 3.
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Figure 2: Growing the transformer encoder stack to add a trainable deep adapter to a locked model.
The deep adapter is architecturally identical to a layer from the encoder stack.

Another solution is to treat the frozen encoders as feature extractors, and learn trainable adapters
that align the frozen image and text features. Transformer architectures can be seen as a stack of
identically structured transformer encoder layers, so a natural solution to the problem of designing
a trainable adapter atop a stack of frozen transformer encoder layers is to grow the stack, and keep
the newly added layers trainable. This yields a generic approach (Fig. 2) to add a trainable adapter
to a frozen transformer from any of the standardized families (e.g. BERT (Devlin et al., 2019), ViT
(Dosovitskiy et al., 2021)) that only requires a small number of parameters to recieve gradients (≈ 7%
for bert-base).

2.3 UNLOCKING PARAMETERS
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Figure 3: The architecture and placement of layer-
wise adapters combined with a layernorm unlock-
ing strategy.

We try two strategies for selectively unlocking
parameters in a frozen transformer: unlocking
the layer normalization (Ba et al., 2016) param-
eters, and BitFit (Ben Zaken et al., 2022). Stan-
dard transformers (Vaswani et al., 2017) have
two layer normalization (Ba et al., 2016) mod-
ules for each transformer encoder layer, and
these are known to play an important role (§4).
Each layer normalization layer has learnable
scale γ and bias parameters β that apply an el-
ementwise scale and shift to the input of the
layer normalization layer. In the first strategy,
we allow the layer normalization layers to re-
main unlocked and receive gradient updates. In
BitFit (Ben Zaken et al., 2022), (Bias-term Fine-
tuning), the additive bias terms of every module
in a transformer encoder layer are allowed to
remain unlocked and receive gradient updates.
Both of these strategies unlock a small percent-
age (0.24% and 0.31% of the parameters in a
12-layer base transformer respectively).

2.4 IMPLEMENTATION DETAILS

Datasets We draw 591, 753 image-text pairs
from the training set of COCO2014Lin et al. (2014), following the split of Karpathy & Fei-Fei
(2017). The weights of the vision encoders are initialized from DeiT Touvron et al. (2021), and the
text encoders are initialized from SimCSE (Gao et al., 2021). We train each model with a batch
size of 512 on 4x NVIDIA A6000 GPUs for 15 epochs, using the AdamW optimizer (Loshchilov
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Table 1: An ablation study with bert-base as the text encoder and a ViT-B/16 as the image encoder.
An indicates the component is locked and does not recieve gradient updates, while indicates the
opposite. LN( T / I ) indicates the layer normalization weights in the text encoder were locked
while those of the image encoder recieved gradient updates, and vice versa for LN( T / I ). θ is
the trainable linear projection. TR and IR is mean text retrieval and image retrieval scores across
Rank-1,5,10. Deep (Fig 3) and Layerwise (Fig. 2) adapters are detailed in §2.2, and BitFit in §2.3.

Components Flickr ImageNet V2

TE IE θ Unlock Strategy Adapter % Trained TR IR Acc-1

(a) Frozen LN( T / I ) - 0.00 % 0.8 1.3 0.2
(b) LN Only LN( T / I ) - 0.04 % 24.3 21.6 4.3
(c) Projection Only LN( T / I ) - 0.20% 38.7 31.8 6.7
(d) LilTLN LN( T / I ) - 0.24% 62.3 51.74 12.5
(e) LilTBF BitFit - 0.31% 62.6 52.1 12.6
(f) LilTDA w/o LN LN( T / I ) Deep 6.96 % 57.5 47.8 9.02
(g) LilTDA LN( T / I ) Deep 6.99 % 68.6 58.5 12.9
(h) LilTLwA w/o LN LN( T / I ) Layerwise 6.97 % 74.8 63.9 12.0
(i) LilTLwA LN( T / I ) Layerwise 7.01 % 75.4 64.4 12.2
(j) LilTLwA(BitFit) BitFit Layerwise 7.09% 75.3 64.4 12.2
(k) LilTDA (BitFit) BitFit Deep 7.06% 68.7 58.4 13.2

(l) LiT LN( T / I ) - 56.01 % 66.1 53.5 15.0
(m) LiT (reversed) LN( T / I ) - 43.99 % 53.7 46.22 8.8
(n) LiT + LilTDA LN( T / I ) Deep 65.87 % 84.2 75.2 13.6
(o) LiT + LilTLwA LN( T / I ) Layerwise 57.57% 76.7 64.9 13.84

(p) CLIP LN( T / I ) - 100.0 % 75.8 65.8 12.3

& Hutter, 2017) optimizer with a weight decay of 0.02. The learning rate is warned up to 1e−4 in
the first 10 epochs, and then decayed to 1e−5. We use random crops of resolution 256× 256 with
RandAugment(Cubuk et al., 2020), with colors transformations removed following Li et al. (2021a).

3 EXPERIMENTS

We conduct experiments on zero-shot multimodal classification, image-text retrieval, and multilingual
image text retrieval to investigate the following research questions.

1. Can contrastive vision language models be created through parameter-efficient transfer
learning?

2. How do different methods for parameter efficient transfer learning interact with each other?
3. Do contrastive vision language models created through parameter-efficient transfer learning

conserve useful knowledge from their initializations better than full-model finetuning?
4. Does parameter-efficient transfer learning scale with respect to model size and dataset size?

We evaluate all models on five tasks: zero-shot natural-language guided image classification (Radford
et al., 2021), image-to-text retrieval (TR), text-to-image retrieval (IR), and 0-shot TR/IR. For zero-shot
classification, we use the ImageNetV2 (Recht et al., 2019) test set. For IR/TR, we use the COCO2014
test split of Karpathy & Fei-Fei (2017), containing 5k images and 25k captions. For zero-shot IR/TR,
we use the test set of Flickr30k(Plummer et al., 2015), containing 1k images and 5k captions.

3.1 ABLATION STUDY

The results of the study are displayed in Table 1. After updating only 0.24% of parameters, parameter
unlocking methods achieve equivalent zero-shot classification performance to full-model training:
compare (d) & (e) to (p). However, parameter unlocking alone is insufficient to achieve the image-
text retrieval abilities of full-model training, but adapter-based methods (f-k) can match full-model
training (p) in both zero-shot classification and image-text retrieval. BitFit and layer normalization
unlocking are interchangeable as parameter unlocking strategies (< 0.2% difference between (f/j) and
(h/i)). LilTLwA (h), with the layerwise adapters, is substantially better (≈ 7%) at image text retrieval
than LilTDA (f), and only slightly worse at classification. LilT and LiT are complimentary (m/n), and
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Table 2: Cross-lingual zero-shot retrieval. A multilingual bert-base model is aligned with a
ViT-B/16 on English image-text pairs from COCO, and evaluated on image-text pairs in languages
unseen during alignment.

RU PL TR ZH KO IT ES

TR IR TR IR TR IR TR IR TR IR TR IR TR IR

LiT 45.17 40.17 44.0 41.83 24.17 23.33 64.67 61.0 34.17 29.67 60.17 56.0 65.67 62.33
CLIP 57.67 53.17 59.17 54.83 33.33 29.83 79.0 74.0 42.33 35.33 71.0 65.33 75.67 69.5

LilTDA 58.5 51.33 60.33 55.33 42.33 35.0 74.17 67.67 44.67 35.67 74.5 68.83 77.0 74.17
LilTLwA 61.83 57.0 63.0 56.5 46.5 41.0 79.0 72.83 50.0 43.67 77.67 72.17 79.17 74.5
∆ ↑4.17 ↑3.83 ↑3.83 ↑1.67 ↑13.17 ↑11.17 ↑0.0 ↑-1.17 ↑7.67 ↑8.33 ↑6.67 ↑6.83 ↑3.5 ↑5.0

it is possible to only align only one of the encoders in a parameter-efficient manner. While LiT (k)
excels at image classification, it suffers from a similar problem as parameter unlocking strategies: it
is relatively poor at image text retrieval.

Discussion First, it is clear that creating contrastive vision-language models through parameter-
efficient transfer learning is feasible, and there are clear differences between model capabilities
induced by different parameter-efficient transfer learning methods. Layerwise adapters stand out
as the parameter-efficient transfer learning strategy capable of matching or exceeding full-model
training. However, in cases where the language distribution is sufficiently simple (e.g. a list of
singular words), parameter unlocking is sufficient, and easier to implement. Deep adapters stand out
for their ability to achieve better performance than full-model training when combined with LiT (m).

3.2 CONSERVATION OF KNOWLEDGE FROM INITIALIZATION

We hypothesize that parameter efficient transfer learning preserves more knowledge from initialization
than full model finetuning, and this is beneficial in some realistic scenarios. Low-resource languages
likely do not have large-scale image-text pairs available to train a multimodal CLIP-like model for
that language. However, unimodal, multilingual language models that have been trained on a dataset
containing sentences from a given low-resource language often exist. A possible solution in this
situation is to train a CLIP-like model on available image-text pairs from a high-resource language,
while using a multilingual language model as the text encoder. The resulting model may be able to
generalize to image-text retrieval tasks in a language unseen during vision-language alignment due to
the multilinguality of the pretrained text encoder. We simulate this setting by aligning a pretrained
multilingual BERT-base model with an ImageNet-pretrained ViT-B/16 on English-only image-text
pairs, and evaluate it on image-text pairs in six different languages that the model was never provided
paired images for. If parameter-efficient training preserves more knowledge from initialization, and
that knowledge is useful, we expect that the retrieval model created through parameter efficient
transfer learning should retain more of its multilingual language ability, and hence display greater
accuracy on non-English languages.

We reuse the English training data from §2.4, and evaluate each model on the test set of Aggarwal &
Kale (2020), which contains 1400 image-text pairs, split equally between Russian, Polish, Turkish,
Chinese, Korean, Italian, and Spanish. We summarize results in Table 2. LilTLwA outperforms CLIP
on 12/14 tasks (5.3% absolute improvement), while LilTDA achieves better performance than CLIP
on 11/14 tasks (1.4% absolute improvement). This suggests that parameter-efficient transfer learning
conserves more information from initialization, and that information is useful for multimodal tasks.

3.3 SCALING WITH RESPECT TO DATA AND MODEL SIZE

Can parameter-efficient transfer learning take advantage of larger models and larger amounts of data?
We test the the performance of parameter-efficient transfer learning as the amount of image-text
pairs is increased to 1500k from 591k (Table 4) and as model size is increased (Table 3) from base
(≈ 200M params) to large (≈ 700M params). When the amount of training pairs available triples,
parameter-efficient transfer learning continues to match the performance of full-model training: (b)
vs (d) in Table 4. Similarly, the performance of parameter-efficient transfer learning improves as
model size increases: (a) vs (b) & (c) vs (d) in Table 3.
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Table 3: Zero-shot task performance of base/large models after parameter-efficient
training.LwA/DA indicates adapter types, corresponding to (rows h/f in Table 1).

Model (591k Training Pairs) Flickr ImageNet V2

Configuration # Trainable % Trained TR@1 IR@1 TR@5 IR@5 Acc-1 Acc-5

(a) LilTDA-base 14.65 M 7.51% 47.6 34.46 74.1 64.92 12.94 28.39
(b) LilTDA-large 25.92 M 4.06% 57.6 42.18 82.2 72.38 13.97 30.89

(c) LilTLwA-base 14.67 M 7.01% 56.8 41.7 81.1 70.74 12.18 27.78
(d) LilTLwA-large 51.18 M 7.43% 63.5 50.7 88.5 79.14 14.05 31.31

(e) LiT-base 109.28 M 56.01% 44.1 29.64 72.1 59.94 15.0 29.44
(f) CLIP-base 195.13 M 100.0% 56.1 44.3 81.7 71.98 12.29 28.44

Table 4: Zero-shot performance of base models after larger-scale pretraining (1.5M pairs).
Model (1.5M Pairs) Flickr ImageNet V2

Configuration # Trainable % Trained TR@1 IR@1 TR@5 IR@5 Acc-1 Acc-5

(a) LiT-base 109.28 M 56.01% 48.8 32.72 78.1 63.02 20.63 38.12
(b) CLIP-base 195.13 M 100.0% 60.5 43.8 84.7 72.16 16.61 35.14

(c) LilTDA-base 14.65 M 7.51% 50.4 35.66 78.2 65.3 16.98 35.53
(d) LilTLwA-base 14.67 M 7.01% 61.1 44.5 85.6 72.9 15.83 35.31

3.4 WHAT HAPPENS DURING ALIGNMENT?

We attempt to understand how alignment changes the language and vision model by studying the layer
normalization layers of each model. Let fθ be an image encoder gϕ be a text encoder. We initialize
fθ with weights from DEiTTouvron et al. (2021), and gϕ with weights from SimCSE Gao et al.
(2021). We then lock all parameters except the layer normalization layers (configuration (c) in Tab.
1), and train the model following the standard CLIP training procedure, resulting in a pair of aligned
encoders (f̄θ, ḡϕ). In total, we have four different models: the unaligned and aligned image encoders
(fθ, f̄θ) and the unaligned and aligned text encoders (gϕ, ḡϕ). Without loss of generality, we describe
our procedure for the text encoder pair (gϕ, ḡϕ). Let LN1

i (γ, β) and LN2
i (γ, β), denote the two

normalization sublayers of the i-th layer in the transformer encoder stack. For layer i ∈ 1, 2, . . . N ,
we plot the L1 norm of the difference between the trainable layer normalization parameters γ, β of
the aligned and unaligned encoders. We plot the results in Fig 4. Surprisingly, the text and image
encoders display clearly opposite patterns (negative Pearson’s r). In the text encoder, the difference
between the aligned and unaligned layer normalization parameters decreases with depth — layer
normalization parameters in the deeper layers of the text encoder change less as a result of alignment
training. This is the opposite of the image encoder. In the image encoder, the layer normalization
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Figure 4: The depth of the layer normalization layers affects how much they are changed by alignment
training, and the pattern is reversed between the image and text encoders. ρ is the Pearson correlation
coefficient, and the translucent blue/yellow shading indicates 95% confidence intervals.
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Figure 5: We freeze all parameters except for the LN parameters, then progressively lock LN
parameters by layer. Fig 4 suggests that freezing the LN parameters in the deepest layers of the
language model and the shallowest layers of the vision model (Pattern A) should have a smaller effect
on performance than the opposite pattern (Pattern B), relative to the baseline (LNs in every layer
unlocked) which we observe.

parameters which shift the most as a result of training are the deepest. We conduct another experiment
with 50k pairs (Fig 5) to test the consequences of this pattern.

Discussion The patterns in the layer normalization layers may indicate that during alignment, the
language and image modalities undergo changes at different semantic levels. The shallowest three
layer normalization layers of the ViT-B/16 experience a ≈ 70% lower magnitude shift than the deepest
three layers. The shallow layers of a vision transformer attend more to local information (Raghu
et al., 2021), while the deeper layers attend more to global context. Intuitively, this makes sense – we
should expect an asymmetry between the amount of information in a short image caption compared
to a dense image. Simple natural language concepts are often visually complex. Interestingly, this
has already been exploited by certain vision-language models — (Khan et al., 2022; Li et al., 2021a)
align the lower half of their text encoder to the visual encoder, while using the top half for a different
purpose. This makes sense, given that the lower layers of the text encoder seem to change the most
during alignment.

4 RELATED WORK

Vision-Language Pretraining The dual-encoder CLIP (Radford et al., 2021) (400m pairs) and
ALIGN (Jia et al., 2021) (1b+ pairs) architectures were the first attempts at large-scale contrastive
image-language alignment using the InfoNCE (van den Oord et al., 2018) loss to maximize the
mutual information between matched image and text pairs. Subsequent work (Pham et al., 2021;
Li et al., 2021b; Yao et al., 2021; Cui et al., 2022; Yang et al., 2022; Khan et al., 2022; Li et al.,
2021a) has improved on the training tasks, dataset, and architecture of CLIP. While systems utilizing
a multimodal encoder and cross attention Li et al. (2022); Khan et al. (2022); Wang et al. (2022); Lu
et al. (2022); Zhu et al. (2021) perform better on benchmarks, their multimodal encoder makes them
unsuitable for latency-sensitive search application, because rather than learning separate but aligned
image and text embeddings, they learn a single multimodal embedding for an image-text pair. Thus,
neural search remains the domain of contrastive vision-language models.

Frozen Language Models Tsimpoukelli et al. (2021) demonstrated that pretrained large language
models are capable of quickly adapting to image understanding. They use an autoregressive
transformer-based language model, which is frozen. A trainable ResNet (He et al., 2016) is then
trained to transform images into input the frozen transformer can understand, by backpropagating
the loss through the frozen transformer. MAGMA Eichenberg et al. (2021), FROMAGE Koh et al.
(2023) and FLAMINGO Alayrac et al. (2022) scaled the conceptual approach of Tsimpoukelli et al.
(2021) to billions of parameters, and recently, Merullo et al. (2022) have shown that a simple linear
mapping is enough to allow a frozen large language model to (roughly) understand visual input, as
long as the visual encoder has been trained to represent visual concepts aligned to language (e.g.
CLIP). However, emerging approaches such as BLIP-2 Li et al. (2023) show that by combining soft
prompting with a frozen LLM and a trainable visual encoder, a LLM can achieve state-of-the-art
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accuracy on visuolinguistic understanding tasks such as visual question answering. Lu et al. (2021)
propose the idea that transformers trained on language are capable of a form of universal computation,
and can adapt to new tasks even if they are frozen, and do so better than fine-tuned models. However,
Rothermel et al. (2021) find the findings may be reversed under certain hyperparameter settings.
Interestingly, both note that the normalization layers seem to play an important role in this adaptation.

Parameter-Efficient Finetuning Many forms of adapters (Houlsby et al., 2019b; Karimi Mahabadi
et al., 2021; Mahabadi et al., 2021) have been explored in natural language processing. VL-Adapter
(Sung et al., 2021) investigate adapters in vision-language, but assume aligned visual representations.
Lester et al. (2021) find that for very large language models, parameter-efficient adaptation approaches
such as soft prompting are equivalent to finetuning the large language model. Liu et al. (2021) extend
this finding, showing that combining soft prompting with adapters can often exceed finetuning on a
given downstream task. Both prefix (Li & Liang, 2021) and prompt (Lester et al., 2021) tuning can
also be understood as exploiting the knowledge in frozen transformers, as their optimization loops
involve freezing the language model, effectively turning it into a part of the loss. Zhang & He (2020)
develop a training scheme that progressively unfreezes / freezes layers of a transformer language
model, and see significant improvements in training speed. Progressive growth approaches (Gu et al.,
2021) slowly increase the depth of a transformer as training proceeds.

Layer Normalization in Transformers Kovaleva et al. (2021) find that the representations of
transformers contain outlier dimensions that disrupt the quality of the learned embedding, and point
to high-magnitude parameters in the layer normalization layers. A variety of techniques targeting
layer normalization in transformers have been proposed, with various benefits. Xiong et al. (2020)
prove that the placement of layer normalization layers relative to the residual connection in the
transformer block contributes to learning instability under large learning rates, and propose an
alternate placement. In contrast, FixUp (Huang et al., 2020) develops a novel initialization scheme
for transformers that enables removing the normalization layers entirely. ReZero (Bachlechner et al.,
2021) adds a learnable gate parameter to each residual connection before layer normalization, and
demonstrate training extremely deep transformers quickly.

5 CONCLUSION & FUTURE WORK

We show that the performance of full model training for contrastive vision language alignment
can be matched by updating a small number of parameters in existing vision models and language
models, followed by an insertion of trainable modules. This suggests that the current paradigm
of full-model training for contrastive vision language alignment involves significant unnecessary
computation, and can be replaced by parameter-efficient transfer learning when the downstream
use cases are natural-language classification or image-text retrieval. Current alignment strategies
align representations from the top of each encoder stack. We find that in the text encoder, alignment
changes the normalization parameters in the shallowest layers the most, while it is the opposite for the
image encoder. Investigating and exploiting the asymmetry between vision and language could yield
further benefits for multimodal understanding or more efficient training strategies. For future work,
it would be interesting to analyze whether CLIP-like models created through parameter-efficient
transfer learning are similar to CLIP in ways other than performance — for example, are they more
or less biased? Or more or less robust to distribution shift? Another useful line of investigation would
be probing vision-language models further to understand how alignment training effects the ability of
the model to understand language. In summary, we believe that existing training methods are not
fully exploiting the knowledge that exists in their initializations. Our approach presents one simple
but effective way to use that knowledge.
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6 APPENDIX

6.1 ADDITIONAL DATASETS

We conduct zero-shot classification experiments on three further datasets (Table 5): CIFAR-100
Krizhevsky (2009), SVHNNetzer et al. (2011), and ImageNet-AHendrycks et al. (2021). As CIFAR-
100 and SVHN are both standard datasets, we only briefly describe them here. The CIFAR-100
dataset consists of 60k 32x32 colour images divided into 100 classes containing 600 images per
class. Each class has 500 training and 100 test images, for a total of 50k training and 10k test images.
We use the CIFAR-100 test set for the evaluations. SVHN is a harder version of MNIST Deng
(2012), consisting of natural images of digits cropped from street-level pictures. We use the 26k test
images for evaluation. ImageNet-A consists of natural adversarial examples from the ImageNet1k
distribution, which are natural, correctly labeled images that classifiers incorrectly classify with high
confidence. We use the 7k test images.

Table 5: Evaluation on additional zero-shot classification tasks. First place is in bold and second
place is in red. LilT models are boxed in green. Acc-1 stands for top-1 accuracy, and Acc-5 is top-5
accuracy. Higher is better.

Model CIFAR100 SVHN ImageNet-A

Configuration # Trainable % Trained Acc-1 Acc-5 Acc-1 Acc-5 Acc-1 Acc-5

(a) LilT-tiny 736.45 K 7.37 16.98 37.49 13.0 57.39 2.77 9.15
(b) LiT-tiny 4.45 M 44.57 18.33 39.14 12.47 55.02 3.39 11.03
(c) LilT-small 5.19 M 10.28 27.52 50.28 11.95 54.15 4.79 13.8
(d) CLIP-tiny 9.99 M 100.0 18.74 41.1 14.97 63.18 2.73 10.49
(e) LilT-base 14.65 M 7.51 29.9 53.77 11.84 57.08 5.11 15.8
(f) LilT-large 25.92 M 4.06 31.33 57.93 7.39 42.21 7.61 23.44
(g) LiT-small 28.73 M 56.98 26.88 47.17 12.3 59.17 5.37 16.01
(h) CLIP-small 50.42 M 100.0 26.43 49.54 7.18 54.41 4.41 14.45
(i) LiT-base 109.28 M 56.01 26.15 48.69 11.51 55.75 5.92 18.13
(j) CLIP-base 195.13 M 100.0 25.25 50.93 9.47 53.33 4.68 16.41

(k) VGG-19Hendrycks et al. (2021) 143M M 100.0 - - - - 2.72 -
(l) ResNet-50Hendrycks et al. (2021) 23 M 100.0 - - - - 2.17 -
(m) ResNet-101 Hendrycks et al. (2021) 44.7 M 100.0 - - - - 4.9 -
(n) ResNet-152Hendrycks et al. (2021) 60.4 M 100.0 - - - - 5.2 -

6.2 NATURAL ADVERSARIAL EXAMPLES

Vision language models display impressive performance on ImageNet-A. ImageNet-A can be con-
sidered a ”hard slice” of the ImageNet distribution, containing samples which are problematic
for supervised classifiers. Suprisingly, the zero-shot classification performance of self-supervised
vision-language models on ImageNet-A matches and is sometimes greater than the performance of
supervised classifiers (ResNet-50 He et al. (2016) and VGG-19 Simonyan & Zisserman (2015)). This
may be partially due to the parameter count — there are more total parameters in most of the vision-
language models compared to the supervised CNNs. However, considering that the vision-language
models are facing a harder problem (performing zero-shot classification), their performance relative
to supervised CNNs is surprising.

6.3 WHERE DO THE MODELS FAIL?

On the SVHN dataset, performance is poor. The large models perform worse than random chance
(< 10%), and the smaller the model, the better it performs. One explanation could be that there is no
way for the models to learn a correspondence between images of digits and the name of each digit, as
nothing similar appears in the COCO training distribution, which only contains common objects.
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Figure 6: The effect of pretraining on model performance.

6.4 DOES PRETRAINING MATTER?

6.4.1 PRETRAINING VS. RANDOM INITIALIZATION

We follow the standard training procedure (§2.4) and train a CLIP-base model where both of the
encoders are initialized randomly, instead of using weights initialized from unimodally pretrained
models (DeIT Touvron et al. (2021) and SimCSE Gao et al. (2021)). We train three models, one for
each dataset size. The results can be seen in Fig 6. Compared to the randomly initialized model, the
pretrained model is substantially better across all three datasets and all 3 model sizes. However, it
is likely that the benefit of unimodal pretraining will be diminished as the number of training pairs
available for multimodal vision-language pretraining increases, although we do not explore this.

6.4.2 DOES THE KIND OF UNIMODAL PRETRAINING MATTER?
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Figure 7: A comparison of different kinds of pretraining on LilT performance. Each model is trained
on 591k pairs.

We train LilT-base models with encoders initialized from different kinds of pretraining methods. For
the text encoder, we choose between bert-base-uncased Devlin et al. (2019) and SimCSE Gao
et al. (2021). For the image encoder, we choose between DeiTTouvron et al. (2021) and DINO Caron
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Figure 8: CLIP appears to be more sensitive to the size of the text encoder than the size of the image
encoder.

et al. (2021). We train all models on 591k pairs following §2.4. The unimodal pretraining methods
chosen do have an effect on the performance on the vision-language model. The combination of
SimCSE and DeiT appears to be consistently better than other combinations, although on ImageNetV2,
BERT-DeiT performs better.

6.5 ZERO-SHOT PROMPTS

Although CLIPRadford et al. (2021) uses a prompt ensemble, we use only a single prompt for all
datasets except SVHN: a photo of { }. For SVHN, we use the prompt a photo of the
number { }.

6.6 ENCODER SYMMETRY

Which encoder matters more? We train three configurations of CLIP on 5k, 50k, 591k pairs (Fig. 8).
One is the symmetric CLIP-base, while the two asymmetric configurations have their text encoder
and image encoder respectively replaced with the ”tiny” version. Across all three dataset scales, the
model with the smaller text encoder performs worse. Zhai et al. (2021) find that on large scale data
(10m+ pairs), the opposite holds true — a larger image encoder is better than a larger language model.

6.7 DOES LILT WORK WITH SMALLER MODELS AND LESS DATA?

We test LilT and full-model training on smaller versions of transformers, corresponding to ‘bert-base‘,
‘bert-small‘, ‘bert-tiny‘, and with decreasing amounts of image-text pairs (5k, 50k). The results are
depicted in Figure 9 and Figure 10 for LilTDA. There are no idiosyncratic results — as model size
is decreased, performance decreases for both full model training and parameter efficient transfer
learning. Similarly, as the amount of data decreases, performance also decreases. This holds true for
all tested combinations of dataset size and model size.
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Figure 9: LilT’s performance scales with increasing model size and dataset size — it is not limited to
a specific model size or dataset size. LilTDA is pictured.
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Figure 10: The performance of full-model training on smaller models and with less data.

17


	Introduction
	Methods
	Background
	Adding Adapters
	Unlocking Parameters
	Implementation Details

	Experiments
	Ablation Study
	Conservation of knowledge from initialization
	Scaling with respect to data and model size
	What happens during alignment?

	Related Work
	Conclusion & Future Work
	Appendix
	Additional Datasets
	Natural Adversarial Examples
	Where do the models fail?
	Does pretraining matter?
	Pretraining vs. Random Initialization
	Does the kind of unimodal pretraining matter?

	Zero-shot Prompts
	Encoder Symmetry
	Does LilT work with smaller models and less data?


