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ABSTRACT

Although Vision-Language Models (VLM) have demonstrated impressive plan-
ning and reasoning capabilities, translating these abilities into the physical world
introduces significant challenges. Conventional Vision-Language-Action (VLA)
models, which integrate reasoning and action into a monolithic architecture, gen-
eralize poorly because they are constrained by scarce, narrow-domain data. While
recent dual-system approaches attempt to decouple “thinking” from “acting,” they
are often constrained by semantic ambiguities within the action module. This
ambiguity makes large-scale, cross-task training infeasible. Consequently, these
systems typically necessitate fine-tuning on newly collected data when deployed
to novel environments, and the cooperation mechanism between the two systems
remains ill-defined. To address these limitations, we introduce, for the first time,
a framework centered around a generalizable action expert. Our approach uti-
lizes sparse 3D trajectories as an intermediate representation, effectively bridging
the high-level planning capabilities of the VLM with the low-level physical ac-
tion module. During the planning phase, the VLM is only required to generate
coarse 3D waypoints. These waypoints are then processed by our generalizable
action expert, which refines them into dense, executable action sequences by sam-
pling real-time point cloud observations of the environment. To promote training
efficiency and robust generalization, we introduce a novel “Action Pre-training,
Pointcloud Fine-tuning” paradigm. Our method combines the broad generaliza-
tion capabilities of VLMs in visual understanding and planning with the fine-
grained, action-level generalization of action expert. Through extensive experi-
ments, we demonstrate that our method exhibits high-quality results and strong
generalization across diverse visual domains, camera viewpoints, and natural lan-
guage instructions, enabling zero-shot deployment without further fine-tuning.

1 INTRODUCTION

“Learning is about generalization, not memorization.”
— Herbert A. Simon, Models of Thought (1979)

Vision-language models (VLMs) (Bai et al., 2025; Chen et al., 2024b; Wang et al., 2025b; Comanici
et al., 2025) have demonstrated powerful capabilities in visual understanding, spatial reasoning,
and task planning. However, translating these abilities to the physical world presents unprece-
dented challenges. A prevailing strategy to bridge this gap is the Vision-Language-Action (VLA)
model (Kim et al., 2024; Brohan et al., 2022; Zitkovich et al., 2023), which integrate reasoning and
action into a monolithic architecture. However, this approach introduces a critical paradox: the fine-
tuning required for effective robotic control, typically on scarce, narrow-domain robotics data, often
causes catastrophic forgetting on VLM. This process inadvertently erodes the VLM’s foundational
knowledge, leading to the poor generalization commonly observed in VLAs and undermining the
primary motivation for the use of VLMs.

A key reason behind this phenomenon is that VLA models often conflate the high-level reasoning
and low-level execution. While recent methods (Black et al.; Li et al., 2025; Huang et al., 2025;
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Li et al., 2024) have moved towards decoupling “thinking” and “action” into distinct modules typ-
ically with dual-system frameworks, a persistent challenge still remains. The action module is still
required to interpret semantically rich information, such as visual features (Bjorck et al., 2025) or
semantic embeddings (Huang et al., 2025) from a VLM. As a result, the action policy is caught in
a dilemma, as it faces the conflicting demands of being lightweight enough for real-time execution
while also being responsible for interpreting complex high-level semantic information. This seman-
tic burden on the execution policy renders large-scale, cross-task training infeasible and severely
restricts its generalization capability. Consequently, these approaches did not fundamentally resolve
the aforementioned key challenges in VLA models.

To address these limitations and achieve a true decoupling of planning and execution, we introduce
a novel framework centered around a generalizable action expert. We architect the system so that
this expert communicates with the VLM planner via an explicit representation: a sparse sequence of
coarse 3D waypoints. This design choice places the planning task squarely in the VLM’s comfort
zone, as generating simple geometric coordinates instead of complex embeddings is well-aligned
with its inherent capabilities. This approach minimizes the need for extensive fine-tuning, thereby
preserving the VLM’s rich world knowledge and maximizing its generalization.

For the action expert itself, this explicit guidance is transformative. It is liberated from the burden of
complex semantic interpretation, shifting its role from a challenging, reasoning-dependent semantic-
to-action mapping to a more tractable geometric refinement task. Guided by the coarse waypoints,
the expert leverages real-time point cloud observations to refine the sparse trajectory into a dense,
executable action sequence. To endow our expert with this capability, we introduce a novel “Action
Pre-training, Pointcloud Fine-tuning” paradigm. This entire framework, analogous to human motor
control, allows the action expert to focus solely on robust, real-time execution. Our method syn-
ergistically combines the perceptual and reasoning generalization of VLMs with the fine-grained,
motion-level generalization of our generalizable action expert. As extensive experiments confirm,
this synergy results in a system with powerful generalization, enabling robust zero-shot deployment
without the need for further fine-tuning. In conclusion, our contributions are summarized as follows:
• We introduce a framework centered on a generalizable action expert that uses sparse 3D trajec-

tories as a clean interface. This architecture fully decouples high-level VLM planning from low-
level motor control. To the best of our knowledge, this is the first attempt to train a generalizable
expert that can be deployed without requiring any task-specific fine-tuning.

• We propose the “Action Pre-training, Pointcloud Fine-tuning” strategy. This method enables our
action expert to generalize by focusing it on geometric trajectory refinement rather than semantic
interpretation.

• Our system demonstrates remarkable generalization across diverse experiments. We validate its
practical viability through successful zero-shot deployment without any in-domain fine-tuning

2 RELATED WORKS

2.1 SPATIAL REASONING ABILITY IN VISION-LANGUAGE MODELS

Equipping vision-language models (VLMs) with spatial reasoning capabilities has emerged as a
prominent research focus. Pre-trained on large-scale datasets, recent VLMs (Bai et al., 2025; Chen
et al., 2024b; Comanici et al., 2025) have demonstrated considerable ability in understanding 3D
spatial relationships, achieving competitive performance on spatial reasoning benchmarks (Zhang
et al., 2021; Azuma et al., 2022; Ma et al., 2022).A number of studies (Wu et al., 2025a; Cai et al.,
2024; Zhu et al., 2024; Chen et al., 2024a; Yuan et al., 2024; Song et al., 2025; Yang et al., 2025) have
sought to equip large models with powerful spatial understanding and reasoning. Their approaches
typically involve either fine-tuning on extensive 3D datasets or directly incorporating explicit 3D
information. To prove the widespread validity of our framework, we used a widely adopted, general
Vision-Language Model (VLM) as our baseline, rather than models specifically fine-tuned for 3D
data. Our paradigm is exceptionally flexible and is compatible with almost all current VLM models.

2.2 VISION-LANGUAGE-ACTION MODELS

Recent advances in Vision-Language-Action (VLA) models have explored diverse architectures:
Conventional VLA models (Brohan et al., 2022; Zitkovich et al., 2023; Cheang et al., 2024; Ha et al.,
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2023; Kim et al., 2024; Black et al.; Wen et al., 2025b; Team et al., 2024) typically employ a single,
end-to-end architecture to map vision and language directly into an action space. Recent dual-
system frameworks employ a hierarchical architecture consisting of a high-level planning model
and a low-level action expert. These two components communicate through various intermediate
representations, such as trajectories (Li et al., 2024; de Bakker et al., 2025; Huang et al., 2025), visual
features (Li et al., 2025; Bjorck et al., 2025), or attention mechanisms (Black et al.; Intelligence et al.,
2025; AgiBot-World-Contributors et al., 2025). Although this design offers a degree of decoupling
compared to monolithic VLA architectures, the semantically ambiguous nature of these intermediate
representations poses a significant challenge for training the downstream action expert. The expert
becomes burdened with interpreting a portion of the semantic and task-specific information, which
impedes large-scale training. Our approach effectively alleviates this issue by using explicit, sparse
3D trajectories as a clear and unambiguous intermediate representation.

2.3 GENERALIZABLE ACTION EXPERT

Developing a generalizable action expert is a longstanding challenge in robotics. Commonly used
action experts (Chi et al., 2023; Zhao et al., 2023) are computationally efficient but have limited
model capacity, causing them to overfit and perform poorly in multi-task scenarios. To reduce
the heavy semantic planning burden on the action expert and improve its generalization, a pop-
ular approach is to supply it with guidance signals. This guidance, which can take the form of
object poses (Deng et al., 2020), keypoints (Manuelli et al., 2019), affordance Wu et al. (2025b),
and semantically segmented point clouds (Zhu et al., 2023), acts as an approximate action outline,
simplifying the problem and allowing the policy to concentrate on low-level refinement instead of
high-level strategic planning. Although these approaches improve generalization to some extent,
they still require fine-tuning for specific scenes and fail to adapt to truly novel environments. In
our method, we use sparse 3D end-effector pose trajectories as clear guidance, which are then re-
fined into executable and accurate action sequences by processing point clouds captured from the
environment in real time.

3 METHOD

Figure 1 shows the full pipeline of our method. We utilize 3D spatial trajectories to serve as the
bridge between our high-level VLM and low-level action expert. The process begins with the VLM,
which reasons about 2D keypoints and leverages depth data to generate two key outputs: a sparse
set of 3D waypoints and the final end-effector pose at the target keypoint. After transforming these
from the camera frame to the robot’s base frame, we use a B-spline to interpolate them. This step
converts the sparse points into a continuous and smooth end-effector pose trajectory, from which
guidance signals are sampled for the Action Expert, as we will detail in section 3.1 and 3.2.

Traditional Vision-Language-Action (VLA) models typically predict coordinates in the robot’s base
frame. We argue this approach is inherently flawed, as it implicitly forces the Vision Language
Model (VLM) to learn a complex camera-to-robot transformation, often without the necessary cam-
era priors. Such a task runs counter to the VLM’s vision-centric nature, encouraging shortcuts like
memorizing spatial coordinates rather than truly understanding spatial relationships. This tendency
explains the poor generalization commonly seen in these models. Our approach overcomes this
by predicting waypoints directly in the camera frame. This formulation is far more intuitive, as it
aligns directly with the VLM’s image-based pre-training and enables the model to fully preserve and
leverage its powerful prior knowledge.

3.1 LIFT VLM’S REASONING POWER TO 3D SPACE

Recent work has demonstrated that visual-language models pre-trained on internet-scale data exhibit
strong abilities in 2D object localization and spatial reasoning. However, enabling VLMs to reason
about the target robot poses in a zero-shot manner remains challenging. To address this, we fine-
tune a VLM with a small amount of carefully annotated data. Specifically, we identify and select
keyframes for annotation at moments where the gripper’s kinematic state changes, such as during
opening or closing, as these signify critical points of interaction. This annotation pipeline, described
in Figure 2, allows the model to estimate 3D spatial poses while preserving its original linguistic
and reasoning capabilities.

3
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3D Annotation Method Action Pretraining
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2D Point: [63, 188]

2.Get Depth

VLM

“Stack all the cups 
according to their size”

83.1cm

83.1cm

3.Infer Way Point

3D Trajectory: [[174, 76, 62.1], 
[108, 102, 72.3], [63, 188, 83.1]]

Target Gripper Pose: [0.384, 1.06, 1.1]
Target Gripper End State: close

Spline 
Interplation

Directly
Excute

Accurate
Real-Time 

Manipulation

Inaccurate Manipulation

Multi-Source PCD Finetuning

Sampling Environment PCD

Figure 1: The pipeline of our proposed method. Our approach begins with a VLM predicting a
sparse set of 3D waypoints directly in the camera frame, preserving its vision-centric knowledge.
These sparse points are then transformed and interpolated via a B-spline into a continuous and
smooth pose trajectory to provide dense guidance for a low-level action expert.

We annotate data based on gripper states, selecting keyframes where the state changes to construct
a supervised fine-tuning (SFT) dataset. The process is as follows: First, the VLM predicts the 2D
anchor point coordinates for grasping or placing a target object. Using depth information, we obtain
the corresponding 3D coordinates (u, v, d) of the target. This information is then fed into the VLM
to infer waypoints along the motion path, along with a target end-effector pose. Finally, we apply
spline interpolation to these waypoints and the target pose, generating a continuous end-effector
pose trajectory that provides guidance for the subsequent action expert.

3.2 TRAINING GENERALIZABLE ACTION EXPERT

Developing our generalizable action expert required overcoming two key challenges: the scarcity of
high-quality point cloud data, and the need for a training paradigm that maximizes efficiency
without sacrificing generalization. Our approaches to these fundamental problems are detailed in
Section 3.2.1 and 3.2.2.

3.2.1 DATA PREPARATION

Training a well-generalized action expert model requires a large volume of high-quality 3D point
cloud annotations from both real-world and simulated environments. In simulation, obtaining
high-fidelity point clouds is straightforward due to precise depth and camera data. We replayed

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

left
right

Annotation Frame L2Target Frame R1

User:Start with red block on the left, followed by green
block next to red block…please provide the 2d anchor
points of the operations needed.

Assistant:{"left": null, "right": {”2D Point": [73, 288]}}

User: Start with red block on the left, followed by green 
block next to red block, and end with blue block on the far 
right. The depth of the anchor point in cm is 
{"left": {"anchor_point_depth": null}, 
"right": {"anchor_point_depth": 83.9}}. 
Please provide the 3D trajectory of the operations needed.

Assistant:{"left": Reset, "right": {
”3D Trajectory": [[174, 146, 75.7], [144, 163, 70.6], 
[105, 229, 73.1], [54, 280, 75.2], [73, 288, 82.7]], 
”Target Gripper Pose": [1.374, 1.14, 1.363], 
”Target Gripper State": ”close"}}

L1
L2

L3
L4

R1 R2

1

0

1

0

Figure 2: Overview of our data annotation pipeline. We construct our SFT dataset by first select-
ing keyframes based on gripper state changes.

trajectories from multiple simulators, including RoboTwin (Mu et al., 2025; Chen et al., 2025),
CALVIN (Mees et al., 2022), LIBERO (Liu et al., 2023) and RLBench (James et al., 2019), yielding
a total of 50k trajectories accompanied by high-accuracy point clouds and joint poses.

In contrast, real-world datasets present significant challenges. Most existing robot manipulation
datasets lack high-quality depth annotations and accurate camera calibration parameters. Their depth
information typically comes from depth sensors, resulting in sparse and incomplete depth maps. This
severely limits their utility for training general-purpose robot learning models.

To overcome this limitation, we have re-annotated several real-world robot datasets with more ac-
curate and dense depth information. Specifically, for the DROID dataset (Khazatsky et al., 2025),
which provides stereo imagery, we employ FoundationStereo (Wen et al., 2025a) to generate high-
quality stereo depth estimates, significantly enhancing the accuracy and density of the depth an-
notations. For AGIBOT (AgiBot-World-Contributors et al., 2025), the raw depth maps from its
native camera are often sparse and of low quality. To address this limitation, we employ Prompt-
DepthAnything (Lin et al., 2025) to perform depth completion, generating dense and high-quality
depth information for downstream tasks.

To account for real-world scenarios where high-precision point cloud data may be unavailable, we
further utilized MoGe (Wang et al., 2024; 2025a) to re-annotate point clouds for a subset of the
BridgeV2 (Walke et al., 2023) and pre-mentioned simulation data. This step allows us to simulate
conditions lacking reliable depth information and test our model’s robustness.

To improve point cloud downsampling efficiency, we adopt the cropping strategy from 3D Diffu-
sion Policy (Ze et al., 2024). For simulated data, we directly use ground-truth segmentation IDs.
For real-world data, we generate foreground masks through a custom pipeline: initial masks from
RoboEngine (Yuan et al., 2025) are refined using temporal consistency tracking and integrated with
Segment Anything Model 2 (SAM 2) (Ravi et al., 2024) to ensure accuracy and temporal consis-
tency.

3.2.2 ACTION PRETRAINING, POINTCLOUD FINETUNING

Training our generalized action expert with extensive point cloud and trajectory data concurrently
poses a significant efficiency challenge. We identified that the expert’s role can be decomposed into
two core skills: basic trajectory-following and environment-aware trajectory refinement using point
clouds. To avoid the high cost and suboptimal learning that can result from training these coupled
skills together, we introduce the “Action Pre-training, Point Cloud Fine-tuning” paradigm. We first
pre-train the expert on large batches of pure trajectory data (up to a batch size of 31,824) to master
motion following, and then fine-tune it with point cloud data to learn refinement. Our experiments
confirm this decoupled approach achieves faster convergence and substantially improves data uti-
lization efficiency. Now we detail the architecture of our proposed model and its training process:
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Model Architecture Our action expert’s architecture is inspired by the design of 3D Diffusion
Policy (Ze et al., 2024). It integrates multimodal sensory inputs to guide the action generation
process. The full set of conditioning inputs CA for the action expert at any given timestep t is
defined as:

CA = {St,Pg, Opcd} (1)

where St represents the robot’s proprioceptive state, including information like joint positions and
gripper state. Pg is the guidance pose, which is sampled from the continuous trajectory T (t) gener-
ated by the high-level VLM. Opcd is the cropped point cloud observation of the local environment.

Each component of CA is processed by a dedicated encoder (MLPs for St and Pg , and a PointNet-
based encoder for Opcd) to produce a final conditioning feature vector fA

t .

fA
t = concat(fs

t , f
g
t , f

pc
t ) (2)

Conditional Diffusion Model Training We model the action expert as a conditional diffusion pol-
icy. Instead of directly predicting an action, the policy learns to reverse a Gaussian diffusion process,
iteratively refining a noisy action into a clean one, conditioned on fA

t . The policy is parameterized
as a noise prediction network ϵθ.

During training, we sample a ground-truth action a0t from the expert demonstration dataset D. We
then create a noisy action akt by adding k steps of Gaussian noise according to the noise schedule
ᾱk:

akt =
√
ᾱka

0
t +

√
1− ᾱkϵ (3)

where ϵ ∼ N (0, I) is random Gaussian noise. The noise prediction network ϵθ is trained to predict
the added noise ϵ based on the noisy action akt , the diffusion step k, and the conditioning feature fA

t .
The learning objective is to minimize the L2 error on the predicted noise:

LAE = Ek∼[1,K],a0
t∼D,ϵ∼N (0,I)

[
∥ϵ− ϵθ(a

k
t , k, f

A
t )∥2

]
(4)

At inference time, an action is generated by starting with a random noise vector aKt ∼ N (0, I) and
iteratively applying the learned network ϵθ to denoise it over K steps, finally yielding a clean action
a0t .

This formulation fits our “Action Pre-training, Point Cloud Fine-tuning” paradigm. During pre-
training, the point cloud feature within fA

t is masked out, training the diffusion model to follow
trajectories. During fine-tuning, the full conditioning vector is used, enabling the model to refine its
actions based on environmental context.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Our experimental validation spans both simulation, using the RoboTwin (Chen et al., 2025) and
ManiSkill (Mu et al., 2021) benchmarks, and real-world hardware. In all experiments, our action
expert is deployed in a zero-shot manner, while the VLM undergoes only a few steps of Supervised
Fine-Tuning (SFT) to learn formatted output prediction and pose inference. We analyze the effect
of the number of SFT steps on performance in Section 4.2, evaluating the entire spectrum from a
zero-shot setup to extensive fine-tuning.

4.2 MAIN RESULTS

We present a comprehensive comparison of our model against existing generalist and expert models
across 11 tasks in the RoboTwin benchmark, categorized into short, middle, and long horizons
(Table 1). Our model surpasses popular generalist models on all tasks. For short and middle-
horizon tasks, we achieve performance on par with the DP3 single-task expert model. Our primary
advantage is demonstrated in long-horizon tasks that require VLM-based planning. On these tasks,
where specialized expert models almost universally fail, our model shows exceptional capability,
achieving a 60% average success rate. Notably, while other generalist models like Pi0 and RDT

6
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require task-specific fine-tuning after multi-task training, our method does not. The fine-tuning
steps for our VLM are detailed in Table 2.

Table 1: Performance comparison between our multi-task generalist model and various single-task
expert models across short, middle, and long-horizon tasks. The best performance in each row is
bolded, and the second-best is underlined.

Category Task Name Generalist Model Expert Model

Ours Pi0* RDT* ACT DP DP3

Short Horizon

Click Bell 0.93 0.44 0.80 0.58 0.54 0.90
Grab Roller 0.97 0.96 0.74 0.94 0.98 0.98

Lift Pot 0.95 0.72 0.84 0.88 0.39 0.97
Place Phone Stand 0.39 0.35 0.15 0.02 0.13 0.44

Avg. 0.81 0.62 0.63 0.61 0.51 0.82

Middle Horizon

Handover Mic 0.99 0.98 0.90 0.85 0.53 1.00
Place A2B Left 0.38 0.31 0.03 0.01 0.02 0.46

Place Bread Basket 0.65 0.17 0.10 0.06 0.14 0.26
Stack Block Two 0.88 0.42 0.21 0.25 0.07 0.24

Avg. 0.73 0.47 0.31 0.29 0.19 0.49

Long Horizon

Blocks Ranking RGB 0.78 0.19 0.03 0.01 0.00 0.03
Blocks Ranking Size 0.53 0.07 0.00 0.00 0.01 0.02
Stack Block Three 0.49 0.17 0.02 0.00 0.00 0.01

Avg. 0.60 0.14 0.02 0.003 0.003 0.02

Table 2: Training Steps for Different Methods(GPU num*batchsize*steps).

Method Ours ACT DP DP3 Pi0 RDT

Training Steps (All tasks training) 8*32*1000 0 0 0 8*32*1000 8*32*1000
Training Steps (Single task fine-tuning) 0 32*10000 32*10000 32*30000 8*32*5000 8*32*5000

4.3 GENERALIZATION ABILITY

A critical limitation of conventional Vision-Language-Action (VLA) and diffusion-based models
is their dependency on training data, which often leads them to ”memorize” specific trajectories
rather than learning truly generalizable skills. This deficiency becomes particularly pronounced in
their failure to generalize to novel camera viewpoints, often requiring task-specific fine-tuning. To
rigorously demonstrate our model’s superior generalization, we conduct a multi-faceted evaluation.
As detailed in Table 3, after fine-tuning on only 200 trajectories with varied camera angles, our
model shows minimal performance drop on out-of-domain (unseen) perspectives, confirming its
viewpoint invariance. Furthermore, Table 4 showcases its strong zero-shot generalization on tasks
with novel colors, objects, and semantics, significantly outperforming the pi0 baseline using the
same pre-trained model. To validate the cross-environment transferability of our action expert, we
test its performance on the ManiSkill benchmark (Table 5), an environment whose data was entirely
excluded from pre-training, thereby confirming its robust generalization.

Table 3: Camera View
Task Name Camera View

In-Domain Out-of-Domain

Place A2B Left 0.28 0.26
Place A2B Right 0.24 0.19
Stack Block Three 0.36 0.30
Stack Bowl Three 0.54 0.56
Blocks Ranking Size 0.21 0.14
Blocks Ranking RGB 0.52 0.48

Table 4: Zero-shot Results
Category Task Name Ours Pi0

Color Stack Block Two 0.86 0.12
Blocks Ranking RGB 0.69 0.32

Object Stack NumberBlocks 0.38 0.00
Click Alarm Clock 0.58 0.20

Semantic Place A2B Right 0.39 0.23
Place A2B Randomly 0.28 0.16

Table 5: Maniskill

Task Ours DP3 ACT

Push Cube 0.89 0.83 0.81
Stack Cube 0.84 0.76 0.69
Pull Cube Tool 0.62 0.48 0.40

4.4 REAL WORLD EXPERIMENTS

Our robotic setup includes a single Franka Research 3 arm equipped with a UMI gripper (Chi et al.,
2024). A third-person-view RealSense D435 camera is mounted in a fixed position to capture en-
vironmental observations at a resolution of 640×480 pixels. As shown in Figure 3, for real-world
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evaluation, we designed six tasks that mirror our simulation experiments, categorized as short, mid-
dle, and long-horizon (two tasks per category). We collected 50 human demonstrations for each
task, creating a multi-task dataset of 300 trajectories to fine-tune our model. During this process,
only the Vision-Language Model (VLM) was updated, while the action expert remained frozen. In
contrast, all baseline models were fine-tuned on a single-task basis. To ablate the role of our action
expert, we also evaluate a VLM+IK baseline, which applies spline interpolation directly to the 3D
waypoints predicted by the VLM for execution. For evaluation, each task was attempted 20 times to
report the final success rate, as shown in Table 6. Further details of our real-world robot setting and
task definitions can be found in Appendix A.3.

Stack CupsPick up Toy Open Drawer Stack Cubes Put Toy into Basket Rank Cubes

Short-Horizon Middle-Horizon Long-Horizon

RealSense D435 cameraFranka Emika 
Research3

UMI Gripper

Real World Setting

Figure 3: Real World Task Setting.

Table 6: Performance comparison of different methods across short, middle, and long-horizon tasks.

Method Short Horizon Middle Horizon Long Horizon Average
Pick up Toy Open Drawer Stack Cubes Put toy into Basket Rank Cubes Stack Cups

ACT 0.65 0.55 0.40 0.50 0.10 0.00 0.367
DP 0.85 0.75 0.40 0.45 0.15 0.00 0.433
DP3 0.90 1.00 0.60 0.75 0.20 0.15 0.600
OpenVLA 0.85 0.40 0.35 0.55 0.45 0.20 0.467
VLM+IK 0.75 0.60 0.40 0.50 0.50 0.30 0.508
VLM+DP(Origin) 0.90 0.80 0.75 0.80 0.70 0.55 0.750
VLM+DP(MoGe) 0.85 0.75 0.70 0.60 0.60 0.30 0.633
VLM+DP(PromptDepth) 0.95 0.85 0.75 0.75 0.85 0.55 0.783

4.5 ABLATION STUDIES

4.5.1 ABLATION ON TRAINING STEPS

We investigated our model’s performance across a spectrum of Vision-Language Model (VLM) fine-
tuning, from zero fine-tuning to excessive fine-tuning that resulted in a significant degradation of
language abilities in Table 7. We measured the success rate on a subset of our RoboTwin tasks with
two approaches: 1) directly using Inverse Kinematics (IK) to execute trajectories generated by the
VLM, and 2) utilizing our generalizable action expert to process the VLM’s output. Concurrently,
we benchmarked the VLM’s language capabilities (e.g., using MMLU). The results clearly indicate
that employing our generalizable action expert allows the model’s performance to saturate much
more rapidly, as clearly demostrated in Figure 4. This significantly reduces the required number
of Supervised Fine-Tuning (SFT) steps for the VLM, thereby preserving its crucial language-based
generalization capabilities.

Table 7: SFT step ablation.
SFT Steps 0 500 1000 1500 2000 2500 3000 3500 4000

VLM + IK Avg 0.04 0.26 0.32 0.34 0.40 0.43 0.47 0.52 0.52
VLM + Expert Avg 0.10 0.44 0.56 0.56 0.57 0.57 0.58 0.58 0.58
Language Ability (MMLU) 70.08 61.32 49.25 41.81 37.33 29.98 29.89 29.85 29.43

Table 8: Noise scale ablation
Noise scale Short Horizon Middle Horizon Long Horizon

0.00 0.710 0.670 0.43
0.05 0.740 0.710 0.46
0.10 0.810 0.725 0.60
0.20 0.800 0.723 0.63
0.50 0.680 0.680 0.41

4.5.2 ABLATION ON DIFFERENT NOISE SCALES

We evaluated our model’s robustness in Table 8 by adding noise of different scales to the goal pose,
achieving optimal performance on the tasks in Table 1 at a noise scale of 0.1. This noise is inten-
tionally introduced during the training of our generalizable action expert to simulate the inherent
variability of VLM-generated trajectories, thereby improving the expert’s ability to generalize. A
careful balance is crucial: insufficient noise (or none at all) causes the expert to overfit to idealized
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data, while excessive noise corrupts the training signal with unrealistic goals, ultimately degrading
performance.

4.5.3 ABLATION ON DIFFERENT TRAINING STRATEGY

We are here！

Figure 4: Ablation on training steps. Figure 5: Ablation on training strategy.

To empirically validate our proposed ”Action Pre-training, Point Cloud Fine-tuning” (APPF)
paradigm, we compared its performance against the conventional end-to-end approach, where the
model is trained jointly on trajectory and point cloud data from the start. The results unequivocally
demonstrate the superiority of our decoupled strategy. During the action pre-training phase, by fo-
cusing solely on trajectory data, we circumvent the computational bottleneck of point cloud process-
ing. This allows us to scale the training batch size to an unprecedented 32768, enabling the model
to learn foundational motor skills at a dramatically accelerated rate and achieve faster convergence,
as shown in Figure 5. Furthermore, our experiments reveal a clear and positive correlation between
the volume of action data used in pre-training and the model’s final success rate after fine-tuning.
This substantiates our core hypothesis: building a robust motor foundation through large-scale ac-
tion pre-training leads to a more data-efficient learning process and ultimately, a higher-performing
generalized action expert.

4.5.4 ABLATION ON DIFFERENT POINTCLOUD SOURCE

As shown in Table 9, our ablation study on different point cloud sources reveals a critical trade-
off. We used ground-truth simulation data (S), Foundation Stereo-annotated Droid data (F),
PromptDepthAnything-annotated AGIBOT data (P), and MoGe-annotated BridgeV2/simulation
data (M). We found that combining the P+M datasets, despite their relatively lower point cloud
quality and a corresponding drop in simulation performance, significantly narrows the gap between
simulation and real-world deployment.

Table 9: Ablation study of different model components across various task horizons.

Short Horizon Middle Horizon Long Horizon Real World Task

F+P+M+S(main setting) 0.81 0.725 0.60 0.47
F+S 0.82 0.740 0.62 0.42
S 0.82 0.710 0.58 0.21

5 CONCLUSION

We have introduced a novel framework that resolves the critical trade-off between high-level reason-
ing and real-time control that has long constrained Vision-Language-Action models. By establish-
ing a clean interface of sparse 3D waypoints, we achieve a true decoupling of the VLM’s planning
role from our action expert’s execution role. This strategy, powered by our proposed “Action Pre-
training, Pointcloud Fine-tuning” paradigm, liberates the action policy from semantic burdens and
enables it to achieve unprecedented generalization. Our system’s success in robust zero-shot de-
ployment without any task-specific fine-tuning validates this approach, marking a significant step
towards creating truly adaptable and scalable robotic agents.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We are committed to conducting research responsibly and in accordance with the ICLR Code of
Ethics. Our study is based exclusively on publicly available datasets that are standard and widely
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animals, personally identifiable information, or any other form of sensitive data.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results and have provided the following to
support this goal:

• Methodology: Our model architecture and core methodology are described in detail in
Section 3.

• Implementation Details: Comprehensive details regarding our datasets, robotic hard-
ware, and training configurations are provided in Appendix A.2, Appendix A.3, and Ap-
pendix A.4, respectively.

• Code Release: Upon acceptance, we will release the complete source code and pre-trained
models to the public to facilitate verification and future research.
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A APPENDIX

USE OF LLMS

We used large language models (LLMs) only for minor assistance in polishing the language and
adjusting the presentation of tables. No LLMs were involved in designing the methodology, con-
ducting experiments, or analyzing results.

A.1 DATA SOURCES AND COVERAGE

We integrate seven comprehensive data sources, LIBERO, RoboTwin 2.0, DROID, AgiBot World,
CALVIN, RLBench and BridgeV2 into a unified framework, offering a diverse and robust founda-
tion for learning manipulation skills across various scenarios and tasks.

LIBERO: A dataset specifically designed for lifelong robot learning and knowledge transfer across
multiple tasks. LIBERO contains four task suites—LIBERO-Spatial, LIBERO-Object, LIBERO-
Goal, and LIBERO-100—each targeting different aspects of generalization: spatial relationships,
object variations, goal conditions, and long-term learning. The dataset provides multi-modal data,
including RGB images from workspace and wrist cameras, proprioceptive states (joint positions,
end-effector poses), natural language task descriptions, and PDDL-based scene annotations for
high-level planning. With 130 tasks in total, LIBERO supports both pretraining (LIBERO-90) and
evaluation (LIBERO-10) of lifelong learning algorithms, enabling research in compositional skill
acquisition and cross-task knowledge transfer.

RoboTwin 2.0: A scalable data generator and benchmark for robust bimanual manipulation with
strong domain randomization. It builds on the RoboTwin-OD object library, which includes 731
instances across 147 categories, and supports five dual-arm robotic platforms (Aloha-AgileX, ARX-
X5, Franka, Piper, UR5), offering 50 collaborative tasks. The dataset also includes over 100K
high-quality trajectories, providing a rich set of data with diverse conditions such as tabletop clutter,
textures, lighting, and varied table heights.

DROID: A large-scale, real-world dataset containing 76,000 demonstration trajectories (350
hours) across 564 scenes and 86 tasks, collected by 50 data collectors in North America, Asia,
and Europe. DROID emphasizes diverse, real-world manipulation tasks, offering multimodal data
such as camera images, proprioceptive data, and language annotations. The dataset is particularly
valuable for evaluating generalizable manipulation policies in dynamic, cluttered environments. Un-
like more controlled datasets like ManiSkill and RoboTwin 2.0, DROID provides rich, real-world
interactions, making it essential for training policies that must adapt to novel objects, environmen-
tal changes, and unexpected disturbances. Its robust data collection process ensures high-quality,
real-world training data, significantly boosting policy performance and robustness.

AgiBot World: A large-scale, real-world manipulation platform that spans over 1M trajectories
across 217 tasks, 87 skills, and 106 scenes, collected using a fleet of approximately 100 dual-arm
humanoid robots (AgiBot G1). These robots are equipped with RGB-D cameras, fisheye cameras,
visuo-tactile sensors, and optional 6-DoF dexterous hands. The dataset provides high-quality, multi-
modal episodes with multi-view images, depth data, calibration, proprioception, and step-level lan-
guage, emphasizing long-horizon, tool-use, deformable-object, and collaborative tasks in realistic
environments, including domestic, retail, industrial, and office settings. The data collection pro-
cess employs a standardized, human-in-the-loop pipeline (teleoperation, automatic validity checks,
manual review, failure-recovery annotations) to ensure high-quality, multimodal data.

CALVIN: An open-source benchmark designed to evaluate long-horizon, language-conditioned
robot manipulation. It is specifically built to test an agent’s ability to solve complex, sequential
tasks in a stateful environment where the world state persists between sub-tasks. CALVIN provides
both a simulated environment and a real-world setup with a Franka Emika Panda arm, making it
a robust platform for sim-to-real transfer research. The dataset includes multi-view RGB images,
proprioceptive robot states, and corresponding natural language instructions for long-horizon task
chains. Unlike episodic benchmarks that reset after each task, CALVIN’s emphasis on composi-
tional, stateful problem-solving makes it invaluable for developing and testing policies that require
memory, sequential reasoning, and a deep understanding of language grounding.
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RLBench: A large-scale and challenging benchmark designed to facilitate research in robot learn-
ing, offering a unified environment for both reinforcement learning (RL) and imitation learning (IL).
Built on the CoppeliaSim physics simulator, it features over 100 unique, programmatically-defined
tasks that cover a wide spectrum of manipulation challenges, from simple object placement to com-
plex, multi-stage behaviors like stacking and opening containers. RLBench is not a static dataset
but a dynamic data generator, capable of producing expert demonstrations on-demand using motion
planners. It provides rich, multi-modal sensory data, including multi-view RGB-D images, point
clouds, proprioceptive states, and natural language task descriptions. A key strength of RLBench is
its ability to generate countless task variations by randomizing object properties and positions, mak-
ing it an ideal platform for rigorously evaluating the generalization capabilities of learned policies.

BridgeV2: A large-scale, real-world robot manipulation dataset designed to drive research in gener-
alization by capturing immense visual and physical diversity. Collected across 50 unique real-world
kitchen environments using a fleet of low-cost WidowX 250 6-DoF arms, the dataset was gathered
through a large-scale, distributed teleoperation effort. It provides multi-view, high-resolution RGB
images, proprioceptive data (joint states and gripper information), and natural language instructions
for each of its over 7,200 successful task demonstrations. The defining characteristic of BridgeV2
is its unprecedented diversity; by sourcing data from a wide array of unstructured home environ-
ments, it presents policies with significant variations in lighting, object appearance, textures, and
physical dynamics. This makes it an essential resource for training and evaluating general-purpose,
vision-based manipulation policies that are robust to novel, unseen settings.

A.2 DATA STATISTICS

Table 10: Comparison of Robot Manipulation Datasets

Environment Dataset Number of Trajectories Arm Type

Simulation

LIBERO 12,000 Single
RoboTwin 8,000 Dual
RLBench 10,000 Single
CALVIN 20,000 Single

Real World
DROID 76,000 Single
AGIBOT 10,000 Dual
BridgeV2 14,000 Single

A.3 REAL WORLD ROBOT SETTING

Our experimental platform is centered around a 7-DoF Franka Research 3 robotic arm, augmented
with a UMI gripper (Chi et al., 2024) for versatile object interaction. Visual perception is provided
by a RealSense D435 camera, which is statically mounted to offer a fixed, third-person perspective
of the workspace. The camera captures RGB-D images at a resolution of 640×480 pixels. For
intuitive data collection, we gather expert demonstrations via teleoperation using a 6-DoF 3D mouse,
adapting the publicly available implementation from code 1. The robot’s control loop operates at
20 Hz. This frequency is a deliberate down-sampling from the arm’s native 100 Hz controller,
representing a strategic trade-off: it ensures that generated trajectories are temporally smooth and
continuous, while also keeping the data volume manageable for efficient policy training. The action
space is defined within SE(3), where each action is a 7-dimensional vector representing the absolute
target end-effector pose: a 3D Cartesian position combined with a 4D quaternion for orientation.

To rigorously evaluate our proposed method, we have designed a comprehensive benchmark suite
of six manipulation tasks. This benchmark is intentionally structured to span a wide spectrum of
complexities, comprising two short-horizon tasks, two middle-horizon tasks and two long-horizon
tasks. This design allows us to assess the agent’s capabilities in both fundamental visuomotor control
and extended, multi-stage decision-making. The short-horizon tasks primarily test for precise, reac-
tive manipulation, while the long-horizon tasks challenge the agent’s ability to plan over extended
periods and robustly execute sequential sub-goals.

1https://github.com/UT-Austin-RPL/deoxys control
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For each task, we establish a standardized data collection and evaluation protocol. A dataset of 50
expert demonstrations is collected for policy learning. Subsequently, the model’s performance is
quantitatively assessed over 20 independent evaluation trials, each with randomized initial condi-
tions to ensure a robust measure of generalization. The specific details and objectives of each task
are outlined below:

1) Pick up Toy: The robot must grasp a specific target toy from the tabletop. This task tests basic
object identification and manipulation.

2) Open Drawer: The robot is required to interact with an articulated object by approaching a
closed drawer and pulling its handle to open it.

3) Stack Cubes: The robot needs to precisely pick up a cube and place it on top of one another.

4) Put Toy into Basket: This is a pick-and-place task where the robot must first pick up a specified
toy and then deposit it into a nearby basket.

5) Rank Cubes: The robot must perceive a specific attribute of several cubes, such as size or color,
and arrange them in a designated sequence.

6) Stack Cups: The robot’s objective is to stack several cups of varying sizes in descending order,
requiring it to place the largest cup first and nest the smaller ones inside it.

A.4 TRAINING DETAILS

The Vision-Language Model (VLM) was fine-tuned for 1,000 steps with a batch size of 32 on eight
80GB NVIDIA A100 GPUs. The generalizable action expert was trained on the same hardware
configuration. Its training consisted of two phases: an action pre-training phase that ran for two
days with a batch size of 32,768, followed by a point cloud fine-tuning phase that ran for three days
with a batch size of 256.

A.5 SIMULATION ROBOT RESULTS

Figure 6: Simulation Robot Results
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A.6 REAL WORLD ROBOT RESULTS

Figure 7: Real World Robot Results
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