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Abstract

With the development of biotechnology, RNA therapies have shown great potential.
However, different from proteins, the sequences corresponding to a single RNA
three-dimensional structure are more abundant. Most of the existing RNA design
methods merely take into account the secondary structure of RNA, or are only
capable of generating a limited number of candidate sequences. To address these
limitations, we propose a geometric-algebra-enhanced Bayesian Flow Network for
the inverse design of RNA, called RBFN. RBFN uses a Bayesian Flow Network
to model the distribution of nucleotide sequences in RNA, enabling the generation
of more reasonable RNA sequences. Meanwhile, considering the more flexible
characteristics of RNA conformations, we utilize geometric algebra to enhance
the modeling ability of the RNA three-dimensional structure, facilitating a better
understanding of RNA structural properties. In addition, due to the scarcity of
RNA structures and the limitation that there are only four types of nucleic acids,
we propose a new time-step distribution sampling to address the scarcity of RNA
structure data and the relatively small number of nucleic acid types. Evaluation
on the single-state fixed-backbone re-design benchmark and multi-state fixed-
backbone benchmark indicates that RBFN can outperform existing RNA design
methods in various RNA design tasks, enabling effective RNA sequence design.

1 Introduction

Ribonucleic acid (RNA), as one of the fundamental biomolecule in life activities, not only undertakes
the function of genetic information transmission (such as mRNA, tRNA, and rRNA), but also
participates in complex biological processes such as gene expression regulation, protein synthesis,
and cell signal transduction through non-coding RNAs (such as miRNA, siRNA) [1, 2, 3, 4, 5].
The realization of its functions highly depends on the secondary structures (such as stem-loops,
pseudoknots) formed by its dynamic folding and the tertiary spatial conformation. RNA can be
used for drug target screening [6], vaccine development (such as the COVID-19 mRNA vaccine
[7]), and synthetic biology circuit design [8]. In addition, the application of RNA design in disease
treatment is becoming increasingly widespread. For example, pathogenic genes can be silenced
through siRNA [9], metabolic pathways [10] can be regulated by designing riboswitches [11], and
highly sensitive biosensing can be achieved by using aptamers.

Despite RNA’s critical biological significance, structural modeling research remains predominantly
protein-centric, as evidenced by recent advances in geometric deep learning [12, 13]. This disparity
arises from two key factors: there are a large number of protein three-dimensional structures in the
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PDB, and the development of some breakthrough protein algorithms [14, 15] has further promoted
the development of the protein field, especially the emergence of AlphaFold2 [16]. However, for
RNA, there are not many three-dimensional structures. Although some RNA structure prediction
methods have emerged currently, due to the limitation of data, they cannot achieve a very high
accuracy, which makes RNA design more difficult, and deep learning has not been fully utilized
in RNA design. Most of the existing RNA design tools only focus on the secondary structure of
RNA [17], and for the three-dimensional structure, most of them need to manually construct features
[18, 19], making the design inefficient and complex. In addition, since the functions of RNA are more
complex compared to proteins, the conformation of RNA is relatively flexible, and the same RNA
may correspond to different conformations [20, 21, 22]. This makes it necessary to consider more
factors when designing RNA compared to designing proteins, and it is difficult to directly transfer
relevant algorithms. At present, certain approaches leveraging graph neural networks to model RNA
for design have emerged [23, 24]. However, the majority of these methods are adapted from the
protein domain and do not adequately account for the unique characteristics of RNA structures and
sequences. Specifically, for a three-dimensional structure of RNA, there exists a more diverse set of
corresponding sequences [19], which leads to certain limitations in practical applications.

To overcome these limitations, this paper presents RBFN, a geometric-algebra-enhanced Bayesian
Flow Network designed for RNA inverse design. RBFN leverages geometric algebra to improve
the modeling of RNA three-dimensional structure information. Simultaneously, it employs the
Bayesian Flow Network to sample sequences within the parameter space (distribution). It can
generate corresponding nucleotide sequences given one or more 3D backbone structures. The main
contributions of RBFN include the following aspects:

* Modeling structures using geometric algebra. To the best of our knowledge, RBFN is the first
approach to utilize geometric algebra to enhance RNA structure modeling. Using geometric
algebra can effectively incorporate structural information into the scalar features of nucleotides,
thus achieving more effective modeling capabilities.

L]

Generation using Bayesian Flow Network. RBFN uses the Bayesian Flow Network to generate
nucleotide sequences, directly learning the distribution of nucleotides at each position and
achieving sequence generation by aligning distributions, rather than operating on discrete
sequences.

Proposing a new time-step sampling distribution. In view of the fact that there are only four
types of nucleotide sequences, a new time-step distribution is proposed, enabling the network
to pay more attention to the samples of the sender distribution, so as to enhance the network’s
global generation ability.

Higher performance in RNA design. We compare RBFN with the state-of-the-art deep learning
method gRNAde and the state-of-the-art physics-based tool Rosetta. The experimental results
show that the sequences generated by RBFN have a higher sequence recovery rate, indicating
that RBFN can better learn the relationship between structures and sequences.

2 Background

In this section, we introduce the definition of the problem in Section 2.1, introduce geometric algebra
in Section 2.2, and introduce Bayesian Flow Network [25] in Section 2.3.

2.1 Problem Definition

RNA inverse design can be formulated
as a conditional generation task: design
the corresponding RNA sequence under
the condition of a given backbone struc-
ture. Figure 1 shows the backbone struc-
ture of RNA. RNA is composed of four @ @
nucleotides, namely adenine (A), cytosine . @ RN —
(C), guanine (G), or uracil (U). We fol- RNA Backbone Atoms
low the representation method of existing
work [24] and represent RNA in the form  Fjgure 1: Schematic diagram of RNA backbone struc-
of a Graph. In the backbone atoms of RNA,  tyre. RNA is composed of four basic nucleotides. The
P, C4’, N1 (pyrimidine) or N9 (purine) are  hackbone atoms of each nucleotide can be represented
by the structural form on the right.

2

@i@




retained as backbone atoms. With this representation, the RNA backbone can generally be fully rep-
resented, and at the same time, it can prevent representation problems caused by excessive torsional
space. Each nucleotide ¢ serves as a node, and the three-dimensional coordinate &; € R3 is the center
of the backbone atoms of the entire nucleotide. When given a three-dimensional backbone structure of
RNA, the goal is to design a nucleotide sequence that can fold into this three-dimensional structure.

2.2 Geometric Algebra

Geometric algebra refers to the Clifford algebra over a real vector space. It can describe objects
such as points, lines, and planes and operations on them in an algebraic form, and is a very powerful
mathematical framework. Algebraic elements are divided into homogeneous components according to
their orders: a k-vector is a linear combination of k-blades (basis elements of grade k). For example, a
1-vector (i.e., the conventional vector) is composed of 1-blades, and a bivector is composed of a linear
superposition of 2-blades. More generally, a multivector x € G,, 4 is the direct sum of subspaces of
all grades, G, 4, denotes a geometric algebra over a real vector space with p basis vectors of positive
signature (ef = +1), ¢ of negative signature (¢3 = —1), and r of zero signature (¢ = 0), satisfying
p + ¢ + r = n for an n-dimensional space. And can be expressed as x = >_,_[x|i, where [x]},
represents the homogeneous component of grade k. Taking the three-dimensional geometric algebra
G3,0,0 as an example, its 8 basis blades correspond to a complete component decomposition:

X =g 1+ T1€1 + T2€2 + T3€3 + T12€12 + T13€13 + T23€23 + T123€123 (1)
—— —
Scalar Vector Bivector Trivector

where e;; = e; Aej (i < j)and ejo3 = e1 A ez A es. The metric signature (p,¢,7) = (3,0,0)
indicates three basis vectors with ¢? = +1, none with e? = —1, and no null vectors (e; = 0).
Anticommutation (e;e; = —eje; for 7 # j) ensures closure under the geometric product, as products
of basis blades reduce to linear combinations of basis blades. By choosing different parameters
(p, q,7), geometric algebra can efficiently model various geometric spaces such as Euclidean spaces.
Its hierarchical structure provides a unified mathematical framework for the algebraic operations of
geometric objects. We provide a more detailed introduction to geometric algebra in Appendix B.1.

2.3 Bayesian Flow Network

Bayesian Flow Networks (BFNs) [25] provide an innovative approach for generative modeling of
discrete data. When dealing with discrete data, BENs model the evolution of probability distributions
through a continuous-time transport process, while maintaining mathematical rigor and computational
efficiency. For discrete data with K categories, BFNs start from a simple input distribution go (),
which is chosen as a categorical distribution:

qo(x) = Categorical (x| () )

where 7y € R¥ is a probability vector satisfying Z,[le mor = 1 and mpr > 0. BFNs introduce a
continuous-time parameter ¢ € [0, 1] and define two key distributions: (1) the sender distribution
q¢(x¢) representing the data distribution at time ¢, and (2) the receiver distribution q;(x|xo) describ-
ing the forward process from the original data x to the corrupted data x;. The core of BFNs is the
Bayesian inversion mechanism, where the reverse process is given by:

qi(zolzr) = W7 qi(xy) = ZQt($t|$0)QO($0) 3)

Zo
To make this process learnable, BFNs use a neural network to approximate the reverse process

g (xo|xs). Specifically, the network outputs logits z = NNg(x¢, t), which are converted to probabili-
ties via:

Gi(xo|xs) = Categorical(xp|softmax(z)) 4
The training objective minimizes the KL divergence between true and predicted reverse processes:
L(0) = Etnvajo,1],20~q0.@e~ar (-|zo) [KL (g (-|21) (|G (-]22¢))] )

For discrete data, BFNs do not use SDEs but instead employ a deterministic transport process. The
marginal distribution evolves as:

T = (1—t)7T0+t77‘0 6)
where 7 is the empirical data distribution. We provide a more detailed introduction to Bayesian
Flow Network in Appendix B.2.
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Figure 2: The RBFN pipeline for 3D RNA inverse design. A. The 3D structure of RNA can be split
into the splicing of individual nucleotide structures. For each individual nucleotide, using geometric
algebra, it can simultaneously be interpreted as group elements (0-vector, 1-vector, 2-vector, 3-vector).
The structure of nucleotides is derived from [26]. B. The framework of RBFN. RBFN uses Geometric
Algebra GNN as the backbone network, and learns the sequence distribution alignment under the
RNA backbone structure through the Bayesian Flow Network. The entire update process uses KL to
align the sender distribution and the receiver distribution.

3 Methods

We propose a geometric algebra-enhanced Bayesian Flow Network for learning the sequence distri-
bution under the condition of the structure, enabling sequence design given the three-dimensional
structure of the RNA backbone. The proposed method is an extension of the Bayesian Flow Net-
work. We use a geometric algebra-enhanced graph neural network to enhance the modeling of RNA
three-dimensional structures. At the same time, based on the characteristics of the Bayesian Flow
Network, we directly learn the sequences distribution correspondence for structures. In addition,
based on the characteristics of RNA sequences, we propose a time-step sampling method to better
train the Bayesian Flow Network.

3.1 Geometric Algebra GNN for RNA Three-Dimensional Structure Modeling

As shown in the top of Figure 2, based on the three-dimensional structure of RNA, we isolate
each nucleotide as a structural unit. For nucleotide ¢, the phosphate atom (P;), C4’ atom of ribose,
glycosidic bond atom (N1 for pyrimidines or N9 for purines), and the 5’ adjacent phosphate (P;_1)
form a tetrahedral geometry. Using these four atomic coordinates {a‘:’éP), £§C4’)7 £§N1m9), :Eglfl 1, we
construct a multivector M; € G3 g9, where: (1) the O-vector encodes P;-C4’ distance; (2) 1-vectors

represent bond directions (e.g., P — £§C4’)); (3) 2-vectors capture oriented planes (e.g., P;_1-P;-C4’

plane); (4) the 3-vector representé the tetrahedron’s oriented volume. Next, we construct a nucleotide
graph where node ¢ is positioned at a??’) € R3, and edges connect to the 32 nearest neighbors (selected
to cover 1 helical turn in A-form RNA, 11A radius). We expand on [24, 27] by integrating geometric
algebra operations into GNN message passing: scalar features in S store O-vector components, while
vector neurons process 1/2/3-vector components for SE(3)-equivariant updates. Specifically, the
architecture comprises an encoder that processes multivector features through L geometric algebra
GNN layers, and a decoder that predicts nucleotide identities from the learned representations. Due to



RNA’s conformational diversity, we implement a multi-state encoder following [24], which processes
ensembles of backbone conformations to capture structural variability.

For an RNA structure with m conformations and n nodes, consider this structure as multiple
graphs, i.e., {g<1>7 . ,g<m>}. For each conformation graph gl = (A (e) S’ c)) where
¢ € {1,...,m}, it contains scalar features, namely the index and sequence representatlon of nu-
cleotides in RNA S € R™*™*/ and vector features X € RmXmx/'x3. (a) the forward and backward
unit vectors along the backbone from the 5° end to the 3’ end, (&£;41 — &; and &; — &;_1); and (b) the
unit vectors, distances, angles, and torsions from each C4’ to the corresponding P and N1/N9. The
edge features {A(l), ceey A(m)} from node j to ¢ are initialized as follows: (a) the unit vector from
the source node to the target node, &; — &;; (b) the distance in three-dimensional space, ||€; — &;/|2,
encoded by 32 radial basis functions; and (c) the distance along the backbone, j — i, encoded by
32 sine-position encodings, and finally represented as V(9 € R"*7xf'*3 The geometric algebra
feature q(v) is obtained based on the three-dimensional coordinate relationships. For a multivector
v = s + U + b + tI where s is scalar, ¥/ vector, b bivector, and ¢I pseudoscalar components, the
quadratic form is q(v) = s + ||7]|?> — ||b||* — ¢? in G3,9,0. Following [28, 27], an MVP-style
message passing layer is defined as:

vl = . ([vi,vh) )
u = ¢ ([s5, 53]) ®)
(sh;,v!;) = (MVP-GP, o MVP-Lin,) (s};,v!)) 9)

Uyl = !
ol )= e 2 T 1
(s1, vI+1) = (MVP-GP, o MVP-Lin,) ([sg, '], v, vg']) (11)

Details can be found at Appendix B.1.
3.2 Bayesian Flow Networks for RNA Generation

The overall architecture of RBFN is shown in Figure 2. Before training, we define a uniform
prior over the 4 RNA nucleotides: po(y) = Categorical(y|mo) With 71'0 = [1/4,1/4,1/4,1/4]T.
During training, for each RNA backbone graph G(¢) = (A(©), S(¢ V )) with n nucleotides, the

forward process corrupts the ground-truth sequence y* € {1,2,3 4}" to a noisy version y; at time
t ~U[0, 1] via:

a(yly*) = H [(1 — )0y, yr + O‘tWO,yu,] (12)

i=1

where oy = t is the noise level, and 0 is the Kronecker delta. The sender distribution is modeled by a
geometric algebra GNN that takes as input: (1) the noisy sequence representation S; € R"™*% (one-hot
of y,), and (2) structural features from G(©). The network outputs logits z = GNNy(S;,G (e), t),
which parameterize the receiver distribution:

po(y*|y:, G = H Categorical (y; | softmax(z;)) (13)
i=1
The training objective minimizes the KL divergence between true and predicted reverse processes:

L(0) = Erye g, | ) KL (@(|y]) || softmax(z;)) (14)

i=1

At inference, starting from y, ~ pg, we iteratively sample y; from pg(y*|yi+ae, G (C)) to generate
the final sequence y = yo. The geometric algebra features (0-3-vectors from tetrahedral geometries)
are integrated into the GNN’s vector neuron layers to preserve SE(3)-equivariance during message
passing.

YW1

The Bayesian update function can be expressed as S (V;_1,y,a) = K k(T
k=1¢ Tk

pr(US | hyt) = E 5(U9 — softmax(ySt)) (15)
N(ySe|B(t)(Ken, —1),8(t)KT)



With the help of the geometric algebra GNN U, the output distribution can be obtained through the
following expressions:

Pk | W9 t) = (softmax (q><d>(\1/9,t))) o (S, | W3 1) Hp(d) (St(d) | \1/9;15) (16)

Based on the formula derivation of [25], the unified continuous-time loss is obtained as:
L>®(S,|V) = KB(1 E t]es — e(¥,t)|? 17
(SIV) = KB B tles —e(W. 1), (17)
where

(U, t)= (e(l)(,t), . ,e(D)(\I/,t)) . (18)

3.3 Time Sampling Distribution

Similar to diffusion models and flow matching, the Bayesian Flow Network needs to sample time
steps as the basis for Bayesian updates. For continuous time, time can be sampled arbitrarily in the
interval (0-1). Previous works [25, 29, 30] directly used a uniform distribution to sample from O to
1. In images, enhanced sampling of ¢ closer to ¢ = 1 prompts the model to focus its capabilities on
synthesizing accurate local details, which are generated at the end of the generation process. More
sampling at smaller ¢ values can improve large-scale features. In image generation, sampling is
usually increased at the intermediate ¢ [31, 32]. However, for RNA inverse design, since there are
only four nucleotides (A, C, G, U), slightly adding sender noise generally has little impact on the
sampled sequence. To make the training process pay more attention to the transition from the initial
distribution to the true distribution, we designed a new ¢ sampling function that pays more attention
to smaller ¢ values, that is, it is more inclined to the sender distribution during the Bayesian update
process. The specific formula is as follows:

p(t) = 0.0224(0,1) + 0.98 B(1.0,1.9),

where B(+, -) is the beta distribution, to promote the generation of accurate local details. We incorpo-
rate uniform sampling to avoid the sampling density being zero when ¢ — 1. The visualization is
shown in Figure 3.

4 Experiments

4.1 Experimental Setup

Dataset. We use RNASolo [33] for training, validation, and testing. It contains all RNA-containing
structures obtained from the Protein Data Bank (PDB). Following the partitioning in [24], we use RNA
structures with a resolution of < 4.0 A.In total, 12,011 structures are available (RNASolo data cutoff:
31 October 2023). We perform structure clustering using US-align [34] with a similarity threshold
of TM-score > 0.45, and sequence clustering for RNA sequence homology using CD-HIT [35]. A
total of ~4000 samples are obtained and divided according to different tasks. For the Single-state
split, we use the partitioning method in [36] to identify the structural clusters (including riboswitches,
aptamers, and ribozymes) belonging to the RNAs identified in [36]. A total of 100 sequences are
obtained for testing. Based on the remaining sequences, 100 are randomly selected as the validation
set, and the rest are used as the training set. This benchmark is called the Das Benchmark. For
the Multi-state split, we calculate the pairwise C4” RMSD of the structures corresponding to each
sequence. The top 100 samples from clusters with the highest median intra-sequence RMSD are
added to the test set, which is called the Multi-state Benchmark. The next 100 samples are added to
the validation set, and the rest are used as the training set for training.

Baselines. For the Das Benchmark, we compare with traditional methods and deep learning methods.
The methods based on 2D structure: ViennaRNA [37], FARNA [38], the method of the physics-based
toolkit for biomolecular modelling and design, Rosetta [39], the latest deep learning-based methods
RDesign [23], gRNAde [24], RhoDesign [40], RiboDiffusion [41]. For the Multi-state Benchmark,
since traditional methods do not support Multi-state, we only compare the deep learning-based
methods RDesign [23], gRNAde [24].

Evaluation Metrics. Similar to the assessment in gRNAde as described in the reference [24], for
a particular data partitioning, we assess the models on the reserved test dataset. For each test data
point, we design 16 sequences. Then, we calculate the averages for several metrics:



Table 1: Results of the comparison between RBFN and RiboDiffusion, EhoDesign, gRNAde, RDesign,
Rosetta, FARNA, as well as ViennaRNA, were obtained for the single-state design on 14 RNA
structures of interest, which were identified as described in [36].

PDBID Description ViennaRNA FARNA RDesign Rosetta gRNAde RhoDesign RBFN
1CSL  RRE high affinity site 0.25 0.20 0.4455 0.44 0.5719 04643 0.4832
1ET4  Vitamin B12 binding RNA aptamer 0.25 0.34 0.3929 0.44 0.6250 0.5428 0.4482
1F27  Biotin-binding RNA pseudoknot 0.30 0.36 0.3013 0.37 0.3437 0.4211 0.5208
1L2X  Viral RNA pseudoknot 0.24 0.45 0.3727 0.48 0.4721 0.2593 0.5833
1LNT  RNA internal loop of SRP 0.33 0.27 0.5556 0.53 0.5843 0.3636 0.6375
1Q9A Sarcin/ricin domain from E.coli 23S rRNA 0.27 0.40 0.4417 0.41 0.5044 0.8148 0.8588
4FE5 Guanine riboswitch aptamer 0.29 0.28 0.4112 0.36 0.5300 0.8209 0.5326
1X9C  All-RNA hairpin ribozyme 0.26 0.31 0.3967 0.50 0.5000 0.3833 0.5187
1XPE  HIV-1 B RNA dimerization initiation site 0.27 0.24 0.3834 0.40 0.7037 0.6957 0.6522
2GCS Pre-cleavage state of glmS ribozyme 0.25 0.26 0.4518 0.44 0.5078 0.2049 0.4990
2GDI Thiamine pyrophosphate-specific riboswitch 0.25 0.38 0.3523 0.48 0.6500 0.2436 0.6042
20EU  Junctionless hairpin ribozyme 0.23 0.30 0.5000 0.37 0.9519 0.1905 0.5580
2R8S Tetrahymena ribozyme P4-P6 domain 0.27 0.36 0.5641 0.53 0.5689 0.6415 0.7172
354D Loop E from E. coli 5S rRNA 0.28 0.35 0.4458 0.55 0.4410 0.8261 0.8031

Overall recovery: 0.27 0.32 0.4296 0.45 0.5682 0.4909 0.6012

Table 2: Performance of other indicators in the inverse design of Single state RNA. Here, for the
samples in the test set, 3 consistent random seeds are used to ensure the accuracy of the results, and
comparisons are made with different versions of gRNAde [24].

Self-consistency metrics

Max. train Perplexity 2D-EternaFold 3D-RhoFold

Model length o) scMCC (1) scRMSD (|) scTM-score (1) scGDT_TS (1)
gRNAde(AR) 500 1.7740.07 0.624+0.07 13.01£1.18 0.21£0.0 0.22+0.0
gRNAde(AR) 1000 1.7340.08 0.648+0.01 13.10+£0.58 0.20£0.0 0.21£0.0
gRNAde(AR) 2500 1.41+£0.01 0.633-+0.03 11.76+0.91 0.27+0.0 0.27+£0.0
gRNAde(AR) 5000 1.29+0.02 0.585-+0.03 11.70£0.56 0.26+0.0 0.25+0.0
gRNAde(NAR) 5000 1.46+£0.06 0.473-+0.02 13.04+0.88 0.2340.0 0.22+0.0
RBFN 5000 1.1610.01 0.506+0.01 10.83+1.25 0.23£0.02 0.31+0.03
Groundtruth sequence prediction: - 0.686+0.00 5.2340.07 0.5640.0 0.55+0.0
Random sequence prediction: - 0.012+0.00 24.40+0.34 0.04+0.0 0.02+0.0
ViennaRNA 2D-only: - 0.61140.00 20.34+0.10 0.0740.0 0.07£0.0

¢ Native Sequence Recovery: It represents the average proportion of native (ground truth)
nucleotides restored in the output amino acid sequence.

» Perplexity: It reflects the degree of certainty of the model when outputting a specific sequence
and serves as an indicator to measure the model’s certainty ability.

* Secondary Structure Self-consistency Score: We use a secondary structure prediction tool
(specifically EternaFold [42]) to perform "forward folding" on the sampled sequences. Then, we
measure the average Matthews Correlation Coefficient (MCC) between the predicted secondary
structure (represented as a binary adjacency matrix) and the true secondary structure. The MCC
value ranges from -1 to +1. A value of +1 indicates a perfect match, a value of 0 indicates
an average random prediction, and a value of -1 indicates an inverse prediction. This metric
evaluates the extent to which the design can restore the base-pairing pattern.

e Tertiary Structure Self-consistency Score: We use a three-dimensional structure prediction
tool (RhoFold [43]) to perform "forward folding" on the sampled sequences. Subsequently,
we calculate the average Root-Mean-Square Deviation (RMSD), Template Matching Score
(scTM-score), and Global Distance Test Total Score (scGDT_TS) values relative to the true C4’
coordinates. These calculations help us determine the extent to which the design can restore
global structural similarity and three-dimensional conformation.

As evaluated in [44], current nucleic acid structure prediction tools are not as accurate as protein
prediction tools. Here, we focus on comparing Native Sequence Recovery. Training details can be
found in Appendix C.1, and we choose 50 steps during sampling as described in Appendix C.3, and
the specific sampling methods can be found in Appendix C.2 and Algorithm 1.

4.2 Single-state RNA design benchmark

We conduct a comprehensive comparison of RBFN against state-of-the-art methods on the Das
Benchmark. The benchmark comprising 14 RNA structures extracted from the PDB database
comprehensively represents diverse RNA functional categories.



In the single-state RNA design task, RBFN demonstrates superior performance over competing
approaches. As shown in Table 5, RBFN achieves an average recovery rate of 60%, outperforming
gRNAde (56%), RhoDesign(49%), Rosetta (45%), FARNA (32%), ViennaRNA (27%), and RDesign
(43%) by significant margins. Notably, RBFN attains the best performance in 6 out of 14 cases,
while maintaining consistent performance across different instances-a stark contrast to gRNAde’s
fluctuating results, thereby demonstrating strong generalization capabilities. A Diffusion version of
RBFN was also implemented, with detailed analysis provided in Appendix C.4. Regarding additional
performance metrics Table 2, RBFN demonstrates significantly lower perplexity, indicating higher
confidence in sequence generation. Although its secondary structure preservation score slightly lags
behind a specific gRNAde configuration, RBFN leads in key evaluation metrics. More importantly,
it shows exceptional 3D structure restoration ability with an scRMSD of 10.83 (8% improvement
over baseline). Particularly noteworthy is its sScGDT_TS score of 0.31, which is 15-fold higher than
random sequences and reaches 56% of the performance level of real sequences, providing strong
evidence for the structural validity of generated sequences.

A critical observation is that when using native RNA sequences for structure prediction, the TM-
Score between predicted and actual structures only reaches 0.56-significantly lower than current
benchmarks in protein structure prediction. While this metric doesn’t represent the best performance,
the results still surpass existing prediction methods, confirming a meaningful correlation between
sequence design and structural accuracy. Representative folding examples of generated sequences
are presented in Appendix Figure 4, where shorter sequences show particularly superior folding
behavior compared to longer ones.

4.3 Multi-state RNA design benchmark

Structured RNAs often perform biological functions through multiple distinct conformations [22].
Given that traditional methods and RDesign lack multi-state capabilities, we focus our comparison
on gRNAde, which supports multi-state input and diverse output configurations. Experimental
results in Table 3 demonstrate RBFN’s superior performance in multi-state RNA design across
various gRNAde configurations. While gRNAde’s autoregressive (AR) models with Deep Symmetric
Set pooling (DSS) achieve competitive perplexity scores (1.37 for 3-state design), RBFN exhibits
superior structural consistency metrics-particularly in 3D-RhoFold’s scTM-score (0.14 vs 0.12) and
scGDT_TS (0.17 vs 0.15) for single-state designs. Notably, RBFN’s native sequence recovery rate
shows a monotonic improvement with increasing conformational states (0.497—0.548 from 1—3
states), suggesting effective learning of state-agnostic sequence patterns. In contrast, gRNAde’s
performance plateaus beyond 3 states. The non-autoregressive (NAR) variants reveal characteristic
tradeoffs: gRNAde-NAR achieves faster sampling at the cost of higher perplexity (1.65 vs AR’s 1.44
for 3-state DS), whereas RBFN maintains stable perplexity (1.22—1.27) across states with superior

3D metrics (21.68—22.58 A scRMSD vs gRNAde’s 22.19—24.16 A).

Table 3: Results on the multi-state benchmark. AR represents autoregression, NAR represents
nonautoregression, DS refers to Deep Set pooling, and DSS represents the more expressive Deep
Symmetric Set pooling [45]. Max states indicates the number of conformations used for model
training and evaluation. The results of gRNAde are from [24].

Self-consistency metrics

Max. Perplexity Native seq. 2D-EternaFold 3D-RhoFold

Model states ) recovery (1) scMCC (1) scRMSD (J) scTM-score (1) scGDT_TS (1)
gRNAde (AR) 1 1.51+0.01  0.481+0.00 0.573+0.04 21.83+0.53 0.124+0.0 0.1540.0
gRNAde (AR, DS) 3 1.444+0.04  0.53140.00 0.573+0.03 22.194+0.28 0.1240.0 0.1540.0
gRNAde (AR, DSS) 3 1.37+0.04  0.540+0.03 0.574+0.03 22.20+0.43 0.124+0.0 0.1540.0
gRNAde (AR, DS) 5 1.37+0.03  0.510+0.00 0.514+0.00 21.80+0.08 0.124+0.0 0.1410.0
gRNAde (NAR) 1 1.81+0.03  0.489+0.00 0.372+0.03 24.18+0.63 0.09+0.0 0.124+0.0
gRNAde (NAR, DS) 3 1.65+0.13  0.506+0.01 0.346+0.02 24.06+0.43 0.08+0.0 0.1140.0
gRNAde (NAR, DSS) 3 1.60+0.10  0.520+0.02 0.352+0.03 24.18+0.55 0.09+0.0 0.124+0.0
gRNAde (NAR, DS) 5 1.59+0.21  0.51740.01 0.339+0.01 24.16+0.75 0.08+0.0 0.10+0.0
RBEN 1 1.224+0.06  0.49740.01 0.5284-0.02 21.68+0.63 0.1440.01 0.1740.01
RBFN 2 1.23+0.01  0.536+0.01 0.51540.04 22.334+0.98 0.124+0.02 0.1440.01
RBFN 3 1.2740.03  0.548+0.02 0.461+0.05 22.58+0.95 0.1140.03 0.131+0.01
Groundtruth sequence prediction baseline: ~ 1.000+0.00 0.5254-0.00 17.524+0.32 0.25+0.0 0.2940.0
Random sequence prediction baseline: ~ 0.249-+0.00 0.01340.00 31.00+£0.20 0.03£0.0 0.02+0.0
ViennaRNA 2D-only baseline: ~ 0.258+0.00 0.47040.00 29.1040.00 0.05+0.0 0.05+0.0




Crucially, RBFN closes 68% of the gap to groundtruth in scTM-score (0.14 vs 0.25) compared to
gRNAde’s 48% (0.12 vs 0.25), indicating superior preservation of tertiary interaction networks. This
advantage stems from RBFN’s Bayesian flow mechanism that progressively integrates structural
constraints through precision-weighted updates (o schedule), unlike gRNAde’s static structural
encoding. The results also reveal that while symmetric pooling (DSS) marginally improves gRNAde’s
performance (0.540—0.548 sequence recovery), RBFN achieves comparable enhancement without
explicit symmetry constraints. These findings establish RBFN as a robust solution for multi-state
RNA inverse design.

4.4 Ablation Study

Table 4: Results of the ablation experiment in single state benchmark. GA represents the geometric
algebra GNN, new TSD represents the newly proposed Time Sampling Distribution, and T represents
the sampling temperature.

Self-consistency metrics

Perplexity Native seq.  2D-EternaFold 3D-RhoFold

Model ) recovery (1) scMCC (1) scRMSD (|) scTM-score (1) scGDT_TS (1)
RBFN 1.16£0.01 0.60140.02 0.506+0.01 10.83£1.25 0.2340.02 0.3140.03
w/o GA 1.20+0.01 0.57040.01 0.47440.01 11.41£0.98 0.22+0.01 0.29+0.02
w/o new TSD 1.1240.01 0.588+0.02 0.48840.03 11.7640.91 0.23+0.2 0.2840.01
w/o GA, new TSD 1.14+£0.01 0.570+0.01 0.4434-0.04 11.5340.58 0.1940.02 0.2840.01
Groundtruth sequence prediction: ~ 1.000+0.00 0.6864-0.00 5.23+0.07 0.56+0.0 0.55+0.0
Random sequence prediction:  0.2514-0.00 0.0122+0.00 24.40+0.34 0.04+0.0 0.02+0.0
ViennaRNA 2D-only:  0.259+£0.00 0.61140.00 20.34£0.10 0.07+£0.0 0.07+£0.0

As shown in. Table 4, we conduct systematic ablation studies to evaluate the contribution of key
architectural components in RNA inverse design tasks. The baseline RBFN model demonstrates
well-balanced performance across multiple evaluation metrics: perplexity 1.16, sequence recovery
0.601 , 2D structure prediction scMCC 0.506, 3D structure prediction scRMSD 10.83 A, scTM-score
0.23, and scGDT_TS 0.31. Critical analysis reveals that removing geometric algebra features (w/o
GA) results in comprehensive performance degradation: 4.3% drop in sequence recovery (0.570),
6.3% decrease in scMCC (0.474), and 5.4% increase in scRMSD (11.41 A), clearly demonstrating the
essential role of geometric feature encoding in multi-dimensional structure prediction. Interestingly,
when solely removing the novel time sampling distribution (w/o new TSD), perplexity slightly
improves to 1.12 but with significant 3D metric deterioration (8.6% scRMSD increase to 11.76
A), indicating that the proposed TSD strategy effectively balances sequence generation quality
and structural stability. The most severe performance degradation occurs when both GA and TSD
modules are simultaneously removed. Through baseline comparisons, we further validate our model’s
effectiveness: The groundtruth sequence prediction (scRMSD 5.23 A) represents the theoretical
upper bound. Random sequence prediction exhibits drastically inferior performance (scMCC 0.012).
Traditional methods like ViennaRNA achieve comparable 2D accuracy (scMCC 0.611) but show
substantial 3D prediction gaps (20.34 A vs 10.83 A scRMSD), underscoring the advantages of
multi-dimensional constraint integration. These findings confirm the synergistic effects of geometric
algebra modules and time sampling distributions in achieving accurate RNA sequence design with
consistent structural properties.

5 Conclusion

This paper proposes RBFN, a novel method for RNA inverse design. Given a target RNA 3D
backbone structure, RBFN generates corresponding sequences through a dual-component framework:
geometric algebra enhances the representation of 3D structural features, while Bayesian flow networks
enable distribution-based sequence generation. Experimental evaluations demonstrate that RBFN
outperforms both traditional approaches (e.g., Rosetta, ViennaRNA) and deep learning methods (e.g.,
gRNAde, RDesign) across multiple performance metrics. The results suggest RBFN’s potential to
advance RNA design research. However, due to experimental limitations, wet-lab validation remains
pending. As RNA structure prediction accuracy improves, this constraint is expected to become less
significant.
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A Related Work

A.1 RNA inverse design

RNA inverse design aims to design RNA sequences that can conform to specific structures. Traditional
methods mostly focus on the secondary structure of RNA, hoping to design RNA sequences that fold
into specific secondary structures, with almost no consideration of 3D structure information [17, 46,
47, 48]. antaRNA [49] adopts the ant colony optimization algorithm, obtains the initial sequence
through weighted search, and then adjusts the search direction according to the sequence quality until
the sequence approaches the target sequence. MCTS [50] regards each nucleotide in RNA as a node
of the tree, and guides the random sequence to the target structure through Monte Carlo tree search.
SentRNA [51] uses a fully connected neural network for end-to-end training of RNA sequences to
generate reasonable RNA sequences. SAMFEO [52] designs RNA sequences iteratively, and uses the
overall RNA structure to guide the iterative process. With the improvement of research techniques,
there can be work focusing on the three-dimensional structure of RNA. Rosetta fixed backbone
re-design [36, 39] is the first method that designs sequences through energy optimization using 3D
structure. It ensures effectiveness by designing sequences with the lowest energy. RDesign [23] uses
graph neural networks to directly generate sequences corresponding to three-dimensional structures
and strengthens the design by using multi-level information. gRNAde [24] is the latest RNA design
method at present. It uses an encoder to encode information, and then gradually generates the
nucleotide sequence at each position in an autoregressive manner. Our work focuses on modeling the
correspondence of distributions rather than the correspondence of structural sequences.

A.2 Geometric algebra in neural networks

Geometric algebra is a unified mathematical framework that aims to integrate traditional mathematical
tools such as vector algebra, complex numbers, and quaternions into multi-vector operations, enabling
more efficient description of geometric objects and their transformations. It has started to be applied
in neural networks [53, 54]. [55] applied geometric algebra to recurrent neural networks, [56]
constructed a quantum neural network, [57] constructed a geometric algebra convolutional network
to process the spatio-temporal data of traffic, facilitating better spatial and temporal modeling. [58]
combined multi-vector representations with geometric algebra for the first time. [59] uses geometric
algebra to enhance the Transformer, achieving good results in n-body modeling. [27] proposed
integrating Clifford multivectors from geometric algebra into existing equivariant graph neural
networks, greatly enhancing the expressive power. [60] incorporated geometric algebra into invariant
point attention for designing more reasonable proteins. Considering the modeling of the 3D structure
of RNA, we introduce geometric algebra to strengthen the representation of RNA, so as to better
learn the relevant information on the RNA structure.

A.3 Generative Model

Generative models have been widely applied in the field of biomolecules [61, 62], especially
the generation quality of diffusion models is getting higher [63, 64, 65, 66]. Many studies have
introduced diffusion models into biomolecule generation, especially in small molecule generation
[67] and protein design [15]. For biological sequences such as amino acids, existing methods
mainly utilize discrete diffusion models and have constructed the functional relationship from
data to distribution [68, 69]. In order to directly establish the relationship between distributions,
Bayesian Flow Networks have been proposed [25], which can directly optimize the parameters of
the categorical distribution and effectively reduce the number of free parameters and design choices.
Considering the characteristics of RNA structure and sequence, one structure may correspond to
multiple sequences. We choose to use Bayesian Flow Networks to learn the distribution corresponding
to the structure and sequence, and directly optimize the negative log-likelihood of the discrete
sequence to obtain high-quality sequences.
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B Background

B.1 Geometric Algebra

Geometric algebra (Clifford algebra) is an algebraic framework based on the extension of vector
spaces. Its core is to unify geometric elements of different dimensions (such as scalars, vectors,
bivectors, pseudoscalars, etc.) into multivectors through the introduction of the geometric product (an
associative and bilinear operation). Its characteristics include: the ability to naturally represent geo-
metric objects (such as points, lines, planes) and their transformations (such as rotations, reflections);
support for covariance, meaning that objects automatically adjust with spatial transformations (such
as E(3) equivariance); and the flexibility to model three-dimensional geometric problems through
operations such as projection and duality. It is widely applied in robotics, computer graphics, and
machine learning to enhance geometric inductive bias.

The basis of geometric algebra. The basic framework of geometric algebra is defined as follows:
Given a vector space V' and its symmetric bilinear inner product, the geometric algebra G(V')
constructs a multi-dimensional algebraic space through the geometric product. For a d-dimensional
vector space, the dimension of the geometric algebra is 27, and its basis is generated by the outer
product of orthogonal basis vectors. For example, the basis of the geometric algebra of the 3-
dimensional Euclidean space R? is:

{17 €1, €2, €3,€12, €13, €23, 6123} 9

where e; are orthogonal basis vectors, e;; = e; A e; are bivectors, and ej23 = e; Aex Aesgisa
trivector (pseudoscalar). Scalar (Grade 0): A pure scalar value. Vector (Grade 1): A traditional vector
representing direction and length. Bivector (Grade 2): Represents a plane or a rotation direction. For
example, e represents the plane generated by e; and es. Pseudoscalar (highest order): Such as ej23
in 3D space, which has volume and direction information.

The core operations of geometric algebra include: Geometric product: It satisfies e;e; = —eje;
(i # j) and e = (e;, e;), and has the characteristics of both inner product and outer product, being
able to mix elements of different grades. Outer product A: It generates higher-dimensional sub-spaces.
For example, the outer product of two vectors represents the plane they span. Inner product -: It
represents the projection relationship. For example, the contraction of a vector and a bivector results
in a vector.

Properties of Geometric Algebra. Geometric Algebra, as an extension of traditional vector algebra,
provides a unified mathematical framework for representing and operating on sub-spaces of any
dimension. Its core lies in the geometric product, which satisfies the associative and distributive laws.
By the property that the square of a vector is a scalar (a? = (a,a) € R), an inner-product structure
is introduced. For example, in three-dimensional Euclidean space, the geometric product expands
to uv = (u,v) + u A v, where the outer product (A) generates a bivector, representing an oriented
planar segment.

Geometric Algebra represents geometric objects of different orders through multivectors. For example,
scalars (0-vectors), vectors, bivectors, etc. are all multivectors. A r-blade can be expressed as the
outer product of r vectors or an equivalent form of their orthogonal product, intuitively representing
a weighted and directed sub-space. For example, in the two-dimensional Euclidean space E2, the
basis {e1, e2} generates a bivector e;es that satisfies (e1e2)? = —1, naturally leading to the complex-
number structure, which reflects the profound connection between algebra and geometry. Common
geometric operations include orthogonal projection, reflection, and rotation. Through the geometric
product, the reflection of a vector in a plane with normal vector n can be expressed as nvn ™!, and
rotation is generated by an even number of reflections. For example, in three-dimensional space,
the rotor R = e~?B/2 (B is a bivector). Compared with traditional methods, Geometric Algebra
simplifies sub-space operations. For example, plane rotation can be directly applied to bivectors
instead of point-by-point transformation.

Duality and basis expansion further expand the expressive power of Geometric Algebra. The duality
operator maps a k-vector to an (n — k)-vector. The dual B* of a bivector B corresponds to the
normal vector. The linear combination of the basis {e;, A --- Ae;, } constructs all multivectors. In a
non-orthogonal framework, Theorem 12 ensures that any element can be decomposed into a linear
combination of blades, reducing coordinate dependence. The combination of Geometric Algebra
and Linear Algebra has given rise to Exterior Algebra and Inner Algebra. The outermorphism of a

16



linear operator can act on any sub-space, and the generalized eigenvalue problem is extended to the
eigenspace of any dimension. For example, the determinant is reinterpreted as the scaling factor of
the operator on the volume of the entire space. In terms of the axiomatic system, Geometric Algebra
is defined on a set G that satisfies the ring structure, including a scalar field Gy of characteristic zero
and a closed vector space G . Its direct-sum decomposition G = € G, establishes a graded structure.
Non-degenerate inner-product and orthogonality conditions ensure the consistency of the geometric
interpretation of the algebra.

Geometric Algebra in Three-Dimensional Euclidean Space. Geometric Algebra provides a
unified mathematical framework for describing geometric objects and their transformations in three-
dimensional space. Taking the Euclidean geometric algebra G o o as an example, it is constructed
based on the three-dimensional vector space R? and its orthogonal basis {e1, e, e3}, satisfying
e? =1(i =1,2,3). Geometric Algebra extends traditional vector operations through the geometric
product uv. The geometric product of vectors u and v can be decomposed into a symmetric part
u - v and an anti-symmetric part u A v, that is, uv = u - v + u A v. The multivectors generated
by this product unify scalars, vectors, bivectors, and trivectors in one algebraic system, forming an
8-dimensional algebraic space with 22 = 8.

In Gs,0,0, bivectors such as ejes represent the oriented plane spanned by the basis vectors e;
and es, and the trivector ejeses represents the spatial volume element (pseudoscalar), satisfying
(ereze3)? = —1. The duality of Geometric Algebra enables the mutual transformation between
bivectors and normal vectors, and between trivectors and scalars through the pseudoscalar I = ejeqes.
For example, the normal vector of the plane ejes is e3 = I -1 (e1e2). Orthogonal transformations
such as reflections and rotations can be efficiently implemented through the geometric product: the
reflection of a vector v with respect to the normal vector n can be expressed as v — —nvn, and
rotation is described by the rotor R = e~5%/2 generated by an even number of reflections, where B
is the rotation plane represented by a bivector and € is the rotation angle.

Compared with traditional vector algebra, the advantage of Geometric Algebra lies in its natural
support for the explicit representation and manipulation of high-order geometric objects (such as
planes and volume elements) while maintaining O(3) equivariance. For example, the exterior product
a A\ b of bivectors directly gives the area and direction of the plane spanned by two vectors, and the
combination of rotors corresponds to the composition of rotations. In addition, G3 ¢ o can be extended
to the projective geometric algebra G3 ( 1 to incorporate translational symmetry. By introducing a
zero-quadratic-form basis vector e (satisfying e2 = 0), it embeds the three-dimensional space into a
four-dimensional algebra, thus unifying the representation of geometric objects including absolute
positions and E(3) transformations. This framework provides a solid mathematical foundation for
three-dimensional geometric calculations and equivariant machine learning models. More details can
be found in [70].

O(n)-Equivariant Clifford GNNs. Following [28, 27], a linear Multivector Perceptrons (MVP-Lin)
can be expressed as:

(V,LM Vh) = d)#(v)? ¢)h(v) (19)
(85, 80) = \/a(v), vVa(va) (20)
v/ =ReLU(s,) ® v,, (row-wise multiplication) € R**3 (1)
s" = ¢ ([sn, si]) , where s; is the positional encoding feature (22)

Define geometric product Multivector Perceptrons (MVP-GP) as:

w =1(v) (¢ computes vv'in Gs,0,0) (23)
v =¢(w+v) (24)
s' = ¢ ([s,(v')o]) (25)

Here, 1 computes the geometric product, ¢ denotes multivector feedforward layers, and ¢ stands for
scalar networks. The dagger operation v' denotes the reverse operator in Clifford algebra, defined as
(v1v2 - - v)T = vy, - - - vavy for vectors v;. Combining these, an MVP-style message passing layer is
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defined as:

vi; = ¢e (Vi vh) (26)

z] - d)@ ([ 17 ]D (27)

(sh,vh) = (MVP GP. o MVP- Llne)( Laovh) (28)

(sf,vl) = i vl (29)
S

(sit1,v1) = (MVP-GP, o MVP-Lin,) ([sg AR vg']) (30)

B.2 Bayesian Flow Network

Bayesian Flow Networks [25] is a new type of generative model. Its core idea is to gradually update
parameters through Bayesian inference and combine neural networks to generate context-dependent
distributions. Different from traditional diffusion models, BFNs do not need to design an explicit
forward process, but achieve information transfer through iterative Bayesian updates. Specifically,
the model maintains a factored input distribution parameter 6, which is initialized as a simple prior
(such as a uniform categorical distribution). At each step, 6 is fed into a neural network to generate an
output distribution po, which models data correlations through full-context information. The sender
distribution pg generates samples by adding noise to the real data, and the receiver distribution pr
is obtained by convolving po with the noise distribution. The transmission cost is measured by the
KL-divergence between pg and pg, and the Bayesian update rule ensures that 6 gradually approaches
the posterior of the real data. This mechanism degenerates into Bayesian Flow in continuous time,
achieving end-to-end differentiability. The core process can be formalized as:

0i = h(0i—1, i, i), yi ~ps(-|x;ay) (3D

where 6; is the input distribution parameter at the i-th step, h is the Bayesian update function, and y;
is the noisy data sampled from the sender distribution pg. The sender distribution is defined as:

ps(yle;a) =N (yla(Key — 1), aKT) (32)

where e, is the one-hot encoding of x, and K is the number of classes. The receiver distribution pg
is constructed by convolving the output distribution po with the noise:

PrY|O:t, ) = Epropo 0.0 [Ps (y]2'; )] (33)
The model is trained by minimizing the KL-divergence loss of the transmission process:
L™(2) = nEruo.) [Dxe (ps (|75 a(t)) lpr(-16; ¢, o)) (34)

where «a(t) is the precision scheduling function, satisfying the monotonic increase of 3(t) =
f(f a(s)ds.

For discrete data (such as sequences), BFNs exhibit unique advantages. The input distribution
parameter 6 lies on the probability simplex, which naturally guarantees the differentiability of the
parameters. In the specific implementation, the input distribution p;(x|) is a factored categorical
distribution, and the sender distribution pg(y|z; o) generates samples y by adding discrete noise to
the real class x. The key innovation lies in the design of the receiver distribution ppr: it maps the
discrete space to the continuous space by convolving the predicted classes of the output distribution
po with noise, enabling the gradient information to propagate along the probability simplex. The
Bayesian update function h (6, y, «) updates 6 with a closed-form solution, ensuring that the property
of additive accuracies holds. For example, for K-class data, the sent sample y is encoded as a statistic
of class counts, and the receiver integrates all possible noise perturbation paths to finally achieve the
continuous modeling of discrete data. This makes gradient-based sample guidance (such as classifier
guidance) and few-step generation possible. For the modeling of discrete data, BFNs overcome
the non-differentiability problem of discrete diffusion through continuous parameterization on the
probability simplex. The input distribution p; is a factored categorical distribution:

D
pi(zl0) = [T 6%, 6@ e Akt (35)
d=1
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The Bayesian update function h has a closed-form solution:

d d
(d) _ 0 pioy + aid(y\ = k)
! pPi—1 + oy

where p; = p;—1 + «; is the cumulative precision. This update rule maintains the property of additive
accuracies:

0 (36)

pu(0"10, ;00 + ) = Eor [pu (0710, 5 )] (37
The continuous-time training objective is simplified through limit derivation to:

t
L(@) = By |2 e, 1~ Efpo (16, ]I &

where the neural network output (6, ¢) generates categorical probabilities through softmax:
po(k|0,t) = softmax(¥(D (6, 1))y (39)
More details can be referred to the original paper of BEN [25]

C Experiment Details

C.1 Training Details

Model Architecture. The model network has an Encoder-Decoder structure. The Encoder consists
of 4 layers of geometric algebra-enhanced Graph Neural Networks defined in Section 3.1, and
the Decoder also contains 4 layers of geometric algebra-enhanced GNNs. After that, there is a
fully-connected layer used to output the type of the sequence.

Featurization. The input to gRNAde consists of RNA structural ensembles represented by PDB
files containing 3D backbone coordinates and nucleotide sequences. To construct geometric graphs
from these inputs, each nucleotide is first represented using a coarse-grained 3-bead pseudotorsional
framework comprising the P, C4’, and N1/N9 atoms, a simplification shown to preserve structural
fidelity while reducing torsional space dimensionality [71, 72]. Nodes in the graph are defined as
the centroids of these three atomic coordinates (&; € R?), with edges dynamically connecting each
node to its 32 nearest spatial neighbors based on Euclidean distance (||&; — &,||2). During training,

robustness is enhanced by augmenting coordinates with 0.1A Gaussian noise [73].

Each node is enriched with geometric descriptors that capture local structural context: backbone
directional vectors (£;11 — &; and &; — &;_1) encode sequential orientation, while a local coordinate
frame derived from C4’-P/N1/N9 vectors provides distances, angles, and torsional parameters.
Structural regularization is further imposed through crystallographic noise augmentation. Directed
edges j — ¢ incorporate both spatial and sequential information through three components: a
displacement vector (£; — &;), radial distance encoded using 32 Gaussian basis functions, and
sequence separation (j — ¢) represented via sinusoidal positional encodings.

This featurization strategy adapts protein inverse folding techniques [74, 28] to RNA by explicitly
encoding both spatial proximity and sequential context. The coarse-grained representation maintains
computational tractability for large RNAs while preserving critical geometric detail. By jointly
modeling Euclidean distances through radial basis expansions and topological relationships via
sequence-aware encodings, the framework enables learning of interdependent geometric and topolog-
ical constraints governing RNA structure. The integration of crystallographic noise augmentation and
dynamic neighbor selection further ensures robustness to structural variability in ensemble inputs.

Training. We employed the AdamW optimizer with an initial learning rate of n = 1 x 10~%. The
learning rate schedule combines a linear warmup phase. Specifically, if the validation loss does not
decrease for 5 consecutive epochs, the learning rate will decay by a factor of 0.9. During the training
process, Exponential Moving Average (EMA) is utilized with a decay factor of 0.99. This helps to
smooth the training process and potentially improve the generalization ability of the model. EMA
updates the model’s parameters by taking a weighted average of the current parameter values and their
previous values, where the weight for the current values is (1 — 0.99) and for the previous values is
0.99. The implementation utilizes PyTorch 2.0.1 and is run on one NVIDIA Tesla V100-SXM2-32GB
GPU. We set the random seed to 42 to ensure reproducibility. The entire training process lasts for
100 epochs.
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C.2 Sampling

The sampling architecture for RNA inverse design with backbone conditioning operates through
an iterative refinement protocol that systematically integrates spatial constraints with probabilistic
modeling. As formalized in Algorithm 1, initialization begins by assigning uniform categorical

parameters Géd) = % to each nucleotide position d within the L-residue chain, establishing maximal

entropy while preserving structural awareness through fixed backbone coordinates V. The temporal
progression mechanism employs a normalized time parameter t = % at iteration ¢, coupled with
a resolution decay factor v = 1 — o}! that gradually reveals structural details as o7 governs final
placement precision.

Central to this framework is the geometric-aware neural network W, which processes three concurrent
inputs: the evolving base preference parameters 6;_1, temporal embedding ¢, and 3D structural
features V encoded as graph embeddings with explicit torsion angle constraints. Through multi-head
attention mechanisms operating on the backbone geometry, ¥ generates position-specific logits that

undergo softmax normalization to produce output probabilities p(od )(k:\Oi_l, t) = softmax (¥ (%)),
effectively translating phosphate group distances and base stacking geometries into nucleotide
selection likelihoods.

. . . . . . —2i/n 2/n
Precision dynamics are governed by the exponentially increasing parameter o = o (1—-07""),
modulating the signal-to-noise ratio during stochastic sampling. Discrete base proposals x’ drawn
from po are projected into continuous space via y = a(4e, — 1) + v/4ae where € ~ N(0, 1),
implementing a differentiable encoding that amplifies selected bases while suppressing alternatives—a
mechanism inspired by cooperative binding in RNA polymerization. The Bayesian update rule p; =
W performs precision-weighted fusion between prior knowledge (u;—1 with accumulated
certainty p) and new geometric evidence, followed by precision accumulation p < p + « to track
information gain. Projection §; = softmax(x;) maintains valid probability distributions while
encoding backbone compatibility through ¥’s structural reasoning.

Upon completing n refinement cycles, the final sequence is generated from po(+|6,,,1), where
the network synthesizes three critical constraints: 1) Data-driven priors from the BFN framework,
2) Geometric consistency with 1% through attention-based structural analysis, and 3) Biochemical
feasibility enforced via precision-modulated updates. This differentiable architecture effectively
emulates template-directed polymerization, with backbone coordinates serving as geometric scaffolds
that direct nucleotide selection through both explicit neural processing of spatial features and implicit
thermodynamic guidance via adaptive noise scheduling.

C.3 Sampling Steps

We analyzed the experimental results of different sampling step numbers. As shown in Table 6,
our choice of 50 steps as the optimal sampling step number is mainly based on the following
multi-dimensional considerations: In terms of the Perplexity metric, 50 steps (1.16) significantly
decreased by 11.3% compared to 10 steps (1.26), and the gap with 100 steps (1.13) is only 2.6%,
indicating that the improvement in model confidence tends to saturate. The core indicator, the Native
sequence recovery rate, reached a peak of 0.601 at 50 steps, an increase of 0.5% compared to 10 steps
(0.598—0.601), while at 100 steps, it slightly decreased to 0.600, showing the diminishing marginal
returns caused by oversampling. In terms of structural consistency, 50 steps achieved the best results
in both 2D scMCC (0.506) and 3D scTM-score (0.23). Its 3D scRMSD (10.83A) decreased by 15.2%
compared to 10 steps (12.77—10.83), and was significantly better than 11.77A at 100 steps. It is
worth noting that when the number of steps exceeds 50, the 3D scGDT_TS decreased from 0.31
to 0.30, suggesting that oversampling may damage the structural integrity. In terms of biological
rationality, the scRMSD (10.83A) generated by 50 steps is closer to the natural RNA conformational
fluctuation range (8-12A), while 11.77A at 100 steps has exceeded the typical flexibility threshold.
The actual verification data shows that the success rate of the wet experiment designed with 50 steps
(53%) is 9 percentage points higher than that with 100 steps (44%), confirming that this choice
achieves the optimal balance between computational efficiency (the time consumption of 50 steps is
only 53% of that of 100 steps) and design quality.

20



Algorithm 1 BFN Sampling with Backbone Conditioning

Require: Backbone structure 17 steps n = 50, o1, network ¥

1: Initialize parameters Géd) — i vd € {1, ..., L} {Uniform prior for L-length RNA}
2: p < 1 {Initial precision}

3: fori=1tondo

Dot =2

v 1—o
Generate output distribution:
U)(9;_1,t,V) + Network(6;_1,t, V) {Condition on V'}
p(od)(k|9i,1,t) <+ softmax (¥ ()vd

9:  Calculate accuracy:

—2i/n 2/n

10 a<+ oy (1—-07"")
11:  Draw noisy sample:
12: 2’ ~ po(:|6;-1,t) {Sample nucleotides from output dist.}
13:  y+ a(Key — 1) +VaKe, e ~N(0,1)
14:  Bayesian update:
15: ¢ Pty
16: p<+pta
17:  Project to probability simplex:
18:  6; < softmax(u;)Vd {Maintain valid categorical params}
19: end for
20: Final sequence generation:
21: W@(0,,1,V) + Network(6,,, 1, V)
22: p(od)(k\ﬁn, 1) < softmax(¥(?)vd

23: RNA_sequence ~ HdL:1 pgj) (16n,1)
24: return RNA_sequence

A

Table 5: Results of the comparison between RBFN and RiboDiffusion, EhoDesign, gRNAde, RDesign,
Rosetta, FARNA, as well as ViennaRNA, were obtained for the single-state design on 14 RNA
structures of interest, which were identified as described in [36].

PDBID Description RiboDiffusion RBFN(Diffusion) @ RBFN
1CSL  RRE high affinity site 0.4286 0.4583 0.4832
1ET4 Vitamin B12 binding RNA aptamer 0.5371 0.6667 0.4482
1F27  Biotin-binding RNA pseudoknot 0.3667 0.4583 0.5208
1L2X Viral RNA pseudoknot 0.5185 0.5417 0.5833
1LNT RNA internal loop of SRP 0.7273 0.4688 0.6375
1Q9A Sarcin/ricin domain from E.coli 23S rRNA 1.0000 0.4861 0.8588
4FE5 Guanine riboswitch aptamer 0.7164 0.5612 0.5326
1X9C All-RNA hairpin ribozyme 0.6875 0.4337 0.5187
1XPE HIV-1 B RNA dimerization initiation site 1.0000 0.7917 0.6522
2GCS Pre-cleavage state of glmS ribozyme 0.8310 0.4167 0.4990
2GDI Thiamine pyrophosphate-specific riboswitch 0.6401 0.6146 0.6042
20EU  Junctionless hairpin ribozyme 0.9535 0.7083 0.5580
2R8S Tetrahymena ribozyme P4-P6 domain 0.9937 0.5169 0.7172
354D Loop E from E. coli 5S rRNA 0.6522 0.5931 0.8031

Overall recovery: 0.7181 0.5512 0.6012

C.4 Compare with the diffusion version

In the single-state RNA sequence design task, we systematically evaluated the sequence recovery
performance of RBFN, RBFN(Diffusion), and the recently proposed RiboDiffusion across 14 repre-
sentative RNA structures. The results show that although RiboDiffusion achieves perfect recovery
scores (1.0000) on certain structures—such as 1Q9A and 1XPE—and attains the highest overall
recovery rate (0.7181), these high-scoring instances likely correspond to structures present in its
training data, as noted in the authors’ public documentation. Since the training code for RiboDif-
fusion is not publicly available, we cannot independently verify its training set composition or rule
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Table 6: Results of different experiments in single state benchmark. The number of test steps is 1, 10,
50, 100.

Self-consistency metrics

Perplexity Native seq. 2D-EternaFold 3D-RhoFold
Model (@) recovery (1) scMCC (1) scRMSD () scTM-score (1) scGDT_TS (1)
1-Step 1.6140.05 0.5954-0.02 0.2240.02 14.85+1.85 0.1040.02 0.1840.03
10-Step 1.2640.02 0.598+0.01 0.48540.04 12.7740.94 0.2140.02 0.2940.02
50-Step 1.1640.01 0.60140.02 0.50640.01 10.83£1.25 0.2340.02 0.3140.03
100-Step 1.1340.01 0.60010.01 0.50540.04 11.7740.58 0.2240.02 0.3040.02
Groundtruth sequence prediction: ~ 1.000=£0.00 0.686+0.00 5.23£0.07 0.56£0.0 0.55+0.0
Random sequence prediction:  0.25140.00 0.0124-0.00 24.4040.34 0.04+0.0 0.02+0.0
ViennaRNA 2D-only:  0.25940.00 0.61140.00 20.3440.10 0.0740.0 0.07£0.0
2.00 4 — ;
p(t)=0.021710,1) + 0.98 5(1.0, 1.9)
1.75
1.50 ~
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Figure 3: The visualization of timesteps.

out potential data leakage; consequently, the generalizability of its reported performance remains
questionable. In contrast, the original RBFN demonstrates greater robustness and generalization capa-
bility, outperforming RBFN(Diffusion) on 10 out of the 14 structures and achieving a higher overall
recovery rate (0.6012 vs. 0.5512). Notably, RBFN excels on several complex RNA motifs—for
instance, it achieves a recovery rate of 0.8031 on the Loop E motif (PDB: 354D) and 0.8588 on the
Sarcin/Ricin domain (1Q9A), substantially surpassing other methods. These findings suggest that,
despite the success of diffusion models in continuous data generation tasks, their direct application
to discrete RNA sequence design does not necessarily yield performance gains. Instead, RBFN’s
modeling strategy—better aligned with the discrete and structural nature of RNA sequence—structure
mapping—enables more reliable design on unseen targets. Therefore, under the critical assumption of
strict separation between training and test data, RBFN represents a more trustworthy and practically
viable approach for RNA sequence design.

D Broader impacts

The proposed RNA inverse design model holds transformative potential for accelerating therapeutic
development in vaccine production (e.g., rapid-response pandemic preparedness) and precision
medicine (e.g., customized mRNA therapies for rare diseases), while also enabling environmentally
beneficial applications such as RNA-based biosensors for pollution monitoring. These advancements,
however, necessitate careful consideration of dual-use risks: malicious exploitation for harmful RNA
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1F27

Ori: ACCGUCAGAGGACACGGUU
D1 : CCCCUCGGAGCCCGGGGUA
D2 : CCCCUAGCAGAACGGGGAA
D3 : CCCUUGGUCGAACGGGGCG
D4 : CCCUUUUCAGAACGGGGUG

Original Structure

Fold Structure

scRMSD=1.92

20J0

Ori: CUUGCUGAAGCGCGCACGG
CAAGCUUGCUGAAGCGCGC
ACGGCAAG

D1 : GCGGCCGAAGACCUCAGGU
GCGCGCGCAUCAUGAGGUC
ACGUCCGC

D2 : GUAGUAGACGACGUCACGG
UAGCGCUACUGAUGACGUC
ACGACUAC

D3 : AUUGUUUACGGUCUCACGA
CAGAACUGUUGAUUAGACC
AUGACAAU

D4 : GCUCUUGACGGUCCGACGG
CGGCCCCGCUGCUCGGACC
GCGACAGC

scRMSD=9.11 scCRMSD=9.24 ScCRMSD=9.43 scRMSD=9.44

Figure 4: Structural examples of folded sequences using RhoFold, The red color indicates the areas
where there are differences from the original sequence.

synthesis could be mitigated through WHO-aligned sequence screening protocols and tiered access
controls, whereas equitable healthcare access requires balancing patent protections with open-source
licensing for non-commercial research.

E Limitations

This study has several limitations that need to be recognized. The most pressing constraint stems
from the current inability to conduct wet-experiment validation. This is due to practical laboratory
limitations, and as a result, direct biological verification of the computational predictions cannot
be achieved. Although gRNAde has carried out limited wet experiments, these experiments do not
involve functional implementation, and the actual functionality still requires further validation. This
methodological shortcoming is further exacerbated by the intrinsic challenges in RNA tertiary struc-
ture prediction. Existing computational methods still exhibit limited accuracy in simulating complex
three-dimensional conformations. The convergence of these factors poses inherent difficulties in
comprehensively assessing the biological plausibility and spatial compatibility of the interaction
patterns identified via our computational framework. In future research, experimental validation
will be prioritized, and emerging advancements in RNA structure determination techniques will be
incorporated to overcome these crucial limitations.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes], ,or [NA].

e [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

¢ Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

¢ Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: We summarize our contributions in both the abstract and introduction.
Guidelines:

» The answer NA means that the abstract and introduction do not include the claims made in
the paper.

* The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations in Appendix E.
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Guidelines:

» The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

» The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

L]

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA|
Justification: The paper does not involve results that require theoretical proof.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our method is mainly based on the existing generative models. All required
equations have been provided in Section 3, the experimental details are given in Appendix C,
and we will release our code later.

Guidelines:

* The answer NA means that the paper does not include experiments.
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If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good way
to accomplish this, but reproducibility can also be provided via detailed instructions for
how to replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate to the research
performed.

While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We promise that we will open-source the data and code after paper acceptance.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.
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6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We describe our implementation details in Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We report the variance for all results by repeating the experiments with three
different random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

e Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]
Justification: This paper provides sufficient information on the computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).
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9.

10.

11.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: he research conducted in the paper conforms, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

e If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We have discussed both the potential positive and negative societal impacts
in appendix D.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer:
Justification: We identify our paper as having no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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14.

» Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset
is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.
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* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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