
Learning Spatially-Adaptive Squeeze-Excitation
Networks for Image Synthesis and Image Recognition

Anonymous Author(s)
Affiliation
Address
email

Abstract

Learning light-weight yet expressive deep networks in both image synthesis and1

image recognition remains a challenging problem. Inspired by a more recent2

observation that it is the data-specificity that makes the multi-head self-attention3

(MHSA) in the Transformer model so powerful, this paper proposes to extend4

the widely adopted light-weight Squeeze-Excitation (SE) module to be spatially-5

adaptive to reinforce its data specificity, as a convolutional alternative of the6

MHSA, while retaining the efficiency of SE and the inductive basis of convolution.7

It presents two designs of spatially-adaptive squeeze-excitation (SASE) modules8

for image synthesis and image recognition respectively. For image synthesis tasks,9

the proposed SASE is tested in both low-shot and one-shot learning tasks. It shows10

better performance than prior arts. For image recognition tasks, the proposed11

SASE is used as a drop-in replacement for convolution layers in ResNets and12

achieves much better accuracy than the vanilla ResNets, and slightly better than13

the MHSA counterparts such as the Swin-Transformer and Pyramid-Transformer14

in the ImageNet-1000 dataset, with significantly smaller models.15

1 Introduction16

Both image synthesis and image recognition remain challenging problems in computer vision and17

machine learning. Despite remarkable progress has been made since the recent resurgence of deep18

neural networks (DNNs), both synthesizing high-fidelity and high-resolution images and classifying19

images accurately at scale typically entails computationally expensive training and inference, which20

have shown to lead to potential environmental issues due to the carbon footprint [1]. Along with the21

progress, learning light-weight yet highly-expressive deep models also remains an important and22

interesting research direction, especially with less data. This paper focuses on learning low-shot (e.g.,23

100 to 1000 images in training) and one-shot image synthesis models and on learning smaller yet24

expressive models for image recognition at scale.25

Consider generative adversarial networks (GANs), state-of-the-art methods such as BigGANs [2]26

and StyleGANs [3, 4] utilize ResNets as their backbones. Although powerful, as the resolution of27

synthesized images goes higher, the width and the depth of a generator network goes wider and28

deeper accordingly, leading to much increased memory footprint and longer training time. The29

more recent Transformer based models often further increase the complexities [5]. To address30

these issues, Liu et al [6] present a FastGAN approach which introduces a Skip-Layer channel-wise31

Excitation (SLE) module to reduce the computation and memory complexities of both generator32

and discriminator networks (Fig. 1), together with exploiting the differentiable data augmentation33

methods [7]. FastGANs have shown exciting results which outperform the well-known and powerful34

StyleGANv2 [4] under the low-shot training settings.35

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

SE

SLE

Residual Building Block (ResBlock) ResBlock + Squeeze-Excitation (SE)

Skip-Layer Excitation (SLE)

Removed

Figure 1: Top: Illustration of the ubiquitous residual building
block [8], and its reinforced variant with the popular squeeze-
excitation (SE) module [9] that learns channel-wise feature
attention. F (X) represents the transformation applied to
an input feature map X . I(X) represents the skip connec-
tion. Middle: Illustration of the Skip-Layer Excitation (SLE)
module in FastGANs [6]. With the SLE, the original layer-
wise skip-connections are removed to reduce computational
and memory complexities (e.g., I1() to I4() shown in dot-
ted blocks). Bottom: Both SE and SLE realize channel-wise
feature attention/modulation to re-calibrate the feature maps.

What make the light-weight SE/SLE an36

effective drop-in module? One possible37

explanation lies in its data specificity that38

enables on-the-fly feature modulation be-39

tween feature responses in both training40

and inference. More recently, the data41

specificity of the multi-head self-attention42

(MHSA) module in the Transformer model43

has been shown to be the key to its rep-44

resentational power (rather than its long-45

range contextual modeling capability) [10].46

However, SE/SLE is a channel-wise real-47

ization of the data specificity, without ac-48

counting for the spatial feature modula-49

tion/attention (the spatial dimensions are50

entirely squeezed). So, a question nat-51

urally arises: Can we extend SE/SLE to52

be spatially-adaptive, such that we can53

build a light-weight convolutional alterna-54

tive to the MHSA to retain the efficiency55

of SE/SLE and the inductive basis of con-56

volution for both fast and low-shot image57

synthesis and large scale image recognition58

applications.59

To address the question, this paper pro-60

poses to learn spatially-adaptive squeeze-excitation (SASE) networks with two realizations for61

image synthesis and image recognition respectively (Fig. 2). We give a brief overview of the proposed62

modules below.63

SASE for Image Synthesis (Skip-Layer)

...

SASE for Image Recognition

||

Softmax
along channelsplit

(multi-head)

...

split
(multi-head)

Concat.

Global pooling

FC (squeeze)

BatchNorm

ReLU

FC (excitation)

ConvBlock 1x1

ConvBlock 3x3, dilation=d

ConvBlock 1x1 (squeeze)

Sigmoid

Upsample (Nearest)

Noise Injection

Global pooling

FC (squeeze)

BatchNorm

ReLU

FC (excitation)

ConvBlock 3x3

Conv 3x3

Conv 3x3

Figure 2: Illustration of the proposed SASE module. It resembles the multi-head computation in the Transformer
model [11]. It exploits different strategies in computing the attention. g represents the number of heads/groups
used to split the input along the channel dimension (e.g., g = 4), and r represents the squeezing ratio (e.g.,
r = 4). See text for details.

SASE for Image Synthesis. The left of Fig. 2 illustrates the proposed design of SASE to facilitate64

efficient low-shot and one-shot image synthesis. Unlike the channel-wise 1-D attention weights for a65

target feature map X in both the SE and SLE modules (i.e., CY × 1× 1, see the bottom of Fig. 1),66

the proposed SASE aims to learn a full 3D attention weights (i.e., ACY ×HY ×WY
) in a multi-head67

way. Each 3D attention matrix is computed by broadcasting and multiplying the learned Query vector68

QCY ×1×1 (accounting for the latent style information for image synthesis by squeezing the spatial69

dimensions) and the learned Key map K1×HY ×WY
(accounting for the spatial mask by squeezing70

the channel dimensions). The multi-head 3D attention matrices are summed together and normalized71

2

by the sum of the Key maps. The resulting final 3D attention matrix used for modulating the feature72

map YCY ×HY ×WY
integrates both spatial and channel-wise attention. This 3D attention matrix73

enables richer information flow from a source feature map X to a target one Y , which leads to better74

generation quality for low-shot and one-shot image synthesis. Fig. 3 shows the deployment of the75

SASE module in FastGANs [6] and SinGANs [12].76

SASE for Image Recognition. As illustrated in the right of Fig. 2, the learned full 3D attention77

matrix resembles the role of the self-attention weights in the Transformer model [11]. In the78

Transformer model, the attention is explicitly calculated between all pairs of “tokens" (e.g., patches79

after embedding) after the query and key transformation respectively. The resulting full attention80

matrix is thus quadratic in terms of the number of “tokens". In the proposed SASE, the channel-wise81

attention squeezes all spatial locations, and the resulting 1D Query (style) vector conveys/squeezes82

information from all locations. The spatial Key map squeezes the channels, and the resulting 2D83

spatial masks (heatmaps) forms the soft grouping of pixels in each mask. The resulting 3D attention84

matrix thus implicitly measure the attention weights used in the Transformer model at a much coarser85

level, but will be more efficient to compute. Softmax is applied along the channel dimension of the86

3D attention matrix. It is then used to re-calibrate the output of the Value (convolutional response)87

map in an element-wise / spatially-adaptive way. As shown in Fig. 4, it is used to replace all the 3x388

convolution layers in a feature backbone (e.g., ResNet-50). It achieves much better accuracy with89

significantly smaller model complexity in ImageNet-1000 [13].90

Our Contributions. In summary, this paper makes three main contributions as follows: (i) It presents91

a Spatially-Adaptive Squeeze-Excitation (SASE) module with two realizations for better learning92

of generative models from low-shot / one-shot images, and for large-scale discriminative learning93

like the Transformer model, but in a more efficient way, respectively. (ii) It shows significantly better94

performance for high-resolution image synthesis at the resolution of 1024×1024 when deployed95

in the FastGANs [6], while retaining the efficiency. It also shows better performance in image96

classification and object detection with much smaller models. (iii) It enables a simplified workflow97

for SinGANs [12], and shows a stronger capability of preserving image structures than prior arts.98

2 Approach99

2.1 The SASE for Image Synthesis100

Uncondiational Image Synthesis. The goal is to learn a generator network which maps a latent code101

to an image,102

x = G(z; ΘG), (1)
where z represents a 1-D latent code (e.g., in FastGANs [6] or a 2-D latent code (e.g., in Sin-103

GANs [12]), which is typically drawn from standard Normal distribution (i.e., white noise). ΘG104

collects all the parameters of the generator network G. Given a latent code, it is straightforward to105

generate an image.106

FastGANs. As shown in the left of Fig. 3, the generator network used in FastGANs [6] adopts a107

minimally-simple yet elegantly chosen design methodology. Given an input latent code, the initial108

block applies the transpose convolution to map the latent code to a 4 × 4 feature map. Then, a109

composite block (UpCompBlock) and a plain block (UpBlock) are interleaved to map the 4 × 4110

feature map to the one at a given target resolution (e.g., 1024× 1024). Batch normalization [14] and111

gated linear unit (GLU) [15] are used in the building blocks. In a composite upsample block, noise112

injection is used right after the convolution operation. Please refer the original paper [6] for details.113

SinGANs. The right-top of Fig. 3 shows a stage in the generator of SinGANs [12]. A SinGAN114

is progressively trained from a chosen low resolution to the resolution of the single input image.115

Following the notation usage in SinGANs [12], the start resolution is indexed by N and the end116

resolution by 0. At the very beginning, a 2-D latent code, zN is sampled and the initial generator117

X ′
N = GN (zN ; θN) is trained under the vanilla GAN settings. Then, at the stage n (N > n ≥ 0),118

the generator Gn has been progressively grown from GN , and we have X ′
n = Gn(zn, (X

′
n+1) ↑; θn),119

where (X ′
n+1) ↑ represents the up-sampled synthesized image from the previous stage n+ 1 with120

respect to the predefined ratio used in the construction of the image pyramid. More specifically,121

X ′
n = (X ′

n+1) ↑ +ψn(zn + (X ′
n+1) ↑; θn). More details are referred to the original paper [12].122

With the proposed SASE module, we substantially change the workflow of the generator as shown123

in the right-bottom of Fig. 3: Each stage of the vanilla SinGAN is to learn the residual image on124

3

SLE or SASE

ConvTrans4x4

BatchNorm
GLU

InitBlock

Upsample (nearest)

Conv3x3
BatchNorm

GLU

UpBlock
Upsample (nearest)

Conv3x3
Noise injection

BatchNorm
GLU

UpCompBlock

1 2 3 4 5

1 2 3 4 5SASE

The Vanilla SinGAN Stage

The Proposed SASE-SinGAN Stage

SLE / SASE FastGAN

Figure 3: Left: The generator network of FastGANs [6] and the drop-in replacement of the SLE module by our
SASE module. The network specification is reproduced based on the officially released code of FastGANs (link).
Right: Illustration of deploying the proposed SASE module in SinGANs [12]. See text for details.

top of the output from the previous stage. As we shall elaborate, the proposed SASE module is125

spatially-adaptive in modulating a target feature map using a source feature map, so we remove the126

residual learning setting. We keep the discriminator of SinGANs unchanged in our experiments.127

The SASE Module. Fig. 2 shows the proposed SASE module. We first compare the formulation128

between the SE module [9], the SLE module [6] and the proposed SASE module. Focusing on how an129

input target feature map Y is transformed to the output feature map Y ′, denote by Y = (y1, · · · ,yCY
)130

where yc represents a single channel slice of the tensor Y for 1 ≤ c ≤ CY , we have,131

SE: Y ′ = (α1 · y1, · · · , αC · yCY
), (2)

SLE: Y ′ = (β1 · y1, · · · , βC · yCY
), (3)

where the channel importance coefficient αc = FSE(Y) in the SE module, and βc = FSLE(X) in132

the SLE module. So, the SE module realizes self-attention between channels (a.k.a. “neurons"),133

while the SLE module realizes cross-attention. And, the former is a special case of the latter when134

X = Y . Both αc and βc are scalar and shared by all spatial locations in the same channel slice. For135

discriminative learning tasks such as image classification, this channel-wise feature attention works136

very well since spatial locations will be discarded by the classification head sub-network (typically137

via a global average pooling followed by a fully-connected layer). For image synthesis tasks whose138

outputs are location-sensitive, it may not be sufficient to deliver the entailed modulation effects.139

The proposed SASE module aims to facilitate spatially-adaptive attention by extending the SLE140

module. It learns a 3D weight matrix WCY ×HY ×WY
from the source feature map X in modulating141

the target feature map YCY ×HY ×WY
(that is to “pay full attention"), and we have,142

SASE: Y ′ = W ◦ Y, (4)
where ◦ represent the Hadamard product.143

Learning the spatially-adaptive attention matrix W from X . We want to distill two types of144

information: One represents 1D latent style codes (as the Query vector) that are informed by the145

source feature map X , and then are used to induce the modulated target feature map Y ′ to focus146

on. The other reflects 2D latent spatial masks (as the Key maps) that are used to distribute the147

latent Query/style codes. Decoupling these two is beneficial to enable them learning faster and more148

accurate.149

Decoupling the Style and Layout. We decouple the channels (“neurons") in an input source feature150

map by splitting them into a number of groups (e.g., 4), that is to exploit mixture modeling or151

clustering of the “neurons" in a building block, as suggested by the theoretical study of how to152

construct an optimal neural architecture in a layer-wise manner with a set of constraints satisfied [16]153

and as typically done in the MHSA of the Transformer model. For each group, we apply the decoupled154

channel-wise and spatial transformation for learning the latent style codes and the latent spatial masks155

concurrently.156

To sum up, from the channel-wise attention branches, we compute a group of g latent Query/style157

vectors, QCY ×1×1’s. From the spatial attention branches, we compute a group of g latent spatial Key158

masks, K1×HY ×WY
. Then, the 3-D weight matrix W in Eqn. 4 is computed by,159

W =

∑g
i=1(Qi ◦Ki)∑g

i=1 Ki
, (5)

where Q and K are broadcasted from Q and K to match the dimensions respectively.160

4

https://github.com/odegeasslbc/FastGAN-pytorch

2.2 The SASE for Image Recognition161

ResNet Bottleneck SE Bottleneck Transformer Bottleneck SASE Bottleneck

Figure 4: Comparisons between two variants
of the vanilla ResNet bottleneck block [8] (left)
with the proposed SASE bottleneck: the SE bot-
tleneck [9] is a widely adopted design, and the
Transformer bottleneck is a recently proposed
method [17]. r is the bottleneck ratio (e.g., r = 4).

The right of Fig. 2 illustrates the proposed SASE for162

image recognition. Its implementation is straightfor-163

ward following the discussions above. It is used for164

substituting the 3x3 Convolutions in a network (e.g.,165

the ResNets [8]), as shown in the right of Fig. 4.166

More specifically, we can compare the computation167

workflows between our SASE and the MHSA mod-168

ule. Let c be the input dimension (i.e., c = C
r), g the169

number of heads, and d = c
g the head dimension. For170

simplicity, we omit the additive positional encoding171

used in integrating the MHSA in ResNets. Please172

refer to [17] for more details. Following the terminol-173

ogy used in the Transformer model [11], denote by174

N = H ×W the number of “tokens". In MHSA and175

SASE, the query, key and value are then defined respectively by:176

MHSA: Zg×N×d = Reshape(WZ
c×c ×Xc×H×W), Z ∈ {Q,K, V } (6)

Ai
N×N = Softmax((Qi

N×d ·Ki
d×N)/

√
d), i = 1, · · · g, (7)

X ′
c×H×W = Reshape(Concat(Ai

N×N × V i
N×d)

g
i=1); (8)

SASE: Qi
d×1×1 = SE(Xi

d×H×W), i = 1, · · · g, (9)

Ki
d×H×W = Conv3x3(Conv3x3BNReLU(Xi

d×H×W)), (10)

V i
d×H×W = Conv3x3(Xi

d×H×W), (11)

Ai
d×H×W = Softmax(Qi

d×1×1 ◦Ki
d×H×W), (12)

X ′
c×H×W = Concat(Ai

d×H×W ◦ V i
d×H×W)gi=1, (13)

where the MHSA often suffers from the quadratic complexities of computint time and memory177

footprint in terms of the input number of “tokens" (N). Our SASE can retain linear complexities.178

In terms of maintaining the on-the-fly data-specificity as pointed out in [10], our SASE offers an179

alternative and efficient computation workflow. In our SASE, the query attempts to summarize180

information from all spatial locations, and the key attempts to maintain the locality. The resulting181

attention via broadcasting and multiplying the query and key facilitate integrating the global and local182

information, which is then used to modulate the value.183

3 Experiments184

In this section, we test the proposed SASE module on four tasks: low-shot image synthesis using185

FastGANs [6], one-shot image synthesis using SinGANs [12], ImageNet-1000 classification using186

ResNets [8], and MS-COCO object detection and instance segmentation using Mask R-CNN [18]187

with ResNets backbone. Our PyTorch source code is provided in the supplementary materials.188

3.1 Low-Shot Image Synthesis Results189

Data and Settings. We adopt the datasets used in the vanilla FastGANs [6] for fair comparisons190

with the SLE. There are 5 categories tested at the resolution of 256× 256 each of which uses around191

100 training images. There are 7 categories tested at the resolution of 1024× 1024, four of which192

use around 1000 training images and the remaining of which use around 100 training images. The193

categories are listed in Table 1. We follow settings used in the official code of FastGANs. One194

thing worth clarifying is the output size of the discriminator. There are two different settings used195

for different categories in the original experiments by FastGANs [6]: 1 × 1 or 5 × 5, which show196

different performance on different categories. For simplicity, we use 5× 5 consistently throughout197

the experiments as the output size, so some of the results of the proposed SASE module could be198

further improved. A single GPU is used in training.199

Metrics. To evaluate the quality of synthesized images, we adopt the widely used Fréchet Inception200

Distance (FID) [19] and Kernel Inception Distance (KID) [20] metrics. KID has better sample-201

efficiency and lower estimation bias than FID, more suitable for low-shot image synthesis. We further202

use the density and coverage [21] metric for evaluating the reliable fidelity and diversity, where we203

5

use the default k-nearest neighbours with k = 5. To assess the potential memorization in low-shot204

image synthesis methods, we use the Kolmogorov-Smirnov (KS) p-value proposed in the latent205

recovery method [22]. We use ↑ and ↓ alongside each of the metric in the tables to indicate whether206

the larger/smaller its value is, the better a model is.207

Metric Method (DiffAug) 256×256, ∼100 images per category 1024× 1024, ∼1000 images 1024× 1024, ∼100 images
Obama Dog Cat Grumpy Cat Panda FFHQ Art Flower Pokemon AnimeFace Skulls Shells

FID↓

SLE 41.05 50.66 35.11 26.65 10.03 44.3 45.08 31.7 57.19 59.38 130.05 155.47
SPAP 51.98 58.46 54.31 30.15 14.41 78.37 61.89 60.15 114.98 93.53 118.09 160.12
CBAM 40.05 52.35 36.14 26.89 10.14 58.23 58.12 44.13 76.76 84.45 125.61 156.76
SASE (ours) 36.4 49.99 33.55 26.01 9.48 39.59 43.46 29.90 51.2 54.22 101.16 140.45

KID↓

SLE 0.012 0.014 0.006 0.007 0.004 0.012 0.011 0.006 0.014 0.018 0.054 0.068
SPAP 0.045 0.026 0.014 0.013 0.009 0.21 0.54 0.019 0.11 0.15 0.045 0.11
CBAM 0.012 0.016 0.007 0.007 0.004 0.15 0.45 0.012 0.058 0.13 0.051 0.071
SASE (ours) 0.005 0.012 0.004 0.004 0.002 0.011 0.009 0.006 0.011 0.014 0.030 0.044

Density↑

SLE 1.31 0.79 0.95 1.25 1.78 1.18 1.38 0.85 1.14 1.17 0.90 0.29
SPAP 0.91 0.53 0.89 1.01 1.32 0.81 0.74 0.66 0.54 0.61 0.92 0.27
CBAM 1.35 0.79 0.94 1.25 1.75 0.88 0.81 0.73 0.67 0.79 0.90 0.28
SASE (ours) 1.38 0.84 1.07 1.38 1.89 1.20 1.41 0.92 1.21 1.21 1.18 0.52

Coverage↑

SLE 1.0 0.96 1.0 1.0 1.0 0.95 0.95 0.93 0.95 0.98 0.89 0.85
SPAP 0.86 0.90 0.92 0.94 0.95 0.88 0.84 0.79 0.71 0.68 0.92 0.81
CBAM 1.0 0.95 1.0 1.0 1.0 0.91 0.88 0.83 0.78 0.73 0.90 0.83
SASE (ours) 1.0 0.98 1.0 1.0 1.0 0.96 0.96 0.95 0.96 1.0 1.0 0.91

Table 1: Fidelity (FID, KID, Density) and diversity (Coverage) comparisons between our SASE and three
baseline modules in low-shot image synthesis, including the vanilla SLE [6], the SPAP module [23] and the
CBAM module [24], using the FastGAN pipeline [6] that utilizes the differentiable data augmentation (DiffAug)
method [7] in training. Our SASE is consistently better than the three baseline modules.

Model and Data Augmentation Baselines: To evaluate the effectiveness of the proposed SASE,208

in addition to the vanilla SLE [6], we also compare with: the CBAM module [24] which leverages209

spatial and channel attention sequentially for better representation learning, and the SPAP module [23]210

which leverages multi-scale spatial attention in GANs.211

For low-shot image synthesis, data augmentation plays an important role. The vanilla FastGAN [6]212

utilizes the differentiable data augmentation (DiffAug) method [7]. More recently, the adaptive data213

augmentation (ADA) method [25] is proposed with even better support for low-shot image synthesis.214

To evaluate whether the proposed SASE retains its effectiveness, we compare the SLE and our SASE215

in a modified FastGAN pipeline with the ADA in training. We follow the original ADA settings to216

set the target value to 0.6, and set the increasing rate of augmentation probability such that it can217

increase from 0 to 1 within 10k iterations (1/5 of the total training time).218

Metric Method (ADA) 256×256, ∼100 images per category 1024× 1024, ∼1000 images 1024× 1024, ∼100 images
Obama Dog Cat Grumpy Cat Panda FFHQ Art Flower Pokemon AnimeFace Skulls Shells

FID↓
SLE 38.9 52.04 34.5 26.83 9.87 44.43 45.1 31.89 55.67 59.11 120.62 153.47
SASE (ours) 34.5 49.83 31.2 26.03 9.50 39.12 43.53 29.63 48.56 53.31 96.56 140.75

KID↓
SLE 0.01 0.015 0.004 0.007 0.003 0.012 0.011 0.006 0.013 0.018 0.049 0.071
SASE (ours) 0.004 0.012 0.002 0.004 0.002 0.011 0.009 0.006 0.009 0.013 0.025 0.044

Density↑
SLE 1.35 0.78 0.96 1.28 1.82 1.17 1.39 0.85 1.13 1.18 0.91 0.28
SASE (ours) 1.39 0.89 1.12 1.41 1.87 1.21 1.40 0.92 1.25 1.24 1.21 0.53

Coverage↑
SLE 1.0 0.94 1.0 1.0 1.0 0.96 0.94 0.95 0.94 0.98 0.92 0.86
SASE (ours) 1.0 1.0 1.0 1.0 1.0 0.96 0.97 0.96 0.95 1.0 1.0 0.92

Table 2: Fidelity (FID, KID, Density) and diversity (Coverage) comparisons between our SASE and SLE
using a modified FastGAN pipeline in which the differentiable data augmentation method is replaced by a more
recent adaptive data augmentation method (ADA) [25] that facilitates low-shot image synthesis. Compared with
Table 1, the ADA method shows better overall performance than the differentiable data augmentation method [7].
Our SASE remains consistently better than the SLE w.r.t. the new data augmentation method, justifying the
architectural contributions by our SASE.

Metric DataAug Method 256×256, ∼100 images per category 1024× 1024, ∼1000 images 1024× 1024, ∼100 images
Obama Dog Cat Grumpy Cat Panda FFHQ Art Flower Pokemon AnimeFace Skulls Shells

KS p-value↑
(threshold 0.01)

DiffAug

SLE 0.87 0.77 0.32 0.19 0.81 0.39 0.025 0.06 0.78 0.75 0.17 0.89
SPAP 0.45 0.39 0.13 0.11 0.55 0.12 0.11 0.03 0.42 0.31 0.21 0.49
CBAM 0.86 0.65 0.35 0.53 0.79 0.24 0.23 0.02 0.37 0.42 0.58 0.46
SASE (ours) 0.65 0.45 0.32 0.94 0.76 0.73 0.53 0.43 0.81 0.86 0.39 0.98

ADA SLE 0.83 0.74 0.35 0.19 0.84 0.37 0.027 0.08 0.76 0.73 0.18 0.90
SASE (ours) 0.71 0.59 0.42 0.95 0.81 0.74 0.55 0.42 0.83 0.87 0.38 0.98

Table 3: Memorization/overfitting assessment for our SASE and SLE, SPAP adn CBAM in the FastGAN
pipeline with the differentiable data augmentation method. Our SASE shows no signs of overfitting across all
scenarios, while the SLE shows tendency towards overfitting on some categories such as “Art" and “Flower".

Results - Image Synthesis Quality: Table 1 shows that the proposed SASE is consistently better than219

all baselines (SLE, SPAP and CBAM) in terms of both traditional metrics, FID and KID and more220

recently proposed more reliable metrics, Density and Coverage. For high-resolution (1024×A 1024)221

image synthesis which uses more SASE components (Fig. 3), the improvements are significantly222

6

https://github.com/Jongchan/attention-module
https://github.com/WillSuen/DilatesGAN

better, which shows the effectiveness of our SASE. It is also noted that the SLE is overall better than223

SPAP and CBAM.224

Table 2 shows that our proposed SASE is still consistently better than the SLE when we replace the225

DiffAug by the ADA in training.226

Results - Memorization Assessment: Table 3 shows that our SASE is capable of synthesizing227

new images by learning from low-shot images, while other methods have certain tendency towards228

overfitting on different categories. The results of our SASE are aligned with its diversity evaluation229

results in Table 1 and Table 2.230

Model Nature-2k Nature-5k Nature-10k FFHQ-2k FFHQ-5k FFHQ-10k
SLE 103.71 104.73 99.64 27.68 20.6 19.21
SASE (ours) 101.53 96.91 93.94 24.59 19.45 18.84

Table 4: FID comparisons (smaller is better) on the 2
categories with models trained with more data (2k, 5k
and 10k) at the resolution of 1024× 1024.

Model Params Resolution FLOPs Params Resolution FLOPs
SLE-FastGAN 29.1M 256×256 9.7933G 29.2M 1024×1024 16.1960G
SASE-FastGAN 28.5M 256×256 9.7942G 28.5M 1024×1024 16.1986G

Table 5: Model complexity comparisons between
SASE-FastGAN and SLE-FastGAN.

Results - Learning with More Data: To further evaluate the effectiveness of the proposed SASE231

Figure 5: Top: Synthesized face images at
the resolution of 1024× 1024 in the FFHQ
dataset [3]. The model is trained using 2k
training FFHQ images for around 15 hours
on a single GPU. Bottom: Visualization of
the learned Key maps (spatial masks) from
the stage 322 to the stage 5122.

when trained with more data, we compare our SASE and232

the SLE under different settings. With more training data,233

we use FID in evaluation for simplicity. As shown in234

Table 4, our SASE retains its stronger effectiveness than235

the SLE. Both models are trained from scratch with the236

same data sampled from the original FFHQ and Nature237

Photograph datasets. Training time are budgeted with238

around 20 hours for all the experiments.239

Qualitative Results and Explanability Visualization.240

To check what are learned by the spatial attention (the241

Key maps in Fig. 3), Fig. 5 shows some synthesized face242

images and the learned latent spatial masks. We can see243

that the learned masks cover different areas of the face, e.g.244

starting from left, the fourth column of masks cover the245

hair area, and the third column covers nose area. Please246

check the Appendix A.3 for more qualitative results.247

Model Complexity. Table 5 shows the comparisons of248

model sizes. Our SASE-FastGANs have slightly less pa-249

rameters than the vanilla SLE-FastGANs, and has negligi-250

ble computating cost increase interms of FLOPs. since we251

split and squeeze the channel dimension (g and r in right252

of Fig. 2) in learning the channel-wise and spatial attention253

in our SASE. Although having less number of parameters, the proposed SASE module increases the254

training time in training models for high-resolution image synthesis (roughly 1/8 relative increase),255

which may due to the more sophisticated computational graphs to maintain for forward and backward256

computation after the SASE is used. The training time increase is negligible for training image257

synthesis models at lower resolutions such as 256× 256.258

3.2 One-Shot Image Synthesis Results259

Real

S
A
S
E
-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Figure 6: Left: a real image. Right: from top to
bottom, synthesized images by our SASE-SinGAN,
the vanilla SinGAN, the ConSinGAN, and the SLE-
SinGAN. SASE-SinGAN is better in terms of preserving
structure, while producing meaningful semantic varia-
tions (e.g., the change of number of Sphinx statues)

Data. Since our goal is to test if the pro-260

posed SASE can lead to structure-aware one-261

shot image synthesis, we select 23 images,262

among which 14 images are used in the vanilla263

SinGANs: Brandenberg, bridge, Golden gate,264

tower, angkorwat, balloons, birds, colusseum,265

mountains, starry night, tree, cows, volcano;266

The remaining 9 images are searched from the267

website. The images cover different structures268

which often fail the vanilla SinGANs.269

Settings and Baselines. We follow the settings270

provided by the vanilla SinGANs [12]. Two271

baselines are used: (i) ConSinGANs [26] for272

7

which we follow the suggestions in the paper to try different combinations between the learning rate273

and the number of stages jointly trained and select the best results. (ii) SLE-SinGANs in which the274

SLE module is used, instead of SASE, in the right-bottom of Fig. 3.275

Metrics. We evaluate our methods with single image FID (SIFID) and Diversity Score proposed in276

the vanilla SinGANs [12].277

Metric SinGAN ConSinGAN SLE-SinGAN SASE-SinGAN (ours)
SIFID↓ 0.683 1.45 0.78 0.581
Diversity↑ 0.543 0.487 0.559 0.295

Table 6: SIFID and diversity score comparisons using
the 23 selected images. Note that SIFID may not reflect
the actual quality of synthesized images, as pointed out
in ConSinGANs [26].

Model Params Resolution FLOPs Params Resolution FLOPs
SinGAN 1.02M 165×250 19.33G 1.02M 330×250 38.20G
SLE-SinGAN 1.63M 165×250 19.33G 1.63M 330×250 38.21G
SASE-SinGAN 1.25M 165×250 22.85G 1.25M 330×250 44.65G
ConSinGAN 0.77M 165×250 8.92G 0.77M 330×250 17.73G

Table 7: Model complexity comparison between the
proposed SASE-SinGAN and other SinGAN variants.

Results. Table 6 shows the comparison results. In terms of diversity score, Our SASE obtains lower278

diversity in the trend similar to ConSinGAN. The testing images are structure-rich images for which279

our goal is to study how to preserve the structure. The diversity score should be interpreted jointly280

with the SIFID. Fig. 6 shows synthesized images for the Egyptian pyramid image. We can see the the281

proposed SASE is stronger in terms of preserving structures in synthesized images. We observe that282

ConSinGANs may fail to learn some images e.g., the Golden Gate (Fig. 23 in the appendix), which283

causes the high SIFID. More qualitative results are in the Appendix A.4.284

Model Complexity. Table 7 shows the complexity comparison between SASE-SinGAN and other285

SinGAN variants. Both SLE and our SASE increases the FLOPs significantly compare to vanilla286

Singan, since they are used for connecting low-resolution feature maps to relatively high ones and287

there are four in total, see Fig. 3, so the overhead is light-weight. For SinGANs, we have SLE and288

SASE between feature maps with the same resolution and have one at every resolution stage. The289

spatial attention branch of our SASE increases the FLOPs even more significantly.290

3.3 Image Classification Results in ImageNet-1000291

Epochs Method #Params↓ FLOPS↓ top-1↑ top-5↑

100

†SE-ResNet50 28.09M 4.13G 77.74 93.84
†ResNeXt-32x4d-50 25.03M 4.27G 77.90 93.66

SC-ResNet50 [27] 25.60M 4.00G 77.80 93.90
GE-ResNet50 [28] 31.20M 3.87G 78.00 94.13
GC-ResNet50 [29] 28.08M 3.87G 77.70 93.66

ECA-ResNet50 [30] 24.37M 3.86G 77.48 93.68
AA-ResNet50 [31] 25.80M 8.30G 77.70 93.80

SASE-ResNet50 (ours) 18.66M 3.36G 78.06 94.14

300

Swin-Tiny [32] 28.00M 4.50G 81.20 95.50
PVT-Small [33] 24.50M 3.80G 79.80 -

ResNet50-Strikesback (A2) [34] 25.60M 4.10G 79.80 -
SASE-ResNet50 (A2) (ours) 18.66M 3.36G 81.24 95.34

200 BoT-S1-50 [17] 20.80M 4.27G 79.10 94.40

Table 8: Comparisons of ImageNet-1000 classification
results. All models are trained and tested using the
resolution of 224 × 224. Top-1 and Top-5 accuracy
(%) are used. † Results are from the MMClassification
model zoo.

We test the proposed SASE using ResNet-292

50 [8] (Fig. 4). First we compare it with SE293

and other variants of attention models used in294

ResNets, including the Self-Calibrated convo-295

lutions (SC-ResNets) [27], the Gather-Excite296

networks (GE-ResNets) [28], the GC-ResNets297

(non-local networks meet the SE networks) [29],298

the Efficient Channel Attention networks (ECA-299

ResNets) [30], and the attention augmented net-300

works (AA-ResNets) [31]. For fair comparisons,301

we use the most vanilla training settings to verify302

the effectiveness of the architectural design of303

SASE itself: 100 epochs and the basic data aug-304

mentation scheme (random crop and horizontal305

flip). Table 8 (top) shows the results. Compared306

with the SE, our SASE obtains 0.32% top-1 accuracy increase, while significantly reducing the model307

parameters (by 9M) and FLOPs. Compared with ResNeXt-32x4d-50, our SASE obtains 0.16% top-1308

accuracy increase with much less parameters too, and our SASE also outperforms other attention309

variants. These results clearly show the effectiveness of the proposed SASE.310

Further, to compare the recent state of the art image classification models, we follow the improved311

training procedure, the A2 recipe, proposed in [34] that enables ResNets to strike back in performance312

compared with variants of Vision Transformer, the results are shown in Table 8 (middle). The313

proposed SASE shows very promising performance, bridging the performance gap between the314

ResNets and the state-of-the-art Swin-Transformer [32] and Pyramid Vision Transformer (PVT) [33],315

which supports our design hypothesis stated in Section 2.2.316

3.4 Object Detection and Instance Segmentation in MS-COCO317

To check how well the ImageNet-100 pretrained SASE-ResNet50 will transfer to downstream318

tasks, we test it in the MS-COCO 2017 object detection and instance segmentation dataset [35]319

using the Mask R-CNN framework [18]. Table 9 shows the comparisons. On the one hand, our320

8

https://mmclassification.readthedocs.io/en/latest/model_zoo.html
https://mmclassification.readthedocs.io/en/latest/model_zoo.html

SASE significantly outperforms the vanilla ResNet, and is slightly better than the Bottleneck Trans-321

former [17] with a smaller model complexity, which shows the effectiveness of our SASE. On322

Backbone Mask R-CNN 3× (36 epochs)
#P(M) APb APb

50 APb
75 APm APm

50 APm
75

ResNet50 44.2 41.0 61.7 44.9 37.1 58.4 40.1
PVT-Small [33] 44.1 43.3 65.3 46.9 39.9 62.5 42.8
BoT50 [17] - 43.6 65.3 47.6 38.9 62.5 41.3
Swin-T [32] 48.0 46.0 68.1 50.3 41.6 65.1 44.9
SASE-ResNet50 (ours) 37.5 43.7 65.2 47.7 39.5 62.0 42.3

Table 9: Performance comparisons in MS-COCO.

the other hand, our SASE obtains comparable323

performance to the PVT-Small [33], but is sig-324

nificantly worse than the Swin-T [32].325

4 Related Work326

Light-weight GANs with Low-Shot Learn-327

ing. Compared to the extensive research on328

light-weight neural architectures in discrimina-329

tive learning for mobile platforms, much less work has been done in generative learning [36]. The330

residual network [8] is the most popular choice, on top of which powerful generative models such331

as BigGANs [2] and StyleGANs [37, 4] have been built with remarkable progress achieved. For332

high-resolution image synthesis, these models will be very computational expensive in training and in-333

ference. In the meanwhile, training these models typically require a big dataset, which further increase334

the training time. low-shot learning is appealing, but very challenging in training GANs, since data335

augmentation methods that are developed for discriminative learning tasks are not directly applicable.336

To address this challenge, differentiable data augmentation methods and variants [7, 25, 38, 39] have337

been proposed in training GANs with very exciting results obtained. Very recently, a FastGAN338

approach [6] is proposed to realize light-weight yet sufficiently powerful GANs with several novel339

designs including the SLE module. The proposed SASE is built on the SLE in FastGANs to reinforce340

its data-specificity.341

Learning Unconditional GANs from a Single Image. There are several work on learning GANs342

from a single texture image [40, 41, 42]. Recently, a SinGAN approach [12] has shown surprisingly343

good results on learning unconditional GANs from a single non-texture image. It is further improved344

in ConSinGANs [26] which jointly train several stages in progressively growing the generator network.345

However, it remains a challenging problem of preserving image structure in synthesis. The proposed346

SASE is applied to the vanilla SinGANs [12], leading to a simplified workflow that can be trained in347

a stage-wise manner and thus more efficient than ConSinGANs, and facilitating a stronger capability348

of preserving image structures.349

Attention Mechanism in Deep Networks. Attention reallocates the available computational re-350

sources to the most relevant components of a signal to the task [43, 44, 45, 46, 47, 11]. Attention351

mechanisms have been widely used in computer vision tasks [48, 49, 50, 51]. The SE module [9]352

applies a lightweight self gating module to facilitate channel-wise feature attention. Our proposed353

SASE module incorporates spatially-adaptive feature modulation, while maintaining the light weight354

design, improving the representation power for efficient discriminative learning.355

5 Limitations and Potential Negative Impacts of the Proposed Work356

The proposed SASE shows worse performance in object detection and instance segmentation than357

state-of-the-art Transformer based models. One direction to address this is to run more comprehensive358

experiments on the design choices (Eqn. 9 to Eqn. 12). The proposed SASE module does not show359

any potential negative impacts with its current form.360

6 Conclusion361

This paper proposes to learn spatially-adaptive squeeze-excitation (SASE) networks for better data-362

specificity by jointly learning both channel-wise attention as latent style representation and spatial363

attention as latent layout representation. The resulting SASE module computes a 3D attention matrix364

for modulating an input feature map. In experiments, the proposed SASE module is tested in low-365

shot image synthesis using FastGANs, one-shot image synthesis using SinGANs, ImageNet-1000366

classification using ResNets, MS-COCO object detection using Mask R-CNN. The SASE-FastGANs367

are consistently better than three strong baselines, and obtain significantly better performance at368

high-resolution image synthesis. The SASE-SinGANs show stronger capabilities in preserving image369

structures than prior arts. The SASE-ResNets show better performance than the SE variant and370

other variants with significantly smaller models, and competitive performance to state-of-the-art371

Transformer based models.372

9

References373

[1] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for374

deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.375

[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity376

natural image synthesis. In International Conference on Learning Representations, 2019.377

[3] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative378

adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and379

Pattern Recognition, pages 4401–4410, 2019.380

[4] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.381

Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF382

Conference on Computer Vision and Pattern Recognition, pages 8110–8119, 2020.383

[5] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution384

image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern385

Recognition, pages 12873–12883, 2021.386

[6] Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed Elgammal. Towards faster and stabilized387

gan training for high-fidelity few-shot image synthesis. arXiv e-prints, pages arXiv–2101, 2021.388

[7] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation389

for data-efficient gan training. arXiv preprint arXiv:2006.10738, 2020.390

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image391

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,392

pages 770–778, 2016.393

[9] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE394

conference on computer vision and pattern recognition, pages 7132–7141, 2018.395

[10] Namuk Park and Songkuk Kim. How do vision transformers work? In International Conference396

on Learning Representations, 2021.397

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,398

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information399

processing systems, pages 5998–6008, 2017.400

[12] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a generative model401

from a single natural image. In Proceedings of the IEEE/CVF International Conference on402

Computer Vision, pages 4570–4580, 2019.403

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-404

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern405

recognition, pages 248–255. Ieee, 2009.406

[14] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training407

by reducing internal covariate shift. In Proceedings of the 32nd International Conference on408

Machine Learning, pages 448–456, 2015.409

[15] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with410

gated convolutional networks. In International conference on machine learning, pages 933–941.411

PMLR, 2017.412

[16] Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds for learning some413

deep representations. In International conference on machine learning, pages 584–592. PMLR,414

2014.415

[17] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish416

Vaswani. Bottleneck transformers for visual recognition. In Proceedings of the IEEE/CVF417

conference on computer vision and pattern recognition, pages 16519–16529, 2021.418

10

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of419

the IEEE international conference on computer vision, pages 2961–2969, 2017.420

[19] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.421

Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in422

neural information processing systems, 30, 2017.423

[20] Mikołaj Bińkowski, Dougal J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying424

mmd gans. arXiv preprint arXiv:1801.01401, 2018.425

[21] Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo.426

Reliable fidelity and diversity metrics for generative models. In International Conference on427

Machine Learning, pages 7176–7185. PMLR, 2020.428

[22] Ryan Webster, Julien Rabin, Loic Simon, and Frédéric Jurie. Detecting overfitting of deep429

generative networks via latent recovery. In Proceedings of the IEEE/CVF Conference on430

Computer Vision and Pattern Recognition, pages 11273–11282, 2019.431

[23] Wei Sun and Tianfu Wu. Learning spatial pyramid attentive pooling in image synthesis and432

image-to-image translation. arXiv preprint arXiv:1901.06322, 2019.433

[24] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional434

block attention module. In Proceedings of the European conference on computer vision (ECCV),435

pages 3–19, 2018.436

[25] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.437

Training generative adversarial networks with limited data. arXiv preprint arXiv:2006.06676,438

2020.439

[26] Tobias Hinz, Matthew Fisher, Oliver Wang, and Stefan Wermter. Improved techniques for440

training single-image gans. In Proceedings of the IEEE/CVF Winter Conference on Applications441

of Computer Vision, pages 1300–1309, 2021.442

[27] Jiang-Jiang Liu, Qibin Hou, Ming-Ming Cheng, Changhu Wang, and Jiashi Feng. Improving443

convolutional networks with self-calibrated convolutions. In Proceedings of the IEEE/CVF444

Conference on Computer Vision and Pattern Recognition, pages 10096–10105, 2020.445

[28] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Andrea Vedaldi. Gather-excite: Exploiting446

feature context in convolutional neural networks. Advances in neural information processing447

systems, 31, 2018.448

[29] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han Hu. Gcnet: Non-local networks449

meet squeeze-excitation networks and beyond. In Proceedings of the IEEE/CVF International450

Conference on Computer Vision Workshops, pages 0–0, 2019.451

[30] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and Qinghua Hu. Eca-452

net: Efficient channel attention for deep convolutional neural networks. In CVPR, pages453

11531–11539, 2020.454

[31] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. Attention455

augmented convolutional networks. In Proceedings of the IEEE/CVF international conference456

on computer vision, pages 3286–3295, 2019.457

[32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining458

Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.459

[33] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping460

Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction461

without convolutions. In Proceedings of the IEEE/CVF International Conference on Computer462

Vision, pages 568–578, 2021.463

[34] Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training464

procedure in timm. arXiv preprint arXiv:2110.00476, 2021.465

11

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,466

Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV,467

pages 740–755, 2014.468

[36] Karol Kurach, Mario Lucic, and Xiaohua Zhai Marcin Michalski Sylvain Gelly. The469

gan landscape: Losses, architectures, regularization, and normalization. arXiv preprint470

arXiv:1807.04720, 2018.471

[37] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative472

adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern473

Recognition, pages 4401–4410, 2019.474

[38] Ngoc-Trung Tran, Viet-Hung Tran, Ngoc-Bao Nguyen, Trung-Kien Nguyen, and Ngai-Man475

Cheung. Towards good practices for data augmentation in gan training. arXiv preprint476

arXiv:2006.05338, 2020.477

[39] Zhengli Zhao, Zizhao Zhang, Ting Chen, Sameer Singh, and Han Zhang. Image augmentations478

for gan training. arXiv preprint arXiv:2006.02595, 2020.479

[40] Urs Bergmann, Nikolay Jetchev, and Roland Vollgraf. Learning texture manifolds with the480

periodic spatial gan. arXiv preprint arXiv:1705.06566, 2017.481

[41] Nikolay Jetchev, Urs Bergmann, and Roland Vollgraf. Texture synthesis with spatial generative482

adversarial networks. arXiv preprint arXiv:1611.08207, 2016.483

[42] Chuan Li and Michael Wand. Precomputed real-time texture synthesis with markovian genera-484

tive adversarial networks. In European conference on computer vision, pages 702–716. Springer,485

2016.486

[43] Bruno A Olshausen, Charles H Anderson, and David C Van Essen. A neurobiological model487

of visual attention and invariant pattern recognition based on dynamic routing of information.488

Journal of Neuroscience, 13(11):4700–4719, 1993.489

[44] Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual attention490

for rapid scene analysis. IEEE Transactions on pattern analysis and machine intelligence,491

20(11):1254–1259, 1998.492

[45] Laurent Itti and Christof Koch. Computational modelling of visual attention. Nature reviews493

neuroscience, 2(3):194–203, 2001.494

[46] Hugo Larochelle and Geoffrey E Hinton. Learning to combine foveal glimpses with a third-order495

boltzmann machine. Advances in neural information processing systems, 23:1243–1251, 2010.496

[47] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In497

Advances in neural information processing systems, pages 2204–2212, 2014.498

[48] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks.499

Advances in neural information processing systems, 28:2017–2025, 2015.500

[49] Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu, Jiang Wang, Zilei Wang, Yongzhen Huang,501

Liang Wang, Chang Huang, Wei Xu, et al. Look and think twice: Capturing top-down visual502

attention with feedback convolutional neural networks. In Proceedings of the IEEE international503

conference on computer vision, pages 2956–2964, 2015.504

[50] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,505

Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with506

visual attention. In International conference on machine learning, pages 2048–2057. PMLR,507

2015.508

[51] Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian Shao, Wei Liu, and Tat-Seng Chua.509

Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning.510

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages511

5659–5667, 2017.512

12

[52] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis513

with spatially-adaptive normalization. In Proceedings of the IEEE Conference on Computer514

Vision and Pattern Recognition, pages 2337–2346, 2019.515

[53] Wei Sun and Tianfu Wu. Image synthesis from reconfigurable layout and style. In Proceedings516

of the IEEE International Conference on Computer Vision, pages 10531–10540, 2019.517

13

Checklist518

The checklist follows the references. Please read the checklist guidelines carefully for information on519

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or520

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing521

the appropriate section of your paper or providing a brief inline description. For example:522

• Did you include the license to the code and datasets? [Yes] See the license file in the code523

folder in the supplementary material.524

Please do not modify the questions and only use the provided macros for your answers. Note that the525

Checklist section does not count towards the page limit. In your paper, please delete this instructions526

block and only keep the Checklist section heading above along with the questions/answers below.527

1. For all authors...528

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s529

contributions and scope? [Yes]530

(b) Did you describe the limitations of your work? [Yes] See Section 5.531

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See532

Section 5.533

(d) Have you read the ethics review guidelines and ensured that your paper conforms to534

them? [Yes]535

2. If you are including theoretical results...536

(a) Did you state the full set of assumptions of all theoretical results? [N/A]537

(b) Did you include complete proofs of all theoretical results? [N/A]538

3. If you ran experiments...539

(a) Did you include the code, data, and instructions needed to reproduce the main experi-540

mental results (either in the supplemental material or as a URL)? [Yes] See the code in541

the supplementary material.542

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they543

were chosen)? [Yes]544

(c) Did you report error bars (e.g., with respect to the random seed after running experi-545

ments multiple times)? [No]546

(d) Did you include the total amount of compute and the type of resources used (e.g., type547

of GPUs, internal cluster, or cloud provider)? [Yes] See settings in experiments.548

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...549

(a) If your work uses existing assets, did you cite the creators? [Yes]550

(b) Did you mention the license of the assets? [Yes]551

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]552

Code is provided.553

(d) Did you discuss whether and how consent was obtained from people whose data you’re554

using/curating? [N/A]555

(e) Did you discuss whether the data you are using/curating contains personally identifiable556

information or offensive content? [N/A]557

5. If you used crowdsourcing or conducted research with human subjects...558

(a) Did you include the full text of instructions given to participants and screenshots, if559

applicable? [N/A]560

(b) Did you describe any potential participant risks, with links to Institutional Review561

Board (IRB) approvals, if applicable? [N/A]562

(c) Did you include the estimated hourly wage paid to participants and the total amount563

spent on participant compensation? [N/A]564

14

A Appendix565

A.1 Comparing the SASE with Alternative Designs in Image Synthesis566

Comparing with the weight modulation in StyleGANv2 [4]. The weight modulation method in567

StyleGANv2 is an elegantly designed operation to achieve detailed style tuning effects. The style568

code is used to directly modulate the filter kernels (as model parameters) in an instance specific,569

and then modulated filter kernels are used in computing the convolution. Although being highly570

expressive, this weight modulate is not spatially-adaptive. And, it increases the computational burden571

and the memory footprint in execution. The proposed SASE directly modulates the feature map in a572

light-weight manner.573

Comparing with the SPADE in GauGANs [52] and the ISLA-Norm in LostGANs [53]. Both the574

SPADE and the ISLA-Norm exploit spatially-adaptive modulation, but apply it inside the BatchNorm.575

They replace the vanilla channel-wise affine transformation in the BatchNorm with spatially-adaptive576

affine transformation. The spatially-adaptive affine transformation coefficients are learned either577

from the input semantic masks in GauGANs or the generated latent masks from the input layouts in578

LostGANs. The proposed SASE is similar in spirit to the ISLA-Norm, but is formulated under the579

Inception architecture together with the skip-layer idea proposed in FastGANs [6].580

A.2 Training details of SASE-FastGANs581

We use the Adam optimizer for training, with β1=0.5, β2=0.999. We use learning rate of 0.0002 for582

all datasets except for FFHQ and the panda datasets, in which we use 0.0001. For the architecture of583

Discriminator, we adopts the output size of 5× 5; and for SASE-FastGAN model on the 1024× 1024584

datasets, we apply Gaussian noise injection to the spatial masks of SASE (the right-bottom of Fig. ??),585

with zero mean and unit variance; For the convolution of spatial branch of SASE, we set the dilation586

rates as 2, 2, 4 at stage 8× 8, 16× 16, 32× 32, respectively.587

A.3 More results of SASE-FastGANs588

A.3.1 Clarification on results on FFHQ-1k589

We notice there is a gap of the performance on FFHQ-1K between our retrained version based on the590

official FastGAN code and the reported one in the paper. Thanks to the author’s feedback via emails,591

the best configuration for reproducing the FFHQ-1k result of FID=24.45 will NOT be released since592

it is deployed on a commercial platform. So the FID of the SLE-FastGAN we trained based on the593

FastGAN code is worse than the one reported in the paper (Table 10).594

FID
SLE-FastGAN [6] (reported in the paper) 24.45
Retrained from the official FastGAN code 44.31
Retrained from the official FastGAN code (dataset-specific version) 42.82
Our SASE-FastGAN built on the official FastGAN code 39.59

Table 10: FFHQ-1k performance comparison between the reported result in FastGAN paper, our retrained
version based on their code, and the proposed SASE-FastGAN

A.3.2 Synthesis results of SASE-FastGAN on 1024× 1024 datasets595

Fig. 7 shows the example synthesized 1024× 1024 images of our proposed SASE-FastGAN.596

A.3.3 Backtracking results597

Settings: (Thanks to the clarification by the authors of FastGANs via emails) 1) We first split the598

dataset into train/test ratio of 9:1. 2) Train the model on the splitted training set. 3) Pick the trained599

generator checkpoint at iteration (20k, 40k, 80k) respectively, and do latent backtracking for 1k600

iterations on test set. 4) Compute the mean LPIPS between the test images and the reconstructed601

images from backtracking of the corresponding checkpoints. Where LPIPS is the average perceptual602

distance between two set of images; in this test, a lower LPIPS value indicates less overfitting, since603

15

Shell

AUW PainWing

FloZeU

Pokemon

Anime Face

SkXll

RHDO DDWD SW\OHGANY2 VDQLOOD FDVWGAN SLIM-FDVWGAN (RXUV)SASE-FastGAN (ours)

Figure 7: Examples of synthesized images at the resolution of 1024 × 1024. Best viewed in
magnification.

16

Figure 8: Examples of backtracking results,

17

it means that the model trained on the training set can backtrack images on an unseen testset with604

small reconstruction error.605

Results: Fig. 8 shows the example backtracking results on several of the low-shot datasets. The606

smooth transition of the interpolated images between the backtracked test images show that our607

model hasn’t overfit to the training set.608

A.3.4 Style mixing results609

Settings: To demonstrate that the proposed SASE is able to disentangle the high level semantic610

attributes of featres at different scales, we conduct the style mixing experiment as done in the611

FastGAN paper [6], in which for a pair of style and content images, we extract channel weights from612

style images, and use them to modulate the features of content images, while retaining the spatial613

masks of the content images. The resulting effects as shown in Fig. 9 is that the appearance and color614

scheme of the style image is propagated to the content image, and the spatial structure of the content615

image is unchanged.616

A.4 More results of SASE-SinGANs617

In order to demonstrate the strength of the proposed SASE module in one-shot generative learning.618

We present qualitative comparison of synthesis results of SASE-SinGAN with other related methods619

on 9 images, which are buildings that have different global structures. We also show the results of620

image harmonization and editing under one-shot setting.621

A.4.1 Synthesis with example images622

Fig. 10 to Fig. 23 are the example synthesis results. We can see that compare to ConSinGAN,623

SinGAN and SLE-SinGAN, SASE-SinGAN captures the global layout of the image better, while624

producing meaningful local semantic variations, also notice that ConSinGAN fails to learn some of625

the image, as shown in Fig. 23.626

A.4.2 Harmonization627

Fig. 24 shows the comparison on one-shot image harmonization task as done in [12]. It shows that628

our proposed SASE-SinGAN can realistically blend an object into the background image.629

A.4.3 Editing630

Fig. 25 shows the comparison on one-shot image editing task as done in [12]. It shows that our631

proposed SASE-SinGAN is able to produce a seamless composite in which image regions have been632

copied and pasted in other locations. Note that SASE-SinGAN shows more realistic composite within633

the edited regions.634

18

Art Painting Shells

Pokemon AnimalFace-Cat

AnimalFace-Dog Obama

Figure 9: Examples of style mixing results. Best viewed in magnification.

19

Real

S
A
S
E
-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Figure 10: One-Shot synthesis comparison on the bridge image. Note how the synthesized images
of SASE-SinGAN capture the global layout of the real image, and at the same time produces
semantically meaningful variations (size, number of towers at top).

Real

S
A
S
E
-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Figure 11: One-Shot synthesis comparison on the Great Wall image.

20

Real

S
A
S
E
-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Figure 12: One-Shot synthesis comparison on the capitol hill image.

SA
SE

-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Real

Figure 13: One-Shot synthesis comparison on the ancient Chinese tower image.

21

Real

S
A
S
E
-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Figure 14: One-Shot synthesis comparison on the Lincoln memorial image.

Real

SA
SE

-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Figure 15: One-Shot synthesis comparison on the Temple of Heaven image.

22

Real

SA
SE

-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Figure 16: One-Shot synthesis comparison on the Temple of ancient Chinese tower image.

Real

SA
SE

-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Figure 17: One-Shot synthesis comparison on the Temple of Heaven image.

23

Real

S
A
S
E
-S
in
G
A
N

Si
nG

AN
C

on
Si

nG
AN

SL
E-

Si
nG

AN

Figure 18: One-Shot synthesis comparison on the Brandenberg image.

24

Real

S
A
S
E
-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Figure 19: One-Shot synthesis comparison on the Eiffel tower image.

Real

S
A
S
E
-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Figure 20: One-Shot synthesis comparison on the bridge image.

25

Real

S
A
S
E
-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Figure 21: One-Shot synthesis comparison on the angkorwat image.

Real

S
A
S
E
-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Figure 22: One-Shot synthesis comparison on the zebra image.

26

Real

S
A
S
E
-S
in
G
A
N

Si
nG

AN
C
on
Si
nG

AN
SL

E-
Si
nG

AN

Figure 23: One-Shot synthesis comparison on the Golden Gate image. Notice that training of the
ConSinGAN has collapsed.

27

SASE-SinGAN

Figure 24: One-Shot harmonization comparison on example images.

28

SASE-SinGAN

Figure 25: One-Shot Editing comparison on example images.

29

	Introduction
	Approach
	The SASE for Image Synthesis
	The SASE for Image Recognition

	Experiments
	Low-Shot Image Synthesis Results
	One-Shot Image Synthesis Results
	Image Classification Results in ImageNet-1000
	Object Detection and Instance Segmentation in MS-COCO

	Related Work
	Limitations and Potential Negative Impacts of the Proposed Work
	Conclusion
	Appendix
	Comparing the SASE with Alternative Designs in Image Synthesis
	Training details of SASE-FastGANs
	More results of SASE-FastGANs
	Clarification on results on FFHQ-1k
	Synthesis results of SASE-FastGAN on 10241024 datasets
	Backtracking results
	Style mixing results

	More results of SASE-SinGANs
	Synthesis with example images
	Harmonization
	Editing

