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ABSTRACT

Foundation models have revolutionized vision and language, yet tabular learning
still depends on bespoke, per-dataset pipelines. A key challenge in developing a
uniform representation that enables foundation model is schema mismatch: real-
world tables contain diverse column types: numeric, categorical, text, datetime,
whose semantics vary across datasets. We frame cross-tabular representation
learning as a weakly supervised, multi-modal problem, leveraging the readily
available schema metadata that accompanies each table. We propose SAMoE-
VAE, a schema-aware Mixture-of-Experts VAE that: (i) assigns separate experts to
numeric, categorical, text, and datetime columns; (ii) fuses expert posteriors via
a schema-conditioned Product-of-Experts(MoPoE); (iii) produces a probabilistic
latent embedding space that drives accurate downstream prediction and schema-
aware generation. To train at scale, we curate Meta-T4, a 1.2-million-table corpus
augmented with LLM-generated text metadata. Extensive experiments show that
SAMoE-VAE outperforms prior art in tabular foundation models on representation
learning benchmarks, yielding higher downstream accuracy and improved sample
efficiency.

1 INTRODUCTION

Tabular data forms the basis of decision-making in virtually every industry, empowering applications
from clinical trial cohort synthesis and patient risk stratification to financial portfolio optimization
and supply-chain forecasting (Rajkomar et al., 2018; Choi et al., 2016; Fischer & Krauss, 2018).
Foundation models in vision and NLP have shown that a single, large pretrained network can be
fine-tuned or prompted to solve myriad downstream tasks with minimal additional effort (Brown
et al., 2020; Dosovitskiy et al., 2021; Devlin et al., 2019; Kolesnikov et al., 2020; Radford et al., 2021;
Ramesh et al., 2021). Analogously, a tabular foundation model would enable shared representations
across datasets, drastically reducing per-dataset engineering overhead, accelerating transfer learning,
and supporting zero-shot prediction and data synthesis in resource-constrained domains (Wang &
Sun, 2022; Yoon et al., 2020; Kim et al., 2024; Hollmann et al., 2025; van Breugel & van der Schaar,
2024)

However, developing such foundation models faces a significant challenge: the absence of a canon-
ical, instance-level representation across datasets due to heterogenous schemas. In language or
vision, examples can be mapped into a uniform input space (tokens or pixel grids) with task-agnostic
pre-processing (Grinsztajn et al., 2022; Battaglia et al., 2018); in tables, the schema itself en-
codes types, domains, distribution pattern, etc, that govern valid operations(Yin et al., 2021; Deng
et al., 2022). Studies such as TAPAS (Herzig et al., 2020), TURL (Deng et al., 2022), and the
relational-inductive-bias framework (Battaglia et al., 2018) argue that learning algorithms must
respect this schema information to transfer across tables and reason compositionally.“For tabular
foundation models, database schemas provide machine-readable, low-cost supervision (types, do-
mains, ordinality, units, keys) that is rarely available in standardized form in vision/text.” (van Breugel
& van der Schaar, 2024). E.g., a patients table might declare columns age: int (≥ 0), blood_type:
enumA, B, AB, O, and hospital_id: foreign_key—each with distinct type, domain, and provide
rich context supervision. Yet many current tabular foundation models linearize cells into discrete
tokens (Hegselmann et al., 2023; Wang et al., 2023; Hollmann et al., 2025) or aggregate per-column
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embeddings (Kim et al., 2024; Yang et al., 2024; Lin et al.), often without representing column types
, ordinality, table context and so on. This limits the transfer of learned representation to unseen
schemas.

We frame cross-table representation learning as a metadata-supervised, multi-modal problem:
databases routinely expose machine-readable schema metadata (column types, semantic meaning,
and distribution patterns) that can guide specialization across heterogeneous tables where modalities
(numeric, categorical, temporal, text) and even their presence/absence vary by dataset. We introduce
Schema-Aware MoE-VAE (SAMoE-VAE), a variational auto-encoder in which a low-dimensional
learned schema vector gates specialized encoder–decoder experts. By incorporating column types, do-
main tags, distribution patterns, and other metadata directly into the routing mechanism, SAMoE-VAE
(i) preserves modality distinctions during encoding, (ii) synthesizes realistic tables for previously
unseen schemas, and (iii) provides expert-specific latent priors that capture epistemic uncertainty
while keeping inference cost low. Unlike prior work that encoded column information implicitly
as column name embedding (Wang & Sun, 2022; Kim et al., 2024; Lin et al.) or textual descrip-
tion (Wang et al., 2023), our method addresses the multi-modality and heterogeneity at deeper
architectural level by routing different data types to experts and learns their weighting dynamically
via mixture-of-product-of-expert mechanism. Embedding the Mixture-of-Experts directly within the
VAE’s encoder–decoder yields a smooth, continuous posterior leveraging the theoretical guarantees
of variational inference for coherent probabilistic representations (Rezende et al., 2014).

We present three key contributions:

1. Schema–Aware MoE–VAE. We propose the first variational auto–encoder that employs a
schema–gated Mixture–of–Experts layer for tables, preserving modality distinctions during
encoding and enabling schema–conditioned synthesis.

2. Meta–T4 Metadata Benchmark. We extend the existing T4 corpus by automatically
generating, via LLMs, fine-grained table- and column-level context descriptions and column-
type annotations—creating the first large-scale tabular dataset of its kind enriched with
comprehensive schema metadata.

3. Schema-generalization learning formulation. We cast tabular foundation modeling as
a metadata-supervised, multi-modal problem and show that schema metadata is a strong
supervisory signal, improving representation quality, generation fidelity, and zero/low-shot
transfer to unseen schemas

Together, these components move toward web-scale, schema-robust tabular models and set the stage
for latent-diffusion foundation models capable of high-fidelity conditional generation under unseen
schemas

2 RELATED WORK

2.1 SELF-SUPERVISED LEARNING ON TABULAR DATA

Recent efforts toward tabular “foundation” modeling can be usefully grouped into three families
based on their input representation:

(1) Table LLMs (flatten-to-text). These methods serialize rows (or row–column tuples) into
natural-language sequences and leverage general-purpose LLMs via masked-cell or instruction-style
objectives, with schema cues provided through column names or brief descriptions. TabLLM (Hegsel-
mann et al., 2023) and UniPredict (Wang et al., 2023) convert each row or row–column triplet into
sentences and fine-tune LLMs accordingly; TabT5 (Narayan et al., 2024) adopts a T5 backbone
with schema-aware prompting; Text2Table (Li et al., 2024) probes numeric reasoning by generating
QA pairs over serialized rows; TabRewrite (Garcia et al., 2025) injects external knowledge through
retrieval-augmented rewriting; and Tabula-8B (Gardner et al., 2024) adapts a pre-trained LLM with
a large table corpus and block attention, yielding strong zero-/few-shot classification. While this
paradigm benefits from broad NLP transfer, flattening continuous values into subword tokens and
foregoing modality-specific processing can harm fidelity and calibration on mixed-type tables.
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(2) Token-wise in-context learners. Here, compact Transformers are trained on large suites of syn-
thetic tasks—often sampled from Bayesian networks—to learn in-context adaptation over tokenized
examples, optionally augmented with schema tokens from column names or prompts. TabPFN and its
scalable variants (Hollmann et al., 2025; Ye et al., 2025; Feuer et al., 2024; Helli et al., 2025) fit prior
data distributions and infer feature relations on the fly; TabPrompt (Zhang et al., 2024b) conditions
prompts on column names to strengthen transfer; and Schema2Vec (Dimitriadis et al., 2025) encodes
column metadata as additional tokens. The approach often excels in small-data supervised regimes
without per-dataset training, but it does not natively encode explicit type or constraint signals, lacks
architectural support for multimodal columns (e.g., text, images, audio), and remains discriminative
rather than generative.

(3) Latent-embedding models. These models operate on native mixed types through modality-
aware encoders and learn amortized representations via reconstruction or self-supervision, typically
enriching schema signals with embeddings of names, types, or lightweight tags. Representation-
centric approaches like CARTE (Kim et al., 2024) and CTSyn (Lin et al.) build a shared latent space
with reconstruction losses: CARTE employs a graph-attentional star-graph over rows, TransTab
encodes text embeddings of feature values and names with a single Transformer, and CTSyn fuses
schema embeddings into a conditional latent-diffusion autoencoder. UniTabE (Yang et al., 2024)
organizes table elements into “TabUnit” modules for masked-value prediction to capture cross-schema
patterns; TP-BERTa (Yan et al., 2024) tokenizes numeric magnitudes with intra-feature attention
and rivals GBDTs; and CV2 (Ye et al., 2024) aligns cell embeddings with column metadata via a
contrastive masked-context objective. Despite these advances, most methods still treat cells uniformly
beyond column-name/type cues and lack explicit routing of heterogeneous modalities to specialized
experts or schema-gated pathways.

Our departure. SAMoE-VAE assigns dedicated experts to distinct data modalities and employs
a learned schema vector to gate them. This design integrates rich metadata—types, missingness
patterns, domain tags, and inter-column signals—into a probabilistic latent space (via MoPoE) that
supports high-fidelity generation, principled uncertainty, and schema-conditioned transfer, without
brittle tokenization or fixed-schema assumptions.

MoE in tabular models. Mixture-of-Experts (MoE) dates to adaptive gating (Jacobs et al., 1991)
and sparse Transformers (Shazeer et al., 2017; Fedus et al., 2021); multimodal VAEs often dispatch
fixed modalities (image/text/audio) to experts. In tabular settings, TabMoE (Wu & Hou, 2024) routes
queries to task-specific experts for table QA; GG-MoE (Chernov, 2025) uses Gumbel-Softmax over
column embeddings for classification with per-dataset gates; and Tabby (Cromp et al., 2024) assigns
experts per column for data synthesis. These lines do not treat numeric/categorical/text/datetime
as first-class modalities nor tie routing to machine-readable schema that varies across datasets. By
contrast, SAMoE-VAE (i) assigns experts by column type and (ii) computes mixture weights from a
learned schema vector, enabling schema-conditioned specialization; further, it integrates MoE within
a generative VAE using a MoPoE latent aggregator, supporting uncertainty-aware representation and
schema-aware generation.

3 METHODOLOGY

In this section, we detail the design of SAMoE-VAE workflow, as shown in figure 1.

3.1 FEATURE EMBEDDING

Given a row x = (c1, x1, . . . , cp, xp) with p columns, we embed names and values into a shared
MLM-dimensional space. For each column i: eci = LM(ci); and

exi =


LM(xi) (categorical)
WnumPLE(xi) (numeric)
WtextAEtext(xi) (free text)
WtimeCycEnc(xi) (datetime)

where LM is a frozen text encoder. Note that categories are tokenized and encoded with LM.
Numerical values are encoded using piece-wise linear encoding (PLE) (Gorishniy et al., 2022)
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Figure 1: Overview of the SAMoE-VAE workflow. A table row, its column names and metadata are
first embedded into a unified sequence E. This sequence is split by data type (numeric, categorical,
text, datetime) and processed by corresponding expert encoders to produce modality-specific Gaussian
parameters. In parallel, schema metadata (table description, column names, data types, value
distributions) is encoded into a schema vector s. A schema-conditioned product-of-experts gate
fuses expert outputs into a single latent z. Finally, z, the metadata, and column names are routed to
modality-specific decoders to reconstruct each cell’s value.

and linear projection to MLM is learned. Text values are embedded using a BART (Lewis et al.,
2020)-based autoencoder (Lovelace et al., 2024) whose encoder output is compressed via a Perceiver-
Resampler (Alayrac et al., 2022) into RMLM . Datetime values are first decomposed into year, month,
day, hour, and minute components; these are encoded using sine–cosine positional encodings and
mapped to MLM via a two-layer MLP. (Suh et al., 2024). We then follow a framework similar to
CTSyn (Lin et al.) to concatenate each column name embedding eci with its corresponding value
embedding exi , forming the final sequence:

E =
[
[ec1 ; ex1 ], [ec2 ; ex2 ], . . . , [ecp ; exp ]

]
∈ Rp×2MLM .

Perceiver cross-attention naturally handles variable-length E(m) without padding to a common
length; batching uses standard key/query masks.

3.2 MODALITY–SPECIFIC EXPERT ENCODERS

We first split the embedding matrix E ∈ Rp×2MLM by column data type into sub-sequences
{E(m)}m∈M, where M = {num, cat, text, time}. This ensures that all modality–specific inputs
share the same embedding width (2MLM) while grouping values by their true semantic type.

Each E(m) is then passed to its own Perceiver–Resampler expert fm (identical architecture), which
uses learnable latent queries and cross-attention to transform a variable-length sequence E(m) into a
fixed-size tensor

(µ(m), log σ2(m)) = fm(E(m)), µ(m), log σ2(m) ∈ Rℓ×dz .

where ℓ is the number of latent queries per modality and dz is the latent dimensionality. The resulting
µ(m) and log σ2(m) parameterise modality-specific diagonal-Gaussian posteriors, which are fed
directly into the schema-aware MoPoE gate (Sec. 3.3). No latent sampling occurs at this stage, and
permutation invariance is preserved by omitting positional embeddings. Missing modalities are
skipped.

3.3 SCHEMA–AWARE MIXTURE–OF–PRODUCT–OF–EXPERTS GATING

Intuition. Product-of-Experts (PoE) yields a tighter, modality-consistent posterior than simple
averaging and is closed-form for Gaussians (Wu & Goodman, 2018). Unlike classic multimodal
VAEs with a fixed modality set (e.g., image+text), tabular data vary in both the presence and count of
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each modality. We therefore compute one Gaussian posterior per subset of available modalities and
gate only at fusion: a schema-conditioned network (driven by the schema vector) assigns mixture
weights over these subsetwise PoE posteriors. Figure 2 illustrates the schema-aware fusion.

Schema vector s: construction. We build three token streams (matrices in Rp×MLM) from the
row-level inputs:

Ec = [ec1 , . . . , ecp ], Ed = [ed1
, . . . , edp

], Eq = [eq1 , . . . , eqp ].

Name tokens Ec: eci = LM(ci) (frozen text encoder, cached). Type-ID tokens Ed: one-hot
column types {num, cat, text, time} embedded via a learned lookup Etype ∈ R4×MLM , so edi

=
Etype[type(i)].

Distribution tokens Eq summarize per-column value distributions by modality: for numeric columns,
we compute a 33-bin histogram over standardized values (z-scores), apply the Discrete Cosine
Transform (DCT-II) to the normalized histogram, retain the first K low-frequency coefficients that
capture overall shape, and linearly project to MLM to obtain eqi ; this yields a compact, shift/scale-
insensitive signature that reflects properties like unimodality vs. multimodality and skew or heavy
tails without depending on column length. For categorical columns, we take the frequency-weighted
mean of category embeddings from LM and project to MLM. For datetime columns, we build cyclic
histograms (e.g., hour-of-day, day-of-week), form sine–cosine features, and project to MLM. For text
columns, we use the mean of AEtext embeddings over observed cells and project to MLM.

We concatenate [Ec;Ed;Eq] (no positional encodings) and pass through a lightweight Perceiver (4
layers, 2 heads) to produce the schema vector s ∈ RMsch (we use Msch=256).

Element-wise Product of Experts. Let M be the modality index set and P(M)\{∅} its non-empty
subsets. For each subset S we compute a diagonal-Gaussian product posterior

qS(z | xS) = N
(
µS ,diag(σ

2
S)
)
, σ−2

S =
∑
m∈S

σ−2
m , µS = σ2

S

∑
m∈S

σ−2
m µ(m),

applied element-wise across the ℓ×Magg latent matrix. With four modalities we have 15 subsets, a
tractable number. If a modality is absent, its expert outputs the unit prior and is down-weighted.

Schema-conditioned gating. Each product mean µS is mean-pooled over its ℓ tokens and concate-
nated with s; a two-layer MLP (Magg+Msch→128→1, ReLU) produces logits aS . Softmax gives
mixture weights αS = softmax(aS); omitting s collapses the gate to vanilla MoPoE.

Mixture aggregation. The final posterior is an element-wise precision-weighted Gaussian

σ−2
∗ =

∑
S

αS σ−2
S , µ∗ = σ2

∗

∑
S

αS σ−2
S µS ,

from which we draw z = µ∗ + σ∗ ⊙ ε, ε ∼ N (0, I) follow reparameterization trick.

3.4 DECODER

Figure 2: Schema-aware Mixture-of-product-of-
expert gating.

Latent-to-cell decoding. For each modality
m ∈ {num, cat, text, time}, we combine the
shared row latent z ∈ Rℓ×Magg with the table-
level metadata em and the modality-specific
column-name embeddings E

(m)
c = [eci ]i∈m.

A modality-specific Perceiver–Resampler gm
(identical architecture across modalities but not
weight-tied) maps queries E(m)

c and keys/values
[em; z] to cell embeddings:

H(m) = gm
(
E(m)

c , [em; z]
)
∈ Rpm×Mdec ,

where pm is the number of columns of type m. Each cell vector h(m)
i is then passed to a lightweight,

modality-specific reconstruction head: a linear layer with sigmoid activation for numerics, cosine-
similarity softmax over prototype embeddings for categoricals, a Perceiver–Resampler + BART
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decoder for text, and multi-task MLPs for datetime (year via MSE, others via cross-entropy). We
compute the total reconstruction loss as

Lrec =
∑
m

∑
i∈m

ℓ(m)
(
x̂
(m)
i , xi

)
.

Using separate decoders per modality aligns with the Mixture-of-Experts principle by allowing
each expert to specialise in reconstructing its own input distribution, reducing interference across
heterogeneous column types.

3.5 TRAINING OBJECTIVE

The VAE minimises

L =
∑
m

∑
i∈m

ℓ(m)(x̂i, xi)︸ ︷︷ ︸
Lrec

+β(t)

ℓMagg∑
k=1

DKL

(
N (µk, σ

2
k) ∥N (0, 1)

)
︸ ︷︷ ︸

LKL

+λcon Lcon︸︷︷︸
Info-NCE over

row latents

,

where β(t) is cosine annealed from 0 to 0.0001 over the total number of steps—balancing regular-
isation of the ℓ×Magg latent space with reconstruction fidelity,and λcon = 0.001 was chosen via
grid search over {0.1, 0.01, 0.001}. The supervised contrastive loss (Oord et al., 2018) is applied at
every step, grouping row latents by class label (or quartile for regression) to enhance downstream
separability. To promote robustness, we randomly mask 15 % of all cell embeddings (uniformly
across modalities and respecting same-table batching) before decoding, while still computing Lrec on
the full table.

Large-Scale Pre-training. We pre-train SAMoE-VAE on the Meta-T4 dataset, which consists of
T4 corpus (Gardner et al., 2024) (1.2 M tables, 3.1 B cells) and LLM-annotated metadata. For each
table, we present the first 30 rows in string form to the Llama-3 8B model (Grattafiori et al., 2024) to
generate structured metadata including a table-level description, column-wise semantics, and type
annotations; all textual fields are embedded with GTE-large (Li et al., 2023). Both modality-specific
encoders and the decoder use six cross-attention layers with latent width Magg = 128 and latent
length ℓ = 64. We optimise with AdamW (learning rate 1×10−4, weight decay 1×10−4) and cosine
annealing (5% warm-up, floor 5× 10−5). Mini-batches contain 128 rows drawn from the same table,
with 4-step gradient accumulation yielding an effective batch size of 512. Training is performed on a
slurm cluster with single H100 GPUs for 240 hours; to maximize coverage of diverse schema, we
randomly sample 256 examples from each table, resulting in a training subset covering about 10% of
row instances but 100% schema in T4 dataset. Additional hyperparameters and hardware details are
provided in Appendix 6.3.

4 EXPERIMENT

In this section we perform extensive experiments on the schema-aware MoPoE VAE method in table
representation and synthetic table generation tasks. We seek to answer the following questions: (1)
Does our method learn strong cross-table representations? (2) Is schema-aware MoPoE critical to
that performance?

4.1 BENCHMARK DATASETS

We evaluate on three established suites that stress schema–generalization across heterogeneous
mixed–type tables. First, following (Gardner et al., 2024), we use OpenML–CTR23 (Fischer et al.,
2023) as a regression suite that retains the original continuous targets; official train/test splits are used
throughout. Second, OpenML–CC18 provides a diverse set of mixed–type classification datasets
with the standard OpenML partitions. Third, the UniPredict collection (Wang et al., 2023) offers
additional classification tables curated for LLM–based tabular evaluation; we follow the authors’
splits to enable comparison with “flatten–to–text” approaches. To probe sample efficiency, for each
dataset we subsample the training portion at sizes {8, 16, 32, 64, 128} plus the full set, repeating
each size with three random seeds and reporting seed–averaged metrics. Classification is reported as
accuracy and AUROC (macro when applicable); regression as RMSE.
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4.2 BASELINES

We compare SAMoE–VAE against representative methods from the three families in Sec. 3.1, plus
a strong conventional encoder, and we state for each whether we evaluate embeddings via a lin-
ear/logistic regression and/or end–to–end predictions. CARTE (Kim et al., 2024) (graph–attentional
cross–column encoder), CTSyn (Lin et al.) (VAE backbone with schema embeddings), Transformer
VAE (Zhang et al., 2024a) (modality–specific encoders for mixed types), and SwitchTab (Wu et al.,
2024) (VAE with data–specific structural experts) are used as latent–embedding foundations and
evaluated with embeddings+regression. For token–wise in–context learners we use TabPFN v2 (Holl-
mann et al., 2025) and report its end–to–end predictions; when feasible we also extract intermediate
representations and apply the same probe protocol for a fair comparison. For table LMs, we include
Tabula–8B (Gardner et al., 2024) and TAPAS (Herzig et al., 2020), reporting embeddings+regression
performance. As a conventional deep encoder we use TabVec (Skrub, 2024) over one–hot/normalized
features with embeddings+probe. In all embedding settings, we freeze the backbone after trained
on train set of each table in the benchmarks, fit a linear probe (logistic for classification; ridge for
regression) on training embeddings, and evaluate on the test split; for TabPFN v2 and Tabula–8B
we additionally report their native end–to–end predictions. Our goal is not to supersede specialized
discriminative SOTA (e.g., TabPFN/XGBoost), but to assess whether schema–aware MoPoE yields
stronger and more transferable representations across schemas.

4.3 DOWNSTREAM PERFORMANCE

Table 1: Benchmarking Results Across Tabular Representation Models (with Std. Dev. of Avg.
Rank). Avg. rank computed over embedding models only; raw-feature end-to-end rows are shown
for context.

Model CTR-23 CC18 UniPredict Avg. Rank

RMSE (↓) ROC AUC (↑) F1 (↑) ROC AUC (↑) F1 (↑) (Std.)

TabVec 1.532 0.681 0.412 0.472 0.321 5.70 (2.17)
TaPas 3.658 0.592 0.298 0.593 0.305 10.00 (0.71)
Tabula-8B 5.757 0.608 0.226 0.601 0.321 7.50 (1.32)
TabSyn-VAE 1.145 0.821 0.307 0.607 0.289 5.20 (2.17)
SwitchTab 1.039 0.914 0.423 0.699 0.408 2.00 (0.71)
CTSyn 1.542 0.658 0.361 0.643 0.347 5.40 (1.14)
CARTE 1.758 0.783 0.152 0.676 0.142 6.80 (2.28)
TabPFN 1.429 0.808 0.396 0.702 0.381 3.40 (0.89)

TabPFN (raw features) 0.961 0.942 0.820 0.859 0.718 –
XGBoost (raw features) 0.973 0.925 0.795 0.843 0.739 –
CARTE (raw features) 1.124 0.891 0.742 0.684 0.546 –

SAMoE-VAE 0.991 0.859 0.451 0.892 0.677 1.20 (0.45)

We evaluate each embedding along one primary dimension. For each dataset, we compute embeddings
of the predictor features and fit a logistic/linear regression on the training embeddings, then report
RMSE for regression (CTR-23) and AUROC/macro-F1 for classification (CC18/UniPredict). By
using the same regression model, we can isolate the embeddings’ representational power; exact
hyperparameters are detailed in Appendix 6.4.

From Table 1, SAMoE-VAE is the top performer among embedding baselines across benchmarks,
achieving the best overall average rank. Strong prediction pipelines using raw features (e.g., TabPFN
and XGBoost) still set the state of the art in downstream classification, which aligns with their
design goal; our objective is different: produce the best general-purpose tabular embeddings. On the
text-heavy UniPredict suite, SAMoE–VAE attains the strongest embedding performance, consistent
with its dedicated text/datetime encoders; see App. 6.9 for a focused case study.

4.4 CROSS-SCHEMA GENERALIZATION

4.4.1 TABLE RECONSTRUCTION

We evaluate the ability of SAMoE-VAE as a foundation model to generalize to unseen table schemas.
Table 2 compares SAMoE-VAE with strong VAE baselines on reconstruction of a representative
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Table 2: Reconstruction Quality Across VAE Models
Variant Column Shape (↑) Column Corr. (↑) NRMSE (↓) Cat. Acc. (↑)

SAMoE-VAE (fine-tuned) 0.96 0.89 0.011 0.996
SAMoE-VAE (zero-shot) 0.90 0.79 0.019 0.834
TabSyn-VAE 0.93 0.76 0.017 0.995
SwitchTab AE 0.92 0.71 0.018 0.974

CTR-23 dataset with their own decoders (additional results in Appendix 6.4). Column Shape is 1−KS,
the complement of the Kolmogorov–Smirnov distance (mean over numerical columns); Column
Corr. is the mean absolute Pearson correlation between reconstructed and true numerical columns
(both metrics therefore lie in [0, 1], with higher better). NRMSE denotes per-column normalized
RMSE; classification is reported as Cat. Acc. on categoricals. The main downstream table (Table 1)
reports dataset-level RMSE for CTR-23. Without any gradient updates (“zero-shot”), the pretrained
SAMoE-VAE already achieves strong shape and correlation metrics, indicating that its latent captures
realistic column distributions even for unseen schemas. Fine-tuning on each training set further
improves all reconstruction metrics—surpassing both TabSyn-VAE and SwitchTab-AE—showing
that schema-aware gating yields representations that transfer across tables yet refine quickly when
modest in-domain data are available. This robust zero-shot reconstruction ability lays the foundation
for integrating our model into broader generative frameworks, such as latent-diffusion pipelines.

4.4.2 DATA EFFICIENCY

Figure 3: Classification AUROC across training
set sizes. Each curve represents a different tabular
representation model.

Figure 3 shows classification ROC AUC as we
vary the number of labeled training examples
from 8 to 128. SAMoE-VAE (orange) deliv-
ers the strongest performance in the low-data
regime—outperforming all baselines by a wide
margin at 8 and 16 examples and maintain-
ing a lead through 32 examples. As the train-
ing set grows, TabPFN (red) and SwitchTab
(green) recover rapidly and slightly overtake
SAMoE-VAE at 64 and 128 samples, while
CARTE and TAPAS remain at the bottom of the
curve. This behavior reinforces that the schema-
aware mixture-of-experts embedding learned
by SAMoE-VAE is markedly more sample-
efficient, extracting useful features when la-
bels are scarce, yet remains competitive as data
scales.

4.5 ROBUSTNESS TO METADATA QUALITY

Table 3: UniPredict ROC AUC for models with/without textual metadata
Metadata SAMoE-VAE Tabula-8B CARTE

Without Meta 0.861 0.601 0.593
With Meta 0.892 0.610 0.599

To test whether simple text-level inclusion of metadata benefits other foundation models, we prepend
metadata strings to the Tabula-8B input and add a “table description” column to CARTE’s feature
frames. Table 3 reports ROC AUC with and without metadata.

With metadata, SAMoE-VAE improves from 0.861 to 0.892 (+3.1 pp). In contrast, Tabula-8B
changes only from 0.601 to 0.610 (+0.9 pp) and CARTE from 0.593 to 0.599 (+0.6 pp). These modest
gains suggest the bottleneck is not merely reading the metadata text, but the modeling-level integra-
tion—e.g., schema-aware gating—that lets metadata materially improve downstream performance.
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4.6 ABLATION STUDY

Table 4: Effect of replacing the schema-aware MoE during pre-training.
Pre-training variant Recon RMSE ↓ Recon Acc. ↑ ROC AUC ↑
No MoE encoder 0.038 0.842 0.765
Simple (uniform) MoE 0.043 0.853 0.810
Schema-Aware MoE (default) 0.023 0.890 0.892

Table 4 examines the impact of replacing the schema-aware MoE in pre-training and fine-tuning.
Removing the MoE entirely (No MoE) weakens downstream classification (lower ROC AUC) and
reconstruction accuracy, while a simple, uniform MoE recovers much of that performance—improving
ROC AUC and reconstruction accuracy—at the cost of a slight increase in reconstruction RMSE. Both
variants still underperform the schema-aware default, confirming that conditioning expert weights on
schema metadata materially benefits representation learning.

Table 5: Effect of removing training tricks or metadata during fine-tuning of the default pre-trained
model (difference from default in parentheses).

Variant RMSE (↓) Acc. (↑) ROC AUC (↑)

No masked training 0.028 (+0.005) 0.880 (-0.010) 0.901 (+0.009)
No contrastive training 0.022 (-0.001) 0.893 (+0.003) 0.874 (-0.018)
Human-crafted metadata 0.024 (+0.001) 0.887 (-0.003) 0.890 (-0.002)
No distribution pattern meta 0.030 (+0.007) 0.870 (-0.020) 0.891 (-0.001)

Table 5 then probes variants applied during fine-tuning of the default pre-trained model. Omitting
masked training increases RMSE while slightly boosting ROC AUC, indicating the mask objective
favors reconstruction over classification separability. Skipping contrastive training yields a small
RMSE improvement but degrades downstream ROC AUC, showing that the contrastive loss sharpens
embedding discrimination. Swapping in human-crafted metadata produces near-identical results
to our auto-generated schema, validating the metadata pipeline. Finally, removing the distribution-
pattern embeddings raises RMSE with negligible change in ROC AUC, highlighting that these
statistics chiefly support faithful reconstruction. Together, these ablations demonstrate that each
component—schema-aware MoE pre-training, masked and contrastive objectives, and distribution
metadata—contributes complementarily to SAMoE-VAE’s performance.

5 CONCLUSION

We introduced SAMoE–VAE, a schema–aware Mixture–of–Experts variational autoencoder for
mixed–type tables. By computing modality–specific posteriors and gating at fusion with a schema
vector, SAMoE-VAE learns transferable, probabilistic representations that support downstream predic-
tion and schema–conditioned generation. Across OpenML benchmarks (CTR–23/CC18/UniPredict),
we observe consistent gains over representation–centric baselines, particularly in low–label regimes.

Limitations and future work. (i) Metadata availability and quality. Our approach assumes
access to basic schema signals (column names, types, distribution summaries). While these can
be auto–generated (e.g., via LLMs as we did), noisy or missing metadata can degrade perfor-
mances. A more systematic study of active metadata acquisition, noise–aware training, and schema
inference is warranted. (ii) Scope of evaluation. Our zero–/few–shot evidence focuses on linear
probes and zero–shot reconstruction; truly zero–shot prediction (without any task–specific fitting)
and cross–dataset label transfer were not exhaustively evaluated. (iii) Privacy and compliance.
LLM–generated metadata can encode sensitive information or training leakage if not filtered.

Our future work aims for: (a) robust metadata induction and denoising; (b) integrating SAMoE–VAE
with latent diffusion for high–fidelity conditional synthesis; (c) extending to truly multimodal columns
(images, time series) and cross–table retrieval.
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6 APPENDIX

6.1 LLM USAGE DISCLOSURE

Role in data creation (Meta–T4). Large language models (LLMs) were used to generate schema
metadata for the Meta–T4 resource: short table summaries, column descriptions, and coarse type/units
hints. The LLMs operated on the first k rows (and column names) of each public table to produce
text fields; no ground-truth labels were inferred or altered. We applied lightweight quality control
(length/format checks, forbidden-term filters, and heuristic consistency checks with column statistics)
and discarded generations that failed these checks. Prompt templates and sampling settings are
provided in App. 6.2. This metadata serves as input to our method; it does not replace labels nor
constitute test-set supervision.

Role in writing and literature search. LLMs were used to assist with proofreading, language
suggestions, and literature discovery (e.g., drafting alternate phrasings of paragraph-level text, and
retrieving candidate citations for manual vetting). All technical claims, equations, experiments, and
conclusions were authored and verified by the authors. Suggested citations were checked for accuracy
and relevance before inclusion.

Compliance and safeguards. To preserve anonymity and avoid leakage, we used only public
datasets, removed any personally identifying details from prompts, and avoided undisclosed pro-
prietary sources. LLM outputs that affected the paper or data artifacts were reviewed by an author
before use.

6.2 METADATA GENERATION

For each unique table (identified by a common filename prefix), the script reads a Parquet file from
the input folder and extracts two key pieces of information: (i) a schema summary listing each
column name and its Arrow data type, and (ii) a small data preview (the first five rows) converted to a
pandas-style string. These are concatenated into a single prompt and sent to the Groq API (using the
model llama-3.1-70b-versatile) via a chat completion request. The prompt instructs the
model to output, in raw JSON, a human-readable ‘"description"‘ of the table plus a ‘"variables"‘ array,
where each entry contains a ‘variable_name‘, a ‘variable_type‘ (chosen from Integer, Continuous,
Categorical, freetext, or Datetime), and a brief ‘meaning‘. Tables containing personal identifiers (e.g.,
SSNs or phone numbers) are automatically skipped. The resulting JSON is written to a timestamped
file in the ‘Metadata/‘ directory, and the original filename is logged in ‘processed_files.txt‘ to prevent
reprocessing; any errors (e.g., token-limit failures) are caught and reported but do not halt the batch.“‘.
Exact prompt used is shown below.

Here is a small preview of the table data:
{table_preview}

I want you to provide (1) A detailed textual description of the given table,
(2) Variable Name, Variable Type without parentheses, meaning of each column variable.
The variable types should be Integer, Continuous, Categorical, freetext, Datetime.
Here, the freetext means any sentences that is comprised of more than 3 words.
And if the data contains any personal information such as phone number, SSN, or any
types of identification numbers, you don’t need to provide the Metadata information
on that particular table.
Please provide the answers for (1) and (2) in a valid JSON format, without any extra
characters such as ‘‘‘json‘‘‘ or ’’’ around the content. The output should be
directly usable as a JSON file.

Please structure the JSON as follows:

{
"description": "Textual description in plain English",
"variables": [

{
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"variable_name": "Column name",
"variable_type": "Type of the variable",
"meaning": "Meaning of the variable"

},
...

]
}
Please do not include anything other than this information in the output.

6.3 PRE-TRAINING DETAILS

All key training arguments were set as follows: the interval type and scheduler interval were both
configured to step; training ran for a maximum of 2 000 000 steps with validation every 200 000
steps and checkpoints saved every 5 000 steps; early stopping was triggered after five successive
validations without improvement; the scheduler completed over 2 000 000 total steps, with the VAE’s
β coefficient initialized at 0.0 and annealed up to 1 × 10−4 over the full schedule. We used a
batch size of 128, an initial learning rate of 1× 10−4 (floor 1× 10−5), weight decay of 1× 10−3,
and a linear warm-up spanning 5% of training; gradients accumulated over four steps and 15% of
cell embeddings were randomly masked each batch; the contrastive loss weight was set to 0.001;
numerical features were transformed via piece-wise linear encoding; no extra warm-up epochs were
used for the vectorizer; the autoencoder backbone was the multimodal variant combined via the
MoPoE gating method; data splits followed a 0.99/0.0099/0.0001 train/validation/test ratio; shuffling
was disabled; LMDB was used for data storage; training resumed automatically from any existing
checkpoint but did not reload the scheduler state; data loading employed eight workers; and all
computation ran on CUDA.

6.4 IMPLEMENTATION DETAILS

Global Configuration. Each cross-attention block uses 8 heads and an FFN expansion factor of 4;
dropout is disabled. Perceiver latents for schema encoding employ 128 queries of width 64. Text
columns are truncated to 64 sub-word tokens. We clip gradients at 1 and initialize weights with
Xavier-uniform. Wall-clock throughput averages 384 rows s−1 yielding a total pre-training time of
250 hours.

Column–Value Embedding Modules. We first embed each column name, value, and table-level
metadata into a unified feature space of dimension MLM:

• Text auto-encoder (AEtext). We adopt the BART-base encoder–decoder followed by a
Perceiver-Resampler. The resampler compresses token embeddings into Lr = 16 latent
tokens of dimension MLM, using Nr = 2 cross-attention blocks (h = 8 heads) and a
feed-forward expansion of 4.

• CycEnc for datetime. Each timestamp is decomposed into year, month, day, hour, and
minute. The year is normalized by subtracting 2000 and dividing by 100; periodic fields use
sine–cosine encodings (yielding 9 features), then projected to MLM via a two-layer MLP
(hidden = 512, GELU).

• Piece-wise linear encoding (PLE). For numeric columns we fit K = 8 break-points (Gor-
ishniy et al., 2022) and map the resulting vector to MLM with shared weights.

Modality–Specific Expert Encoder. The flattened sequence E ∈ Rp×2MLM is split by data type
and passed to four Perceiver-Resampler experts. We initialize ℓ learnable latent queries Z(0) ∈
Rℓ×Magg and apply Le = 4 attention layers:

Z(l+1) = FFN
(
Z(l) +MHA(q = Z(l), kv)

)
,

where

kv =

{
[Z(0);E] l = 0,

Z(l) l > 0.

Each MHA uses h = 8 heads and expands to 4Magg. Positional encodings are omitted for permutation
invariance. The two parallel encoders output µ, log σ2 ∈ Rℓ×Magg for the MoPoE gate.
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Schema Encoder & Gating Details.

• Distribution embeddings. Numerics: 33-dim DCT of 32 quantile breakpoints. Categoricals:
mean of PLM embeddings. Text: no distribution embedding. Datetime: no distribution
embedding, leave to future work.

• Data-type ID embeddings. Four-entry lookup (num, cat, text, time) of size MLM.
• Perceiver schema encoder. 4 layers, 2 heads, latent width Msch/4 = 64, no positional

encodings.
• Gating MLP. Input size Magg +Msch, hidden 128, output 1, ReLU.
• Computation cost. All 15 subset products and gating add <0.3 ms per row on H100.

Decoder Implementation Details. For each modality, a Perceiver-Resampler block (Ld = 4,
h = 8, FFN×4) maps queries E(m)

c and keys/values [em; z] to embeddings H(m). Reconstruction
heads then apply:

• Numerical head. x̂ = σ(Wnumh+ b), trained with MSE on min–max normalized targets.

• Categorical head. v = Wcath, P̂ (x) = softmax(CosSim(v, C)) with prototype table
C (Yak et al., 2023).

• Text head. Resampler → BART-base decoder; cross-entropy loss over subword tokens.
• Datetime head. Separate MLPs for year (MSE) and month/day/hour/minute (cross-entropy),

balanced by weights 1:1:1:0.5.

6.5 BASELINE IMPLEMENTATION

6.5.1 TABLE REPRESENTATION

• CARTE (Kim et al., 2024): We clone the official repo at
https://github.com/soda-inria/carte. We load the pre-trained model
into a CARTEClassifier module, fit it on train sets with default parameters batch size = 16,
epoch = 500, learning rate = 1e-3. Once fitted, we extract the output from the CARTE_Base
layer of each classifier as our embedding.

• TabPFN (Hollmann et al., 2025): Using the official implementation at
https://github.com/PriorLabs/TabPFN. For synthetic data generation
and unsupervised embedding generation we use the tabpfn-extension package
https://github.com/priorlabs/tabpfn-extensions.

• CTSyn (Lin et al.): We implement the method following the original paper. The VAE
backbone uses the same latent dimension 64 and length 128, and a 6-layer encoder/decoder
with hidden size 2048. We extract the reconstruction-latent mean µ after the encoder layer
deterministically.

• Tabula-8B (Gardner et al., 2024): We fine-tune the 8B LLM from
https://huggingface.co/mlfoundations/tabula-8b using a learning
rate of 2× 10−5 for 10 epochs on each subset. We employ LoRA parameter-efficient
fine-tuning with rank r = 8. We prompt the model with the same text serialization used in
GReaT (Borisov et al., 2023) and take the hidden state from the last transformer block as
the table embedding.

• TAPAS (Herzig et al., 2020): We use the pretrained checkpoint from
https://huggingface.co/google/tapas-base and fine-tune on our ta-
ble–text QA data with batch size 16 and learning rate 3 × 10−5 for 10 epochs on each
training subset. The pooled [CLS] token from encoder layer 12 is used as the table
representation.

• SwitchTab (Wu et al., 2024): Implementation is from
https://github.com/avivnur/SwitchTab. We train the Switchtab on
autoencoding with lr = 1e-3, batch size = 4096, adamW optimizer for 200 epochs (N ≤ 128)
or 1000 epochs (N ≥ 128) and extract the salient embedding immediately after salient
projector output.
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• Transformer VAE (Zhang et al., 2024a): Based on the code in
https://github.com/amazon-science/tabsyn. We set the transformer
encoder to 6 layers, on autoencoding with lr = 1e-3, batch size = 4096, adamW optimizer
for 200 epochs (N ≤ 128) or 1000 epochs (N ≥ 128) and extract the salient embedding
immediately after encoder output deterministically. During training we use initial beta = 0.1
and multiply beta by factor of 0.9 for every 20 epochs of validation loss not reducing.

• TabVec (Skrub, 2024): We implement the deep encoder in PyTorch following the de-
scription in the repo https://skrub-data.org/stable/index.html. We fit
the table vectorizer on training data and use the same fitter vectorizer on corresponding
testing data.

6.5.2 TABLE SYNTHESIS

• TabPFN Generation (Hollmann et al., 2025): We follow the Prior Labs tutorial (https:
//priorlabs.ai/tutorials/unsupervised/) with seed=42. Each train split is
loaded, shuffled, and batched (max 200 rows). Numeric features are cast to float32 and
categoricals label-encoded (unseen→–1). Zero-variance columns are dropped before fitting
and reinserted after sampling. For each batch, we fit the unsupervised TabPFN model and
sample synthetic rows with temperature t = 1.0 across three random permutations. Outputs
are decoded, constants reattached, batches concatenated, and truncated to the original row
count.

• LLaMA Generation: Using LLaMA 3.3 70B (Grattafiori et al., 2024) via the Groq API
(https://console.groq.com/docs/models), each train split (seed=42) is parti-
tioned into batches of 200 rows. We compute per-column summary statistics and serialize the
batch to CSV, then call llama-3.3-70b-versatile with sampling temperature=0.1,
requesting exactly N rows as JSON. On parse errors or incorrect counts we retry up to five
times. Valid outputs are concatenated, truncated or re-prompted as needed, then validated
for correct dimensions and types.1

Below is the prompt template we passed verbatim to the Groq API (see Appendix B.5 of
(Seedat et al., 2023)):

System role: You are a tabular synthetic data generation model.

Your goal is to produce data that mirrors the given examples in
causal structure and feature/label distributions,
while maximizing diversity.

Context: Leverage your in-context learning to generate realistic,
diverse samples.

Output format: JSON.

Dataset name: {dataset_name}

Column names (in order): {col_names}

Summary statistics:
{summary_stats}

CSV of full data:
{data}

Please generate {batch_size} rows of synthetic data.

Treat the rightmost column as the target. Return only a JSON object:

1LLaMA 3.3-70B failed on geographical-origin-of-music, pumadyn32nh, student-performance-por, su-
perconductivity, and wave-energy due to token limits; TabPFN failed on geographical-origin-of-music due to
extreme dimensionality.
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{
"synthetic_data": "<CSV string>"

}

Do not include any additional text.

• TabDiff Generation (Shi et al., 2025): We adopt the default implementation and hyperpa-
rameters, with two modifications: early stopping if loss does not improve within 25 epochs,
and relaxed preprocessing so that train splits need not retain every category for very small
datasets.

6.5.3 TABLE PREDICTION

• XGBoost on AutoDiff: Trained xgb.XGBClassifier(use_label_encoder=False,
eval_metric=’logloss’) on an 80%/20% split. Metrics: accuracy, macro-precision,
macro-recall, macro-F1, and multiclass ROC AUC (one-vs-rest).

• XGBoost on OpenML_crt23: Default XGBoost applied to pre-sampled train splits (sizes
32, 64, 128 with three seeds each, plus the full 999-sample split), evaluated on the 999-
sample hold-out. Same metrics as above.

• XGBoost Grid Search: Grid search over max_depth ∈ {3, 6, 9}, learning_rate ∈
{0.01, 0.1, 0.2, 0.3}, n_estimators ∈ {50, 100, 200}, subsample ∈ {0.8, 1.0} using
StratifiedKFold CV. The best model is retrained and evaluated as above.

• TabPFN Default on AutoDiff (Hollmann et al., 2025):
TabPFNClassifier(ignore_pretraining_limits=True) on a 50%/50%
split. Metrics: accuracy, macro-precision, macro-recall, macro-F1, multiclass ROC AUC
(one-vs-one), and label-ranking average precision (LRAP).

• TabPFN Default on OpenML_crt23: Same classifier and metrics applied to each
OpenML_crt23 train split.

• AutoTabPFN Ensemble on OpenML_crt23: AutoTabPFNClassifier(max_time=120,
device=’cuda’, ignore_pretraining_limits=True), evaluated with iden-
tical metrics to compare ensemble versus single-model performance.

6.6 METADATA ANNOTATION STATISTICS

Table 6 summarizes the key annotation metrics collected over the Meta-T4 corpus.

Missingness Patterns: No tables contained missing-value columns in the final annotated corpus.

6.7 ONLINE DATA GENERATION

Generation Procedure and Low-Data Regime Evaluation. We test the model‘s performance to
generate synthetic data in an online manner. For online generation with SAMoE-VAE, we perform in-
context synthesis by encoding the training examples to obtain the predicted means and log-variances,
sampling stochastically from these Gaussians, and decoding the latent samples back to table rows via
the decoder. Llama and TabPFN both use standard in-context generation: we concatenate training
examples into the prompt and sample directly. TabDiff is trained exclusively on the provided training
set examples before sampling. To assess performance in the low-data regime, we randomly sample
128 examples from each OpenML_ctr23 train split, repeating this process three times with seeds 0, 1,
and 2. Under these scarce-data conditions, foundation models consistently outperformed data-specific
generators, with SAMoE-VAE achieving the best overall performance thanks to its schema-aware
handling of heterogeneous, mixed-type data. This also provides a promising solution for generating
extremely large quantity of tabular data in industrial production settiing.

6.8 DATA LEAKAGE HYGIENE

In evaluating foundation models, a common concern is that pre-training data might be contaminated
by benchmark data points. We addressing this issue by separating benchmark tables as contaminated

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Metric Value Unit / Note

Table Counts
Total tables processed 2,633,906 tables
Unique schema prefixes 1,493,062 schemas

Schema Complexity
Mean columns per table 10.39 columns
Median columns per table 9.00 columns
Min / Max columns per table 0 / 1,202 columns

Variable-Type Distribution (total = 26,920,066)
Continuous 13,519,924 (50.22%)
Integer 6,318,308 (23.47%)
Categorical 4,226,581 (15.70%)
Freetext 1,926,688 (7.16%)
Datetime 742,076 (2.76%)
Other 186,215 (0.69%)

Description Statistics
Average words per description 50.95 words
Average characters per description 335.67 characters
Vocabulary size 1,016,075 unique words

JSON Payload Size
Mean 2,276 bytes
Median 1,945 bytes
Min / Max 0 / 472,454 bytes

Table 6: Summary of metadata annotation statistics over 2.6M tables.

Model Shape Score Shape Rank Corr Score Corr Rank

SAMoE-VAE 0.7849± 0.1400 1.15± 0.71 0.6945± 0.2040 1.01± 0.74
Llama 3 -70B 0.7349± 0.1144 1.45± 0.78 0.5827± 0.1836 1.38± 0.62
TabDiff 0.6879± 0.1292 2.06± 0.70 0.4247± 0.2673 2.39± 0.70
TabPFN 0.5658± 0.2271 2.21± 0.77 0.4125± 0.2952 1.94± 0.78

Table 7: Comparison of Shape and Correlation Similarity metrics (mean ± std) and their correspond-
ing mean rank (mean ± std) across models.

following the "strictly matched" standard (Gardner et al., 2024), where exact match of column name
set is consider contaminated. Table 8 compares performance of SAMoE-VAE and TabPFN Embedding
on “contaminated” (C) vs. strictly “non-contaminated” (NC) evaluation subsets. Reconstruction is
measured by RMSE (lower is better) and classification by ROC AUC (higher is better).

Table 8: SAMoE-VAE vs. TabPFN embedding on Contaminated (C) and Non-Contaminated (NC)
Subsets

Model Reconstruction (RMSE) Classification (ROC AUC)

C NC C NC

TabPFN 0.660 0.661 0.715 0.710
SAMoE-VAE 0.125 0.130 0.732 0.724

Both models see a slight performance boost on contaminated data. However, the gap in classification
accuracy between SAMoE-VAE and TabPFN shrinks from 0.017 on the contaminated split to 0.014
on the clean split, indicating that SAMoE-VAE’s advantage is not driven by leakage but holds under
strict non-contaminated evaluation.
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6.9 TEXT/DATETIME CASE STUDY: UCI ONLINE RETAIL

To examine performance on text and datetime columns, we evaluate on the UCI Online Retail table
(classification and clustering). The dataset includes a free-text column Description and a times-
tamp column InvoiceDate. We remove InvoiceNo and CustomerID to avoid all-unique
identifiers. Models are trained/evaluated under authors’ recommended preprocessing; for TabPFN
we represent Description by TF–IDF features and expand InvoiceDate into calendar com-
ponents (year, month, day, hour, minute). SAMoE–VAE uses its text encoder and cyclic datetime
encoder. We report ROC–AUC for classification and ARI for clustering.

Table 9: UCI Online Retail: text/datetime case study.
Model Classification ROC–AUC ↑ Clustering ARI ↑
SAMoE–VAE 0.746 0.152
TabPFN 0.691 0.103
CARTE 0.604 0.081
Tabula–8B 0.522 0.034

Result. SAMoE–VAE achieves the best performance on both tasks, supporting the claim that schema-
aware routing with modality-specific text/datetime encoders improves representation quality when
tables contain substantial free-text and timestamp fields.
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