
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SAMOE-VAE: A TABULAR FOUNDATION MODEL
WITH A SCHEMA-AWARE MIXTURE-OF-EXPERTS VARI-
ATIONAL AUTOENCODER

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation models have revolutionized vision and language, yet tabular learning
still depends on bespoke, per-dataset pipelines. A key challenge in developing a
uniform representation that enables foundation model is schema mismatch: real-
world tables contain diverse column types: numeric, categorical, text, datetime,
whose semantics vary across datasets. We frame cross-tabular representation
learning as a weakly supervised, multi-modal problem, leveraging the readily
available schema metadata that accompanies each table. We propose SAMoE-
VAE, a schema-aware Mixture-of-Experts VAE that: (i) assigns separate experts to
numeric, categorical, text, and datetime columns; (ii) fuses expert posteriors via
a schema-conditioned Product-of-Experts(MoPoE); (iii) produces a probabilistic
latent embedding space that drives accurate downstream prediction and schema-
aware generation. To train at scale, we curate Meta-T4, a 1.2-million-table corpus
augmented with LLM-generated text metadata. Extensive experiments show that
SAMoE-VAE outperforms prior art in tabular foundation models on representation
learning benchmarks, yielding higher downstream accuracy and improved sample
efficiency.

1 INTRODUCTION

Tabular data forms the basis of decision-making in virtually every industry, empowering applications
from clinical trial cohort synthesis and patient risk stratification to financial portfolio optimization
and supply-chain forecasting (Rajkomar et al., 2018; Choi et al., 2016; Fischer & Krauss, 2018).
Foundation models in vision and NLP have shown that a single, large pretrained network can be
fine-tuned or prompted to solve myriad downstream tasks with minimal additional effort (Brown
et al., 2020; Dosovitskiy et al., 2021; Devlin et al., 2019; Kolesnikov et al., 2020; Radford et al., 2021;
Ramesh et al., 2021). Analogously, a tabular foundation model would enable shared representations
across datasets, drastically reducing per-dataset engineering overhead, accelerating transfer learning,
and supporting zero-shot prediction and data synthesis in resource-constrained domains (Wang &
Sun, 2022; Yoon et al., 2020; Kim et al., 2024; Hollmann et al., 2025; van Breugel & van der Schaar,
2024)

However, developing such foundation models faces a significant challenge: the absence of a canon-
ical, instance-level representation across datasets due to heterogenous schemas. In language or
vision, examples can be mapped into a uniform input space (tokens or pixel grids) with task-agnostic
pre-processing (Grinsztajn et al., 2022; Battaglia et al., 2018); in tables, the schema itself en-
codes types, domains, distribution pattern, etc, that govern valid operations(Yin et al., 2021; Deng
et al., 2022). Studies such as TAPAS (Herzig et al., 2020), TURL (Deng et al., 2022), and the
relational-inductive-bias framework (Battaglia et al., 2018) argue that learning algorithms must
respect this schema information to transfer across tables and reason compositionally.“For tabular
foundation models, database schemas provide machine-readable, low-cost supervision (types, do-
mains, ordinality, units, keys) that is rarely available in standardized form in vision/text.” (van Breugel
& van der Schaar, 2024). E.g., a patients table might declare columns age: int (≥ 0), blood_type:
enumA, B, AB, O, and hospital_id: foreign_key—each with distinct type, domain, and provide
rich context supervision. Yet many current tabular foundation models linearize cells into discrete
tokens (Hegselmann et al., 2023; Wang et al., 2023; Hollmann et al., 2025) or aggregate per-column

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

embeddings (Kim et al., 2024; Yang et al., 2024; Lin et al.), often without representing column types
, ordinality, table context and so on. This limits the transfer of learned representation to unseen
schemas.

We frame cross-table representation learning as a metadata-supervised, multi-modal problem:
databases routinely expose machine-readable schema metadata (column types, semantic meaning,
and distribution patterns) that can guide specialization across heterogeneous tables where modalities
(numeric, categorical, temporal, text) and even their presence/absence vary by dataset. We introduce
Schema-Aware MoE-VAE (SAMoE-VAE), a variational auto-encoder in which a low-dimensional
learned schema vector gates specialized encoder–decoder experts. By incorporating column types, do-
main tags, distribution patterns, and other metadata directly into the routing mechanism, SAMoE-VAE
(i) preserves modality distinctions during encoding, (ii) synthesizes realistic tables for previously
unseen schemas, and (iii) provides expert-specific latent priors that capture epistemic uncertainty
while keeping inference cost low. Unlike prior work that encoded column information implicitly
as column name embedding (Wang & Sun, 2022; Kim et al., 2024; Lin et al.) or textual descrip-
tion (Wang et al., 2023), our method addresses the multi-modality and heterogeneity at deeper
architectural level by routing different data types to experts and learns their weighting dynamically
via mixture-of-product-of-expert mechanism. Embedding the Mixture-of-Experts directly within the
VAE’s encoder–decoder yields a smooth, continuous posterior leveraging the theoretical guarantees
of variational inference for coherent probabilistic representations (Rezende et al., 2014).

We present three key contributions:

1. Schema–Aware MoE–VAE. We propose the first variational auto–encoder that employs a
schema–gated Mixture–of–Experts layer for tables, preserving modality distinctions during
encoding and enabling schema–conditioned synthesis.

2. Meta–T4 Metadata Benchmark. We extend the existing T4 corpus by automatically
generating, via LLMs, fine-grained table- and column-level context descriptions and column-
type annotations—creating the first large-scale tabular dataset of its kind enriched with
comprehensive schema metadata.

3. Schema-generalization learning formulation. We cast tabular foundation modeling as
a metadata-supervised, multi-modal problem and show that schema metadata is a strong
supervisory signal, improving representation quality, generation fidelity, and zero/low-shot
transfer to unseen schemas

Together, these components move toward web-scale, schema-robust tabular models and set the stage
for latent-diffusion foundation models capable of high-fidelity conditional generation under unseen
schemas

2 RELATED WORK

2.1 SELF-SUPERVISED LEARNING ON TABULAR DATA

Recent efforts toward tabular “foundation” modeling can be usefully grouped into three families
based on their input representation:

(1) Table LLMs (flatten-to-text). These methods serialize rows (or row–column tuples) into
natural-language sequences and leverage general-purpose LLMs via masked-cell or instruction-style
objectives, with schema cues provided through column names or brief descriptions. TabLLM (Hegsel-
mann et al., 2023) and UniPredict (Wang et al., 2023) convert each row or row–column triplet into
sentences and fine-tune LLMs accordingly; TabT5 (Narayan et al., 2024) adopts a T5 backbone
with schema-aware prompting; Text2Table (Li et al., 2024) probes numeric reasoning by generating
QA pairs over serialized rows; TabRewrite (Garcia et al., 2025) injects external knowledge through
retrieval-augmented rewriting; and Tabula-8B (Gardner et al., 2024) adapts a pre-trained LLM with
a large table corpus and block attention, yielding strong zero-/few-shot classification. While this
paradigm benefits from broad NLP transfer, flattening continuous values into subword tokens and
foregoing modality-specific processing can harm fidelity and calibration on mixed-type tables.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(2) Token-wise in-context learners. Here, compact Transformers are trained on large suites of syn-
thetic tasks—often sampled from Bayesian networks—to learn in-context adaptation over tokenized
examples, optionally augmented with schema tokens from column names or prompts. TabPFN and its
scalable variants (Hollmann et al., 2025; Ye et al., 2025; Feuer et al., 2024; Helli et al., 2025) fit prior
data distributions and infer feature relations on the fly; TabPrompt (Zhang et al., 2024b) conditions
prompts on column names to strengthen transfer; and Schema2Vec (Dimitriadis et al., 2025) encodes
column metadata as additional tokens. The approach often excels in small-data supervised regimes
without per-dataset training, but it does not natively encode explicit type or constraint signals, lacks
architectural support for multimodal columns (e.g., text, images, audio), and remains discriminative
rather than generative.

(3) Latent-embedding models. These models operate on native mixed types through modality-
aware encoders and learn amortized representations via reconstruction or self-supervision, typically
enriching schema signals with embeddings of names, types, or lightweight tags. Representation-
centric approaches like CARTE (Kim et al., 2024) and CTSyn (Lin et al.) build a shared latent space
with reconstruction losses: CARTE employs a graph-attentional star-graph over rows, TransTab
encodes text embeddings of feature values and names with a single Transformer, and CTSyn fuses
schema embeddings into a conditional latent-diffusion autoencoder. UniTabE (Yang et al., 2024)
organizes table elements into “TabUnit” modules for masked-value prediction to capture cross-schema
patterns; TP-BERTa (Yan et al., 2024) tokenizes numeric magnitudes with intra-feature attention
and rivals GBDTs; and CV2 (Ye et al., 2024) aligns cell embeddings with column metadata via a
contrastive masked-context objective. Despite these advances, most methods still treat cells uniformly
beyond column-name/type cues and lack explicit routing of heterogeneous modalities to specialized
experts or schema-gated pathways.

Our departure. SAMoE-VAE assigns dedicated experts to distinct data modalities and employs
a learned schema vector to gate them. This design integrates rich metadata—types, missingness
patterns, domain tags, and inter-column signals—into a probabilistic latent space (via MoPoE) that
supports high-fidelity generation, principled uncertainty, and schema-conditioned transfer, without
brittle tokenization or fixed-schema assumptions.

MoE in tabular models. Mixture-of-Experts (MoE) dates to adaptive gating (Jacobs et al., 1991)
and sparse Transformers (Shazeer et al., 2017; Fedus et al., 2021); multimodal VAEs often dispatch
fixed modalities (image/text/audio) to experts. In tabular settings, TabMoE (Wu & Hou, 2024) routes
queries to task-specific experts for table QA; GG-MoE (Chernov, 2025) uses Gumbel-Softmax over
column embeddings for classification with per-dataset gates; and Tabby (Cromp et al., 2024) assigns
experts per column for data synthesis. These lines do not treat numeric/categorical/text/datetime
as first-class modalities nor tie routing to machine-readable schema that varies across datasets. By
contrast, SAMoE-VAE (i) assigns experts by column type and (ii) computes mixture weights from a
learned schema vector, enabling schema-conditioned specialization; further, it integrates MoE within
a generative VAE using a MoPoE latent aggregator, supporting uncertainty-aware representation and
schema-aware generation.

3 METHODOLOGY

In this section, we detail the design of SAMoE-VAE workflow, as shown in figure 1.

3.1 FEATURE EMBEDDING

Given a row x = (c1, x1, . . . , cp, xp) with p columns, we embed names and values into a shared
MLM-dimensional space. For each column i: eci = LM(ci); and

exi =


LM(xi) (categorical)
WnumPLE(xi) (numeric)
WtextAEtext(xi) (free text)
WtimeCycEnc(xi) (datetime)

where LM is a frozen text encoder. Note that categories are tokenized and encoded with LM.
Numerical values are encoded using piece-wise linear encoding (PLE) (Gorishniy et al., 2022)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Feature

Embed

Age

Sex

33

Male

Intro Hi!

DoB 2001
z

E

MoPoE
Fusion

33

Male

HI!

2001H
f(E(m))

Context String

x

em

 ec ep Numerical

Categorical

Text

Datetime

g(Ec
(m),[em, Z])

Numerical

Categorical

Text

Datetime

Ed

Eq

Ec
Schema

Conditioning
Meta & Column

Conditioning

S

Dtype &
Distribution

Figure 1: Overview of the SAMoE-VAE workflow. A table row, its column names and metadata are
first embedded into a unified sequence E. This sequence is split by data type (numeric, categorical,
text, datetime) and processed by corresponding expert encoders to produce modality-specific Gaussian
parameters. In parallel, schema metadata (table description, column names, data types, value
distributions) is encoded into a schema vector s. A schema-conditioned product-of-experts gate
fuses expert outputs into a single latent z. Finally, z, the metadata, and column names are routed to
modality-specific decoders to reconstruct each cell’s value.

and linear projection to MLM is learned. Text values are embedded using a BART (Lewis et al.,
2020)-based autoencoder (Lovelace et al., 2024) whose encoder output is compressed via a Perceiver-
Resampler (Alayrac et al., 2022) into RMLM . Datetime values are first decomposed into year, month,
day, hour, and minute components; these are encoded using sine–cosine positional encodings and
mapped to MLM via a two-layer MLP. (Suh et al., 2024). We then follow a framework similar to
CTSyn (Lin et al.) to concatenate each column name embedding eci with its corresponding value
embedding exi , forming the final sequence:

E =
[
[ec1 ; ex1], [ec2 ; ex2], . . . , [ecp ; exp]

]
∈ Rp×2MLM .

Perceiver cross-attention naturally handles variable-length E(m) without padding to a common
length; batching uses standard key/query masks.

3.2 MODALITY–SPECIFIC EXPERT ENCODERS

We first split the embedding matrix E ∈ Rp×2MLM by column data type into sub-sequences
{E(m)}m∈M, where M = {num, cat, text, time}. This ensures that all modality–specific inputs
share the same embedding width (2MLM) while grouping values by their true semantic type.

Each E(m) is then passed to its own Perceiver–Resampler expert fm (identical architecture), which
uses learnable latent queries and cross-attention to transform a variable-length sequence E(m) into a
fixed-size tensor

(µ(m), log σ2(m)) = fm(E(m)), µ(m), log σ2(m) ∈ Rℓ×dz .

where ℓ is the number of latent queries per modality and dz is the latent dimensionality. The resulting
µ(m) and log σ2(m) parameterise modality-specific diagonal-Gaussian posteriors, which are fed
directly into the schema-aware MoPoE gate (Sec. 3.3). No latent sampling occurs at this stage, and
permutation invariance is preserved by omitting positional embeddings. Missing modalities are
skipped.

3.3 SCHEMA–AWARE MIXTURE–OF–PRODUCT–OF–EXPERTS GATING

Intuition. Product-of-Experts (PoE) yields a tighter, modality-consistent posterior than simple
averaging and is closed-form for Gaussians (Wu & Goodman, 2018). Unlike classic multimodal
VAEs with a fixed modality set (e.g., image+text), tabular data vary in both the presence and count of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

each modality. We therefore compute one Gaussian posterior per subset of available modalities and
gate only at fusion: a schema-conditioned network (driven by the schema vector) assigns mixture
weights over these subsetwise PoE posteriors. Figure 2 illustrates the schema-aware fusion.

Schema vector s: construction. We build three token streams (matrices in Rp×MLM) from the
row-level inputs:

Ec = [ec1 , . . . , ecp], Ed = [ed1
, . . . , edp

], Eq = [eq1 , . . . , eqp].

Name tokens Ec: eci = LM(ci) (frozen text encoder, cached). Type-ID tokens Ed: one-hot
column types {num, cat, text, time} embedded via a learned lookup Etype ∈ R4×MLM , so edi

=
Etype[type(i)].

Distribution tokens Eq summarize per-column value distributions by modality: for numeric columns,
we compute a 33-bin histogram over standardized values (z-scores), apply the Discrete Cosine
Transform (DCT-II) to the normalized histogram, retain the first K low-frequency coefficients that
capture overall shape, and linearly project to MLM to obtain eqi ; this yields a compact, shift/scale-
insensitive signature that reflects properties like unimodality vs. multimodality and skew or heavy
tails without depending on column length. For categorical columns, we take the frequency-weighted
mean of category embeddings from LM and project to MLM. For datetime columns, we build cyclic
histograms (e.g., hour-of-day, day-of-week), form sine–cosine features, and project to MLM. For text
columns, we use the mean of AEtext embeddings over observed cells and project to MLM.

We concatenate [Ec;Ed;Eq] (no positional encodings) and pass through a lightweight Perceiver (4
layers, 2 heads) to produce the schema vector s ∈ RMsch (we use Msch=256).

Element-wise Product of Experts. Let M be the modality index set and P(M)\{∅} its non-empty
subsets. For each subset S we compute a diagonal-Gaussian product posterior

qS(z | xS) = N
(
µS ,diag(σ

2
S)
)
, σ−2

S =
∑
m∈S

σ−2
m , µS = σ2

S

∑
m∈S

σ−2
m µ(m),

applied element-wise across the ℓ×Magg latent matrix. With four modalities we have 15 subsets, a
tractable number. If a modality is absent, its expert outputs the unit prior and is down-weighted.

Schema-conditioned gating. Each product mean µS is mean-pooled over its ℓ tokens and concate-
nated with s; a two-layer MLP (Magg+Msch→128→1, ReLU) produces logits aS . Softmax gives
mixture weights αS = softmax(aS); omitting s collapses the gate to vanilla MoPoE.

Mixture aggregation. The final posterior is an element-wise precision-weighted Gaussian

σ−2
∗ =

∑
S

αS σ−2
S , µ∗ = σ2

∗

∑
S

αS σ−2
S µS ,

from which we draw z = µ∗ + σ∗ ⊙ ε, ε ∼ N (0, I) follow reparameterization trick.

3.4 DECODER

Figure 2: Schema-aware Mixture-of-product-of-
expert gating.

Latent-to-cell decoding. For each modality
m ∈ {num, cat, text, time}, we combine the
shared row latent z ∈ Rℓ×Magg with the table-
level metadata em and the modality-specific
column-name embeddings E

(m)
c = [eci]i∈m.

A modality-specific Perceiver–Resampler gm
(identical architecture across modalities but not
weight-tied) maps queries E(m)

c and keys/values
[em; z] to cell embeddings:

H(m) = gm
(
E(m)

c , [em; z]
)
∈ Rpm×Mdec ,

where pm is the number of columns of type m. Each cell vector h(m)
i is then passed to a lightweight,

modality-specific reconstruction head: a linear layer with sigmoid activation for numerics, cosine-
similarity softmax over prototype embeddings for categoricals, a Perceiver–Resampler + BART

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

decoder for text, and multi-task MLPs for datetime (year via MSE, others via cross-entropy). We
compute the total reconstruction loss as

Lrec =
∑
m

∑
i∈m

ℓ(m)
(
x̂
(m)
i , xi

)
.

Using separate decoders per modality aligns with the Mixture-of-Experts principle by allowing
each expert to specialise in reconstructing its own input distribution, reducing interference across
heterogeneous column types.

3.5 TRAINING OBJECTIVE

The VAE minimises

L =
∑
m

∑
i∈m

ℓ(m)(x̂i, xi)︸ ︷︷ ︸
Lrec

+β(t)

ℓMagg∑
k=1

DKL

(
N (µk, σ

2
k) ∥N (0, 1)

)
︸ ︷︷ ︸

LKL

+λcon Lcon︸︷︷︸
Info-NCE over

row latents

,

where β(t) is cosine annealed from 0 to 0.0001 over the total number of steps—balancing regular-
isation of the ℓ×Magg latent space with reconstruction fidelity,and λcon = 0.001 was chosen via
grid search over {0.1, 0.01, 0.001}. The supervised contrastive loss (Oord et al., 2018) is applied at
every step, grouping row latents by class label (or quartile for regression) to enhance downstream
separability. To promote robustness, we randomly mask 15 % of all cell embeddings (uniformly
across modalities and respecting same-table batching) before decoding, while still computing Lrec on
the full table.

Large-Scale Pre-training. We pre-train SAMoE-VAE on the Meta-T4 dataset, which consists of
T4 corpus (Gardner et al., 2024) (1.2 M tables, 3.1 B cells) and LLM-annotated metadata. For each
table, we present the first 30 rows in string form to the Llama-3 8B model (Grattafiori et al., 2024) to
generate structured metadata including a table-level description, column-wise semantics, and type
annotations; all textual fields are embedded with GTE-large (Li et al., 2023). Both modality-specific
encoders and the decoder use six cross-attention layers with latent width Magg = 128 and latent
length ℓ = 64. We optimise with AdamW (learning rate 1×10−4, weight decay 1×10−4) and cosine
annealing (5% warm-up, floor 5× 10−5). Mini-batches contain 128 rows drawn from the same table,
with 4-step gradient accumulation yielding an effective batch size of 512. Training is performed on a
slurm cluster with single H100 GPUs for 240 hours; to maximize coverage of diverse schema, we
randomly sample 256 examples from each table, resulting in a training subset covering about 10% of
row instances but 100% schema in T4 dataset. Additional hyperparameters and hardware details are
provided in Appendix 6.3.

4 EXPERIMENT

In this section we perform extensive experiments on the schema-aware MoPoE VAE method in table
representation and synthetic table generation tasks. We seek to answer the following questions: (1)
Does our method learn strong cross-table representations? (2) Is schema-aware MoPoE critical to
that performance?

4.1 BENCHMARK DATASETS

We evaluate on three established suites that stress schema–generalization across heterogeneous
mixed–type tables. First, following (Gardner et al., 2024), we use OpenML–CTR23 (Fischer et al.,
2023) as a regression suite that retains the original continuous targets; official train/test splits are used
throughout. Second, OpenML–CC18 provides a diverse set of mixed–type classification datasets
with the standard OpenML partitions. Third, the UniPredict collection (Wang et al., 2023) offers
additional classification tables curated for LLM–based tabular evaluation; we follow the authors’
splits to enable comparison with “flatten–to–text” approaches. To probe sample efficiency, for each
dataset we subsample the training portion at sizes {8, 16, 32, 64, 128} plus the full set, repeating
each size with three random seeds and reporting seed–averaged metrics. Classification is reported as
accuracy and AUROC (macro when applicable); regression as RMSE.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 BASELINES

We compare SAMoE–VAE against representative methods from the three families in Sec. 3.1, plus
a strong conventional encoder, and we state for each whether we evaluate embeddings via a lin-
ear/logistic regression and/or end–to–end predictions. CARTE (Kim et al., 2024) (graph–attentional
cross–column encoder), CTSyn (Lin et al.) (VAE backbone with schema embeddings), Transformer
VAE (Zhang et al., 2024a) (modality–specific encoders for mixed types), and SwitchTab (Wu et al.,
2024) (VAE with data–specific structural experts) are used as latent–embedding foundations and
evaluated with embeddings+regression. For token–wise in–context learners we use TabPFN v2 (Holl-
mann et al., 2025) and report its end–to–end predictions; when feasible we also extract intermediate
representations and apply the same probe protocol for a fair comparison. For table LMs, we include
Tabula–8B (Gardner et al., 2024) and TAPAS (Herzig et al., 2020), reporting embeddings+regression
performance. As a conventional deep encoder we use TabVec (Skrub, 2024) over one–hot/normalized
features with embeddings+probe. In all embedding settings, we freeze the backbone after trained
on train set of each table in the benchmarks, fit a linear probe (logistic for classification; ridge for
regression) on training embeddings, and evaluate on the test split; for TabPFN v2 and Tabula–8B
we additionally report their native end–to–end predictions. Our goal is not to supersede specialized
discriminative SOTA (e.g., TabPFN/XGBoost), but to assess whether schema–aware MoPoE yields
stronger and more transferable representations across schemas.

4.3 DOWNSTREAM PERFORMANCE

Table 1: Benchmarking Results Across Tabular Representation Models (with Std. Dev. of Avg.
Rank). Avg. rank computed over embedding models only; raw-feature end-to-end rows are shown
for context.

Model CTR-23 CC18 UniPredict Avg. Rank

RMSE (↓) ROC AUC (↑) F1 (↑) ROC AUC (↑) F1 (↑) (Std.)

TabVec 1.532 0.681 0.412 0.472 0.321 5.70 (2.17)
TaPas 3.658 0.592 0.298 0.593 0.305 10.00 (0.71)
Tabula-8B 5.757 0.608 0.226 0.601 0.321 7.50 (1.32)
TabSyn-VAE 1.145 0.821 0.307 0.607 0.289 5.20 (2.17)
SwitchTab 1.039 0.914 0.423 0.699 0.408 2.00 (0.71)
CTSyn 1.542 0.658 0.361 0.643 0.347 5.40 (1.14)
CARTE 1.758 0.783 0.152 0.676 0.142 6.80 (2.28)
TabPFN 1.429 0.808 0.396 0.702 0.381 3.40 (0.89)

TabPFN (raw features) 0.961 0.942 0.820 0.859 0.718 –
XGBoost (raw features) 0.973 0.925 0.795 0.843 0.739 –
CARTE (raw features) 1.124 0.891 0.742 0.684 0.546 –

SAMoE-VAE 0.991 0.859 0.451 0.892 0.677 1.20 (0.45)

We evaluate each embedding along one primary dimension. For each dataset, we compute embeddings
of the predictor features and fit a logistic/linear regression on the training embeddings, then report
RMSE for regression (CTR-23) and AUROC/macro-F1 for classification (CC18/UniPredict). By
using the same regression model, we can isolate the embeddings’ representational power; exact
hyperparameters are detailed in Appendix 6.4.

From Table 1, SAMoE-VAE is the top performer among embedding baselines across benchmarks,
achieving the best overall average rank. Strong prediction pipelines using raw features (e.g., TabPFN
and XGBoost) still set the state of the art in downstream classification, which aligns with their
design goal; our objective is different: produce the best general-purpose tabular embeddings. On the
text-heavy UniPredict suite, SAMoE–VAE attains the strongest embedding performance, consistent
with its dedicated text/datetime encoders; see App. 6.9 for a focused case study.

4.4 CROSS-SCHEMA GENERALIZATION

4.4.1 TABLE RECONSTRUCTION

We evaluate the ability of SAMoE-VAE as a foundation model to generalize to unseen table schemas.
Table 2 compares SAMoE-VAE with strong VAE baselines on reconstruction of a representative

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Reconstruction Quality Across VAE Models
Variant Column Shape (↑) Column Corr. (↑) NRMSE (↓) Cat. Acc. (↑)

SAMoE-VAE (fine-tuned) 0.96 0.89 0.011 0.996
SAMoE-VAE (zero-shot) 0.90 0.79 0.019 0.834
TabSyn-VAE 0.93 0.76 0.017 0.995
SwitchTab AE 0.92 0.71 0.018 0.974

CTR-23 dataset with their own decoders (additional results in Appendix 6.4). Column Shape is 1−KS,
the complement of the Kolmogorov–Smirnov distance (mean over numerical columns); Column
Corr. is the mean absolute Pearson correlation between reconstructed and true numerical columns
(both metrics therefore lie in [0, 1], with higher better). NRMSE denotes per-column normalized
RMSE; classification is reported as Cat. Acc. on categoricals. The main downstream table (Table 1)
reports dataset-level RMSE for CTR-23. Without any gradient updates (“zero-shot”), the pretrained
SAMoE-VAE already achieves strong shape and correlation metrics, indicating that its latent captures
realistic column distributions even for unseen schemas. Fine-tuning on each training set further
improves all reconstruction metrics—surpassing both TabSyn-VAE and SwitchTab-AE—showing
that schema-aware gating yields representations that transfer across tables yet refine quickly when
modest in-domain data are available. This robust zero-shot reconstruction ability lays the foundation
for integrating our model into broader generative frameworks, such as latent-diffusion pipelines.

4.4.2 DATA EFFICIENCY

Figure 3: Classification AUROC across training
set sizes. Each curve represents a different tabular
representation model.

Figure 3 shows classification ROC AUC as we
vary the number of labeled training examples
from 8 to 128. SAMoE-VAE (orange) deliv-
ers the strongest performance in the low-data
regime—outperforming all baselines by a wide
margin at 8 and 16 examples and maintain-
ing a lead through 32 examples. As the train-
ing set grows, TabPFN (red) and SwitchTab
(green) recover rapidly and slightly overtake
SAMoE-VAE at 64 and 128 samples, while
CARTE and TAPAS remain at the bottom of the
curve. This behavior reinforces that the schema-
aware mixture-of-experts embedding learned
by SAMoE-VAE is markedly more sample-
efficient, extracting useful features when la-
bels are scarce, yet remains competitive as data
scales.

4.5 ROBUSTNESS TO METADATA QUALITY

Table 3: UniPredict ROC AUC for models with/without textual metadata
Metadata SAMoE-VAE Tabula-8B CARTE

Without Meta 0.861 0.601 0.593
With Meta 0.892 0.610 0.599

To test whether simple text-level inclusion of metadata benefits other foundation models, we prepend
metadata strings to the Tabula-8B input and add a “table description” column to CARTE’s feature
frames. Table 3 reports ROC AUC with and without metadata.

With metadata, SAMoE-VAE improves from 0.861 to 0.892 (+3.1 pp). In contrast, Tabula-8B
changes only from 0.601 to 0.610 (+0.9 pp) and CARTE from 0.593 to 0.599 (+0.6 pp). These modest
gains suggest the bottleneck is not merely reading the metadata text, but the modeling-level integra-
tion—e.g., schema-aware gating—that lets metadata materially improve downstream performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.6 ABLATION STUDY

Table 4: Effect of replacing the schema-aware MoE during pre-training.
Pre-training variant Recon RMSE ↓ Recon Acc. ↑ ROC AUC ↑
No MoE encoder 0.038 0.842 0.765
Simple (uniform) MoE 0.043 0.853 0.810
Schema-Aware MoE (default) 0.023 0.890 0.892

Table 4 examines the impact of replacing the schema-aware MoE in pre-training and fine-tuning.
Removing the MoE entirely (No MoE) weakens downstream classification (lower ROC AUC) and
reconstruction accuracy, while a simple, uniform MoE recovers much of that performance—improving
ROC AUC and reconstruction accuracy—at the cost of a slight increase in reconstruction RMSE. Both
variants still underperform the schema-aware default, confirming that conditioning expert weights on
schema metadata materially benefits representation learning.

Table 5: Effect of removing training tricks or metadata during fine-tuning of the default pre-trained
model (difference from default in parentheses).

Variant RMSE (↓) Acc. (↑) ROC AUC (↑)

No masked training 0.028 (+0.005) 0.880 (-0.010) 0.901 (+0.009)
No contrastive training 0.022 (-0.001) 0.893 (+0.003) 0.874 (-0.018)
Human-crafted metadata 0.024 (+0.001) 0.887 (-0.003) 0.890 (-0.002)
No distribution pattern meta 0.030 (+0.007) 0.870 (-0.020) 0.891 (-0.001)

Table 5 then probes variants applied during fine-tuning of the default pre-trained model. Omitting
masked training increases RMSE while slightly boosting ROC AUC, indicating the mask objective
favors reconstruction over classification separability. Skipping contrastive training yields a small
RMSE improvement but degrades downstream ROC AUC, showing that the contrastive loss sharpens
embedding discrimination. Swapping in human-crafted metadata produces near-identical results
to our auto-generated schema, validating the metadata pipeline. Finally, removing the distribution-
pattern embeddings raises RMSE with negligible change in ROC AUC, highlighting that these
statistics chiefly support faithful reconstruction. Together, these ablations demonstrate that each
component—schema-aware MoE pre-training, masked and contrastive objectives, and distribution
metadata—contributes complementarily to SAMoE-VAE’s performance.

5 CONCLUSION

We introduced SAMoE–VAE, a schema–aware Mixture–of–Experts variational autoencoder for
mixed–type tables. By computing modality–specific posteriors and gating at fusion with a schema
vector, SAMoE-VAE learns transferable, probabilistic representations that support downstream predic-
tion and schema–conditioned generation. Across OpenML benchmarks (CTR–23/CC18/UniPredict),
we observe consistent gains over representation–centric baselines, particularly in low–label regimes.

Limitations and future work. (i) Metadata availability and quality. Our approach assumes
access to basic schema signals (column names, types, distribution summaries). While these can
be auto–generated (e.g., via LLMs as we did), noisy or missing metadata can degrade perfor-
mances. A more systematic study of active metadata acquisition, noise–aware training, and schema
inference is warranted. (ii) Scope of evaluation. Our zero–/few–shot evidence focuses on linear
probes and zero–shot reconstruction; truly zero–shot prediction (without any task–specific fitting)
and cross–dataset label transfer were not exhaustively evaluated. (iii) Privacy and compliance.
LLM–generated metadata can encode sensitive information or training leakage if not filtered.

Our future work aims for: (a) robust metadata induction and denoising; (b) integrating SAMoE–VAE
with latent diffusion for high–fidelity conditional synthesis; (c) extending to truly multimodal columns
(images, time series) and cross–table retrieval.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement: The authors have read the Code of Conduct of ICLR 2026, will comply with it
throughout submission, reviewing, and discussion, and explicitly acknowledged this during submis-
sion. Reviewers are encouraged to raise potential violations. Should our work surface concerns such
as those involving human subjects, dataset release practices, harmful insights, conflicts of interest,
discrimination or fairness issues, privacy or security risks, legal compliance, or other research integrity
matters, we will provide a dedicated ethics paragraph before the references to address them. The
optional ethics statement lies outside the page limit and must remain under one page.

Reproducibility Statement: The supplemental material contains all model definitions and training
loop, as well as a detailed README file. Appendix 6.4 documents model and baseline imple-
mentations, while Appendix 6.2 details dataset curation, annotation prompts, and preprocessing
steps.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–23736,
2022.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Vadim Borisov, Kathrin Sessler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language
models are realistic tabular data generators. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=cEygmQNOeI.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp.
1877–1901, 2020.

Andrei Chernov. (gg) moe vs. mlp on tabular data. arXiv preprint arXiv:2502.03608, 2025.

Edward Choi, Mohammad Taha Bahadori, Joshua A. Kulas, Andy Schuetz, Walter F. Stewart, and
Jimeng Sun. Retain: An interpretable predictive model for healthcare using reverse time attention
mechanism. In Advances in Neural Information Processing Systems, volume 29, pp. 3504–3512,
2016.

Sonia Cromp, Satya Sai Srinath GNVV Namburi, Catherine Cao, Mohammed Alkhudhayri, Samuel
Guo, Nicholas Roberts, and Frederic Sala. Tabby: Tabular adaptation for language models. In
NeurIPS Table Representation Learning Workshop, 2024. URL https://openreview.net/
pdf?id=gh3WrztrNC.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. Turl: Table understanding through
representation learning. ACM SIGMOD Record, 51(1):33–40, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, pp. 4171–4186, 2019.

George Dimitriadis, Hu Xu, and Cheng Qian. Schema2vec: Learning schema-aware representations
for tabular transfer. In International Conference on Learning Representations (ICLR), 2025.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. In Proceedings of the 38th International Conference on
Machine Learning, 2021. arXiv:2101.03961.

10

https://openreview.net/forum?id=cEygmQNOeI
https://openreview.net/pdf?id=gh3WrztrNC
https://openreview.net/pdf?id=gh3WrztrNC

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Benjamin Feuer, Robin Tibor Schirrmeister, Valeriia Cherepanova, Chinmay Hegde, Frank Hutter,
Micah Goldblum, Niv Cohen, and Colin White. Tunetables: Context optimization for scalable
prior-data fitted networks. arXiv preprint arXiv:2402.11137, 2024. Available at: https://
arxiv.org/abs/2402.11137.

Sebastian Felix Fischer, Liana Harutyunyan Matthias Feurer, and Bernd Bischl. OpenML-CTR23 – a
curated tabular regression benchmarking suite. In AutoML Conference 2023 (Workshop), 2023.
URL https://openreview.net/forum?id=HebAOoMm94.

Thomas Fischer and Christopher Krauss. Deep learning with long short-term memory networks for
financial market predictions. European Journal of Operational Research, 270(2):654–669, 2018.

Miguel Garcia, Rui Song, and Wenhan Xiong. Tabrewrite: Retrieval-augmented rewriting for table
question answering. In Annual Meeting of the Association for Computational Linguistics (ACL),
2025.

Joshua P Gardner, Juan Carlos Perdomo, and Ludwig Schmidt. Large scale transfer learning for
tabular data via language modeling. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. Advances in Neural Information Processing Systems, 35:24991–25004,
2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Laurent Grinsztajn, Édouard Oyallon, and Gaël Varoquaux. A survey on deep learning for tabular
data: Recent advances and open challenges. arXiv preprint arXiv:2207.01850, 2022.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. Tabllm: Few-shot classification of tabular data with large language models. In International
Conference on Artificial Intelligence and Statistics, pp. 5549–5581. PMLR, 2023.

Kai Helli, David Schnurr, Noah Hollmann, Samuel Müller, and Frank Hutter. Equitabpfn: A target-
permutation equivariant prior fitted networks. arXiv preprint arXiv:2502.06684, 2025. Available
at: https://arxiv.org/abs/2502.06684.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Mueller, Francesco Piccinno, and Julian Eisen-
schlos. Tapas: Weakly supervised table parsing via pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 4320–4333, 2020.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319–326, 2025.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991.

Myung Jun Kim, Léo Grinsztajn, and Gaël Varoquaux. Carte: pretraining and transfer for tabular
learning. In Proceedings of the 41st International Conference on Machine Learning, pp. 23843–
23866, 2024.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and
Neil Houlsby. Big transfer (bit): General visual representation learning. In European Conference
on Computer Vision, pp. 491–507, 2020.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 7871–7880, 2020.

11

https://arxiv.org/abs/2402.11137
https://arxiv.org/abs/2402.11137
https://openreview.net/forum?id=HebAOoMm94
https://arxiv.org/abs/2502.06684

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yifan Li, Qing Wang, and Jia Deng. Text2table: Benchmarking numeric reasoning of large language
models on serialized tables. In Empirical Methods in Natural Language Processing (EMNLP),
2024.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023.

Xiaofeng Lin, Chenheng Xu, Matthew Yang, and Guang Cheng. Ctsyn: A foundational model for
cross tabular data generation. In The Thirteenth International Conference on Learning Representa-
tions.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent
diffusion for language generation. Advances in Neural Information Processing Systems, 36, 2024.

Gaurav Narayan, Kathy Lee, and Hermann Gruber. Tabt5: Table-aware t5 for structured data
reasoning. In International Conference on Learning Representations (ICLR), 2024.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajaj, Michaela Hardt, Xiaobing Liu,
Mimi Sun, Patrik Sundberg, Hector Yee, Kun Zhang, Gavin E. Duggan, Gerardo Flores, Michael D.
Howell, and Jeff Dean. Scalable and accurate deep learning for electronic health records. NPJ
Digital Medicine, 1(1):18, 2018.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Zero-shot text-to-image
generation. In International Conference on Machine Learning, 2021.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Nabeel Seedat, Nicolas Huynh, Boris van Breugel, and Mihaela van der Schaar. Curated llm:
Synergy of llms and data curation for tabular augmentation in low-data regimes. arXiv preprint
arXiv:2312.12112, 2023. URL https://arxiv.org/abs/2312.12112.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representations, 2017. arXiv:1701.06538.

Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabdiff: a
mixed-type diffusion model for tabular data generation, 2025. URL https://arxiv.org/
abs/2410.20626.

Skrub. Skrub, prepping tables for machine learning. https://skrub-data.org, 2024. Ac-
cessed May 11, 2025.

Namjoon Suh, Yuning Yang, Din-Yin Hsieh, Qitong Luan, Shirong Xu, Shixiang Zhu, and Guang
Cheng. Timeautodiff: Combining autoencoder and diffusion model for time series tabular data
synthesizing. arXiv preprint arXiv:2406.16028, 2024.

Boris van Breugel and Mihaela van der Schaar. Why tabular foundation models should be a research
priority. arXiv preprint arXiv:2405.01147, 2024.

Ruiyu Wang, Zifeng Wang, and Jimeng Sun. Unipredict: Large language models are universal tabular
classifiers. arXiv preprint arXiv:2310.03266, 2023.

12

https://arxiv.org/abs/2312.12112
https://arxiv.org/abs/2410.20626
https://arxiv.org/abs/2410.20626
https://skrub-data.org

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zifeng Wang and Jimeng Sun. Transtab: Learning transferable tabular transformers across tables.
Advances in Neural Information Processing Systems, 35:2902–2915, 2022.

Jie Wu and Mengshu Hou. Tabmoe: A general framework for diverse table-based reasoning with
mixture-of-experts. Mathematics, 12(19):3031, 2024. doi: 10.3390/math12193031.

Jing Wu, Suiyao Chen, Qi Zhao, Renat Sergazinov, Chen Li, Shengjie Liu, Chongchao Zhao, Tianpei
Xie, Hanqing Guo, Cheng Ji, et al. Switchtab: Switched autoencoders are effective tabular learners.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 15924–15933,
2024.

Mike Wu and Noah Goodman. Multimodal generative models for scalable weakly-supervised
learning. Advances in neural information processing systems, 31, 2018.

Scott Yak, Yihe Dong, Javier Gonzalvo, and Sercan Arik. Ingestables: Scalable and efficient training
of llm-enabled tabular foundation models. In NeurIPS 2023 Second Table Representation Learning
Workshop, 2023.

Jiahuan Yan, Bo Zheng, Hongxia Xu, Yiheng Zhu, Danny Chen, Jimeng Sun, Jian Wu, and Jintai
Chen. Making pre-trained language models great on tabular prediction. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=anzIzGZuLi.

Yazheng Yang, Yuqi Wang, Guang Liu, Ledell Wu, and Qi Liu. Unitabe: A universal pretraining
protocol for tabular foundation model in data science. In The Twelfth International Conference on
Learning Representations, 2024.

Chao Ye, Guoshan Lu, Haobo Wang, Liyao Li, Sai Wu, Gang Chen, and Junbo Zhao. Towards
cross-table masked pretraining for web data mining. In Proceedings of the ACM on Web Conference
2024, pp. 4449–4459, 2024.

Han-Jia Ye, Si-Yang Liu, and Wei-Lun Chao. A closer look at tabpfn v2: Strength, limitation, and
extension. arXiv preprint arXiv:2502.17361, 2025. Available at: https://arxiv.org/abs/
2502.17361.

Wenhu Yin, Kazuma Hayashi, Peter N. Bennett, James Bien, Douwe Kiela, Yuqing Wu, Xiang
Zhang, Andrew Li, Jianfeng Li, Mike Lewis, and Luke Zettlemoyer. Tabert: Pre-training for
joint understanding of textual and tabular data. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics, pp. 8413–8426, 2021.

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela Van der Schaar. Vime: Extending the success
of self-and semi-supervised learning to tabular domain. Advances in Neural Information Processing
Systems, 33:11033–11043, 2020.

Hengrui Zhang, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Xiao Qin, Chris-
tos Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with
score-based diffusion in latent space. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=4Ay23yeuz0.

Lina Zhang, Peng Li, and Huan Chen. Tabprompt: Column-aware prompting for in-context learning
on tables. In Advances in Neural Information Processing Systems (NeurIPS), 2024b.

13

https://openreview.net/forum?id=anzIzGZuLi
https://openreview.net/forum?id=anzIzGZuLi
https://arxiv.org/abs/2502.17361
https://arxiv.org/abs/2502.17361
https://openreview.net/forum?id=4Ay23yeuz0

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

6 APPENDIX

6.1 LLM USAGE DISCLOSURE

Role in data creation (Meta–T4). Large language models (LLMs) were used to generate schema
metadata for the Meta–T4 resource: short table summaries, column descriptions, and coarse type/units
hints. The LLMs operated on the first k rows (and column names) of each public table to produce
text fields; no ground-truth labels were inferred or altered. We applied lightweight quality control
(length/format checks, forbidden-term filters, and heuristic consistency checks with column statistics)
and discarded generations that failed these checks. Prompt templates and sampling settings are
provided in App. 6.2. This metadata serves as input to our method; it does not replace labels nor
constitute test-set supervision.

Role in writing and literature search. LLMs were used to assist with proofreading, language
suggestions, and literature discovery (e.g., drafting alternate phrasings of paragraph-level text, and
retrieving candidate citations for manual vetting). All technical claims, equations, experiments, and
conclusions were authored and verified by the authors. Suggested citations were checked for accuracy
and relevance before inclusion.

Compliance and safeguards. To preserve anonymity and avoid leakage, we used only public
datasets, removed any personally identifying details from prompts, and avoided undisclosed pro-
prietary sources. LLM outputs that affected the paper or data artifacts were reviewed by an author
before use.

6.2 METADATA GENERATION

For each unique table (identified by a common filename prefix), the script reads a Parquet file from
the input folder and extracts two key pieces of information: (i) a schema summary listing each
column name and its Arrow data type, and (ii) a small data preview (the first five rows) converted to a
pandas-style string. These are concatenated into a single prompt and sent to the Groq API (using the
model llama-3.1-70b-versatile) via a chat completion request. The prompt instructs the
model to output, in raw JSON, a human-readable ‘"description"‘ of the table plus a ‘"variables"‘ array,
where each entry contains a ‘variable_name‘, a ‘variable_type‘ (chosen from Integer, Continuous,
Categorical, freetext, or Datetime), and a brief ‘meaning‘. Tables containing personal identifiers (e.g.,
SSNs or phone numbers) are automatically skipped. The resulting JSON is written to a timestamped
file in the ‘Metadata/‘ directory, and the original filename is logged in ‘processed_files.txt‘ to prevent
reprocessing; any errors (e.g., token-limit failures) are caught and reported but do not halt the batch.“‘.
Exact prompt used is shown below.

Here is a small preview of the table data:
{table_preview}

I want you to provide (1) A detailed textual description of the given table,
(2) Variable Name, Variable Type without parentheses, meaning of each column variable.
The variable types should be Integer, Continuous, Categorical, freetext, Datetime.
Here, the freetext means any sentences that is comprised of more than 3 words.
And if the data contains any personal information such as phone number, SSN, or any
types of identification numbers, you don’t need to provide the Metadata information
on that particular table.
Please provide the answers for (1) and (2) in a valid JSON format, without any extra
characters such as ‘‘‘json‘‘‘ or ’’’ around the content. The output should be
directly usable as a JSON file.

Please structure the JSON as follows:

{
"description": "Textual description in plain English",
"variables": [

{

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

"variable_name": "Column name",
"variable_type": "Type of the variable",
"meaning": "Meaning of the variable"

},
...

]
}
Please do not include anything other than this information in the output.

6.3 PRE-TRAINING DETAILS

All key training arguments were set as follows: the interval type and scheduler interval were both
configured to step; training ran for a maximum of 2 000 000 steps with validation every 200 000
steps and checkpoints saved every 5 000 steps; early stopping was triggered after five successive
validations without improvement; the scheduler completed over 2 000 000 total steps, with the VAE’s
β coefficient initialized at 0.0 and annealed up to 1 × 10−4 over the full schedule. We used a
batch size of 128, an initial learning rate of 1× 10−4 (floor 1× 10−5), weight decay of 1× 10−3,
and a linear warm-up spanning 5% of training; gradients accumulated over four steps and 15% of
cell embeddings were randomly masked each batch; the contrastive loss weight was set to 0.001;
numerical features were transformed via piece-wise linear encoding; no extra warm-up epochs were
used for the vectorizer; the autoencoder backbone was the multimodal variant combined via the
MoPoE gating method; data splits followed a 0.99/0.0099/0.0001 train/validation/test ratio; shuffling
was disabled; LMDB was used for data storage; training resumed automatically from any existing
checkpoint but did not reload the scheduler state; data loading employed eight workers; and all
computation ran on CUDA.

6.4 IMPLEMENTATION DETAILS

Global Configuration. Each cross-attention block uses 8 heads and an FFN expansion factor of 4;
dropout is disabled. Perceiver latents for schema encoding employ 128 queries of width 64. Text
columns are truncated to 64 sub-word tokens. We clip gradients at 1 and initialize weights with
Xavier-uniform. Wall-clock throughput averages 384 rows s−1 yielding a total pre-training time of
250 hours.

Column–Value Embedding Modules. We first embed each column name, value, and table-level
metadata into a unified feature space of dimension MLM:

• Text auto-encoder (AEtext). We adopt the BART-base encoder–decoder followed by a
Perceiver-Resampler. The resampler compresses token embeddings into Lr = 16 latent
tokens of dimension MLM, using Nr = 2 cross-attention blocks (h = 8 heads) and a
feed-forward expansion of 4.

• CycEnc for datetime. Each timestamp is decomposed into year, month, day, hour, and
minute. The year is normalized by subtracting 2000 and dividing by 100; periodic fields use
sine–cosine encodings (yielding 9 features), then projected to MLM via a two-layer MLP
(hidden = 512, GELU).

• Piece-wise linear encoding (PLE). For numeric columns we fit K = 8 break-points (Gor-
ishniy et al., 2022) and map the resulting vector to MLM with shared weights.

Modality–Specific Expert Encoder. The flattened sequence E ∈ Rp×2MLM is split by data type
and passed to four Perceiver-Resampler experts. We initialize ℓ learnable latent queries Z(0) ∈
Rℓ×Magg and apply Le = 4 attention layers:

Z(l+1) = FFN
(
Z(l) +MHA(q = Z(l), kv)

)
,

where

kv =

{
[Z(0);E] l = 0,

Z(l) l > 0.

Each MHA uses h = 8 heads and expands to 4Magg. Positional encodings are omitted for permutation
invariance. The two parallel encoders output µ, log σ2 ∈ Rℓ×Magg for the MoPoE gate.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Schema Encoder & Gating Details.

• Distribution embeddings. Numerics: 33-dim DCT of 32 quantile breakpoints. Categoricals:
mean of PLM embeddings. Text: no distribution embedding. Datetime: no distribution
embedding, leave to future work.

• Data-type ID embeddings. Four-entry lookup (num, cat, text, time) of size MLM.
• Perceiver schema encoder. 4 layers, 2 heads, latent width Msch/4 = 64, no positional

encodings.
• Gating MLP. Input size Magg +Msch, hidden 128, output 1, ReLU.
• Computation cost. All 15 subset products and gating add <0.3 ms per row on H100.

Decoder Implementation Details. For each modality, a Perceiver-Resampler block (Ld = 4,
h = 8, FFN×4) maps queries E(m)

c and keys/values [em; z] to embeddings H(m). Reconstruction
heads then apply:

• Numerical head. x̂ = σ(Wnumh+ b), trained with MSE on min–max normalized targets.

• Categorical head. v = Wcath, P̂ (x) = softmax(CosSim(v, C)) with prototype table
C (Yak et al., 2023).

• Text head. Resampler → BART-base decoder; cross-entropy loss over subword tokens.
• Datetime head. Separate MLPs for year (MSE) and month/day/hour/minute (cross-entropy),

balanced by weights 1:1:1:0.5.

6.5 BASELINE IMPLEMENTATION

6.5.1 TABLE REPRESENTATION

• CARTE (Kim et al., 2024): We clone the official repo at
https://github.com/soda-inria/carte. We load the pre-trained model
into a CARTEClassifier module, fit it on train sets with default parameters batch size = 16,
epoch = 500, learning rate = 1e-3. Once fitted, we extract the output from the CARTE_Base
layer of each classifier as our embedding.

• TabPFN (Hollmann et al., 2025): Using the official implementation at
https://github.com/PriorLabs/TabPFN. For synthetic data generation
and unsupervised embedding generation we use the tabpfn-extension package
https://github.com/priorlabs/tabpfn-extensions.

• CTSyn (Lin et al.): We implement the method following the original paper. The VAE
backbone uses the same latent dimension 64 and length 128, and a 6-layer encoder/decoder
with hidden size 2048. We extract the reconstruction-latent mean µ after the encoder layer
deterministically.

• Tabula-8B (Gardner et al., 2024): We fine-tune the 8B LLM from
https://huggingface.co/mlfoundations/tabula-8b using a learning
rate of 2× 10−5 for 10 epochs on each subset. We employ LoRA parameter-efficient
fine-tuning with rank r = 8. We prompt the model with the same text serialization used in
GReaT (Borisov et al., 2023) and take the hidden state from the last transformer block as
the table embedding.

• TAPAS (Herzig et al., 2020): We use the pretrained checkpoint from
https://huggingface.co/google/tapas-base and fine-tune on our ta-
ble–text QA data with batch size 16 and learning rate 3 × 10−5 for 10 epochs on each
training subset. The pooled [CLS] token from encoder layer 12 is used as the table
representation.

• SwitchTab (Wu et al., 2024): Implementation is from
https://github.com/avivnur/SwitchTab. We train the Switchtab on
autoencoding with lr = 1e-3, batch size = 4096, adamW optimizer for 200 epochs (N ≤ 128)
or 1000 epochs (N ≥ 128) and extract the salient embedding immediately after salient
projector output.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Transformer VAE (Zhang et al., 2024a): Based on the code in
https://github.com/amazon-science/tabsyn. We set the transformer
encoder to 6 layers, on autoencoding with lr = 1e-3, batch size = 4096, adamW optimizer
for 200 epochs (N ≤ 128) or 1000 epochs (N ≥ 128) and extract the salient embedding
immediately after encoder output deterministically. During training we use initial beta = 0.1
and multiply beta by factor of 0.9 for every 20 epochs of validation loss not reducing.

• TabVec (Skrub, 2024): We implement the deep encoder in PyTorch following the de-
scription in the repo https://skrub-data.org/stable/index.html. We fit
the table vectorizer on training data and use the same fitter vectorizer on corresponding
testing data.

6.5.2 TABLE SYNTHESIS

• TabPFN Generation (Hollmann et al., 2025): We follow the Prior Labs tutorial (https:
//priorlabs.ai/tutorials/unsupervised/) with seed=42. Each train split is
loaded, shuffled, and batched (max 200 rows). Numeric features are cast to float32 and
categoricals label-encoded (unseen→–1). Zero-variance columns are dropped before fitting
and reinserted after sampling. For each batch, we fit the unsupervised TabPFN model and
sample synthetic rows with temperature t = 1.0 across three random permutations. Outputs
are decoded, constants reattached, batches concatenated, and truncated to the original row
count.

• LLaMA Generation: Using LLaMA 3.3 70B (Grattafiori et al., 2024) via the Groq API
(https://console.groq.com/docs/models), each train split (seed=42) is parti-
tioned into batches of 200 rows. We compute per-column summary statistics and serialize the
batch to CSV, then call llama-3.3-70b-versatile with sampling temperature=0.1,
requesting exactly N rows as JSON. On parse errors or incorrect counts we retry up to five
times. Valid outputs are concatenated, truncated or re-prompted as needed, then validated
for correct dimensions and types.1

Below is the prompt template we passed verbatim to the Groq API (see Appendix B.5 of
(Seedat et al., 2023)):

System role: You are a tabular synthetic data generation model.

Your goal is to produce data that mirrors the given examples in
causal structure and feature/label distributions,
while maximizing diversity.

Context: Leverage your in-context learning to generate realistic,
diverse samples.

Output format: JSON.

Dataset name: {dataset_name}

Column names (in order): {col_names}

Summary statistics:
{summary_stats}

CSV of full data:
{data}

Please generate {batch_size} rows of synthetic data.

Treat the rightmost column as the target. Return only a JSON object:

1LLaMA 3.3-70B failed on geographical-origin-of-music, pumadyn32nh, student-performance-por, su-
perconductivity, and wave-energy due to token limits; TabPFN failed on geographical-origin-of-music due to
extreme dimensionality.

17

https://priorlabs.ai/tutorials/unsupervised/
https://priorlabs.ai/tutorials/unsupervised/
https://console.groq.com/docs/models

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

{
"synthetic_data": "<CSV string>"

}

Do not include any additional text.

• TabDiff Generation (Shi et al., 2025): We adopt the default implementation and hyperpa-
rameters, with two modifications: early stopping if loss does not improve within 25 epochs,
and relaxed preprocessing so that train splits need not retain every category for very small
datasets.

6.5.3 TABLE PREDICTION

• XGBoost on AutoDiff: Trained xgb.XGBClassifier(use_label_encoder=False,
eval_metric=’logloss’) on an 80%/20% split. Metrics: accuracy, macro-precision,
macro-recall, macro-F1, and multiclass ROC AUC (one-vs-rest).

• XGBoost on OpenML_crt23: Default XGBoost applied to pre-sampled train splits (sizes
32, 64, 128 with three seeds each, plus the full 999-sample split), evaluated on the 999-
sample hold-out. Same metrics as above.

• XGBoost Grid Search: Grid search over max_depth ∈ {3, 6, 9}, learning_rate ∈
{0.01, 0.1, 0.2, 0.3}, n_estimators ∈ {50, 100, 200}, subsample ∈ {0.8, 1.0} using
StratifiedKFold CV. The best model is retrained and evaluated as above.

• TabPFN Default on AutoDiff (Hollmann et al., 2025):
TabPFNClassifier(ignore_pretraining_limits=True) on a 50%/50%
split. Metrics: accuracy, macro-precision, macro-recall, macro-F1, multiclass ROC AUC
(one-vs-one), and label-ranking average precision (LRAP).

• TabPFN Default on OpenML_crt23: Same classifier and metrics applied to each
OpenML_crt23 train split.

• AutoTabPFN Ensemble on OpenML_crt23: AutoTabPFNClassifier(max_time=120,
device=’cuda’, ignore_pretraining_limits=True), evaluated with iden-
tical metrics to compare ensemble versus single-model performance.

6.6 METADATA ANNOTATION STATISTICS

Table 6 summarizes the key annotation metrics collected over the Meta-T4 corpus.

Missingness Patterns: No tables contained missing-value columns in the final annotated corpus.

6.7 ONLINE DATA GENERATION

Generation Procedure and Low-Data Regime Evaluation. We test the model‘s performance to
generate synthetic data in an online manner. For online generation with SAMoE-VAE, we perform in-
context synthesis by encoding the training examples to obtain the predicted means and log-variances,
sampling stochastically from these Gaussians, and decoding the latent samples back to table rows via
the decoder. Llama and TabPFN both use standard in-context generation: we concatenate training
examples into the prompt and sample directly. TabDiff is trained exclusively on the provided training
set examples before sampling. To assess performance in the low-data regime, we randomly sample
128 examples from each OpenML_ctr23 train split, repeating this process three times with seeds 0, 1,
and 2. Under these scarce-data conditions, foundation models consistently outperformed data-specific
generators, with SAMoE-VAE achieving the best overall performance thanks to its schema-aware
handling of heterogeneous, mixed-type data. This also provides a promising solution for generating
extremely large quantity of tabular data in industrial production settiing.

6.8 DATA LEAKAGE HYGIENE

In evaluating foundation models, a common concern is that pre-training data might be contaminated
by benchmark data points. We addressing this issue by separating benchmark tables as contaminated

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Metric Value Unit / Note

Table Counts
Total tables processed 2,633,906 tables
Unique schema prefixes 1,493,062 schemas

Schema Complexity
Mean columns per table 10.39 columns
Median columns per table 9.00 columns
Min / Max columns per table 0 / 1,202 columns

Variable-Type Distribution (total = 26,920,066)
Continuous 13,519,924 (50.22%)
Integer 6,318,308 (23.47%)
Categorical 4,226,581 (15.70%)
Freetext 1,926,688 (7.16%)
Datetime 742,076 (2.76%)
Other 186,215 (0.69%)

Description Statistics
Average words per description 50.95 words
Average characters per description 335.67 characters
Vocabulary size 1,016,075 unique words

JSON Payload Size
Mean 2,276 bytes
Median 1,945 bytes
Min / Max 0 / 472,454 bytes

Table 6: Summary of metadata annotation statistics over 2.6M tables.

Model Shape Score Shape Rank Corr Score Corr Rank

SAMoE-VAE 0.7849± 0.1400 1.15± 0.71 0.6945± 0.2040 1.01± 0.74
Llama 3 -70B 0.7349± 0.1144 1.45± 0.78 0.5827± 0.1836 1.38± 0.62
TabDiff 0.6879± 0.1292 2.06± 0.70 0.4247± 0.2673 2.39± 0.70
TabPFN 0.5658± 0.2271 2.21± 0.77 0.4125± 0.2952 1.94± 0.78

Table 7: Comparison of Shape and Correlation Similarity metrics (mean ± std) and their correspond-
ing mean rank (mean ± std) across models.

following the "strictly matched" standard (Gardner et al., 2024), where exact match of column name
set is consider contaminated. Table 8 compares performance of SAMoE-VAE and TabPFN Embedding
on “contaminated” (C) vs. strictly “non-contaminated” (NC) evaluation subsets. Reconstruction is
measured by RMSE (lower is better) and classification by ROC AUC (higher is better).

Table 8: SAMoE-VAE vs. TabPFN embedding on Contaminated (C) and Non-Contaminated (NC)
Subsets

Model Reconstruction (RMSE) Classification (ROC AUC)

C NC C NC

TabPFN 0.660 0.661 0.715 0.710
SAMoE-VAE 0.125 0.130 0.732 0.724

Both models see a slight performance boost on contaminated data. However, the gap in classification
accuracy between SAMoE-VAE and TabPFN shrinks from 0.017 on the contaminated split to 0.014
on the clean split, indicating that SAMoE-VAE’s advantage is not driven by leakage but holds under
strict non-contaminated evaluation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

6.9 TEXT/DATETIME CASE STUDY: UCI ONLINE RETAIL

To examine performance on text and datetime columns, we evaluate on the UCI Online Retail table
(classification and clustering). The dataset includes a free-text column Description and a times-
tamp column InvoiceDate. We remove InvoiceNo and CustomerID to avoid all-unique
identifiers. Models are trained/evaluated under authors’ recommended preprocessing; for TabPFN
we represent Description by TF–IDF features and expand InvoiceDate into calendar com-
ponents (year, month, day, hour, minute). SAMoE–VAE uses its text encoder and cyclic datetime
encoder. We report ROC–AUC for classification and ARI for clustering.

Table 9: UCI Online Retail: text/datetime case study.
Model Classification ROC–AUC ↑ Clustering ARI ↑
SAMoE–VAE 0.746 0.152
TabPFN 0.691 0.103
CARTE 0.604 0.081
Tabula–8B 0.522 0.034

Result. SAMoE–VAE achieves the best performance on both tasks, supporting the claim that schema-
aware routing with modality-specific text/datetime encoders improves representation quality when
tables contain substantial free-text and timestamp fields.

20

	Introduction
	Related Work
	Self-Supervised Learning on Tabular Data

	Methodology
	Feature Embedding
	Modality–Specific Expert Encoders
	Schema–Aware Mixture–of–Product–of–Experts Gating
	Decoder
	Training Objective

	Experiment
	Benchmark Datasets
	Baselines
	Downstream Performance
	Cross-schema Generalization
	Table Reconstruction
	Data Efficiency

	Robustness to Metadata Quality
	Ablation Study

	Conclusion
	Appendix
	LLM Usage Disclosure
	Metadata Generation
	Pre-training Details
	Implementation Details
	Baseline Implementation
	Table Representation
	Table Synthesis
	Table Prediction

	Metadata Annotation Statistics
	Online Data Generation
	Data Leakage Hygiene
	Text/Datetime Case Study: UCI Online Retail

