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ABSTRACT

Haim et al. [NeurIPS 2022] propose a method to reconstruct training data from
trained neural networks with impressive results. While their reconstructed images
resemble the original training images, most of them also contain a considerable
amount of noise and artifacts. This is especially true, when the network was trained
on more than just a few dozen images. To address this, we view the problem as
a specific image restoration task. Since the noise and artifacts are different from
other types of noise (Gaussian noise, compression artifacts, blurring, or impulse
noise from digital cameras), we create a new dataset specifically for the restoration
of images produced by the reconstruction process proposed by Haim et al. We
use this dataset consisting of about 60 million noisy reconstructions of CIFAR-10
images to train a diffusion model on the restoration task. Using this method, we
obtain reconstructions that are significantly closer to the original training images
measured in terms of SSIM and HaarPSI scores.

1 INTRODUCTION

To what extent is the training data encoded in the weights of a trained neural network? This is not just
an important question for our understanding of neural networks, but also a question with potential
privacy implications. Since the work of Fredrikson et al. (2014), model inversion attacks have been
investigated for many years. Fredrikson et al. (2015) for example show that, given a facial recognition
model, it is possible to obtain an image depicting a target person. This is done by optimizing for
an input of a facial recognition model that maximizes the models certainty that the input shows a
particular target person. However, such model inversion attacks fail to produce any meaningful result
if a class contains many diverse images that are not very similar to one another (Shokri et al., 2017).

Haim et al. (2022) develop another type of attack that can recover part of the training data of an image
classifier even when each class contains a diverse set of images. They are able to recover a number
of training images from the weights of a given trained network. The reconstructed images can be
noisy, but clearly resemble specific individual images from the training set (as opposed to simply
constructing new realistic images that would belong to a class, but were not in fact used during the
training).

We view the removal of noise and artifacts from the reconstructed images produced by Haim et al.
(2022) as a new type of image restoration task and by tackling this new task, we significantly improve
the reconstructions obtained by Haim et al. (2022). We create a large dataset consisting of such noisy
reconstructions together with their clean counterparts from the original training set and then train a
conditional diffusion model on this new image restoration task. This works even when the corruption
of the images is severe and even when it would be difficult for a human to interpret the corrupted
image.

Previous works have considered using generative tools to guide model inversion attacks. The idea
is that an unconstrained optimization over the model input to maximize a certain model output
may lead to completely unrealistic results. Instead, the goal is to either constrain the generation or
bias it towards specific types of “realistic” inputs. Zhang et al. (2020) use pretrained GANs in an
attempt to prevent the model inversion attack from generating unrealistic images. However, while
this approach generates realistic images that fit a particular class, just as the classic unguided model
inversion attack, it cannot recover images used in training if the images in the class are sufficiently
diverse. In this sense our results are notably different. While our use of a diffusion model also risks
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hallucinations—the production of images that look realistic, but were in fact not part of the training
data—we propose a mitigation for this that utilizes the probabilistic nature of the diffusion process.

Our main contributions can be summarized as follows:

• We demonstrate that diffusion models can be very effective at removing noise and artifacts
from reconstructed training data, specifically reconstructions that are produced by solving the
optimization problem based on Karush–Kuhn–Tucker(KKT) points of the maximum-margin
problem.

• As far as we are aware, this is the first work that successfully trains and applies a diffusion
model for improving imperfect results of solving a specialized optimization problem, where
the imperfections appear to be a special kind of noise not otherwise familiar and for which
off-the-shelf denoisers do not appear suitable for.

• We contribute a dataset consisting of about 60 million pairs of reconstructed images of varying
quality and their estimated (augmented) CIFAR-10 counterpart for the community to use in future
research.

1.1 RELATED WORK

We refer to Haim et al. (2022) for a detailed comparison between their approach and other types of
attacks.

Buzaglo et al. (2023) extend the work of Haim et al. (2022) in a number of ways. Firstly, they show
that the approach can also reconstruct part of the training data in the multiclass setting. In fact, they
demonstrate that trained models become more vulnerable to training sample reconstruction as the
number of classes increases. They also study regression loss functions with weight decay (as opposed
to cross entropy loss) and establish that reconstructions of training samples is still possible. Finally,
they also successfully perform reconstructions for models trained on a larger training set (size 5000
as opposed to the previous largest of 1000 in Haim et al. (2022)).

Building on Haim et al. (2022) and model inversion methods such as that of Tumanyan et al. (2022),
more recently Oz et al. (2024) show how one may reconstruct higher-resolution training data from
fine-tuned foundation models via the embedding space.

Feldman (2020) provide a theoretical model demonstrating that for natural data distributions memo-
rization of labels is necessary for achieving close-to-optimal generalization error. Hayes et al. (2023)
obtain a tight upper bound on the success of any reconstruction attack against DP-SGD, a standard
algorithm for private deep learning.

Balle et al. (2022) show that it is feasible for an adversary who knows all the training data points
except one to reconstruct the remaining data point.

Jagielski et al. (2023) show that, although non-convex models can memorize data forever in the
worst-case, standard image, speech, and language models empirically forget examples as training
time increases. Carlini et al. (2023b) identify three log-linear relationships that quantify the degree to
which large language models emit memorized training data.

Carlini et al. (2023a) devise a generate-and-filter pipeline, and show that it is able to extract over
a thousand training examples from state-of-the-art diffusion models. Somepalli et al. (2023) study
how to detect reproduction of training images by diffusion models, and investigate how its rates are
impacted by factors such as training set size.

1.2 PRELIMINARIES

The approach by Haim et al. (2022) relies on the implicit bias of gradient descent. Specifically, Lyu
& Li (2020) and Ji & Telgarsky (2020) show that when optimizing the binary cross-entropy loss of
a homogeneous neural network using gradient flow, under certain conditions, the direction of the
network weights converges to a Karush–Kuhn–Tucker (KKT) point of the maximum-margin problem.
Concretely, suppose the training data consists of n labeled examples (xi, yi) with yi ∈ {−1, 1} for
i ∈ [n] and that at some point during training, we have mini{yiΦ(θ;xi)} ≥ 1, where Φ(θ;x) is
the output of the neural network with weights θ on input x. This condition mini{yiΦ(θ;xi)} ≥ 1
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mainly means that we require that all training samples are classified correctly. Then, there exist
non-negative λi such that in the limit, as the training goes to infinity, the direction of the weights
θ/∥θ∥ converges to θ∗ with

θ∗ =

n∑
i=1

λiyi∇Φ(θ∗;xi) . (1)

Additionally, for all i ∈ [n] for which yiΦ(θ
∗;xi) > mini{yiΦ(θ∗;xi)} (that is for all training

samples that do not lie on the margin), we will have λi = 0.

Therefore, if we are given weights of a network that has been trained for a long time, we can attempt
to (approximately) solve eq. (1) for λi, xi, and yi to recover the training samples. Note that this is
not suitable to recover training samples that do not lie on the margin, because for those λi = 0.

We do not need to know the number n of samples in the training data, but only an upper bound m
on the number of training samples that are in the same class and lie on the margin. We then aim to
minimize the loss

L(λ′, x′) =
∥∥∥θ∗ − 2m∑

i=1

λ′
iy

′
i∇Φ(θ∗;x′

i)
∥∥∥2
2

over λ′ and x′, where y′i is fixed to −1 for i ≤ m and y′i is fixed to 1 for i > m. In principle, this
would allow for the reconstruction of up to m training samples for each class, meaning we do not
have to know the exact size of the training data nor the class distribution in the training data. This
potential overestimate in training samples per class does not invalidate the approach because for any
extra term in the sum it is always possible to set λ′

i = 0.

Rather than optimizing for the loss L(λ′, x′) as written, Haim et al. introduce a few additional
technical tweaks. Firstly, they substitute the gradient computation of the ReLU function by the
derivative of the Softplus function ln(1 + eαx)/α, with a hyperparameter α. The hope is that this
is easier to optimize due to it being continuous, but, especially for large α, otherwise not very
different from the derivative of the ReLU function. Secondly, they add terms to the loss function that
penalize pixel values outside the range [−1, 1] and values for λ′

i smaller than a hyperparameter λmin.
Concretely, they add a term of max(p− 1, 0)2 +max(−1− p, 0)2 for each pixel p of each xi to the
loss and a term of 5 ·max(−λi + λmin, 0)

2 for each λi.

2 CREATION OF THE DATASET

The reconstructions of training data that are obtained by minimizing the loss function stated in
section 1.2 contain considerable noise and artifacts. One reason for this is that in practice, networks
are not trained to infinity and therefore eq. (1) is not exactly satisfied. We see the task of “cleaning
up” such noisy reconstructions as a specific type of image restoration task.

In order to be able to train a model, in our case mainly a diffusion model, on our image restoration
task, we have to create a suitable dataset for this particular task. When, say, training for an image
restoration task that aims to remove Gaussian noise, it is possible to generate the corresponding
image corruptions on the fly during training. For this, we only require a set of clean images, which
we can then augment (through flips, rotations, etc.) and corrupt by adding Gaussian noise to obtain
pairs of input images and the corresponding target image. In contrast, we cannot generate the type of
corruption occurring in our restoration task on the fly in an efficient way. Instead, we create a dataset
consisting of a large number of pairs of images. One image in each pair is an original image from the
CIFAR-10 training set and the second image is a corrupted version of the same image resulting from
the reconstruction process.

To generate such pairs, we first train a neural network on some images of the CIFAR-10 training set
and then attempt to reconstructed the training images. If the reconstruction procedure results in some
images that, while noisy, can be confidently matched to one of the images the network was trained
on, this gives us a pair of noisy reconstructed image and a clean target image from the CIFAR-10
training set.

The training phase. We train a neural network with two hidden layers, without bias terms, consist-
ing of 1000 neurons each and with ReLU activations. As Haim et al., the weights in the first layer are
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initialized using Gaussians with standard deviation 10−4, and all other layers are initialized using
Kaiming He initialization (He et al., 2015). The training is done for the binary task of distinguishing
animals from vehicles in images and uses binary cross entropy loss. Then we run the reconstruction
procedure. As Haim et al., we normalize the training data by averaging all training images and
subtracting this average from all training images.

The reconstruction phase. For all i, we randomly initialize λ′
i ∼ U [0, 1) and x′

i ∼ N (0, σ2I),
where σ is a hyperparameter. We set m = 200 (which means we have 2m = 400 many λ′

i and
x′
i’s). We then optimize the loss function described in section 1.2. Note that, as mentioned before,

during this reconstruction phase, we substitute the gradient computation of the ReLU function by the
derivative of the Softplus function with the hyperparameter α.

Improving the data generation speed. One of our main challenge is that training a network and
then running the reconstruction procedure of Haim et al. takes a considerable amount of time. In the
main setup of Haim et al., the network is trained on 500 images for one million epochs. Haim et al.
then perform the reconstruction given this network. A single such reconstruction run alone takes
about 90 minutes when using a single NVIDIA GeForce RTX 3080 Ti GPU and may only produce a
few reconstructions of sufficient quality. Here sufficient quality means that we can match it to one of
the images the network was trained on with some level of confidence.

For this reason, we modify the procedure in order to generate more data for our dataset in a shorter
amount of time. In particular:

• We use single instead of double precision.

• For both the training of the network and the reconstruction procedure, we use the Adadelta
optimizer (Zeiler, 2012) instead of gradient descent. The Adadelta learning rate is fixed at 1.

• We train the network on 300 images (150 for each class) instead of 500.

• We train the network for 50,000 epochs instead of one million epochs.

• Instead of setting m equal to the number of images the network was trained on, We run the
reconstruction only with m = 200 (i.e. we use 400 x′

i and λ′
i values).

• We fix the hyperparmeters for the reconstruction run as α = 20, λmin = 0.5, and σ = 0.001.

• We run the reconstruction for 11,900 epochs instead of 50,000.

With these changes, the combined training and reconstruction takes a few minutes rather than hours.

Image augmentation. As is often done when training generative models, we aim to increase the
diversity in our training set through image augmentation. While this is often done on the fly while
training a diffusion model, as explained above, this is not possible for us. The difficulty is the
following: suppose we have an augmentation operator A that transforms a training image I to an
augmented image A(I). Now suppose we get a noisy reconstruction R of I and the pair (R, I) is
stored in our dataset. Can we now train the diffusion network on an augmented version of I? For
this we would want to obtain a reconstruction of A(I). However, it is not obvious what such a
reconstruction would be. One guess would be A(R), but it is not clear to us that, say, rotating a
training image would result in the same kind of rotation in the reconstructions with no other changes
to the distribution of the reconstruction. Investigating this would be interesting future work, but for
this current work, we are choosing the safe option of performing the data augmentation already when
creating our dataset.

Concretely, after sampling 300 images from the CIFAR-10 training set (150 from “vehicle” classes and
150 from “animal” classes), we randomly augment each of the images using the same augmentation
pipeline and parameters as Karras et al. (2022) (which in turn borrow the pipeline from Karras et al.
(2020)). It randomly applies x-flips, y-flips, isotropic and anisotropic scalings, and fractional rotations
and translations. To stop the augmentations from leaking into the image generation when applying
the trained diffusion model, the augmentation parameters are given to the diffusion model as an
additional conditioning input. When the model is used to generate new images, the augmentation
parameters are set to 0 to condition the model to only generate non-augmented images. All this is
done exactly as in Karras et al. (2022) and we refer to their work for more details.
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Identifying image pairs. During each reconstruction, we save x′
i at epochs 100, 200, 300, 500,

800, 1400, 2400, 4100, 7000, 10000, and 11900. Then for each of the x′
i at each of these points in

time, we compute the SSIM score (Wang et al., 2004) to each of the images the network was trained
on. If there is an x′

i at any of these times that has an SSIM score above 0.4 for some training image T ,
but where the SSIM score is at least 0.05 lower for the next best training image, then we say that we
are reasonably confident that this x′

i represents a corrupted version of T . We therefore add x′
i and T

to our dataset. In fact, in this case we add all versions of x′
i recorded in epochs 100, 200, . . . , 11900

even if only one of them produced a confident match with T . By taking even versions of x′
i from

very early epochs, we hope to also include image pairs in our dataset where one image is a corrupted
version of the other, but where the corruption is so severe that the SSIM score is possibly even
below 0.4.

Number of runs, dataset size, and compute. We ran this process of training a network and then
performing the reconstruction 100k times; each time with a new random subset of 300 images from
the full CIFAR-10 training set (but such that the classes are balanced) and their random augmentations.
Unfortunately, some images are much more likely to be reconstructed than others, which creates big
imbalances in the dataset and missing out on including many images of the CIFAR-10 training set
completely because they were not reconstructed with suitable quality even once in any of the 100k
runs. To mitigate this, in a second phase, we ran the process another 50k times, but this time only
sampling from the 4000 CIFAR-10 images least seen so far in the dataset rather than from all 50,000
images in the CIFAR-10 training set (which images were least seen is updated after each run). Indeed,
while imbalances remain, with this approach we were able to ensure that 42,707 of the 50,000 images
in the CIFAR-10 training set appear at least once in the dataset.

The total compute for generating the dataset on an internal cluster utilizing NVIDIA A100 GPUs
was about 5600 GPU hours. We believe there is room to improve this by using a better sampling
strategy when picking images to train the network on. This could make better use of our new
gained knowledge about the discrepancies in likelihood of different images having good enough
reconstructions in a single run. For example, it may be advisable to avoid repeatedly sampling
images for which already many suitable corrupted versions were generated. At the same time, it
may also help to not too aggressively sample from the images that have repeatedly failed to produce
any suitable reconstructions over a large number of runs. In our experiments, we saw that otherwise
there can be many runs not contributing a single new entry to the dataset because all images used
in training the network were chosen from the set of images that are unlikely to produce meaningful
reconstructions.

3 THE CONDITIONAL DIFFUSION MODEL

For our diffusion model, we use the DDPM++ architecture (Song et al., 2021) and exactly the same
method (preconditioning, noise distribution, etc.) as Karras et al. (2022). We only make two notable
changes to their code (which is available1 under a CC BY-NC-SA 4.0 license).

The purpose of the first change is to condition the model on a given (corrupted) image that is supposed
to be restored. For this we use six instead of three input channels, where the three colors of the
corrupted image are fed into the network through the three additional input channels. The skip
connection in the preconditioner is still restricted to the first three channels, however.

The second change is to use our dataset consisting of pairs of images from the CIFAR-10 training
set and noisy reconstructions of those as described in section 2. This also means data augmentation
already has been performed when creating the dataset rather than being done on the fly at the time
of training the diffusion model. We emphasize that it is important that our dataset used to train the
diffusion model only relies on the training set of CIFAR-10, such that we can later evaluate it using
images involving the test set that the diffusion model has not seen during training.

Dataset balancing. Our dataset containing about 60 million examples contains augmented versions
of some CIFAR-10 images much more frequently than others. We balance this as follows: if a
CIFAR-10 image appears z times within the dataset, we remove each such occurrence from the

1
https://github.com/NVlabs/edm/tree/62072d2612c7da05165d6233d13d17d71f213fee
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dataset with probability 1− 11/z, independently (every CIFAR-10 image that appears in the dataset,
appears at least eleven times). After this step, in expectation, each image appears eleven times and
we expect to have around 460k image pairs. We repeat this process about 140 times to obtain 140
different random balanced subsets of our full dataset. We then combine all of these subsets together
into a new large dataset containing about 64 million examples and that is balanced in expectation.2
(Some examples in this new dataset are repeated several times, but the key is that no CIFAR-10 image
is greatly over-represented.)

Adding random noise examples. The first time we save x′
i values when collecting data for our

dataset is after 100 epochs (see section 2). To improve the diversity of images produced by the
diffusion model when conditioned on extremely noisy and ambiguous reconstructions, we add 10% of
training samples consisting entirely of random noise as follows: we simulate what x′

i values would be
like just after initialization prior to any optimization taking place (i.e. at epoch 0). That is, we average
300 images of the CIFAR-10 dataset and add random noise to this average. This noisy “image” is
then paired with one of the 300 images we averaged over. We exploit the fact that the diffusion model
samples images from a wide distribution when conditioned on very unclear corrupted images to
mitigate hallucinations. (see Figure 4).

Training details and compute. The training was done in double precision, with batch size 513 and
learning rate 0.001. The training, using three NVIDIA A100 GPUs, took about two days. However,
around 20% of that time was spent on preparing data from the full dataset for the training.

4 THE CNN MODEL

Apart from conditional diffusion models, we can use our dataset to train other models as well. One
simpler and less resource intensive model is a CNN. In particular, we train a model based on the
CNN architecture introduced by Mohan et al. (2020). This architecture is based on DnCNN (Zhang
et al., 2017), but without bias terms in any layer. We will refer to this as BF-DnCNN.

We trained the model for about 40,000 batches of size 128 using the Adam optimizer (Kingma &
Ba, 2015) with initial learning rate 0.001 and then letting the learning rate half after the first 25,000
batches and further halving it every 5,000 batches after that. This is similar to what Mohan et al.
(2020) propose.

We use this trained model as an additional baseline to compare our diffusion based approach to.

5 EVALUATION AND RESULTS

To evaluate how well the trained diffusion model performs in our specific image restoration task, we
first replicate the reconstruction experiment of Haim et al. (2022) and then apply our diffusion model
to the “noisy” reconstructions obtained.

5.1 REPLICATING THE RECONSTRUCTION EXPERIMENT

We train a neural network of the same architecture as described in section 2: three fully-connected
layers with ReLU activations and where each hidden layer has 1000 neurons. The initalization is as
described in section 2 and training is once again done using binary cross entropy loss for the task of
distinguishing animals from vehicles.

Importantly, the network is trained on 500 images from the test set of ciFAIR-10 (Barz & Denzler,
2020). ciFAIR-10 is derived from CIFAR-10 by replacing duplicate images in the CIFAR-10 test set
(images in the test set that appear in identical or near identical form in the CIFAR-10 training set or
that appear more than once in the test set) with new images. Because our diffusion model has only
been trained on images derived from the training set, this ensures that our diffusion model has not
seen any of the 500 images we are now attempting to reconstruct.

2To save memory, we prepare data for the new balanced dataset on the fly while training the diffusion model
rather than preparing it all upfront.
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Figure 1: Among all training images, we show the 45 (in the bottom rows) that resulted in the best
plain reconstruction using the method of Haim et al. (shown in the top rows) based on SSIM score.
For each of these training images, we also show the best match (again based on SSIM score) after
applying different image restoration methods to all reconstructed images. The second rows, show the
result after applying the real image denoiser by Zamir et al. (2022). The third rows show the images
achieving the highest SSIM score with the target after our image restoration is applied once to each
plain reconstruction. The fourth rows show the images achieving the highest SSIM score with the
target after our image restoration is applied 20 times and the results are averaged.

We train for one million epochs using gradient descent with learning rate 0.01 and full batch size.
And once again, we normalize the inputs by averaging all images 500 and subtracting this average
from all images as Haim et al. do.

The resulting trained network is the network from which we attempt to reconstruct the images it was
trained on.

Haim et al. (2022) observed that their procedure has a number of hyperparameters and it is not
necessarily clear how to choose them. They therefore repeat the reconstruction process a number of
times, each time choosing a different initialization and different hyperparameters at random. They
then combine all the results and identify the most successful reconstructions from that combined set
of images.

For each of these reconstruction runs, for all i, we randomly initialize λ′
i ∼ U [0, 1) and x′

i ∼
N (0, σ2I), where σ is a hyperparameter. We set m = 500 (which means we have 2m = 1000 many
λ′
i and x′

i’s). We then use gradient descent to optimize the loss function described in section 1.2.
Once again, during this optimization we substitute the gradient computation of the ReLU function by
the derivative of the Softplus function with the hyperparameter α.

We repeat the reconstruction 303 times with gradient decent with momentum 0.9 for 49,000 iterations
and different hyperparameters: learning rate, σ, λmin, and α. Specifically, the learning rate is chosen
from a log-uniform distribution between 0.01 and 1, σ is chosen from a log-uniform distribution
between 10−6 and 0.1, λmin is chosen uniformly from [0.01, 0.5], and α is chosen uniformly from
[10, 500].

7
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56 of the 303 runs resulted in low reconstruction quality after 5000 epochs and were aborted, leaving
247 successful runs. We record all attempted reconstructions after 10k, 15k, 25k, and 49k epochs
of all successful 247 runs. Note that some of the x′

i for some of the runs may reflect some training
image, but many do not and seemingly just consist of unstructured noise.

Postprocessing. While the x′
i resulting from a reconstruction run typically have pixel values not

exceeding an absolute value of 1, due to the nature of the loss function in section 1.2, they are
otherwise arbitrarily scaled (in particular, their range can be orders of magnitude smaller than the
full interval [−1, 1]). We therefore normalize them by multiplying the pixel values with the largest
possible constant r, such that after reversing the training data normalization (i.e., after adding the
average of all images in the training data), the pixel values are in the interval [0, 1].

5.1.1 EVALUATING OUR IMAGE RESTORATION PERFORMANCE

For each of the 500 images that the neural network was trained on, we find the best match in terms of
SSIM score for 3 each of the following set of images:

1. The set of all images obtained in all of the reconstruction runs. We call these the plain recon-
structions. They tend to be noisy and have artifacts.

2. The set of images obtained after applying the Restormer framework by Zamir et al. (2022) with
pretrained weights for image deraining, Gaussian denoising, or real image denoising to all plain
reconstructions.

3. The set of images obtained after applying the trained BF-DnCNN discussed in section 4 to all
plain reconstructions.

4. The set of images obtained after applying our diffusion basaed image restoration model once to
each plain reconstruction. By this we mean that we condition our trained diffusion model on the
plain reconstruction and sample an image using 18 sampling steps.

5. The set of images obtained as follows: For each plain reconstruction, applying our image
restoration model 20 times and taking the average of the 20 resulting images.

We are exploring the last method mainly for the purpose of mitigating hallucinations. Hallucinations
can arise when the plain reconstruction we condition on is of very poor quality. In such cases, the
diffusion model will produce vastly different outputs each time it is applied with different initial noise.
Averaging such different outputs will not result in a clear image and be therefore less misleading than
taking the output of only a single application of the diffusion model.

Figure 1 shows the results for the 45 original images the network was trained on that were recon-
structed best (based on SSIM scores) for the first method. For each of those images, we then show
the best reconstruction (again, based on SSIM scores) for the different methods. For the Restormer
method, we only show the effect of real image denoising as a representative example. Gaussian
denoising and image deraining performed worse (see Figure 2).

The plain reconstructions in the top rows of Figure 1 are of similar quality as the ones presented in
Haim et al. (2022) for the comparable setting of reconstructing training images from a network that
was trained on 500 images.

Note that even when only severely corrupted images are produced by the plain reconstruction
procedure (to the point that the human eye can barely make out what the image shows), our image
restoration is able to produce much clearer images that are very close to the original training image.
However, the corruptions are very specific and distinct from common corruptions considered in image
restoration. The image denoise and image derain procedures by Zamir et al. (2022) for example
improve image quality only very slightly.

Figure 2 shows for each method how good its best reconstructions are. Specifically, it shows for
the ith best reconstructed image, how accurately (based on SSIM for the left plot and HaarPSI

3For computational efficiency, as Haim et al. (2022), we only do this approximately. Instead of computing
SSIM scores between each reconstructed image and each original training image, we initially match each
reconstructed image to one original training image using a heuristic that is faster to compute than SSIM and then
only compute the exact SSIM score between those matched images.
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Figure 2: We plot for each method how good the best reconstructions are. Specifically, we plot for
the ith best reconstructed image for a particular method, how accurately that image was reconstructed
based on the SSIM and HaarPSI metric. Note that the ith best reconstructed image can be different
for each method and also between the two similarity measures.

(Reisenhofer et al., 2018) for the right plot) that image was reconstructed. Note that the ith best
reconstructed image can be different for each method and also between the two similarity measures.

Although in Figure 2 the ith best reconstructed image can be different for different methods, it is
not the case that some training images have much better reconstructions after our image restoration
method is applied, but others have much better matches among the plain reconstructions. Figure 3
shows that none of the 500 training images is reconstructed worse after our restoration procedure is
applied to all plain reconstructions.

Buzaglo et al. (2023) suggest as a general guide that reconstructions with an SSIM score of above 0.4
to some training image should be considered a “good” reconstruction and they pay special attention
to how many such good reconstructions can be obtained for a trained network. For our network,
which was trained on 500 images, the plain method by Haim et al. results in 59 good reconstructions
when using this definition. However, when we apply our image restoration method 20 times and
averaging the outputs, this improves to 214 good reconstructions.

We observe that the Restormer archtiecture trained on different standard image restoration tasks gives
slight, but not dramatic improvements compared to the plain reconstructions, with ”Real Denoise”
performing best among these. However, training a model specifically for the type of image restoration
we want to perform achieves very good results. This suggests (possibly not surprisingly) that the type
of corruption we are confronted with when reconstructing part of the training data of a neural network
is fundamentally distinct from the noise we may encounter in images in other settings. Nevertheless,
it is a specific type of corruption that can be effectively trained for.

6 LIMITATIONS AND FUTURE WORK

We demonstrate that it is possible to remove noise and artifacts from many images that are imperfect
reconstruction of training images. We hope this paves the way to further extensions to higher
resolution datasets, for example by also building on recent work on reconstructions of vectors in the
latent space (Oz et al., 2024).

Another interesting direction to explore is whether the restoration task can still be learned across
different distributions. Our diffusion model is trained on data that, while different from the data it
is applied to, comes from the same distribution. Specifically, we train the diffusion model on data
derived from the training set of CIFAR-10 and then evaluate the method using images from the test set
of ciFAIR-10. Can similar results be achieved if there is a larger difference in the distributions? For

9
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Figure 3: (left) A scatter plot showing for each of the 500 training images, what the SSIM score of
the best reconstruction is before and after restoration. Here we use the restoration method that takes
the average of 20 images generated by repeatedly applying our diffusion model. (right) A scatter plot
for the same images as in the left plot, but evaluated using the HaarPSI metric.

Plain
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Ours single

Ours averaged

Target

Figure 4: Illustration of the mitigation of hallucinations. Starting with the plain reconstructions in
the top row (which do not appear to have any resemblance to any images from the training data), we
apply different denoising/image restoration methods. The second row shows the result after applying
the real image denoiser by Zamir et al. (2022). The middle row shows the image obtained after using
our diffusion model once conditioned on the image in the top row. The fourth row shows the result
after using our diffusion model 20 times conditioned on the image in the top row and averaging
the results. While the diffusion model produces realistic images that are distinct from any of the
images the network was trained on (the bottom row shows the closest match in terms of SSIM score),
when running the diffusion model several times it becomes clear that the generation is not consistent.
Averaging the results over 20 runs of the diffusion model produces images that no longer show a
potentially misleading hallucination.

example, whether a diffusion model trained on data derived from Imagenet would perform similarly
well when applied to CIFAR-10.

We also see an increased focus on types of training images that, so far, appear difficult to reconstruct
as an interesting direction for future work. Images that largely show the sky or the sea, with only a
relatively small and/or faint bird or boat occupying few of the total number of pixels cause significant
challenges. First of all, these are difficult to reconstruct accurately and when the reconstructions are
very noisy, our restoration procedure usually produces a similar mostly gray or blue picture, but fails
to recover the accurate shape of the small original object in it. Secondly, measures such as SSIM are
not well suited and tend to result in scores that are too optimistic for such images. The difference
between a gray sky, with a small dark splash representing a plane or bird and a gray sky with no
(or a slightly different) black splash is minor for measures such as SSIM while they can still feel
significant to the human eye.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

We will release the full dataset we created and view this is one of our central contributions. Due
to its size of about 60 million images, we are sharing a subset of about 460,000 images as part
of the supplementary materials for the reviewing period. In the supplementary materials, we are
also providing pretrained weights for the diffusion model and for the BF-DnCNN model. We are
sharing code on how to use the dataset to train these models and we are also sharing code on how the
pretrained diffusion model can be used for the image restoration task. Further, we provide descriptions
of the technical details of the dataset generation in section 2, of the training of the diffusion model
section 3, and of the training of the BF-DnCNN model in section 4. The work by Haim et al. (2022)
and their code is also publicly available and provides a reference point on how the reconstruction
runs are performed and how the results are matched to training images using the SSIM metric.

8 ETHICS STATEMENT

The risk of the recovery of training data is not new, but is amplified by our work. So far, the method
by Haim et al. (2022) has only been used to recover training data from relatively small models that
are trained on relatively small datasets. It is currently computationally expensive to scale this up.
However, until robust defenses are found and used, it is still advisable to treat the weights of a trained
model in the same way as one would responsibly treat the data it was trained on.

We also note that, similar to membership inference attacks, training data reconstruction can also
potentially be used by copyright holders to investigate whether their works have been used in the
training of a model. See for example discussions in Carlini et al. (2023a).
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Figure 5: We randomly split our 274 successful reconstruction runs into two sets. We then generate
plots as in Figure 2 for both sets and combine them to show the area between the smaller and the
larger value of the two versions. To make the plot more readable, we do not show Deraining, Gaussian
Denoise, Real Denoising, or BF-DnCNN. While the results are slightly worse overall than when
we take the best reconstructions from all 274 combined, this plot shows that the results are very
consistent when the reconstruction experiment is repeated.

A APPENDIX

A.1 IMPACT OF THE RANDOM INITIALIZATION OF THE RECONSTRUCTION RUNS ON THE
STABILITY OF RESULTS

In Figure 5, we demonstrate that the plots in Figure 2 are not overly affected by the randomness
resulting from individual reconstruction runs.

A.2 THE BEST RECONSTRUCTIONS FOR ALL 500 TRAINING IMAGES

The following figures in this appendix are similar to Figure 1 except that we show the best match
obtained for each of the 500 training image for the different methods (instead of just 45 of them).
Here images resulting from BF-DnCNN are also included. This order of the images is based on the
similarity of the image in the fifth row compared to the target image in the bottom row (using the
SSIM metric).4

4Where a black image is shown, the corresponding method did not result in any image which was most
similar to the desired target image. In other words, all images were better matched to one of the other 499
training images.
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Figure 6: Reconstructions for target images 1–100.
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Figure 7: Reconstructions for target images 101–200.
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Figure 8: Reconstructions for target images 201–300.
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Figure 9: Reconstructions for target images 301–400.
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Figure 10: Reconstructions for target images 401–500.
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